EDF Scheduling

Giuseppe Lipari

http://feanor.sssup.it/~lipari

Scuola Superiore Sant'Anna – Pisa

May 11, 2008

Outline

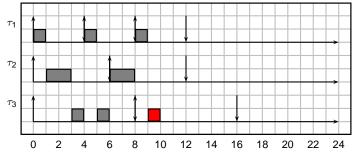
- Opening a priority
- Basic analysis
- 3 FP vs EDF
- Processor demand bound analysis
 - Generalization to deadlines different from period
 - Synchronous and asynchronous tasks
 - Examples
 - Testing algorithm
- A sufficient pseudo-polynomial test for synchronous sets
 - Basic idea

Earliest Deadline First

- An important class of scheduling algorithms is the class of dynamic priority algorithms
 - In dynamic priority algorithms, the priority of a task can change during its execution
 - Fixed priority algorithms are a sub-class of the more general class of dynamic priority algorithms: the priority of a task does not change.
- The most important (and analyzed) dynamic priority algorithm is Earliest Deadline First (EDF)
 - The priority of a job (istance) is inversely proportional to its absolute deadline;
 - In other words, the highest priority job is the one with the earliest deadline;
 - If two tasks have the same absolute deadlines, chose one of the two at random (ties can be broken arbitrarly).
 - The priority is dynamic since it changes for different jobs of the same task.

Example: scheduling with RM

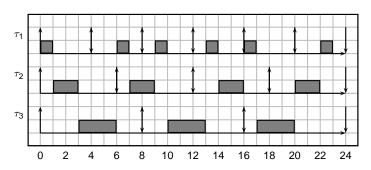
- We schedule the following task set with FP (RM priority assignment).
- $\tau_1 = (1,4), \tau_2 = (2,6), \tau_4 = (3,8).$
- $U = \frac{1}{4} + \frac{2}{6} + \frac{3}{8} = \frac{23}{24}$
- The utilization is greter than the bound: there is a deadline miss!



• Observe that at time 6, even if the deadline of task τ_3 is very close, the scheduler decides to schedule task τ_2 . This is the main reason why τ_3 misses its deadline!

Example: scheduling with EDF

- Now we schedule the same task set with EDF.
- $\tau_1 = (1,4), \tau_2 = (2,6), \tau_4 = (3,8).$
- $U = \frac{1}{4} + \frac{2}{6} + \frac{3}{8} = \frac{23}{24}$
- Again, the utilization is very high. However, no deadline miss in the hyperperiod.



• Observe that at time 6, the problem does not appear, as the earliest deadline job (the one of τ_3) is executed.

Job-level fixed priority

- In EDF, the priority of a job is fixed.
- Therefore some author is classifies EDF as of job-level fixed priority scheduling;
- LLF is a *job-level dynamic priority* scheduling algorithm as the priority of a job may vary with time;
- Another job-level dynamic priority scheduler is p-fair.

Outline

- Opening a priority
- 2 Basic analysis
- 3 FP vs EDF
- Processor demand bound analysis
 - Generalization to deadlines different from period
 - Synchronous and asynchronous tasks
 - Examples
 - Testing algorithm
- A sufficient pseudo-polynomial test for synchronous sets
 - Basic idea

A general approach to schedulability analysis

We start from a completely aperiodic model.

- A system consists of a (infinite) set of jobs $\mathcal{J} = \{J_1, J_2, \dots, J_n, \dots\}.$
- $\bullet \ J_k = (a_k, c_k, d_k)$
- Periodic or sporadic task sets are particular cases of this system

EDF optimality

Theorem (Dertouzos '73)

If a set of jobs $\mathcal J$ is schedulable by an algorithm A, then it is schedulable by EDF.

Proof.

The proof uses the exchange method.

- Transform the schedule $\sigma_A(t)$ into $\sigma_{EDF}(t)$, step by step;
- At each step, preserve schedulability.

Corollary

EDF is an optimal algorithm for single processors.

Schedulability bound for periodic/sporadic tasks

Theorem

Given a task set of periodic or sporadic tasks, with relative deadlines equal to periods, the task set is schedulable by EDF if and only if

$$U = \sum_{i=1}^{N} \frac{C_i}{T_i} \le 1$$

Corollary

EDF is an optimal algorithm, in the sense that if a task set if schedulable, then it is schedulable by EDF.

Proof.

In fact, if U > 1 no algorithm can succesfully schedule the task set; if $U \le 1$, then the task set is schedulable by EDF x(and maybe by other algorithms).

Outline

- Dynamic priority
- Basic analysis
- 3 FP vs EDF
- Processor demand bound analysis
 - Generalization to deadlines different from period
 - Synchronous and asynchronous tasks
 - Examples
 - Testing algorithm
- A sufficient pseudo-polynomial test for synchronous sets
 - Basic idea

Advantages of EDF over FP

- EDF can schedule all task sets that can be scheduled by FP, but not vice versa.
 - Notice also that offsets are not relevant!
- There is not need to define priorities
 - Remember that in FP, in case of offsets, there is not an optimal priority assignment that is valid for all task sets
- In general, EDF has less context switches
 - In the previous example, you can try to count the number of context switches in the first interval of time: in particular, at time 4 there is no context switch in EDF, while there is one in FP.
- Optimality of EDF
 - We can fully utilize the processor, less idle times.

