
Implementation of FSM

Implementing (hierarchical) FSMs in C++/C

From Practical Statecharts in C/C++ by Miro Samek,
CMPBooks

Implementation refers to the simple parking mater example
(modified from the one in Lee-Varaiya book)

0 1

tick/expired

2 3 4

coin100 / safe

tick / safe

coin25 / safe

tick/expired tick / safetick / safe

coin25 / safe coin25 / safe coin25 / safe

coin100 / safe
coin100 / safe

coin100 / safe

A C implementation of (some) OO programming

We will focus on a C implementation that provides support for
• Abstraction joining data and functions operating on them,

defining which functions are for public use (interface) and
which for private use

• Inheritance defining new classes based on existing classes
• Polymorphism substituting objects with matching interfaces at

run-time
This is done by using a set of conventions and idioms

A C implementation of (some) OO programming

The Approach:
think of the FILE structure in ANSII C and of file-related ops

(open, close …)

• Attributes of the class are defined with a C struct
• Methods of the class are defined as C functions. Each

function takes a pointer to the attribute structure as an
argument

• Special methods initialize and clean up the attribute structure

Abstraction

An example: pseudo-class Hsm (Hierarchical state machine)

typedef struct Hsm Hsm;
struct Hsm {

State state_;
State source_;

};

Hsm *HsmCtor_(Hsm *me, PState initial);
void HsmXtor_(Hsm *me);

void HsmInit(Hsm *me);
void HsmDispatch(Hsm *me, Event const *e);
void HsmTran_(Hsm *me);

State Hsm_top(Hsm *me, Event const *e);

A C implementation of (some) OO programming

Constraints on constructors and destructors

struct Hsm {
…
}

A C implementation of (some) OO programming

Some helper macros

#define HsmGetState(me_) ((me_)->state_)

#define CLASS(class_) typedef struct class_ class_;\
struct class_ {

#define METHODS };
#define END_CLASS

A C implementation of (some) OO programming

allows writing

CLASS(Hsm)
State state_;
State source_;

METHODS
Hsm *HsmCtor_(Hsm *me, PState initial);
void HsmXtor_(Hsm *me);

void HsmInit(Hsm *me);
void HsmDispatch(Hsm *me, Event const *e);
void HsmTran_(Hsm *me);

State Hsm_top(Hsm *me, Event const *e);
END_CLASS

Inheritance

Extension by adding attributes and methods
(overriding not considered at this time)

• Inheritance can be implemented in a number of ways
• Single inheritance can be obtained by embedding the

parent into the child

You can pass the child pointer to any function that expects a
pointer to the Parent class (you should explicitly upcast the
pointer)

struct Parent {
…
}

struct Child {
struct Parent super;
…
}

me
Parent
attributes

Child
attributes

A C implementation of (some) OO programming

Inheritance
An example: child of pseudo-class Hsm

struct ChildHsm {
struct Hsm super;
…
}

Uses

me->super->method

((Hsm *)me)->method

A C implementation of (some) OO programming

Constraints on constructors and destructors

struct ChildHsm {
struct Hsm super;
…
}

A C implementation of (some) OO programming

The macro

#define SUBCLASS(class_, superclass_) \
CLASS(class_) \

superclass_ super_;

allows writing

SUBCLASS(ChildHsm, Hsm)
METHODS

void ChildHsmAdditional_(ChildHsm *me);
END_CLASS

Design options

• Now back at our original objective …
• Encoding FSMs in C++ and C

Design options

• Design decisions and trade-offs
– How do you represent events? How about events

with parameters?
– How do you represent states?
– How do you represent transitions?
– How do you dispatch events to the state machine?

• When you add state hierarchy, exit/entry actions
and transitions with guards, the design can
become quite complex

• We are going ot deal with standard (i.e. not
hierarchical) state machines

Typical implementations

• Typical implementations in the C or C++ language
include

– The nested switch statement
– The state table
– The object-oriented State design pattern and
– Combinations of the previous

Typical implementations

• State machine implementations are typically
coupled with a concurrency model and an event
dispatching policy

Polling HW
for events

Int from HW

Interrupt
handler

State machine
implementation State

machine
implem.

