
Real-Time Linux and the Xenomai system

Giuseppe Lipari
http://feanor.sssup.it/~lipari

Scuola Superiore Sant’Anna

May 11, 2008

http://feanor.sssup.it/~lipari

Outline

1 RT-Linux
Basic approach

2 Adeos
Structure

3 Xenomai
Introduction
User-mode threads
Interfaces
User mode device drivers
Summary of Xenomai

Outline

1 RT-Linux
Basic approach

2 Adeos
Structure

3 Xenomai
Introduction
User-mode threads
Interfaces
User mode device drivers
Summary of Xenomai

RT-Linux

RT-Linux was the first approach to making Linux more
real-time

It consist of a patch to Linux, plus a dynamic loadable
kernel module

The patch:
Modifies the interrupt handling sub-system of Linux, in
order to intercept and service the real-time interrupts

The module contains:
the nano-kernel (scheduler + interrupt handler + libraries)
application code

The application code executes with system privileges

RT-Linux architecture

HW
Interrupts

Process

Patch

RT-Linux

System

Level

Level

User

Linux

Process

PA

RT-Linux

PB

module
TA

TB

When an interrupt is raised

RT-Linux architecture

HW
Interrupts

Process

Patch

RT-Linux

System

Level

Level

User

Linux

Process

PA

RT-Linux

PB

module
TA

TB

When an interrupt is raised

If it is for the RT
sub-system, it is
redirected to the
nano-kernel and to the
RT-application

RT-Linux architecture

HW
Interrupts

Process

Patch

RT-Linux

System

Level

Level

User

Linux

Process

PA

RT-Linux

PB

module
TA

TB

When an interrupt is raised

If it is for the RT
sub-system, it is
redirected to the
nano-kernel and to the
RT-application

RT-Linux architecture

HW
Interrupts

Process

Patch

RT-Linux

System

Level

Level

User

Linux

Process

PA

RT-Linux

PB

module
TA

TB

When an interrupt is raised

If it is for the RT
sub-system, it is
redirected to the
nano-kernel and to the
RT-application
If it is for Linux, it is
simply marked as
pending

RT-Linux architecture

HW
Interrupts

Process

Patch

RT-Linux

System

Level

Level

User

Linux

Process

PA

RT-Linux

PB

module
TA

TB

When an interrupt is raised

If it is for the RT
sub-system, it is
redirected to the
nano-kernel and to the
RT-application
If it is for Linux, it is
simply marked as
pending

RT-Linux architecture

HW
Interrupts

Process

Patch

RT-Linux

System

Level

Level

User

Linux

Process

PA

RT-Linux

PB

module
TA

TB

When an interrupt is raised

If it is for the RT
sub-system, it is
redirected to the
nano-kernel and to the
RT-application
If it is for Linux, it is
simply marked as
pending
and it will be served only
when all RT tasks have
completed execution

RT-Linux architecture

HW
Interrupts

Process

Patch

RT-Linux

System

Level

Level

User

Linux

Process

PA

RT-Linux

PB

module
TA

TB

When an interrupt is raised

If it is for the RT
sub-system, it is
redirected to the
nano-kernel and to the
RT-application
If it is for Linux, it is
simply marked as
pending
and it will be served only
when all RT tasks have
completed execution
Linux must be executed
with interrupts always
active

Priority ordering

In RT-Linux
Real-time activities (tasks and interrupt handlers) have
always priority over Linux activities (tasks and interrupt
handlers)

This is made through the following two mechanisms:
interrupt interception
virtual cli/sti instructions

Linux interrupt sub-system

We have to prevent Linux from disabling interrupts for a
long time

otherwise, real-time activities could be delayed too much
Therefore, an instruction like CLI is substituted by a
function that marks interrupt as disabled for the Linux
system
Interrupts can still arrive and be served by the RT
sub-system
If they are for Linux, the RT subsystem marks them as
pending, if they are for the RT application, they are
immediately served
When Linux wants to execute STI, a function is invoked
that goes through the marked interrupts and serves them all

