
Sistemi in tempo reale
Anno accademico 2006 - 2007

Concorrenza - II

Giuseppe Lipari
http://feanor.sssup.it/~lipari

Scuola Superiore Sant’Anna

http://feanor.sssup.it/~lipari


Outline

1 Introduction to concurrency

2 Models of concurrency: shared memory
Critical Sections
Synchronization

3 Semaphores

4 Solutions



The need for concurrency

There are many reason for concurrency

functional

performance

expressive power

Functional
many users may be connected to the same system at the
same time

each user can have its own processes that execute
concurrently with the processes of the other users

perform many operations concurrently
for example, listen to music, write with a word processor,
burn a CD, etc...
they are all different and independent activities
they can be done at the same time



The need for concurrency (2)

Performance

take advantage of blocking time

while some thread waits for a blocking condition, another
thread performs another operation

parallelism in multi-processor machines
if we have a multi-processor machine, independent
activities can be carried out on different processors are the
same time

Expressive power

many control application are inherently concurrent

concurrency support helps in expressing concurrency,
making application development simpler



Concurrency model

a system is a set of concurrent activities
they can be processes or threads

they interact in two ways
they access the hardware resources (processor, disk,
memory, etc.)
they exchange data

these activities compete for the resources and/or
cooperate for some common objective



Resources

a resource can be
a HW resource like a I/O device
a SW resource, i.e. a data structure
in both cases, access to a resource must be regulated to
avoid interference

example 1
if two processes want to print on the same printer, their
access must be sequentialised, otherwise the two printing
could be intermangled!

example 2
if two threads access the same data structure, the
operation on the data must be sequentialized otherwise the
data could be inconsistent!



Interaction model

Activities can interact according to two fundamental models

shared memory

All activities access the same memory space

message passing

All activities communicate each other by sending messages
through OS primitives

we will analize both models in the following slides



Outline

1 Introduction to concurrency

2 Models of concurrency: shared memory
Critical Sections
Synchronization

3 Semaphores

4 Solutions



Shared memory

Shared memory communication

it was the first one to be supported in old OS

it is the simplest one and the closest to the machine

all threads can access the same memory locations



Mutual Exclusion Problem

We do not know in advance the relative speed of the
processes

hence, we do not know the order of execution of the
hardware instructions

Recall the example of incrementing variable x

incrementing x is not an atomic operation
atomic behavior can be obtained using interrupt disabling or
special atomic instructions



Example 1

/* Shared memory */
int x;

void *threadA(void *)
{
...;
x = x + 1;
...;

}

void *threadB(void *)
{

...;
x = x + 1;
...;

}

Bad Interleaving:

...
LD R0, x (TA) x = 0
LD R0, x (TB) x = 0
INC R0 (TB) x = 0
ST x, R0 (TB) x = 1
INC R0 (TA) x = 1
ST x, R0 (TA) x = 1
...



Example 2

// Shared object (sw resource)
class A {

int a;
int b;

public:
A() : a(1), b(1) {};
void inc() {

a = a + 1; b = b +1;
}
void mult() {

b = b * 2; a = a * 2;
}

} obj;

void * threadA(void *)
{

...
obj.inc();
...

}

void * threadB(void *)
{

...
obj.mult();
...

}



Example 2

// Shared object (sw resource)
class A {

int a;
int b;

public:
A() : a(1), b(1) {};
void inc() {

a = a + 1; b = b +1;
}
void mult() {

b = b * 2; a = a * 2;
}

} obj;

Consistency:
After each operation, a == b

void * threadA(void *)
{

...
obj.inc();
...

}

void * threadB(void *)
{

...
obj.mult();
...

}



Example 2

// Shared object (sw resource)
class A {

int a;
int b;

public:
A() : a(1), b(1) {};
void inc() {

a = a + 1; b = b +1;
}
void mult() {

b = b * 2; a = a * 2;
}

} obj;

Consistency:
After each operation, a == b

a = a + 1; TA a = 2
b = b * 2; TB b = 2
b = b + 1; TA b = 3
a = a * 2; TB a = 4

void * threadA(void *)
{

...
obj.inc();
...

}

void * threadB(void *)
{

...
obj.mult();
...

}



Example 2

// Shared object (sw resource)
class A {

int a;
int b;

public:
A() : a(1), b(1) {};
void inc() {

a = a + 1; b = b +1;
}
void mult() {

b = b * 2; a = a * 2;
}

} obj;

Consistency:
After each operation, a == b

a = a + 1; TA a = 2
b = b * 2; TB b = 2
b = b + 1; TA b = 3
a = a * 2; TB a = 4

void * threadA(void *)
{

...
obj.inc();
...

}

void * threadB(void *)
{

...
obj.mult();
...

}

Resource in a non-consistent state!!



