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The fixed priority scheduling algorithm

very simple scheduling algorithm;
every task τi is assigned a fixed priority pi ;
the active task with the highest priority is scheduled.

Priorities are integer numbers: the higher the number, the
higher the priority;

In the research literature, sometimes authors use the
opposite convention: the lowest the number, the highest the
priority.

In the following we show some examples, considering
periodic tasks, and constant execution time equal to the
period.

Example of schedule

Consider the following task set: τ1 = (2, 6, 6), τ2 = (2, 9, 9),
τ3 = (3, 12, 12). Task τ1 has priority p1 = 3 (highest), task
τ2 has priority p2 = 2, task τ3 has priority p3 = 1 (lowest).
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Another example (non-schedulable)

Consider the following task set: τ1 = (3, 6, 6), p1 = 3,
τ2 = (2, 4, 8), p2 = 2, τ3 = (2, 12, 12), p3 = 1.
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In this case, task τ3 misses its deadline!

Note

Some considerations about the schedule shown before:
The response time of the task with the highest priority is
minimum and equal to its WCET.
The response time of the other tasks depends on the
interference of the higher priority tasks;
The priority assignment may influence the schedulability of
a task.



Priority assignment

Given a task set, how to assign priorities?
There are two possible objectives:

Schedulability (i.e. find the priority assignment that makes
all tasks schedulable)
Response time (i.e. find the priority assignment that
minimize the response time of a subset of tasks).

By now we consider the first objective only
An optimal priority assignment Opt is such that:

If the task set is schedulable with another priority
assignment, then it is schedulable with priority assignment
Opt.
If the task set is not schedulable with Opt, then it is not
schedulable by any other assignment.

Optimal priority assignment

Given a periodic task set with all tasks having deadline
equal to the period (∀i , Di = Ti ), and with all offsets equal
to 0 (∀i , φi = 0):

The best assignment is the Rate Monotonic assignment
Tasks with shorter period have higher priority

Given a periodic task set with deadline different from
periods, and with all offsets equal to 0 (∀i , φi = 0):

The best assignement is the Deadline Monotonic
assignment
Tasks with shorter relative deadline have higher priority

For sporadic tasks, the same rules are valid as for periodic
tasks with offsets equal to 0.



Example revised

Consider the example shown before with deadline
monotonic: τ1 = (3, 6, 6), p1 = 2, τ2 = (2, 4, 8), p2 = 3,
τ3 = (2, 10, 12), p3 = 1.
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Presence of offsets

If instead we consider periodic tasks with offsets, then
there is no optimal priority assignment

In other words,
if a task set T1 is schedulable by priority O1 and not
schedulable by priority assignment O2,
it may exist another task set T2 that is schedulable by O2 and
not schedulable by O1.

For example, T2 may be obtained from T1 simply changing
the offsets!



Example of non-optimality with offsets

Example: priority to τ1:
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Changing the offset:

0 2 4 6 8 10 12 14 16 18 20

τ1

τ2

Example: priority to τ2:
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Changing the offset:
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Analysis

Given a task set, how can we guarantee if it is schedulable
of not?

The first possibility is to simulate the system to check that
no deadline is missed;
The execution time of every job is set equal to the WCET
of the corresponding task;

In case of periodic task with no offsets, it is sufficient to
simulate the schedule until the hyperperiod (H = lcmi(Ti)).
In case of offsets, it is sufficient to simulate until 2H + φmax

(Leung and Merril).
If tasks periods are prime numbers the hyperperiod can be
very large!



Example

Exercise: Compare the hyperperiods of this two task sets:
1 T1 = 8, T2 = 12, T3 = 24;
2 T1 = 7, T2 = 12, T3 = 25.

In case of sporadic tasks, we can assume them to arrive at
the highest possible rate, so we fall back to the case of
periodic tasks with no offsets!

In case 1, H = 24;

In case 2, H = 2100 !

Utilization analysis
In many cases it is useful to have a very simple test to see
if the task set is schedulable.
A sufficient test is based on the Utilization bound:

Definition
The utilization least upper bound for scheduling algorithm A is
the smallest possible utilization Ulub such that, for any task set
T , if the task set’s utilization U is not greater than Ulub

(U ≤ Ulub), then the task set is schedulable by algorithm A.

t
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U

U



Utilization bound for RM

Theorem (Liu and Layland, 1973)
Consider n periodic (or sporadic) tasks with relative deadline
equal to periods, whose priorities are assigned in Rate
Monotonic order. Then,

Ulub = n(21/n − 1)

Ulub is a decreasing function of n;

For large n: Ulub ≈ 0.69

n Ulub n Ulub

2 0.828 7 0.728
3 0.779 8 0.724
4 0.756 9 0.720
5 0.743 10 0.717
6 0.734 11 . . .