Advantages – disadvantages

This approach has one big advantage
Minimum latency: RT interrupts cannot be blocked by
Linux, but only by the RT sub-system

Advantages – disadvantages

This approach has one big advantage
Minimum latency: RT interrupts cannot be blocked by
Linux, but only by the RT sub-system

But also some disadvantages:
Real-time applications run in kernel space →, so they can
overwrite the kernel memory and crash the system (like any
other single memory RTOS)

Advantages – disadvantages

This approach has one big advantage
Minimum latency: RT interrupts cannot be blocked by
Linux, but only by the RT sub-system

But also some disadvantages:
Real-time applications run in kernel space →, so they can
overwrite the kernel memory and crash the system (like any
other single memory RTOS)
Communication between RT subsystem and Linux can only
be non real-time;

Advantages – disadvantages

This approach has one big advantage
Minimum latency: RT interrupts cannot be blocked by
Linux, but only by the RT sub-system

But also some disadvantages:
Real-time applications run in kernel space →, so they can
overwrite the kernel memory and crash the system (like any
other single memory RTOS)
Communication between RT subsystem and Linux can only
be non real-time;
Linux is scheduled in background → Linux tasks can starve
or experience high delay

Advantages – disadvantages

This approach has one big advantage
Minimum latency: RT interrupts cannot be blocked by
Linux, but only by the RT sub-system

But also some disadvantages:
Real-time applications run in kernel space →, so they can
overwrite the kernel memory and crash the system (like any
other single memory RTOS)
Communication between RT subsystem and Linux can only
be non real-time;
Linux is scheduled in background → Linux tasks can starve
or experience high delay
It is not possible to use Linux device drivers for RT

Advantages – disadvantages

This approach has one big advantage
Minimum latency: RT interrupts cannot be blocked by
Linux, but only by the RT sub-system

But also some disadvantages:
Real-time applications run in kernel space →, so they can
overwrite the kernel memory and crash the system (like any
other single memory RTOS)
Communication between RT subsystem and Linux can only
be non real-time;
Linux is scheduled in background → Linux tasks can starve
or experience high delay
It is not possible to use Linux device drivers for RT
RT developers have to re-write the related device drivers on
top of the RT sub-system

RTL – History

The technique used by RT-Linux was first proposed by
Yodaiken e Barabanov (University of New Mexico),

it was initially distributed as open source software (GPL
license)

later they patented the interrupt interception method (?!)

they founded FSM-labs to sell a professional version of
RT-Linux

they own the internet domain
http://www.rtlinux.org

there is still an open source version or RT-Linux, but it is
not very well supported

http://www.rtlinux.org

Outline

1 RT-Linux
Basic approach

2 Adeos
Structure

3 Xenomai
Introduction
User-mode threads
Interfaces
User mode device drivers
Summary of Xenomai

RTAI + Adeos

Paolo Mantegazza at Politecnico di Milano, started
developing on RT-Linux

However, he was in contrast with Yodaiken since the very
beginning

He branched off and made its own version of RT-Linux,
called RTAI (Real-Time Application Interface)

After some time, under the menace of being sued by
Yodaiken, they substituted all RT-Linux code with Adeos,
and re-wrote entirely the RT-nano kernel

Recently, a very interesting approach called Xenomai
branched off from RTAI

I will present Xenomai in the rest of the presentation

Outline

1 RT-Linux
Basic approach

2 Adeos
Structure

3 Xenomai
Introduction
User-mode threads
Interfaces
User mode device drivers
Summary of Xenomai

Adeos

Adeos is a layer of software that can be used to virtualize
interrupts in a general and flexible way

It generalizes the basic concept used by RT-Linux

But the technique is descibed in a paper published before
the RT-Linux patent!

Therefore, there should not be any problem with patents
and proprietary software (with lawyers, you never know . . .)