Consistency

for any resource, we can state a set of consistency
properties

a consistency property Ci is a boolean expression on the
values of the internal variables
a consistency property must hold before and after each
operation
it does not need to hold during an operation
if the operations are properly sequentialized, the
consistency properties will always hold

formal verification

let R be a resource, and let C(R) be a set of consistency
properties on the resource
C(R) = {Ci}
A concurrent program is correct if, for every possible
interleaving of the operations on the resource, ∀Ci ∈ C(R),
Ci holds.



Example: Circular Array
Implementation of a FIFO queue.

struct CA {
int array[10];
int head, tail, num;

}

void init(struct CA *ca) {
ca->head=0; ca->tail=0;
ca->num=0;

}
boolean insert(struct CA *ca, int elem) {
if (ca->num == 10) return false;
ca->array[ca->head] = elem;
ca->head = (ca->head + 1) % 10;
ca->num ++;
return true;

}
boolean extract(struct CA *ca, int *elem) {
if (ca->num == 0) return false;

*elem = ca->array[ca->tail];
ca->tail = (ca->tail + 1) % 10;
ca->num--;
return true;

}



Example: empty queue

head

tail

head: index of the first free element in the queue
here will be inserted the next element



Example: empty queue

head

tail

head: index of the first free element in the queue
here will be inserted the next element

tail: index of the first occupied element in the queue
will be the one that will be extracted next time



Example: empty queue

head

tail

head: index of the first free element in the queue
here will be inserted the next element

tail: index of the first occupied element in the queue
will be the one that will be extracted next time

the queue is empty, hence head == tail



Example: insert

3 8 2 5

headtail

boolean insert(struct CA *ca,
int elem)

{
if (ca->num == 10)

return false;
ca->array[ca->head] = elem;
ca->head = (ca->head+1)%10;
ca->num++;
return true;

}



Example: insert

3 8 2 5

headtail

boolean insert(struct CA *ca,
int elem)

{
if (ca->num == 10)

return false;
ca->array[ca->head] = elem;
ca->head = (ca->head+1)%10;
ca->num++;
return true;

}

num = (head - tail) % 8 → num = 4;



Example: insert

3 8 2 5

headtail

boolean insert(struct CA *ca,
int elem)

{
if (ca->num == 10)

return false;
ca->array[ca->head] = elem;
ca->head = (ca->head+1)%10;
ca->num++;
return true;

}

num = (head - tail) % 8 → num = 4;

insert(ca, 9);



Example: insert

3 8 2 5 9

headtail

boolean insert(struct CA *ca,
int elem)

{
if (ca->num == 10)

return false;
ca->array[ca->head] = elem;
ca->head = (ca->head+1)%10;
ca->num++;
return true;

}

num = (head - tail) % 8 → num = 4;

insert(ca, 9);

head and num have been increased



Example: concurrent insert

0 1 2 3 4 5 6 7 8 9

3 8 2

head

Two threads, the first calls insert(9),
the second calls insert(4);



Example: concurrent insert

0 1 2 3 4 5 6 7 8 9

3 8 2

head

Two threads, the first calls insert(9),
the second calls insert(4);

thread 1 calls insert(ca, 9);



Example: concurrent insert

0 1 2 3 4 5 6 7 8 9

3 8 2

head

Two threads, the first calls insert(9),
the second calls insert(4);

thread 1 calls insert(ca, 9);

boolean insert(struct CA *ca,
int elem)

{
if (ca->num == 10)

return false;
ca->array[ca->head] = elem;



Example: concurrent insert

0 1 2 3 4 5 6 7 8 9

3 8 2 9

head

Two threads, the first calls insert(9),
the second calls insert(4);

thread 1 calls insert(ca, 9);

boolean insert(struct CA *ca,
int elem)

{
if (ca->num == 10)

return false;
ca->array[ca->head] = elem;



Example: concurrent insert

0 1 2 3 4 5 6 7 8 9

3 8 2 9

head

Two threads, the first calls insert(9),
the second calls insert(4);

thread 1 calls insert(ca, 9);

preemption by second thread

boolean insert(struct CA *ca,
int elem)

{
if (ca->num == 10)

return false;
ca->array[ca->head] = elem;



Example: concurrent insert

0 1 2 3 4 5 6 7 8 9

3 8 2 9

head

Two threads, the first calls insert(9),
the second calls insert(4);

thread 1 calls insert(ca, 9);

preemption by second thread

boolean insert(struct CA *ca,
int elem)

{
if (ca->num == 10)

return false;
ca->array[ca->head] = elem;

...
boolean insert(struct CA *ca,

int elem)
{

if (ca->num == 10)
return false;

ca->array[ca->head] = elem;
ca->head = (ca->head+1)%10;
ca->num++;
return true;

}
...



Example: concurrent insert

0 1 2 3 4 5 6 7 8 9

3 8 2

head

4

Two threads, the first calls insert(9),
the second calls insert(4);

thread 1 calls insert(ca, 9);

preemption by second thread

boolean insert(struct CA *ca,
int elem)

{
if (ca->num == 10)

return false;
ca->array[ca->head] = elem;

...
boolean insert(struct CA *ca,

int elem)
{

if (ca->num == 10)
return false;

ca->array[ca->head] = elem;
ca->head = (ca->head+1)%10;
ca->num++;
return true;

}
...