Typical implementations

• Interface consisting of three methods
– init() takes a top-level initial transition
– dispatch() to dispatch an event to the state

machine
– tran() to make an arbitrary transition

Typical implementations

• Nested switch statement
• Perhaps the most popular technique
• 2 levels of switch statements
• 1st level controlled by a scalar state variable
• 2nd level controlled by an event signal variable

Nested switch implementation

enum Signal {
SIGNAL_1, SIGNAL_2, SIGNAL_3, ...

};
enum State {

STATE_X, STATE_Y, STATE_Z, ...
};

void init() {}
void dispatch(unsigned const sig) {}
void tran(State target)

Signals and states are typically represented as
enumerations

Nested switch implementation

class Hsm1 {
private:

State myState;
...

public:
void init();
void dispatch(unsigned const sig);
void tran(State target);
...

}

C++ (class based) implementation

Each instance tracks
its own state

Each instance tracks
its own state

Nested switch implementation

void dispatch(unsigned const sig) {
switch(myState) {
case STATE_1:

switch(sig) {
case SIGNAL_1:

tran(STATE_X)
...
break;

case SIGNAL_2:
tran(STATE_Y)
...
break;

}
break;

case STATE_2:
switch(sig) {

case SIGNAL_1:
...
break;
...

}
break;

...
}

Nested switch impl.: variations

Breaking up the event handler code by moving the second
(signal) level into a specialized state handler function

void dispatch(unsigned const sig) {
switch(myState) {
case STATE_1:

ManageState1(sig);
break;

case STATE_2:
ManageState1(sig);
break;

...
}

Nested switch method

The nested switch statement method:
• Is simple
• Requires enumerating states and triggers
• Has a small (RAM) memory footprint

– 1 scalar variable required
• Does not promote code reuse
• Event dispatching time is not constant

– Increases with the number of cases O(log n)
• Implementation is not hierarchical and manual coded

entry/exit actions are prone to error and difficult to
maintain against changes in the state machine. The
code pertaining to one state (entry action) is distributed
and repeated in many places (on every transition leading
to that state)

– This is not a problem for automatic synthesis tools

The example ….

enum Signal {
TICK, COIN25, COIN100

};
enum State {

S_0, S_1, S_2, S_3, S_4
};

enum Display {
EXPIRED, SAFE

};

coin25 / safe

0 1

tick/expired

2 3 4

coin100 / safe

tick / safe

coin25 / safe

tick/expired tick / safetick / safe

coin25 / safe coin25 / safe

coin100 / safe
coin100 / safe

coin100 / safe

The example ….

CLASS(PMeter)
State state_;

METHODS
void PMeterInit(PMeter *me);
void PMeterDispatch(PMeter *me, Signal const *e);
void PMeterTran_(PMeter *me, PMeter dest);

void PMeterShow(Display d);
END_CLASS

coin25 / safe

0 1

tick/expired

2 3 4

coin100 / safe

tick / safe

coin25 / safe

tick/expired tick / safetick / safe

coin25 / safe coin25 / safe

coin100 / safe
coin100 / safe

The example ….

void PMeterInit(PMeter *me)
{

me->state_ = S_0;
}

void PMeterTran_(PMeter *me, PMeter dest)
{

me->state_ = dest;
}

coin25 / safe

0 1

tick/expired

2 3 4

coin100 / safe

tick / safe

coin25 / safe

tick/expired tick / safetick / safe

coin25 / safe coin25 / safe

coin100 / safe
coin100 / safe

The example ….

void PMeterDispatch(PMeter *me, Signal const *s)
{

switch(me->state_) {
case S_0:

switch(sig) {
case COIN25:

PMeterShow(SAFE);
tran(S_1)
break;

case COIN100:
PMeterShow(SAFE);
tran(S_4)
break;

}
break;

case S_1:
switch(sig) {

case TICK:
PMeterShow(EXPIRED);
tran(S_0)
break;

case COIN25:
tran(S_2)
break;

case COIN100:
tran(S_4)
break;