Disadvantages of EDF over FP

- EDF is not provided by any commercial RTOS, because of some disadvantage
- Less predictable
 - Looking back at the example, let's compare the response time of task τ₁: in FP is always constant and minimum; in EDF is variable.
- Less controllable
 - if we want to reduce the response time of a task, in FP is only sufficient to give him an higher priority; in EDF we cannot do anything;
 - We have less control over the execution

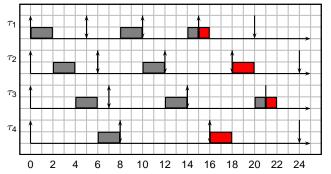
Overhead

More implementation overhead

- FP can be implemented with a very low overhead even on very small hardware platforms (for example, by using only interrupts);
- EDF instead requires more overhead to be implemented (we have to keep track of the absolute deadline in a long data structure);
- There are method to implement the queueing operations in FP in O(1); in EDF, the queueing operations take O(log N), where N is the number of tasks.

Domino effect

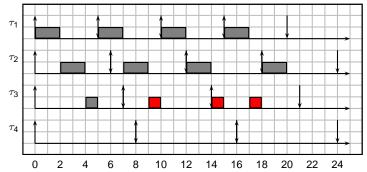
- In case of overhead (U > 1), we can have the domino effect with EDF: it means that all tasks miss their deadlines.
- An example of domino effect is the following;



All tasks missed their deadline almost at the same time.

Domino effect: considerations

 FP is more predictable: only lower priority tasks miss their deadlines! In the previous example, if we use FP:



- As you can see, while τ_1 and τ_2 never miss their deadlines, τ_3 misses a lot of deadline, and τ_4 does not execute!
- However, it may happen that some task never executes in case of high overload, while EDF is more fair (all tasks are treated in the same way).

Response time computation

- Computing the response time in EDF is very difficult, and we will not present it in this course.
 - In FP, the response time of a task depends only on its computation time and on the interference of higher priority tasks
 - In EDF, it depends in the parameters of all tasks!
 - If all offset are 0, in FP the maximum response time is found in the first job of a task,
 - In EDF, the maximum response time is not found in the first job, but in a later job.

Outline

- Opening a priority
- Basic analysis
- 3 FP vs EDF
- Processor demand bound analysis
 - Generalization to deadlines different from period
 - Synchronous and asynchronous tasks
 - Examples
 - Testing algorithm
- 6 A sufficient pseudo-polynomial test for synchronous sets
 - Basic idea

Outline

- Dynamic priority
- Basic analysis
- 3 FP vs EDF
- Processor demand bound analysis
 - Generalization to deadlines different from period
 - Synchronous and asynchronous tasks
 - Examples
 - Testing algorithm
- A sufficient pseudo-polynomial test for synchronous sets
 - Basic idea

Generalization to deadlines different from period

- EDF is still optimal when relative deadlines are not equal to the periods
- However, the schedulability analysis formula becomes more complex
- If all relative deadlines are less than or equal to the periods, a first trivial (sufficient) test consist in substituting T_i with D_i:

$$U' = \sum_{i=1}^{N} \frac{C_i}{D_i} \le 1$$

• In fact, if we consider each task as a sporadic task with interarrival time D_i instead of T_i , we are increasing the utilization, U < U'. If it is still less than 1, then the task set is schedulable. If it is larger than 1, then the task set may or may not be schedulable

Demand bound analysis

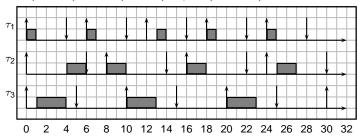
- In the following slides, we present a general methodology for schedulability analysis of EDF scheduling
- Let's start from the concept of demand function
- **Definition:** the demand function for a task τ_i is a function of an interval $[t_1, t_2]$ that gives the amount of computation time that *must* be completed in $[t_1, t_2]$ for τ_i to be schedulable:

$$extit{d} f_i(t_1,t_2) = \sum_{egin{align*} a_{ij} \geq t_1 \ d_{ij} \leq t_2 \ \end{array}} c_{ij}$$

For the entire task set:

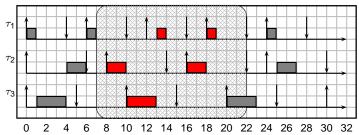
$$df(t_1, t_2) = \sum_{i=0}^{N} df_i(t_1, t_2)$$

• $\tau_1 = (1,4,6)$, $\tau_2 = (2,6,8)$, $\tau_3 = (3,5,10)$



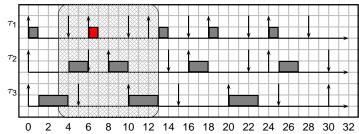
Let's compute df() in some intervals;

•
$$\tau_1 = (1,4,6)$$
, $\tau_2 = (2,6,8)$, $\tau_3 = (3,5,10)$



- Let's compute *df*() in some intervals;
- $df(7,22) = 2 \cdot C_1 + 2 \cdot C_2 + 1 \cdot C_3 = 9;$

•
$$\tau_1 = (1,4,6)$$
, $\tau_2 = (2,6,8)$, $\tau_3 = (3,5,10)$



- Let's compute *df*() in some intervals;
- $df(7,22) = 2 \cdot C_1 + 2 \cdot C_2 + 1 \cdot C_3 = 9;$
- $df(3,13) = 1 \cdot C_1 = 1$;

•
$$\tau_1 = (1,4,6)$$
, $\tau_2 = (2,6,8)$, $\tau_3 = (3,5,10)$



- Let's compute df() in some intervals;
- $df(7,22) = 2 \cdot C_1 + 2 \cdot C_2 + 1 \cdot C_3 = 9;$
- $df(3,13) = 1 \cdot C_1 = 1$;
- $df(10,25) = 2 \cdot C_1 + 1 \cdot C_2 + 2 \cdot C_3 = 7;$

A necessary condition

Theorem

A necessary condition for any job set to be schedulable by any scheduling algorithm when executed on a single processor is that:

$$\forall \mathit{t}_{1},\mathit{t}_{2} \quad \mathsf{df}(\mathit{t}_{1},\mathit{t}_{2}) \leq \mathit{t}_{2} - \mathit{t}_{1}$$

Proof.