Example: concurrent insert

0 1 2 3 4 5 6 7 8 9

3 8 2 4

head

Two threads, the first calls insert(9),
the second calls insert(4);

thread 1 calls insert(ca, 9);

preemption by second thread

boolean insert(struct CA *ca,
int elem)

{
if (ca->num == 10)

return false;
ca->array[ca->head] = elem;

...
boolean insert(struct CA *ca,

int elem)
{

if (ca->num == 10)
return false;

ca->array[ca->head] = elem;
ca->head = (ca->head+1)%10;
ca->num++;
return true;

}
...



Example: concurrent insert

0 1 2 3 4 5 6 7 8 9

3 8 2 4

head

Two threads, the first calls insert(9),
the second calls insert(4);

thread 1 calls insert(ca, 9);

preemption by second thread

second thread completes

boolean insert(struct CA *ca,
int elem)

{
if (ca->num == 10)

return false;
ca->array[ca->head] = elem;

...
boolean insert(struct CA *ca,

int elem)
{

if (ca->num == 10)
return false;

ca->array[ca->head] = elem;
ca->head = (ca->head+1)%10;
ca->num++;
return true;

}
...



Example: concurrent insert

0 1 2 3 4 5 6 7 8 9

3 8 2 4

head

Two threads, the first calls insert(9),
the second calls insert(4);

thread 1 calls insert(ca, 9);

preemption by second thread

second thread completes

boolean insert(struct CA *ca,
int elem)

{
if (ca->num == 10)

return false;
ca->array[ca->head] = elem;

...
boolean insert(struct CA *ca,

int elem)
{

if (ca->num == 10)
return false;

ca->array[ca->head] = elem;
ca->head = (ca->head+1)%10;
ca->num++;
return true;

}
...

ca->head = (ca->head+1)%10;
ca->num++;
return true;

}



Example: concurrent insert

0 1 2 3 4 5 6 7 8 9

3 8 2 4

head

Two threads, the first calls insert(9),
the second calls insert(4);

thread 1 calls insert(ca, 9);

preemption by second thread

second thread completes

boolean insert(struct CA *ca,
int elem)

{
if (ca->num == 10)

return false;
ca->array[ca->head] = elem;

...
boolean insert(struct CA *ca,

int elem)
{

if (ca->num == 10)
return false;

ca->array[ca->head] = elem;
ca->head = (ca->head+1)%10;
ca->num++;
return true;

}
...

ca->head = (ca->head+1)%10;
ca->num++;
return true;

}



Example: concurrent insert

0 1 2 3 4 5 6 7 8 9

3 8 2 4

head

Two threads, the first calls insert(9),
the second calls insert(4);

thread 1 calls insert(ca, 9);

preemption by second thread

second thread completes

there is a hole! At some point, the
extract will read a 4 and a random
value, instead of a 9 and a 4.

boolean insert(struct CA *ca,
int elem)

{
if (ca->num == 10)

return false;
ca->array[ca->head] = elem;

...
boolean insert(struct CA *ca,

int elem)
{

if (ca->num == 10)
return false;

ca->array[ca->head] = elem;
ca->head = (ca->head+1)%10;
ca->num++;
return true;

}
...

ca->head = (ca->head+1)%10;
ca->num++;
return true;

}



Consistency properties for struct CA

1 when the queue is empty, or when the queue is full,
head == tail

2 num is equal to the number of times insert has been called
minus the number of times that extract has been called

3 ...
4 if element x has been inserted, eventually it must be

extracted with an appropriate number of extracts
5 Every element that is extracted, has been inserted

sometime in the past.

Last two can also be expressed as:

Let (x1, x2, . . . , xk ) be the sequence of inserted elements,
and let (y1, y2, . . . , yk ) be the sequence of extracted
elements;

then ∀i = 1, . . . , k yi = xi



Correctness of Circular Array implementation

The previous program is not correct, as the last property is
not verified

the sequence of elements extracted does not correspond to
the sequence of elements inserted
The problem is that the first thread was preempted while
updating the data structure in a critical point.
we must prevent thread 2 from accessing the data structure
while another thread is completing an operation on it

Proving non-correctness is easy, in the sense that we must
find a counterexample
Proving correctness is a very complex task!

it is necessary to prove the correctness for every possible
interleaving of every operation, for every possible input
data, and for every possible internal state



Insert and Extract

Let’s assume that increments and decrements are atomic
operations

Producer: thread that inserts elements

Consumer: thread that extracts elements

It can be proved that interleaving exactly one producer and
one consumer does not bring any problem

proof: if 0 < num < 10, insert() and extract() are
independent
if num==0

if extract() begins before insert, it immediately returns
false,
if insert begins before, extract will still return false, so it
cannot interfere with insert

same thing when num==10

correctness is guaranteed for one consumer and one
producer.