}
break;

coin25 / safe

0 1

tick/expired

2 3 4

coin100 / safe

tick / safe

coin25 / safe

tick/expired tick / safetick / safe

coin25 / safe coin25 / safe

coin100 / safe
coin100 / safe

The State Table approach

State tables containing arrays of transitions for each state

Signals→→→→

S
tates →→ →→

action1()
STATEX

The content of the cells are transitions, represented as pairs
{action, next state}

SIGNAL_1 SIGNAL_2 SIGNAL_3 SIGNAL_4

STATE_X

STATE_Y

STATE_Z

STATE_A

The class StateTable

class StateTable {
public:

typedef void (StateTable::*Action)();
struct Tran {

Action action;
unsigned nextState;

};
StateTable(Tran const *table, unsigned nStates, unsigned nSignals)
: myTable(table) myNsignals(nSignals), myNstates(nStates) {}
virtual ~StateTable(){}
void dispatch(unsigned const sig) {

register Tran const *t = myTable + myState*myNsignals + sig;
(this->*(t->action))();
myState = t->nextState;

}
void doNothing() {}

protected:
unsigned myState;

private:
Tran const *myTable;
unsigned myNsignals;
unsigned myNstates;

};

type Action is a pointer to a
member function of
StateTable (or a subclass)

type Action is a pointer to a
member function of
StateTable (or a subclass)

The class StateTable

class StateTable {
public:

typedef void (StateTable::*Action)();
struct Tran {

Action action;
unsigned nextState;

};
StateTable(Tran const *table, unsigned nStates, unsigned nSignals)
: myTable(table) myNsignals(nSignals), myNstates(nStates) {}
virtual ~StateTable(){}
void dispatch(unsigned const sig) {

register Tran const *t = myTable + myState*myNsignals + sig;
(this->*(t->action))();
myState = t->nextState;

}
void doNothing() {}

protected:
unsigned myState;

private:
Tran const *myTable;
unsigned myNsignals;
unsigned myNstates;

};

type Tran is the type of the
table cell

type Tran is the type of the
table cell

The class StateTable

class StateTable {
public:

typedef void (StateTable::*Action)();
struct Tran {

Action action;
unsigned nextState;

};
StateTable(Tran const *table, unsigned nStates, unsigned nSignals)
: myTable(table) myNsignals(nSignals), myNstates(nStates) {}
virtual ~StateTable(){}
void dispatch(unsigned const sig) {

register Tran const *t = myTable + myState*myNsignals + sig;
(this->*(t->action))();
myState = t->nextState;

}
void doNothing() {}

protected:
unsigned myState;

private:
Tran const *myTable;
unsigned myNsignals;
unsigned myNstates;

};

(initialization list parameter)
constructor and destructor

(initialization list parameter)
constructor and destructor

The class StateTable

class StateTable {
public:

typedef void (StateTable::*Action)();
struct Tran {

Action action;
unsigned nextState;

};
StateTable(Tran const *table, unsigned nStates, unsigned nSignals)
: myTable(table) myNsignals(nSignals), myNstates(nStates) {}
virtual ~StateTable(){}
void dispatch(unsigned const sig) {

register Tran const *t = myTable + myState*myNsignals + sig;
(this->*(t->action))();
myState = t->nextState;

}
void doNothing() {}

protected:
unsigned myState;

private:
Tran const *myTable;
unsigned myNsignals;
unsigned myNstates;

};

(simple) dispatch function(simple) dispatch function

Declaring an object, the events, states and table

Enum Event{
SIGNAL1, SIGNAL2, ..., MAX_SIG

};

Enum State {
STATE_X, STATE_Y, ..., MAX_STATE

};

class Hsm : public StateTable {
public:

Hsm() : StateTable(&myTable[0][0], MAX_STATE, MAX_SIG) {}
void init() {myState=STATE_X;}
...

private:
void action1();
void action2();
...

private:
static StateTable::Tran const myTable[MAX_STATE][MAX_SIG];
...