By contradiction. Suppose that $\exists t_1, t_2 \ df(t_1, t_2) > t_2 - t_1$. If the system is schedulable, then it exists a scheduling algorithm that can execute more than $t_2 - t_1$ units of computations in an interval of length $t_2 - t_1$. Absurd!

Theorem

A necessary and sufficient condition for a set of jobs ${\mathcal J}$ to be schedulable by EDF is that

$$\forall t_1, t_2 \quad df(t_1, t_2) \leq t_2 - t_1$$
 (1)

Proof.

The proof is based on the same technique used by Liu & Layland in their seminal paper. We only need to prove the *sufficient* part.

Theorem

A necessary and sufficient condition for a set of jobs ${\mathcal J}$ to be schedulable by EDF is that

$$\forall t_1, t_2 \quad df(t_1, t_2) \leq t_2 - t_1$$
 (1)

Proof.

The proof is based on the same technique used by Liu & Layland in their seminal paper. We only need to prove the *sufficient* part.

 By contradiction: assume a deadline is missed and the condition holds

Theorem

A necessary and sufficient condition for a set of jobs $\mathcal J$ to be schedulable by EDF is that

$$\forall t_1, t_2 \quad df(t_1, t_2) \leq t_2 - t_1$$
 (1)

Proof.

The proof is based on the same technique used by Liu & Layland in their seminal paper. We only need to prove the *sufficient* part.

- By contradiction: assume a deadline is missed and the condition holds
- Assume the first deadline miss is at y

Theorem

A necessary and sufficient condition for a set of jobs $\mathcal J$ to be schedulable by EDF is that

$$\forall t_1, t_2 \quad df(t_1, t_2) \leq t_2 - t_1$$
 (1)

Proof.

The proof is based on the same technique used by Liu & Layland in their seminal paper. We only need to prove the *sufficient* part.

- By contradiction: assume a deadline is missed and the condition holds
- Assume the first deadline miss is at y
- We find an opportune x < y such that df(x, y) > y x.

- Suppose the first deadline miss is at time y. Let x be the last instant prior to y such that:
 - all jobs with arrival time before x and deadline before y have already completed by x;
 - x coincides with the arrival time of a job with deadline less of equal to y
 - Such instant always exists (it could be time 0).

- Suppose the first deadline miss is at time y. Let x be the last instant prior to y such that:
 - all jobs with arrival time before x and deadline before y have already completed by x;
 - x coincides with the arrival time of a job with deadline less of equal to y
 - Such instant always exists (it could be time 0).
- Since x is the last such instant, it follows that:
 - there is no idle time in [x, y]

- Suppose the first deadline miss is at time y. Let x be the last instant prior to y such that:
 - all jobs with arrival time before x and deadline before y have already completed by x;
 - x coincides with the arrival time of a job with deadline less of equal to y
 - Such instant always exists (it could be time 0).
- Since x is the last such instant, it follows that:
 - there is no idle time in [x, y]

- Suppose the first deadline miss is at time y. Let x be the last instant prior to y such that:
 - all jobs with arrival time before x and deadline before y have already completed by x;
 - x coincides with the arrival time of a job with deadline less of equal to y
 - Such instant always exists (it could be time 0).
- Since *x* is the last such instant, it follows that:
 - there is no idle time in [x, y]
 - No job with deadline greater than y executes in [x, y]
 - only jobs with arrival time greater or equal to x, and deadline less than or equal to y execute in [x, y]

- Suppose the first deadline miss is at time y. Let x be the last instant prior to y such that:
 - all jobs with arrival time before x and deadline before y have already completed by x;
 - x coincides with the arrival time of a job with deadline less of equal to y
 - Such instant always exists (it could be time 0).
- Since x is the last such instant, it follows that:
 - there is no idle time in [x, y]
 - No job with deadline greater than y executes in [x, y]
 - only jobs with arrival time greater or equal to x, and deadline less than or equal to y execute in [x, y]
- Since there is a deadline miss in [x, y], df(x, y) > y x, and the theorem follows.

Feasibility analysis

- The previous theorem gives a first hint at how to perform a schedulability analysis.
 - However, the condition should be checked for all pairs $[t_1, t_2]$.
 - This is impossible in practice! (an infinite number of intervals!).
 - First observation: function df changes values only at discrete instants, corresponding to arrival times and deadline of a job set.

Feasibility analysis

- The previous theorem gives a first hint at how to perform a schedulability analysis.
 - However, the condition should be checked for all pairs $[t_1, t_2]$.
 - This is impossible in practice! (an infinite number of intervals!).
 - First observation: function df changes values only at discrete instants, corresponding to arrival times and deadline of a job set.
 - Second, for periodic tasks we could use some periodicity (hyperperiod) to limit the number of points to be checked to a finite set.

Outline

- Opening a priority
- Basic analysis
- 3 FP vs EDF
- Processor demand bound analysis
 - Generalization to deadlines different from period
 - Synchronous and asynchronous tasks
 - Examples
 - Testing algorithm
- A sufficient pseudo-polynomial test for synchronous sets
 - Basic idea

Simplifying the analysis

- A periodic task set is synchronous if all task offsets are equal to 0
- In other words, for a synchronous task set, all tasks start at time 0.
- A task set is asynchronous is some task has a non-zero offset.