Insert and Extract - II

What happens if we exchange the sequence of instructions
in insert?

boolean insert(struct CA *ca,
int elem)

{
if (ca->num == 10)

return false;
ca->num++;
ca->array[ca->head] = elem;
ca->head = (ca->head+1)%10;
return true;

}



Insert and Extract - II

What happens if we exchange the sequence of instructions
in insert?

boolean insert(struct CA *ca,
int elem)

{
if (ca->num == 10)

return false;
ca->num++;
ca->array[ca->head] = elem;
ca->head = (ca->head+1)%10;
return true;

}

It is easy to prove that in this case insert() cannot be
interleaved with extract



Outline

1 Introduction to concurrency

2 Models of concurrency: shared memory
Critical Sections
Synchronization

3 Semaphores

4 Solutions



Critical sections

the shared object where the conflict may happen is a
resource



Critical sections

the shared object where the conflict may happen is a
resource

the parts of the code where the problem may happen are
called critical sections



Critical sections

the shared object where the conflict may happen is a
resource

the parts of the code where the problem may happen are
called critical sections

a critical section is a sequence of operations that cannot
be interleaved with other operations on the same resource



Critical sections

the shared object where the conflict may happen is a
resource

the parts of the code where the problem may happen are
called critical sections

a critical section is a sequence of operations that cannot
be interleaved with other operations on the same resource

two critical sections on the same resource must be
properly sequentialized



Critical sections

the shared object where the conflict may happen is a
resource

the parts of the code where the problem may happen are
called critical sections

a critical section is a sequence of operations that cannot
be interleaved with other operations on the same resource

two critical sections on the same resource must be
properly sequentialized

we say that two critical sections on the same resource
must execute in MUTUAL EXCLUSION



Critical sections

the shared object where the conflict may happen is a
resource

the parts of the code where the problem may happen are
called critical sections

a critical section is a sequence of operations that cannot
be interleaved with other operations on the same resource

two critical sections on the same resource must be
properly sequentialized

we say that two critical sections on the same resource
must execute in MUTUAL EXCLUSION

there are three ways to obtain mutual exclusion



Critical sections

the shared object where the conflict may happen is a
resource

the parts of the code where the problem may happen are
called critical sections

a critical section is a sequence of operations that cannot
be interleaved with other operations on the same resource

two critical sections on the same resource must be
properly sequentialized

we say that two critical sections on the same resource
must execute in MUTUAL EXCLUSION

there are three ways to obtain mutual exclusion

implementing the critical section as an atomic operation



Critical sections

the shared object where the conflict may happen is a
resource

the parts of the code where the problem may happen are
called critical sections

a critical section is a sequence of operations that cannot
be interleaved with other operations on the same resource

two critical sections on the same resource must be
properly sequentialized

we say that two critical sections on the same resource
must execute in MUTUAL EXCLUSION

there are three ways to obtain mutual exclusion

implementing the critical section as an atomic operation
disabling the preemption (system-wide)



Critical sections

the shared object where the conflict may happen is a
resource

the parts of the code where the problem may happen are
called critical sections

a critical section is a sequence of operations that cannot
be interleaved with other operations on the same resource

two critical sections on the same resource must be
properly sequentialized

we say that two critical sections on the same resource
must execute in MUTUAL EXCLUSION

there are three ways to obtain mutual exclusion

implementing the critical section as an atomic operation
disabling the preemption (system-wide)
selectively disabling the preemption (using semaphores
and mutex)



Implementing atomic operations

In single processor systems
disable interrupts during a
critical section
non-voluntary context switch is
disabled!

CLI;
<critical section>
STI;



Implementing atomic operations

In single processor systems
disable interrupts during a
critical section
non-voluntary context switch is
disabled!

CLI;
<critical section>
STI;

Limitations:
if the critical section is long, no interrupt can arrive during
the critical section

consider a timer interrupt that arrives every 1 msec.
if a critical section lasts for more than 1 msec, a timer
interrupt could be lost
It must be done only for very short critical section;

Non voluntary context switch is disabled during the critical
section

Disabling interrupts is a very low level solution: it is not
possible in user space.



Atomic operations on multiprocessors

Disabling interrupts is not sufficient
disabling interrupts on one processor lets a thread on
another processor free to access the resource

Solution: use lock() and unlock() operations
define a flag s for each resource, and then surround a
critical section with lock(s) and unlock(s);

int s;
...
lock(s);
<critical section>
unlock(s);
...