Adeos basic concepts

Adeos handles domains

A domain contains an entity able to handle interrupts

the word interrupt here includes both hardware and
software interrupts (everything that can be trapped).

it also includes hooks on task switches, signals, etc.

Adeos basic structure
V
ir
tu

a
l
IR

Q
H

W
H

o
o
k
s

Domain 1 Domain 2 Domain 3

In
te

rr
u
p
ts

i-log

i-log

i-log

i-log

i-log

i-log

i-log

i-log

i-log i-log

i-log

i-log

i-log

i-log

i-log

i-log

i-log

i-log

Domains are identified by a
unique number

Domains with lower
numbers have higher
priority for handling events

Event propagations
happens according to a
pipeline

Rules for propagation of events

Every event goes from the first domain up to the last one
(whoever generated it)

A domain can forward the event of stop it
A domain can also stall events

this is equivalent to disable interrupts for the subsequents
domains
The events can be unstalled later, and at that point they are
forwarded to the subsequent domains
previous domains in the pipeline are not affected by the
stalling
Of course, it is possible to selectively decide which events
to stall.

Adeos domains
Event propagation:

V
ir
tu

a
l
IR

Q
H

W
H

o
o
k
s

Domain 1 Domain 2 Domain 3

In
te

rr
u
p
ts

i-log

i-log

i-log

i-log

i-log

i-log

i-log

i-log

i-log i-log

i-log

i-log

i-log

i-log

i-log

i-log

i-log

i-log

Adeos domains
Event propagation:

V
ir
tu

a
l
IR

Q
H

W
H

o
o
k
s

Domain 1 Domain 2 Domain 3

In
te

rr
u
p
ts

i-log

i-log

i-log

i-log

i-log

i-log

i-log

i-log

i-log i-log

i-log

i-log

i-log

i-log

i-log

i-log

i-log

i-log

Adeos domains
Event propagation:

V
ir
tu

a
l
IR

Q
H

W
H

o
o
k
s

Domain 1 Domain 2 Domain 3

In
te

rr
u
p
ts

i-log

i-log

i-log

i-log

i-log

i-log

i-log

i-log

i-log i-log

i-log

i-log

i-log

i-log

i-log

i-log

i-log

i-log

Adeos domains
Event propagation:

V
ir
tu

a
l
IR

Q
H

W
H

o
o
k
s

Domain 1 Domain 2 Domain 3

In
te

rr
u
p
ts

i-log

i-log

i-log

i-log

i-log

i-log

i-log

i-log

i-log i-log

i-log

i-log

i-log

i-log

i-log

i-log

i-log

i-log

Adeos domains
Event propagation: Stalling

V
ir
tu

a
l
IR

Q
H

W
H

o
o
k
s

Domain 1 Domain 2 Domain 3

In
te

rr
u
p
ts

i-log

i-log

i-log

i-log

i-log

i-log

i-log

i-log

i-log i-log

i-log

i-log

i-log

i-log

i-log

i-log

i-log

i-log

Adeos domains
Event propagation: Stalling

V
ir
tu

a
l
IR

Q
H

W
H

o
o
k
s

Domain 1 Domain 2 Domain 3

In
te

rr
u
p
ts

i-log

i-log

i-log

i-log

i-log

i-log

i-log

i-log

i-log i-log

i-log

i-log

i-log

i-log

i-log

i-log

i-log

i-log

Adeos domains
Event propagation: Stalling

V
ir
tu

a
l
IR

Q
H

W
H

o
o
k
s

Domain 1 Domain 2 Domain 3

In
te

rr
u
p
ts

i-log

i-log

i-log

i-log

i-log

i-log

i-log

i-log

i-log i-log

i-log

i-log

i-log

i-log

i-log

i-log

i-log

i-log

i-log

How to use Adeos

The basic idea is:

Linux goes in domain 3

A real-time OS goes in the first domain

The second domain is used to stall events

Linux operations for disabling/enabling interrupts are
modified as stall and unstall

Outline

1 RT-Linux
Basic approach

2 Adeos
Structure

3 Xenomai
Introduction
User-mode threads
Interfaces
User mode device drivers
Summary of Xenomai

Xenomai history

Xenomai is a new project

it is a banch of RTAI

The maintainer (Philippe Gerum) was RTAI maintainer,
then branched off

Differently from other Linux-RT projects, it has a lot of
documentation!