Demand bound function

Theorem

For a set of synchronous periodic tasks (i.e. with no offset),

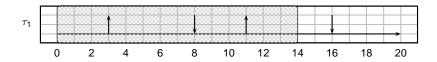
$$\forall t_1, t_2 > t_1 \quad df(t_1, t_2) \leq df(0, t_2 - t_1)$$

- In plain words, the worst case demand is found for intervals starting at 0.
- Definition: Demand Bound function:

$$dbf(L) = \max_{t} (df(t, t + L)) = df(0, L).$$

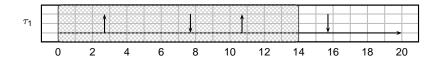
- The maximum is when the task is activated at the beginning of the interval.
- For a periodic task τ_i :

$$\mathsf{dbf}_i(L) = \left(\left\lfloor \frac{L - D_i}{T_i} \right\rfloor + 1 \right)_0 C_i$$



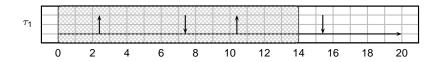
- The maximum is when the task is activated at the beginning of the interval.
- For a periodic task τ_i :

$$\mathsf{dbf}_i(L) = \left(\left\lfloor \frac{L - D_i}{T_i} \right\rfloor + 1 \right)_0 C_i$$



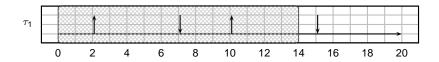
- The maximum is when the task is activated at the beginning of the interval.
- For a periodic task τ_i :

$$\mathsf{dbf}_i(L) = \left(\left\lfloor \frac{L - D_i}{T_i} \right\rfloor + 1 \right)_0 C_i$$



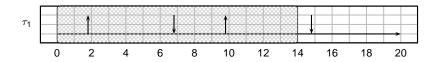
- The maximum is when the task is activated at the beginning of the interval.
- For a periodic task τ_i :

$$\mathsf{dbf}_i(L) = \left(\left\lfloor \frac{L - D_i}{T_i} \right\rfloor + 1 \right)_0 C_i$$



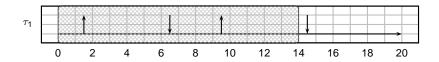
- The maximum is when the task is activated at the beginning of the interval.
- For a periodic task τ_i :

$$\mathsf{dbf}_i(L) = \left(\left\lfloor \frac{L - D_i}{T_i} \right\rfloor + 1 \right)_0 C_i$$



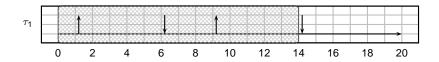
- The maximum is when the task is activated at the beginning of the interval.
- For a periodic task τ_i :

$$\mathsf{dbf}_i(L) = \left(\left\lfloor \frac{L - D_i}{T_i} \right\rfloor + 1 \right)_0 C_i$$



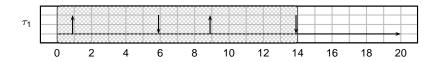
- The maximum is when the task is activated at the beginning of the interval.
- For a periodic task τ_i :

$$\mathsf{dbf}_i(L) = \left(\left\lfloor \frac{L - D_i}{T_i} \right\rfloor + 1 \right)_0 C_i$$



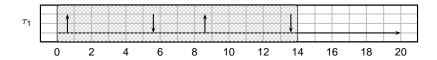
- The maximum is when the task is activated at the beginning of the interval.
- For a periodic task τ_i :

$$\mathsf{dbf}_i(L) = \left(\left\lfloor \frac{L - D_i}{T_i} \right\rfloor + 1 \right)_0 C_i$$



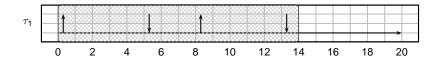
- The maximum is when the task is activated at the beginning of the interval.
- For a periodic task τ_i :

$$\mathsf{dbf}_i(L) = \left(\left\lfloor \frac{L - D_i}{T_i} \right\rfloor + 1 \right)_0 C_i$$



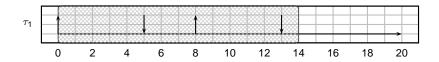
- The maximum is when the task is activated at the beginning of the interval.
- For a periodic task τ_i :

$$\mathsf{dbf}_i(L) = \left(\left\lfloor \frac{L - D_i}{T_i} \right\rfloor + 1 \right)_0 C_i$$



- The maximum is when the task is activated at the beginning of the interval.
- For a periodic task τ_i :

$$\mathsf{dbf}_i(L) = \left(\left\lfloor \frac{L - D_i}{T_i} \right\rfloor + 1 \right)_0 C_i$$



Synchronous periodic task sets

Theorem (Baruah, Howell, Rosier '90)

A synchronous periodic task set \mathcal{T} is schedulable by EDF if and only if:

$$\forall L \in \text{dead}(\mathcal{T}) \quad \text{dbf}(L) \leq L$$

where dead(T) is the set of deadlines in [0, H]

Proof next slide.

- \bullet Sufficiency: eq. holds \rightarrow task set is schedulable.
 - By contradiction

 $\bullet \ \, \text{Necessity: task set is schedulable} \rightarrow \text{eq. holds}$

- Sufficiency: eq. holds → task set is schedulable.
 - By contradiction
 - If deadline is missed in y, then $\exists x, y \ y x < df(x, y)$
- $\bullet \ \ \text{Necessity: task set is schedulable} \rightarrow \text{eq. holds}$

- Sufficiency: eq. holds → task set is schedulable.
 - By contradiction
 - If deadline is missed in y, then $\exists x, y \ y x < df(x, y)$
 - it follows that $y x < df(x, y) \le dbf(y x)$
- Necessity: task set is schedulable → eq. holds

- Sufficiency: eq. holds → task set is schedulable.
 - By contradiction
 - If deadline is missed in y, then $\exists x, y \ y x < df(x, y)$
 - it follows that $y x < df(x, y) \le dbf(y x)$
- Necessity: task set is schedulable → eq. holds
 - By contradiction

- Sufficiency: eq. holds → task set is schedulable.
 - By contradiction
 - If deadline is missed in y, then $\exists x, y \ y x < df(x, y)$
 - it follows that $y x < df(x, y) \le dbf(y x)$
- Necessity: task set is schedulable → eq. holds
 - By contradiction
 - eq. does not hold for \overline{L} .