Disabling preemption

On single processor systems

in some scheduler, it is possible to disable preemption for a
limited interval of time

problems:

if a high priority critical thread needs to execute, it cannot
make preemption and it is delayed
even if the high priority task does not access the resource!

disable_preemption();
<critical section>
enable_preemption();

no context switch may happen during
the critical section,
but interrupts are enabled



Critical sections: a general approach

General techniques exists to protect critical sections
Semaphores
Mutex

Properties:
Interrupts always enabled
Preemption always enabled

Basic idea:
if a thread is inside a critical section on a given resource
all other threads are blocked upon entrance on a critical
section on the same resource

We will study such techniques in the following



Outline

1 Introduction to concurrency

2 Models of concurrency: shared memory
Critical Sections
Synchronization

3 Semaphores

4 Solutions



Producer / Consumer model

mutual exclusion is not the only problem

we need a way of synchronise two or more threads

example: producer/consumer

suppose we have two threads,
one produces some integers and sends them to another
thread (PRODUCER)
another one takes the integer and elaborates it
(CONSUMER)

Producer Consumer



Implementation with the circular array

Suppose that the two threads have different speeds
for example, the producer is much faster than the consumer
we need to store the temporary results of the producer in
some memory buffer
for our example, we will use the circular array structure



Producer/Consumer implementation

struct CA qu;

void *producer(void *)
{
bool res;
int data;
while(1) {

<obtain data>
while (!insert(&qu, data));

}
}

void *consumer(void *)
{

bool res;
int data;
while(1) {

while (!extract(&qu, &data));
<use data>

}
}

Problem with this approach:
if the queue is full, the producer waits actively
if the queue is empty, the consumer waits actively



A more general approach

we need to provide a general mechanism for
synchonisation and mutual exclusion

requirements

provide mutual exclusion between critical sections

avoid two interleaved insert operations
(semaphores, mutexes)

synchronise two threads on one condition

for example, block the producer when the queue is full
(semaphores, condition variables)



Outline

1 Introduction to concurrency

2 Models of concurrency: shared memory
Critical Sections
Synchronization

3 Semaphores

4 Solutions



A general mechanism for blocking tasks

The semaphore mechanism was first proposed by Dijkstra
A semaphore is an abstract data type that consists of

a counter
a blocking queue
operation wait
operation signal

The operations on a semaphore must be atomic
the OS makes them atomic by appropriate low-level
mechanisms



Semaphore definition

semaphores are a basic mechanisms for providing
synchronization

it has been shown that every kind of synchronization and
mutual exclusion can be implemented by using
sempahores

we will analyze possible implementation of the semaphore
mechanism later

class Semaphore {
<blocked queue> blocked;
int counter;

public:
Semaphore (int n) : count (n) {...}
void wait();
void signal();

};



Wait and signal

a wait operation has the following behavior:



Wait and signal

a wait operation has the following behavior:

if counter == 0, the requiring thread is blocked;



Wait and signal

a wait operation has the following behavior:

if counter == 0, the requiring thread is blocked;

it is removed from the ready queue and inserted in the
blocked queue;



Wait and signal

a wait operation has the following behavior:

if counter == 0, the requiring thread is blocked;

it is removed from the ready queue and inserted in the
blocked queue;

if counter > 0, then counter--;



Wait and signal

a wait operation has the following behavior:

if counter == 0, the requiring thread is blocked;

it is removed from the ready queue and inserted in the
blocked queue;

if counter > 0, then counter--;

a signal operation has the following behavior:



Wait and signal

a wait operation has the following behavior:

if counter == 0, the requiring thread is blocked;

it is removed from the ready queue and inserted in the
blocked queue;

if counter > 0, then counter--;

a signal operation has the following behavior:

if counter == 0 and there is some blocked thread, unblock
it;



Wait and signal

a wait operation has the following behavior:

if counter == 0, the requiring thread is blocked;

it is removed from the ready queue and inserted in the
blocked queue;

if counter > 0, then counter--;

a signal operation has the following behavior:

if counter == 0 and there is some blocked thread, unblock
it;

the thread is removed from the blocked queue and inserted
in the ready queue



Wait and signal

a wait operation has the following behavior:

if counter == 0, the requiring thread is blocked;

it is removed from the ready queue and inserted in the
blocked queue;

if counter > 0, then counter--;

a signal operation has the following behavior:

if counter == 0 and there is some blocked thread, unblock
it;

the thread is removed from the blocked queue and inserted
in the ready queue

otherwise, increment counter;



Pseudo-code for wait and signal

class Semaphore {
<blocked queue> blocked;
int counter;

public:
Semaphore (int n) : counter (n) {...}
void wait() {

if (counter == 0)
<block the thread>

else counter--;
}
void signal() {

if (<some blocked thread>)
<unblock the thread>

else counter++;
}

};



Mutual exclusion with semaphores

To use a semaphore for mutual exclusions:
define a semaphore initialized to 1
before entering the critical section, perform a wait
after leaving the critical section, perform a signal

void *threadA(void *)
{
...
s.wait();
<critical section>
s.signal();
...

}

void *threadB(void *)
{

...
s.wait();
<critical section>
s.signal();
...