Schedulability test

Therefore the schedulability test consist in:
Compute U =

∑n
i=1

Ci
Ti

;
if U ≤ Ulub, the task set is schedulable;
if U > 1 the task set is not schedulable;
if Ulub < U ≤ 1, the task set may or may not be schedulable;



Example

Example in which we show that for 3 tasks, if U < Ulub, the
system is schedulable.
τ1 = (2, 8), τ2 = (3, 12), τ3 = (4, 16);

U = 0.75 < Ulub = 0.77
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Example 2

By increasing the computation time of task τ3, the system
may still be schedulable . . .
τ1 = (2, 8), τ2 = (3, 12), τ3 = (5, 16);

U = 0.81 > Ulub = 0.77

0 2 4 6 8 10 12 14 16 18 20 22 24

τ1

τ2

τ3



Utilization bound for DM

If relative deadlines are less than or equal to periods,
instead of considering U =

∑n
i=1

Ci
Ti

, we can consider:

U ′ =
n

∑

i=1

Ci

Di

Then the test is the same as the one for RM (or DM),
except that we must use U ′ instead of U.

Pessimism

The bound is very pessimistic: most of the times, a task set
with U > Ulub is schedulable by RM.
A particular case is when tasks have periods that are
harmonic:

A task set is harmonic if, for every two tasks τi , tauj , either
Pi is multiple of Pj or Pj is multiple of Pi .

For a harmonic task set, the utilization bound is Ulub = 1.

In other words, Rate Monotonic is an optimal algoritm for
harmonic task sets.



Example of harmonic task set

τ1 = (3, 6), τ2 = (3, 12), τ3 = (6, 24);

U = 1 ;
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Response time analysis

A necessary and sufficient test is obtained by computing
the worst-case response time (WCRT) for every task.
For every task τi :

Compute the WCRT Ri for task τi ;
If Ri ≤ Di , then the task is schedulable;
else, the task is not schedulable; we can also show the
situation that make task τi miss its deadline!

To compute the WCRT, we do not need to do any
assumption on the priority assignment.

The algorithm described in the next slides is valid for an
arbitrary priority assignment.

The algorithm assumes periodic tasks with no offsets, or
sporadic tasks.



Response time analysis - II

The critical instant for a set of periodic real-time tasks, with
offset equal to 0, or for sporadic tasks, is when all jobs
start at the same time.

Theorem (Liu and Layland, 1973)
The WCRT for a task corresponds to the response time of the
job activated at the critical instant.

To compute the WCRT of task τi :
We have to consider its computation time
and the computation time of the higher priority tasks
(interference);
higher priority tasks can preempt task τi , and increment its
response time.

Response time analysis - III

Suppose tasks are ordered by decreasing priority.
Therefore, i < j → prioi > prioj .

Given a task τi , let R(k)
i be the WCRT computed at step k .

R(0)
i = Ci +

i−1
∑

j=1

Cj

R(k)
i = Ci +

i−1
∑

j=1

⌈

R(k−1)
i

Tj

⌉

Cj

The iteration stops when:
R(k)

i = R(k+1)
i or

R(k)
i > Di (non schedulable);



Example
Consider the following task set: τ1 = (2, 5), τ2 = (2, 9), τ3 = (5, 20); U = 0.872.

R(k)
i = Ci +

i−1
X

j=1

&

R(k−1)
i

Tj

’

Cj

R(0)
3 = C3 + 1 · C1 + 1 · C2 = 9

R(1)
3 = C3 + 2 · C1 + 1 · C2 = 11

R(2)
3 = C3 + 3 · C1 + 2 · C2 = 15

R(3)
3 = C3 + 3 · C1 + 2 · C2 = 15 = R(2)

3
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Another example with DM
The method is valid for different priority assignments and deadlines different from
periods

τ1 = (1, 4, 4), p1 = 3, τ2 = (4, 6, 15), p2 = 2, τ3 = (3, 10, 10), p3 = 1; U = 0.72

R(k)
i = Ci +

i−1
X

j=1

&

R(k−1)
i

Tj

’

Cj

R(0)
3 = C3 + 1 · C1 + 1 · C2 = 8

R(1)
3 = C3 + 2 · C1 + 1 · C2 = 9

R(2)
3 = C3 + 3 · C1 + 2 · C2 = 10

R(3)
3 = C3 + 3 · C1 + 2 · C2 = 10 = R(2)

3
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Considerations

The response time analysis is an efficient algorithm
In the worst case, the number of steps N for the algorithm
to converge is exponential

It depends on the total number of jobs of higher priority tasks
that may be contained in the interval [0, Di ]:

N ∝

i−1
X

j=1

‰

Di

Tj

ı

If s is the minimum granularity of the time, then in the worst
case N = Di

s ;

However, such worst case is very rare: usually, the number
of steps is low.