- Sufficiency: eq. holds → task set is schedulable.
 - By contradiction
 - If deadline is missed in y, then $\exists x, y \ y x < df(x, y)$
 - it follows that $y x < df(x, y) \le dbf(y x)$
- Necessity: task set is schedulable → eq. holds
 - By contradiction
 - eq. does not hold for *L*.
 - build a schedule starting at 0, for which $dbf(\overline{L}) = df(0, \overline{L})$

- Sufficiency: eq. holds → task set is schedulable.
 - By contradiction
 - If deadline is missed in y, then $\exists x, y \ y x < df(x, y)$
 - it follows that $y x < df(x, y) \le dbf(y x)$
- Necessity: task set is schedulable → eq. holds
 - By contradiction
 - eq. does not hold for \overline{L} .
 - build a schedule starting at 0, for which $dbf(\overline{L}) = df(0, \overline{L})$
 - Hence task set is not schedulable

Sporadic task

- Sporadic tasks are equivalent to synchronous periodic task sets.
- For them, the worst case is when they all arrive at their maximum frequency and starting synchronously.

Synchronous and asynchronous

- Let T be a asynchronous task set.
- We call \mathcal{T}' the corresponding synchronous set, obtained by setting all offset equal to 0.

Corollary

If \mathcal{T}' is schedulable, then \mathcal{T} is schedulable too.

Conversely, if T is schedulable, T' may not be schedulable.

• The proof follows from the definition of dbf(*L*).

A pseudo-polynomial test

Theorem (Baruah, Howell, Rosier, '90)

Given a synchronous periodic task set \mathcal{T} , with deadlines less than or equal to the period, and with load U < 1, the system is schedulable by EDF if and only if:

$$\forall L \in \mathsf{deadShort}(\mathcal{T}) \quad \mathsf{dbf}(L) \leq L$$

where deadShort(T) is the set of all deadlines in interval [0, L^*] and

$$L^* = \frac{U}{1-U} \max_i (T_i - D_i)$$

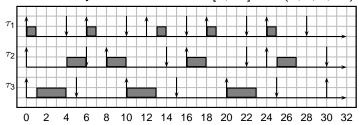
Corollary

The complexity of the above analysis is pseudo-polynomial.

Outline

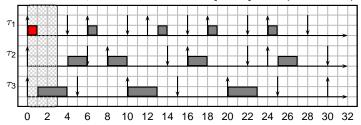
- Dynamic priority
- Basic analysis
- 3 FP vs EDF
- Processor demand bound analysis
 - Generalization to deadlines different from period
 - Synchronous and asynchronous tasks
 - Examples
 - Testing algorithm
- A sufficient pseudo-polynomial test for synchronous sets
 - Basic idea

- $\tau_1 = (1,4,6)$, $\tau_2 = (2,6,8)$, $\tau_3 = (3,5,10)$
- U = 1/6 + 1/4 + 3/10 = 0.7167, $L^* = 12.64$.
- We must analyze all deadlines in [0, 12], i.e. (3, 5, 6, 10).



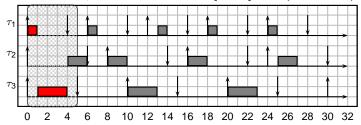
Let's compute dbf()

- $\tau_1 = (1, 4, 6), \ \tau_2 = (2, 6, 8), \ \tau_3 = (3, 5, 10)$
- U = 1/6 + 1/4 + 3/10 = 0.7167, $L^* = 12.64$.
- We must analyze all deadlines in [0, 12], i.e. (3, 5, 6, 10).



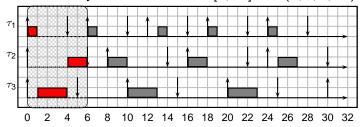
- Let's compute dbf()
- $df(0,4) = C_1 = 1 < 4;$

- $\tau_1 = (1, 4, 6), \ \tau_2 = (2, 6, 8), \ \tau_3 = (3, 5, 10)$
- U = 1/6 + 1/4 + 3/10 = 0.7167, $L^* = 12.64$.
- We must analyze all deadlines in [0, 12], i.e. (3, 5, 6, 10).



- Let's compute dbf()
- $df(0,4) = C_1 = 1 < 4$;
- $df(0,5) = C_1 + C_3 = 4 < 5$;

- $\tau_1 = (1,4,6)$, $\tau_2 = (2,6,8)$, $\tau_3 = (3,5,10)$
- U = 1/6 + 1/4 + 3/10 = 0.7167, $L^* = 12.64$.
- We must analyze all deadlines in [0, 12], i.e. (3, 5, 6, 10).

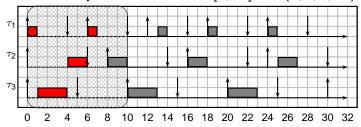


- Let's compute dbf()
- $df(0,4) = C_1 = 1 < 4$;
- $df(0,5) = C_1 + C_3 = 4 < 5$;
- $df(0,6) = C_1 + C_2 + C_3 = 6 \le 6$;

•
$$\tau_1 = (1,4,6)$$
, $\tau_2 = (2,6,8)$, $\tau_3 = (3,5,10)$

•
$$U = 1/6 + 1/4 + 3/10 = 0.7167$$
, $L^* = 12.64$.

• We must analyze all deadlines in [0, 12], i.e. (3, 5, 6, 10).

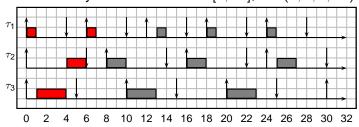


- Let's compute dbf()
- $df(0,4) = C_1 = 1 < 4;$
- $df(0,5) = C_1 + C_3 = 4 < 5$;
- $df(0,6) = C_1 + C_2 + C_3 = 6 \le 6$;
- $df(0,10) = 2C_1 + C_2 + C_3 = 7 \le 10$;

•
$$\tau_1 = (1,4,6)$$
, $\tau_2 = (2,6,8)$, $\tau_3 = (3,5,10)$

•
$$U = 1/6 + 1/4 + 3/10 = 0.7167$$
, $L^* = 12.64$.