}



Mutual exclusion: example

Counter

Semaphore

1
Blocked queue

Ready queue

TATB



Mutual exclusion: example

Counter

Semaphore

0
Blocked queue

Ready queue

TATB

s.wait(); (TA)



Mutual exclusion: example

Counter

Semaphore

0
Blocked queue

Ready queue

TATB

s.wait(); (TA)
<critical section (1)> (TA)



Mutual exclusion: example

Counter

Semaphore

0
Blocked queue

Ready queue

TBTA

s.wait(); (TA)
<critical section (1)> (TA)
s.wait(); (TB)



Mutual exclusion: example

Counter

Semaphore

0
Blocked queue

TB

Ready queue

TA

s.wait(); (TA)
<critical section (1)> (TA)
s.wait(); (TB)
<critical section (2)> (TA)



Mutual exclusion: example

Counter

Semaphore

0
Blocked queue

TB

Ready queue

TA

s.wait(); (TA)
<critical section (1)> (TA)
s.wait(); (TB)
<critical section (2)> (TA)
s.signal(); (TA)



Mutual exclusion: example

Counter

Semaphore

0
Blocked queue

Ready queue

TBTA

s.wait(); (TA)
<critical section (1)> (TA)
s.wait(); (TB)
<critical section (2)> (TA)
s.signal(); (TA)
<critical section> (TB)



Mutual exclusion: example

Counter

Semaphore

1
Blocked queue

Ready queue

TBTA

s.wait(); (TA)
<critical section (1)> (TA)
s.wait(); (TB)
<critical section (2)> (TA)
s.signal(); (TA)
<critical section> (TB)
s.signal(); (TB)



Synchronization with semaphores
How to use a semaphore for synchronizing two or more
threads

define a sempahore initialized to 0
at the syncronization point, the task to be blocked performs
a wait

at the synchronization point, the other task performs a
signal

Example: thread A must block if it arrives at the synch
point before thread B

Semaphore s(0);

void *threadA(void *) {
...
s.wait();
...

}

void *threadB(void *) {
...
s.signal();
...

}



Problem 1

How to make each thread wait for the other one?
The first one that arrives at the synchronization point waits
for the other one.



Problem 1

How to make each thread wait for the other one?
The first one that arrives at the synchronization point waits
for the other one.

Solution: use two semaphores!

Semaphore sa(0), sb(0);

void *threadA(void *) {
...
sa.signal();
sb.wait();
...

}

void *threadB(void *) {
...
sb.signal();
sa.wait();
...

}



Semaphores in POSIX

sem_t sema;

int sem_init(sem_t *s, int flag, int count);
int sem_wait(sem_t *s);
int sem_trywait(sem_t *s);
int sem_post(sem_t *s);



Semaphores in POSIX

sem_t sema;

int sem_init(sem_t *s, int flag, int count);
int sem_wait(sem_t *s);
int sem_trywait(sem_t *s);
int sem_post(sem_t *s);

sem_t is the semaphore
type; it is an “opaque” C
structure



Semaphores in POSIX

sem_t sema;

int sem_init(sem_t *s, int flag, int count);
int sem_wait(sem_t *s);
int sem_trywait(sem_t *s);
int sem_post(sem_t *s);

sem_t is the semaphore
type; it is an “opaque” C
structure

sem_init initializes the
semaphore; if flag = 0,
the semaphore is local to the
process; if flag = 1, the
semaphore is shared with
other processes; count is
the initial value of the
counter



Semaphores in POSIX

sem_t sema;

int sem_init(sem_t *s, int flag, int count);
int sem_wait(sem_t *s);
int sem_trywait(sem_t *s);
int sem_post(sem_t *s);

sem_t is the semaphore
type; it is an “opaque” C
structure

sem_init initializes the
semaphore; if flag = 0,
the semaphore is local to the
process; if flag = 1, the
semaphore is shared with
other processes; count is
the initial value of the
counter

sem_wait is the normal
wait operation;



Semaphores in POSIX

sem_t sema;

int sem_init(sem_t *s, int flag, int count);
int sem_wait(sem_t *s);
int sem_trywait(sem_t *s);
int sem_post(sem_t *s);

sem_t is the semaphore
type; it is an “opaque” C
structure

sem_init initializes the
semaphore; if flag = 0,
the semaphore is local to the
process; if flag = 1, the
semaphore is shared with
other processes; count is
the initial value of the
counter

sem_wait is the normal
wait operation;

sem_trywait does not
block the task, but returns
with error (< 0) is the
semaphore counter is 0.



Semaphores in POSIX

sem_t sema;

int sem_init(sem_t *s, int flag, int count);
int sem_wait(sem_t *s);
int sem_trywait(sem_t *s);
int sem_post(sem_t *s);

sem_t is the semaphore
type; it is an “opaque” C
structure

sem_post is the normal
signal operation.

sem_init initializes the
semaphore; if flag = 0,
the semaphore is local to the
process; if flag = 1, the
semaphore is shared with
other processes; count is
the initial value of the
counter

sem_wait is the normal
wait operation;

sem_trywait does not
block the task, but returns
with error (< 0) is the
semaphore counter is 0.