Considerations on WCET

The response time analysis is a necessary and sufficient
test for fixed priority.
However, the result is very sensitive to the value of the
WCET.

If we are wrong in estimating the WCET (and for example
we put a value that is too low), the actual system may be
not schedulable.

The value of the response time is not helpful: even if the
response time is well below the deadline, a small increase
in the WCET of a higher priority task makes the response
time jump;

We may see the problem as a sensitivity analysis problem:
we have a function Ri = fi(C1, T1, C2, T2, . . . , Ci−1, Ti−1, Ci)
that is non-continuous.



Example of discontinuity
Let’s consider again the example done before; we
increment the computation time of τ1 of 0.1.
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R3 = 12 → 15.2
Singularities

The response time of a task τi is the first time at which all
tasks τ1, . . . , τi have completed;
At this point,

either a lower priority task τj (pj < pi ) is executed
or the system becoms idle
or it coincides with the arrival time of a higher priority task.

In the last case, such an instant is also called i-level
singularity point.
In the previous example, time 12 is a 3-level singularity
point, because:

1 task τ3 has just finished;
2 and task τ2 ha just been activated;

A singularity is a dangerous point!



Sensitivity on WCETs

A rule of thumb is to increase the WCET by a certain
percentage before doing the analysis. If the task set is still
feasible, be are more confident about the schedulability of
the original system.

There are analytical methods for computing the amount of
variation that it is possible to allow to a task’s WCET
without compromising the schedulability

A different analysis approach

Definition of workload for task τi :

Wi(t) =
i

∑

j=1

⌈

t
Tj

⌉

Cj

The workload is the amount of “work” that the set of tasks
{τ1, . . . , τi} requests in [0, t ]

Example: τ1 = (2, 4), τ2 = (4, 15):

W2(10) =

⌈

10
4

⌉

2 +

⌈

10
15

⌉

4 = 6 + 4 = 10



Workload function

The workload function for the previous example
τ1 = (2, 4), τ2 = (4, 15):

Main theorem

Theorem (Lehokzcy 1987)
Let Pi = {∀j < i ,∀k , kTj ≤ Di |kTj} ∪ {Di}. Then, task τi is
schedulable if and only if

∃t ∈ Pi , Wi(t) ≤ t

Set Pi is the set of time instants that are multiple of some
period of some task τj with higher priority than τi , plus the
deadline of task τi (they are potential singularity points)

In other words, the theorem says that, if the workload is
less than t for any of the points in Pi , then τi is schedulable

Later, Bini simplified the computation of the points in set Pi



Example with 4 tasks

τ1 = (2, 4), τ2 = (4, 15), τ3 = (4, 30), τ4 = (4, 60)

Task τ4 is schedulable, because W4(56) = 56 and
W4(60) = 58 < 60

(see schedule on fp_schedule_1.0_ex4.ods)

Sensitivity analysis

Proposed by Bini and Buttazzo, 2005

Let us rewrite the equations for the workload:

∃t ∈ Pi

i
∑

j=1

⌈

t
Tj

⌉

Cj ≤ t

If we consider the Cj as variables, we have a set of linear
inequalities in OR mode

each inequality defines a plane in the space R i of variables
C1, . . . , Ci

the result is a concave hyper-solid in that space



Example with two tasks

τ1 = (x , 4), τ2 = (y , 15)

P = {4, 8, 12, 15}

C1 + C2 ≤ 4

2C1 + C2 ≤ 8

3C1 + C2 ≤ 12

4C1 + C2 ≤ 15

Graphical representation

In the R2 space:
C2

C 1



Simplifying non-useful constraints
C2

C 1

The cross represent a (possible) pair of values for (C1, C2).

The cross must stay always inside the subspace

Sensitivity

Distance from a constraint represents
how much we can increase (C1, C2) without exiting from the
space
or how much we must decrease C1 or C2 to enter in the
space
In the example before: starting from C1 = 1 and C2 = 8 we
can increase C1 of the following:

3(1 + ∆) + 8 ≤ 12

∆ ≤
4
3
− 1 =

1
3

Exercise: verify schedulability of τ2 with C1 = 1 + 1
3 and

C2 = 8 by computing its response time



Summary of schedulability tests for FP

Utilization bound test:
depends on the number of tasks;
for large n, Ulub = 0.69;
only sufficient;
O(n) complexity;

Response time analysis:
necessary and sufficient test for periodic tasks with
arbitrary deadlines and with no offset
complexity: high (pseudo-polynomial);

Hyperplane analysis
necessary and sufficient test for periodic tasks with
arbitrary deadlines and with no offset
complexity: high (pseudo-polynomial);
allows to perform sensitivity analysis

Response time analysis - extensions

Consider offsets

Arbitrary patterns of arrivals. Burst, quasi–periodic, etc.