• We must analyze all deadlines in [0, 12], i.e. (3, 5, 6, 10).



- Let's compute dbf()
- $df(0,4) = C_1 = 1 < 4;$
- $df(0,5) = C_1 + C_3 = 4 < 5$;
- $df(0,6) = C_1 + C_2 + C_3 = 6 \le 6$;
- $df(0,10) = 2C_1 + C_2 + C_3 = 7 \le 10$;
- The task set is schedulable.

Idle time and busy period

- The interval between time 0 and the first idle time is called busy period.
- The analysis can be stopped at the first idle time (Spuri, '94).
- The first idle time can be found with the following recursive equations:

$$W(0) = \sum_{i=1}^{N} C_i$$
 $W(k) = \sum_{i=1}^{N} \left[\frac{W(k-1)}{T_i} \right] C_i$

• The iteration stops when W(k-1) = W(k).

Another example

Consider the following example

	Ci	Di	T_i
$ au_{1}$	1	2	4
$ au_2$	2	4	5
$ au_3$	4.5	8	15

•
$$U = 0.9$$
; $L^* = 9 * 7 = 63$;

Another example

Consider the following example

	Ci	Di	T_i
$ au_1$	1	2	4
$ au_2$	2	4	5
$ au_3$	4.5	8	15

- U = 0.9; $L^* = 9 * 7 = 63$;
- W = 14.5.

Another example

Consider the following example

	C_i	Di	T_i
$ au_1$	1	2	4
$ au_2$	2	4	5
$ au_3$	4.5	8	15

- U = 0.9; $L^* = 9 * 7 = 63$;
- W = 14.5.
- Then we can check all deadline in interval [0, 14.5].

Outline

- Opening a priority
- Basic analysis
- 3 FP vs EDF
- Processor demand bound analysis
 - Generalization to deadlines different from period
 - Synchronous and asynchronous tasks
 - Examples
 - Testing algorithm
- A sufficient pseudo-polynomial test for synchronous sets
 - Basic idea

Algorithm

- Of course, it should not be necessary to draw the schedule to see if the system is schedulable or not.
- First of all, we need a formula for the dbf:

$$dbf(L) = \sum_{i=1}^{N} \left(\left\lfloor \frac{L - D_i}{T_i} \right\rfloor + 1 \right) C_i$$

- The algorithm works as follows:
 - We list all deadlines of all tasks until L*.
 - Then, we compute the dbf for each deadline and verify the condition.

The previous example

In the previous example: deadlines of the tasks:

$ au_1$	4	10
$ au_2$	6	
$ au_3$	5	

dbf in tabular form

L	4	5	6	10
dbf	1	4	6	7

 Since, for all L < L* we have dbf(L) ≤ L, then the task set is schedulable.

Another example

Consider the followin task set

	Ci	D_i	T_i
τ_1	1	2	4
$ au_2$	2	4	5
$ au_3$	4.5	8	15

- U = 0.9; $L^* = 9 * 7 = 63$;
- hint: if L* is too large, we can stop at the first idle time.
- The first idle time can be found with the following recursive equations:

$$W(0) = \sum_{i=1}^{N} C_{i}$$

$$W(k) = \sum_{i=1}^{N} \left\lceil \frac{W(k-1)}{T_{i}} \right\rceil C_{i}$$

- The iteration stops when W(k-1) = W(k).
- In our example W = 14.5. Then we can check all deadline in interval [0, 14.5].

Example

Deadlines of the tasks:

$ au_1$	2	6	10	14
$ au_2$	4	9	14	
$ au_3$	8			

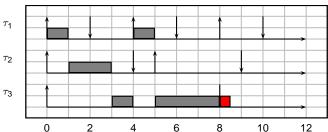
Demand bound function in tabular form

t	2	4	6	8	9	10	14
dbf	1	3	4	8.5			

• The task set is not schedulable! Deadline miss at 8.

In the schedule...

• The schedule is as follows:



Outline

- Opening a priority
- Basic analysis
- 3 FP vs EDF
- Processor demand bound analysis
 - Generalization to deadlines different from period
 - Synchronous and asynchronous tasks
 - Examples
 - Testing algorithm
- A sufficient pseudo-polynomial test for synchronous sets
 - Basic idea

Outline

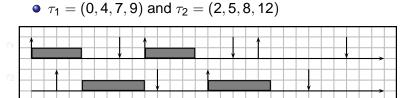
- Opening a priority
- Basic analysis
- 3 FP vs EDF
- Processor demand bound analysis
 - Generalization to deadlines different from period
 - Synchronous and asynchronous tasks
 - Examples
 - Testing algorithm
- A sufficient pseudo-polynomial test for synchronous sets
 - Basic idea

Let's recall the previous Corollary and Theorem

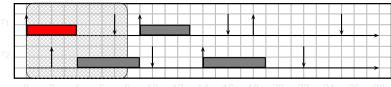
- Let's recall the previous Corollary and Theorem
- Let us analyze the reasons why.
- When computing dbf(*L*) we do the following steps:
 - Consider any interval [t₁, t₂] of lenght L
 - "push back" activations until the first jobs starts at t1;
 - Compute the dbf as the sum of the computation of all jobs with deadline no later than t_2 .

- Let's recall the previous Corollary and Theorem
- Let us analyze the reasons why.
- When computing dbf(*L*) we do the following steps:
 - Consider any interval [t₁, t₂] of lenght L
 - "push back" activations until the first jobs starts at t1;
 - Compute the dbf as the sum of the computation of all jobs with deadline no later than t_2 .