Problem 2

Generalize the previous synchronization problem to N
threads

The first N-1 threads must block waiting for the last one



Problem 2

Generalize the previous synchronization problem to N
threads

The first N-1 threads must block waiting for the last one

First solution (more elegant)



Problem 2

Generalize the previous synchronization problem to N
threads

The first N-1 threads must block waiting for the last one

First solution (more elegant)

Second solution (more practical)



Producer / Consumer

We now want ot implement a mailbox with a circular array
avoiding busy wait

The producer must be blocked when the mailbox is full
The consumer must be blocked when the mailbox is empty
We use appropriate semaphores to block these threads

Initially we consider only one producer and one consumer



Implementation

#define N 10

struct CA {
int array[N];
int head, tail;
sem_t empty;
sem_t full;

} queue;

void init_ca(struct CA *q)
{
q->head = q->tail = 0;
sem_init(&q->empty, 0, 0);
sem_init(&q->full, 0, N);

}

void insert(struct CA *q,
int elem)

{
sem_wait(&q->full);
q->array[q->head++] = elem;
q->head = q->head % N;
sem_post(&q->empty);

}

void extract(struct CA *q,
int &elem)

{
sem_wait(&q->empty);

*elem = q->array[q->tail++];
q->tail = q->tail % N;
sem_post(&q->full);

}



Proof of correctness

when the number of elements in the queue is between 1
and 9, there is no problem;



Proof of correctness

when the number of elements in the queue is between 1
and 9, there is no problem;

insert and extract work on different variables (head and tail
respectively) and different elements of the array;



Proof of correctness

when the number of elements in the queue is between 1
and 9, there is no problem;

insert and extract work on different variables (head and tail
respectively) and different elements of the array;
The value of full and empty is always greater than 0, so
neither the producer nor the consumer can block;



Proof of correctness

when the number of elements in the queue is between 1
and 9, there is no problem;

insert and extract work on different variables (head and tail
respectively) and different elements of the array;
The value of full and empty is always greater than 0, so
neither the producer nor the consumer can block;

when there is no element in the queue, head = tail, counter
of empty = 0, counter of full = N;



Proof of correctness

when the number of elements in the queue is between 1
and 9, there is no problem;

insert and extract work on different variables (head and tail
respectively) and different elements of the array;
The value of full and empty is always greater than 0, so
neither the producer nor the consumer can block;

when there is no element in the queue, head = tail, counter
of empty = 0, counter of full = N;

If the extract begins before the end of an insert, it will be
blocked



Proof of correctness

when the number of elements in the queue is between 1
and 9, there is no problem;

insert and extract work on different variables (head and tail
respectively) and different elements of the array;
The value of full and empty is always greater than 0, so
neither the producer nor the consumer can block;

when there is no element in the queue, head = tail, counter
of empty = 0, counter of full = N;

If the extract begins before the end of an insert, it will be
blocked
After an insert, there is an element in the queue, so we are
in the previous case



Proof of correctness

when the number of elements in the queue is between 1
and 9, there is no problem;

insert and extract work on different variables (head and tail
respectively) and different elements of the array;
The value of full and empty is always greater than 0, so
neither the producer nor the consumer can block;

when there is no element in the queue, head = tail, counter
of empty = 0, counter of full = N;

If the extract begins before the end of an insert, it will be
blocked
After an insert, there is an element in the queue, so we are
in the previous case

For symmetry, the same holds for the case of N elements
in the queue. Again, head = tail, counter of empty = N,
counter of full = 0;



Proof of correctness

when the number of elements in the queue is between 1
and 9, there is no problem;

insert and extract work on different variables (head and tail
respectively) and different elements of the array;
The value of full and empty is always greater than 0, so
neither the producer nor the consumer can block;

when there is no element in the queue, head = tail, counter
of empty = 0, counter of full = N;

If the extract begins before the end of an insert, it will be
blocked
After an insert, there is an element in the queue, so we are
in the previous case

For symmetry, the same holds for the case of N elements
in the queue. Again, head = tail, counter of empty = N,
counter of full = 0;

If the insert begins before the end of an extract, it will be
blocked



Proof of correctness

when the number of elements in the queue is between 1
and 9, there is no problem;

insert and extract work on different variables (head and tail
respectively) and different elements of the array;
The value of full and empty is always greater than 0, so
neither the producer nor the consumer can block;

when there is no element in the queue, head = tail, counter
of empty = 0, counter of full = N;

If the extract begins before the end of an insert, it will be
blocked
After an insert, there is an element in the queue, so we are
in the previous case

For symmetry, the same holds for the case of N elements
in the queue. Again, head = tail, counter of empty = N,
counter of full = 0;

If the insert begins before the end of an extract, it will be
blocked
After an extract, we fall back in the previous case



Multiple producers/consumers

Suppose now there are mamy producers and many
consumers;

all producers will act on the same variable head, and all
consumers on tail;
If one producer preempts another producer, an
inconsistency can arise