Xenomai architecture

HW

Thread
Xenomai

UVM

Interrupts

Process

PA

System

Level

Level
User

Patch

Linux

Adeos

module
RT−Nucleus

Skin

The basic structure is
similar to RTAI;

However, Xenomai
provides a better
integration with Linux

New features: Xenomai
threads, Skins, UVMs

The structure of domains under Xenomai

Adeos

Domain 1 Domain 2 Domain 3

Interrupt

shield

LinuxRT−Nucleus

the primary domain (1)
runs a real-time kernel

the secondary domain
(3) runs Linux

an intermediate domain
(2) is used as interrupt
shield

Outline

1 RT-Linux
Basic approach

2 Adeos
Structure

3 Xenomai
Introduction
User-mode threads
Interfaces
User mode device drivers
Summary of Xenomai

Xenomai threads

A real-time thread can execute
always in the primary domain

In this case, it is very similar to a RT-Linux or RTAI rt-thread.
Its memory space is the same as the kernel memory space
they have very short response time

Xenomai threads

A real-time thread can execute
always in the primary domain

In this case, it is very similar to a RT-Linux or RTAI rt-thread.
Its memory space is the same as the kernel memory space
they have very short response time

In the secondary and in the primary
We call these Xenomai Threads
Their memory is in user space
They are memory-protected from other processes, and
cannot crash the kernel
They can be executed both by the primary or by the
secondary domain

Jumping from primary to secondary

Adeos

Domain 1 Domain 2 Domain 3

Interrupt

shield

RT-Nucleus Linux

Jumping from primary to secondary

Adeos

Domain 1 Domain 2 Domain 3

Interrupt

shield

RT-Nucleus Linux

XT 1

A Xenomai thread
starts in primary mode

Jumping from primary to secondary

Adeos

Domain 1 Domain 2 Domain 3

Interrupt

shield

RT-Nucleus Linux

XT 1

A Xenomai thread
starts in primary mode

When it invokes a
non-rt syscall, it jumps
in secondary mode

Xenomai Threads

The priorities used in the primary (RT-Nucleus) are
compatible with those used in the secondary (Linux)

In particular, RT-Nucleus provides 100 RT priorities like
Linux

When a Xenomai thread jumps across domains, it
maintains its own priority

Therefore, if a thread has priority 96 in RT-Nucleus, when it
goes in secondary mode, Linux will serve it with RT priority
96

Xenomai threads in primary mode

A Xenomai thread (or a set of threads) usually starts in
primary mode.
When the thread is in primary mode:

It is removed from Linux ready queue
It is served by RT-Nucleus scheduler
Has always precedence over any other Linux process (even
when the Linux process has an higher priority).

In primary mode, the Xenomai thread contends with the
RT-threads of RT-Nucleus

threads

priorities

activities

Linux

+ XT1

RT−Nucleus

Jumping to secondary mode

A Xenomai thread remains in primary mode until is invokes
a non-RT primitive.

For example, suppose that the thread invokes a printf()
or a writes to a file.
In such a case, the thread is moved to secondary mode

When a Xenomai thread is moved to secondary mode:
RT-Nucleus inserts the Xenomai thread in the Linux queue
RT-Nucleus invokes the Linux scheduler
All Linux is scheduled with the same priority of the Xenomai
thread

Priority relationship

When

at least one Xenomai thread (XT1) runs in secondary
mode,

and XT1 has highest priority among RT-Nucleus threads;

the priority ordering is as follows:

other

priorities

Linux activities

XT1 +

other HP

RT−Nucleus

threads

(LP) (LP)

Linux threads

Priorities in secondary mode

If a Linux process with priority higher that the Xenomai
thread arrives, it is executed by Linux

If a RT-thread with priority lower than the Xenomai thread
arrives while it is in secondary mode, it cannot make
preemption

If a RT-thread with priority higher than the Xenomai thread
arrives, it makes preemption

Mixing Linux RT processes and Xenomai threads

No need to say that this is a dangerous thing to do

The Linux RT processes could preempt Xenomai threads
while these are in secondary mode.