- Let's recall the previous Corollary and Theorem
- Let us analyze the reasons why.
- When computing dbf(*L*) we do the following steps:
 - Consider any interval [t₁, t₂] of lenght L
 - "push back" activations until the first jobs starts at t1;
 - Compute the dbf as the sum of the computation of all jobs with deadline no later than t₂.
 - Problem: by "pushing back" the instance we are modyfing the task set!

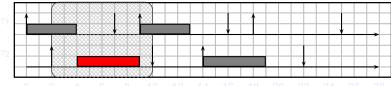


•
$$\tau_1 = (0, 4, 7, 9)$$
 and $\tau_2 = (2, 5, 8, 12)$

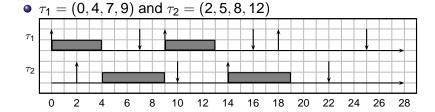


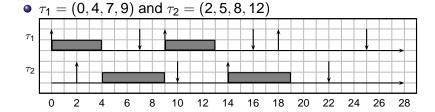
- df(0,8) = 4
- df(2,10) = 5

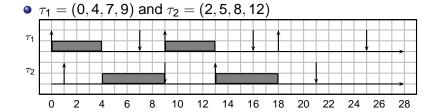
•
$$\tau_1 = (0, 4, 7, 9)$$
 and $\tau_2 = (2, 5, 8, 12)$

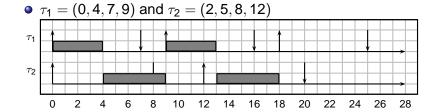


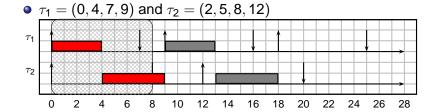
- df(0,8) = 4
- df(2,10) = 5

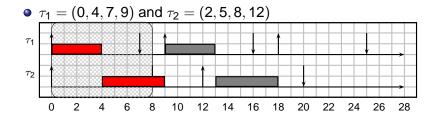




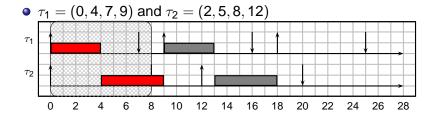








•
$$dbf(8) = 9$$



- dbf(8) = 9
- The dbf is too pessimistic.

Trade off between pessimism and complexity

- The problem is that we do not know what is the worst pattern of arrivals for asynchronous task sets.
- We know for synchronous: instant 0
- For asynchronous, we should check for every possible pattern

Key observation

• The distance between any arrival of task τ_i and any arrival of task τ_j is:

$$a_{j,k_1} - a_{i,k_2} = \phi_j + k_1 T_j - \phi_i - k_2 T_i = \phi_j - \phi_i + k(\gcd(T_i, T_j))$$

Key observation

• The distance between any arrival of task τ_i and any arrival of task τ_j is:

$$a_{j,k_1} - a_{i,k_2} = \phi_j + k_1 T_j - \phi_i - k_2 T_i = \phi_j - \phi_i + k(\gcd(T_i, T_j))$$

Imposing that the difference must not be negative, and k
must be integer, we get:

$$k \geq rac{\phi_i - \phi_j}{\gcd(T_i, T_j)} \Rightarrow k = \left\lceil rac{\phi_i - \phi_j}{\gcd(T_i, T_j)}
ight
ceil$$

Key observation

• The distance between any arrival of task τ_i and any arrival of task τ_j is:

$$a_{j,k_1} - a_{i,k_2} = \phi_j + k_1 T_j - \phi_i - k_2 T_i = \phi_j - \phi_i + k(\gcd(T_i, T_j))$$

Imposing that the difference must not be negative, and k
must be integer, we get:

$$k \ge \frac{\phi_i - \phi_j}{\gcd(T_i, T_j)} \Rightarrow k = \left\lceil \frac{\phi_i - \phi_j}{\gcd(T_i, T_j)} \right\rceil$$

• The minimum distance is:

$$\Delta_{i,j} = \phi_j - \phi_i + \left\lceil rac{\phi_i - \phi_j}{\gcd(\mathcal{T}_i, \mathcal{T}_j)}
ight
ceil \gcd(\mathcal{T}_i, \mathcal{T}_j)$$

Observations

- From the formula we can derive the following observations:
 - The value of $\Delta_{i,j}$ is an integer in interval $[0, \gcd(T_i, T_j) 1]$
 - If T_i and T_j are prime between them (i.e. gcd = 1), then $\Delta_{i,j} = 0$.
- Now we are ready to explain the basic idea behind the new scheduling analysis methodology.

- Given an hypothetical interval [x, y]
- Assume task τ_i arrival time coincides with x

- Given an hypothetical interval [x, y]
- Assume task τ_i arrival time coincides with x
- We "push back" all other tasks until they reach the minimum distance from τ_i arrival time

- Given an hypothetical interval [x, y]
- Assume task τ_i arrival time coincides with x
- We "push back" all other tasks until they reach the minimum distance from τ_i arrival time
 - there is no need to push it back further (it would be too pessimistic!)
- The df in all intervals starting with x can only increase after the "pushing back".

- Given an hypothetical interval [x, y]
- Assume task τ_i arrival time coincides with x
- We "push back" all other tasks until they reach the minimum distance from τ_i arrival time
 - there is no need to push it back further (it would be too pessimistic!)
- The df in all intervals starting with x can only increase after the "pushing back".
- Therefore, if no deadline is missed in [x, y], then no deadline is missed in any interval of length (y x).