Exercise: prove the above sentence

Therefore, we need to combine synchronization and
mutual exclusion



First solution

#define N 10

struct CA {
int array[N];
int head, tail;
sem_t empty;
sem_t full;
sem_t m;

} queue;

void init_ca(struct CA *q)
{
q->head = q->tail = 0;
sem_init(&q->empty, 0, 0);
sem_init(&q->full, 0, N);
sem_init(&q->m, 0, 1);

}

void insert(struct CA *q,
int elem)

{
sem_wait(&q->m);
sem_wait(&q->full);
q->array[q->head++] = elem;
q->head = q->head % N;
sem_post(&q->empty);
sem_post(&q->m);

}

void extract(struct CA *q,
int &elem)

{
sem_wait(&q->m);
sem_wait(&q->empty);

*elem = q->array[q->tail++];
q->tail = q->tail % N;
sem_post(&q->full);
sem_post(&q->m);

}



Wrong solution

The previous solution is wrong!
Counter example:

A consumer thread executes first, locks the mutex and
blocks on the empty semaphore
All other threads (producers or consumers) will block on the
mutex

Lesson learned: never block inside a mutex!



Correct solution

#define N 10

struct CA {
int array[N];
int head, tail;
sem_t empty;
sem_t full;
sem_t m;

} queue;

void init_ca(struct CA *q)
{
q->head = q->tail = 0;
sem_init(&q->empty, 0, 0);
sem_init(&q->full, 0, N);
sem_init(&q->m, 0, 1);

}

void insert(struct CA *q,
int elem)

{
sem_wait(&q->full);
sem_wait(&q->m);
q->array[q->head++] = elem;
q->head = q->head % N;
sem_post(&q->m);
sem_post(&q->empty);

}

void extract(struct CA *q,
int &elem)

{
sem_wait(&q->empty);
sem_wait(&q->m);

*elem = q->array[q->tail++];
q->tail = q->tail % N;
sem_post(&q->m);
sem_post(&q->full);

}



Exercises

Solve the previous exercise with two mutex (one for the
consumers and one for the producers)

Prove the solution is correct

Suppose there are one producer and N consumer. Every
message has to be received by each consumer.

Write the data structure, the insert and extract functions
Suppose that extract() takes an additional arguments that
specifies the consumer ID (between 0 and N-1).



Internal implementation of semaphores

wait() and signal() involve a possible thread-switch

therefore they must be implemented as system calls!

one blocked thread must be removed from state RUNNING
and be moved in the semaphore blocking queue

a semaphore is itself a shared resource

wait() and signal() are critical sections!

they must run with interrupt disabled and by using lock()

and unlock() primitives



Semaphore implementation: pseudo-code

void sem_wait()
{
spin_lock_irqsave();
if (counter==0) {

<block the thread>
schedule();

} else counter--;
spin_lock_irqrestore();

}

void sem_post()
{
spin_lock_irqsave();
if (counter== 0) {

<unblock a thread>
schedule();

} else counter++;
spin_lock_irqrestore();

}



Outline

1 Introduction to concurrency

2 Models of concurrency: shared memory
Critical Sections
Synchronization

3 Semaphores

4 Solutions



First solution to problem 2

Elegant solution. Uses many semaphores!

#include <pthread.h>
#include <semaphore.h>
#define N 8

sem_t s[N][N];

void init()
{

int i, j;
for (i=0; i<N; i++)

for(j=0; j<N; j++)
sem_init(&s[i][j], 0, 0);

}

void *thread(void *arg)
{

int k = (int) arg; int j;
printf("TH%d: before synch\n", k);
for (j=0; j<N; j++)

if (j!=k) sem_post(&s[k][j]);
for (j=0; j<N; j++)

if (j!=k) sem_wait(&s[j][k]);
printf("TH%d: after synch\n", k);

}

int main()
{
pthread_t tid[N];
int i;

init();

for (i=0; i<N; i++)
pthread_create(&tid[i], 0, thread,

(void *)i);
for (i=0; i<N; i++)

pthread_join(tid[i], 0);

printf("Main: exiting\n");
}



Second solution to problem 2

Practical solution. We need a mutex semaphore, a counter, and
a semaphore to block threads.

struct synch {
int count;
sem_t m; // mutex
sem_t b; // blocked
int N; // number of threads

};

void initsynch(struct synch *s, int n)
{

int i;
s->count = 0;
sem_init(&s->m, 0, 1);
sem_init(&s->b, 0, 0);
s->N = n;

}

void my_synch(struct synch *s)
{
int i;
sem_wait(&s->m);
if (++s->count < s->N) {

sem_post(&s->m);
sem_wait(&s->b);

}
else {

for (i=0; i < s->N - 1; i++)
sem_post(&s->b);

sem_post(&s->m);
}

}

struct synch sp;

void *thread(void *arg)
{
...
mysynch(&sp);
...

}


	Introduction to concurrency
	Models of concurrency: shared memory
	Critical Sections
	Synchronization

	Semaphores
	Solutions