Esercizio

Dato il seguente task set:
Task Ci Di Ti
τ1 1 4 4
τ2 2 9 9
τ3 3 6 12
τ4 3 20 20

Calcolare il tempo di risposta dei vari task nell’ipotesi che le priorità siano
assegnate con RM o con DM.

Risposta: Nel caso di RM,

R(τ1) = 1 R(τ2) = 3 R(τ3) = 7 R(τ4) = 18

Nel caso di DM,

R(τ1) = 1 R(τ2) = 7 R(τ3) = 4 R(τ4) = 18

Esercizio

Consideriamo il seguente task τ1 non periodico:
Se j è pari, allora a1,j = 8 · j

2 ;

Se j è dispari, allora a1,j = 3 + 8 ·
⌊

j
2

⌋

;

In ogni caso, c1,j = 2;
La priorità del task τ1 è p1 = 3.

Nel sistema, consideriamo anche i task periodici
τ2 = (2, 12, 12) e τ3 = (3, 16, 16), con priorità p2 = 2 e
p3 = 1. Calcolare il tempo di risposta dei task τ2 e τ3.



Soluzione - I

Il pattern di arrivo del task τ1 è il seguente:

0 2 4 6 8 10 12 14 16 18 20 22 24 26

τ1

Il task τ1 è ad alta priorità, quindi il suo tempo di risposta è
pari a 2.

In che mode questo task interferisce con gli altri due task a
bassa priorità?

Soluzione - II

Bisogna estendere la formula del calcolo del tempo di risposta. La
generalizzazione è la seguente:

R(k)
i = Ci +

i−1
X

j=1

Nistj (R
(k−1)
i )Cj

dove Nistj (t) rappresenta il numero di istanze del task τj che “arrivano”
nell’intervallo [0, t).

Se il task τj è periodico, allora Nistj (t) =
l

t
Tj

m

.

Nel caso invece del task τ1 (che non è periodico):

Nist1(t) =

‰

t

8

ı

+

‰

max(0, t − 3)

8

ı

Il primo termine tiene conto delle istanze con j pari, mentre il secondo termine
tiene conto delle istanze con j dispari.



Soluzione - III

Applicando la formula per calcolare il tempo di risposta del
task τ2:

R(0)
2 = 2 + 2 = 4 R(1)

2 = 2 + 2 · 2 = 6

R(2)
2 = 2 + 2 · 2 = 6

Per il task τ3:

R(0)
3 = 3 + 2 + 2 = 7 R(1)

3 = 3 + 2 · 2 + 1 · 2 = 9

R(2)
3 = 3 + 3 · 2 + 1 · 2 = 11 R(3)

3 = 3 + 3 · 2 + 1 · 2 = 11

Soluzione - IV (schedulazione)

Schedulazione risultante:

0 2 4 6 8 10 12 14 16 18 20 22 24 26
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Esercizio sulla sensitivity

Dato il seguente insieme di task: τ1 = (2, 5), τ2 = (3, 12)

Vedere se il sistema è schedulabile con l’analisi
Hyperplanes

Calcolare di quando più aumentare (o di quanto si può
diminuire) il tempo di calcolo di τ2 per farlo rimanere
(diventare) schedulabile

Calcolare di quanto si può diminuire la potenza del
processore mantenendo il sistema schedulabile

Soluzione

Le equazioni da considerare sono:

C1 + C2 ≤ 5

2C1 + C2 ≤ 10

3C1 + C2 ≤ 12

Tutte verificate per C1 = 2 e C2 = 3

Fissando C1, si ha:

C2 ≤ 3

C2 ≤ 6

C2 ≤ 6

Ricordandoci che sono in OR, la soluzione è C2 ≤ 6,
quindi possiamo aumentare C2 di 3 mantenendo il sistema
schedulabile



Soluzione 2

Se il processore ha velocità variabile, le equazioni possono
essere riscritte come:

αC1 + αC2 ≤ 5

2αC1 + αC2 ≤ 10

3αC1 + αC2 ≤ 12

E nel punto considerato:

α ≤ 1

7α ≤ 10

9α ≤ 12

Quindi, α = 1.428571, e possiamo rallentare il processore
(cioè incrementare i tempi di calcolo) del 43% circa.
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