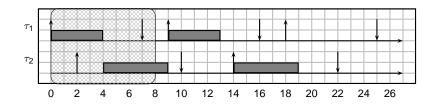
- Given an hypothetical interval [x, y]
- Assume task τ_i arrival time coincides with x
- We "push back" all other tasks until they reach the minimum distance from τ_i arrival time
 - there is no need to push it back further (it would be too pessimistic!)
- The df in all intervals starting with x can only increase after the "pushing back".
- Therefore, if no deadline is missed in [x, y], then no deadline is missed in any interval of length (y x).
- We could build such interval by selecting a task τ_i to start at the beginning of the interval, and setting the arrival times of the other tasks at their minimum distances

Problem

- We do not know which task to start with in the interval
- Simple solution: just select each task in turn

Example

- $\tau_1 = (0, 4, 7, 9)$ and $\tau_2 = (2, 5, 8, 12)$
 - We select τ_1 to start at 0.

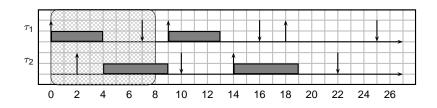


Example

•
$$\tau_1 = (0, 4, 7, 9)$$
 and $\tau_2 = (2, 5, 8, 12)$

- We select τ_1 to start at 0.
- τ₂ starts at

$$\phi_2 - \phi_1 + \left\lceil \frac{\phi_1 - \phi_2}{T_1 \mod T_2} \right\rceil (T_1 \mod T_2) = 2 + \left\lceil \frac{-2}{3} \right\rceil 3 = 2$$



•
$$\tau_1 = (0,4,7,9)$$
 and $\tau_2 = (2,5,8,12)$

• Next, we select τ_2 to start at 0.

- $\tau_1 = (0, 4, 7, 9)$ and $\tau_2 = (2, 5, 8, 12)$
- Next, we select τ_2 to start at 0.
- τ_1 starts at

$$\phi_1 - \phi_2 + \left\lceil \frac{\phi_2 - \phi_1}{T_2 \mod T_1} \right\rceil (T_2 \mod T_1) = -2 + \left\lceil \frac{2}{3} \right\rceil 3 = 1$$

•
$$\tau_1 = (0, 4, 7, 9)$$
 and $\tau_2 = (2, 5, 8, 12)$

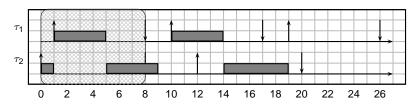
- Next, we select τ_2 to start at 0.
- τ₁ starts at

$$\phi_1 - \phi_2 + \left\lceil \frac{\phi_2 - \phi_1}{T_2 \mod T_1} \right\rceil (T_2 \mod T_1) = -2 + \left\lceil \frac{2}{3} \right\rceil 3 = 1$$

•
$$\tau_1 = (0, 4, 7, 9)$$
 and $\tau_2 = (2, 5, 8, 12)$

- Next, we select τ_2 to start at 0.
- τ₁ starts at

$$\phi_1 - \phi_2 + \left\lceil \frac{\phi_2 - \phi_1}{T_2 \mod T_1} \right\rceil (T_2 \mod T_1) = -2 + \left\lceil \frac{2}{3} \right\rceil 3 = 1$$



Main theorem

- ullet Given an asynchronous task set \mathcal{T}
- Let T'_i be the task set obtained by
 - fixing the offset of τ_i at 0
 - setting the offset of all other tasks at their minimum distance from τ_i

Main theorem

- ullet Given an asynchronous task set $\mathcal T$
- Let T'_i be the task set obtained by
 - fixing the offset of τ_i at 0
 - setting the offset of all other tasks at their minimum distance from τ_i

Theorem (Pellizzoni and Lipari, ECRTS '04)

Given task set \mathcal{T} with $U \leq 1$, scheduled on a single processor, if $\forall \ 1 \leq i \leq N$ all deadlines in task set \mathcal{T}'_i are met until the first idle time, then \mathcal{T} is feasible.

Performance

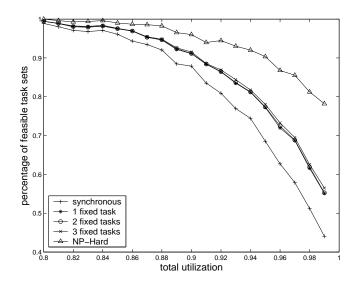


Figure: 10 tasks with periods multiple of 10

Conclusions

- What is this for?
- Feasibility analysis of asynchronous task set is used for:
 - Reduction of output jitter: by setting an offset it is possible to reduce response time and jitter
 - Analysis of distributed transactions (i.e. chains of tasks related by precedence constraints).

Conclusions

- What is this for?
- Feasibility analysis of asynchronous task set is used for:
 - Reduction of output jitter: by setting an offset it is possible to reduce response time and jitter
 - Analysis of distributed transactions (i.e. chains of tasks related by precedence constraints).
- in both cases, the analysis must be iteratively repeated many times with different offsets;

Conclusions

- What is this for?
- Feasibility analysis of asynchronous task set is used for:
 - Reduction of output jitter: by setting an offset it is possible to reduce response time and jitter
 - Analysis of distributed transactions (i.e. chains of tasks related by precedence constraints).
- in both cases, the analysis must be iteratively repeated many times with different offsets;
- hence we need an efficient analysis (even though it is only sufficient)

References I

- M. L. Dertouzos Control Robotics: The Procedural Control of Physical Processes Information Processing, 1974
- @ J.Y.-T. Leung and M.L. Merril, A Note on Preemptive Scheduling of Periodic Real-Time Tasks Information Processing Letters, vol 3, no 11, 1980
- S.K. Baruah, L.E. Rosier and R.R. Howell, Algorithms and Complexity Concerning the Preemptive Scheduling of Periodic Real-Time Tasks on One Processor Real-Time Systems Journal, vol. 2, 1990

References II

R. Pellizzoni and G. Lipari
Feasibility Analysis of Real-Time Periodic Tasks with
Offsets

Real-Time Systems Journal, 2005