Suggestion: never mix the two.

Linux interrupts

To reduce latency:

If an interrupt arrives while a Xenomai thread executes in
secondary mode, it is not forwarded to Linux!
The mechanism works as follows:

When a Xenomai thread is executed in secondary mode,
the interrupt shield domain is activated
All Linux interrupts are stalled, until the Xenomai thread
completes execution
The interrupts will be served again when Linux goes back
to execute in background mode.

Latency

The worst-case latency could happen when

Xenomai thread goes to secondary mode

Linux scheduler is invoked

However, Linux was in the middle of completing an
interrupt processing, and preemption was disabled.

Therefore, we have to wait until Linux re-enables
preemption

Due to improvement to latency reductions in latest versions of
Linux, this latency will be reduced even further in the future

Shadow thread

This is implemented through the shadow threads in
RT-Nucleus;

Each Xenomai thread has a corresponding shadow thread
in RT-Nucleus;

When the RT-Nucleus schedules the shadow thread, the
Xenomai thread is executed instead, wherever the tread is
located in that moment.

Outline

1 RT-Linux
Basic approach

2 Adeos
Structure

3 Xenomai
Introduction
User-mode threads
Interfaces
User mode device drivers
Summary of Xenomai

Xenomai Interfaces

Xenomai provides several API to the user

The internal API (core) is the interface used internally by
RT-Nucleus. Should not be used directly

many skins built on top of the internal interface

One of the skins is the Native Xenomai interface (again
built on top of the internal interface)

A skin is a loadable kernel module

Interfaces currently available

native

POSIX

PSOS

RTAI

µ-Itron

VRTX

VxWorks

rtdm (rt driver model)

Basic idea

All RTOS have a very similar behavior, in particular
regarding the APIs

but different internal implementations
the differences in the APIs are somewhat non-essential

priority ordering
semaphore queues
etc.

Moreover, task states are very similar

Task states

The developers of Xenomai found that:

by supporting the POSIX states,

Task states

The developers of Xenomai found that:

by supporting the POSIX states,

and the µ-Itron states,

Task states

The developers of Xenomai found that:

by supporting the POSIX states,

and the µ-Itron states,

they cover all possible task states in all interfaces (until
now)

The core interface:

It is very essential

every syscall can be implemented as a sequence of core
APIs calls

Outline

1 RT-Linux
Basic approach

2 Adeos
Structure

3 Xenomai
Introduction
User-mode threads
Interfaces
User mode device drivers
Summary of Xenomai

The RTDM skin

By using the mechanism of Xenomai threads (jumping
between secondary and primary),

it is possible to write device drivers in user space, with
good response time

the idea is that a thread can wait for interrupts

basically, the entire handler is embedded into a Xenomai
thread

the thread waits for an interrupt line (blocks)

when the corresponding interrupt line is raised, RT-Nucleus
unblocks the thread

Outline

1 RT-Linux
Basic approach

2 Adeos
Structure

3 Xenomai
Introduction
User-mode threads
Interfaces
User mode device drivers
Summary of Xenomai

Advantages

Xenomai enables RT response times in user space,
allowing

memory protection
easy of debugging

It provides an emulation layer (UVM) for trying out how the
code works in user mode and with GDB

It provides skins to support many different RTOS interfaces

	RT-Linux
	Basic approach

	Adeos
	Structure

	Xenomai
	Introduction
	User-mode threads
	Interfaces
	User mode device drivers
	Summary of Xenomai