};

Needed for
detecting the
array size

Needed for
detecting the
array size

Declaring an object, the events, states and table

Enum Event{
SIGNAL1, SIGNAL2, ..., MAX_SIG

};

Enum State {
STATE_X, STATE_Y, ..., MAX_STATE

};

class Hsm : public StateTable {
public:

Hsm() : StateTable(&myTable[0][0], MAX_STATE, MAX_SIG) {}
void init() {myState=STATE_X;}
...

private:
void action1();
void action2();
...

private:
static StateTable::Tran const myTable[MAX_STATE][MAX_SIG];
...

};

Initialize with the
table and table
size

Initialize with the
table and table
size

Declaring an object, the events, states and table

Enum Event{
SIGNAL1, SIGNAL2, ..., MAX_SIG

};

Enum State {
STATE_X, STATE_Y, ..., MAX_STATE

};

class Hsm : public StateTable {
public:

Hsm() : StateTable(&myTable[0][0], MAX_STATE, MAX_SIG) {}
void init() {myState=STATE_X;}
...

private:
void action1();
void action2();
...

private:
static StateTable::Tran const myTable[MAX_STATE][MAX_SIG];
...

};

myTable is a static constant table (one
for all the objects crated from this
class) with elements of type Tran

myTable is a static constant table (one
for all the objects crated from this
class) with elements of type Tran

The state transition table

StateTable::Tran const Hsm::myTable[MAX_STATE][MAX_SIG] = {
{{ &StateTable::doNothing, STATEX},
{ static_cast<StateTable::Action>(&Hsm::action2), STATEY},
{ static_cast<StateTable::Action>(&Hsm::action3), STATEX}},
{{ static_cast<StateTable::Action>(&Hsm::action4), STATEZ},
{ &StateTable::doNothing, STATE_ERR},
{ static_cast<StateTable::Action>(&Hsm::action5), STATEZ}},

};

State Table implementation

void dispatch(unsigned const sig) {
register Tran const *t = myTable + myState*myNsignals + sig;
(this->*(t->action))();
myState = t->nextState;

}

Dispatch performs three steps:
• it identifies the transition to take as a state table lookup
• It executes the action
• it changes the state

Typical implementations

The state table is divided into a generic and reusable
processor part and an application-specific part

The application-specific part requires
enumerating states and signals

Subclassing StateTable
Defining the action functions
Initializing the transition table

Typical implementations

The state table implementation has the following consequences
• it maps directly to the highly regular state table representation of a

state machine
• it requires the enumeration of triggers and states
• It provides relatively good performance for event dispatching O(1)
• It promotes code reuse of the event processor
• It requires a large state table, which is typically sparse and

wasteful. However, the table con be stored in ROM
• It requires a large number of fine grain functions representing

actions
• It requires a complicated initialization
• It is not hierarchical

– the state table can be extended to deal with state nesting, entry/exit
actions and transition guards by hardcoding into transition actions
functions

The example: basic types

typedef int (*Action)(StateTab *me);
Typedef struct Tran {

Action action;
unsigned nextState;

};

CLASS (StateTab)
...

METHODS
...

END_CLASS

coin25 / safe

0 1

tick/expired

2 3 4

coin100 / safe

tick / safe

coin25 / safe

tick/expired tick / safetick / safe

coin25 / safe coin25 / safe

coin100 / safe
coin100 / safe

The Example: the State Table “class”

CLASS (StateTab)
State myState_;
Tran const *myTable__;
unsigned myNsignals__;
unsigned myNstates__;

METHODS
StateTab *StateTabCTor(StateTab *me, Tran const *table,
unsigned nStates, unsigned nSignals) {

me->myTable__ = table;
me->myNstates__ = nStates;
me->myNsignals__ = nSignals;

}
void dispatch(StateTab *me, unsigned const sig) {

Tran const *t = myTable__ + myState_*myNsignals__ + sig;
t->action();
myState_ = t->nextState;

}
void doNothing() {};

END_CLASS
coin25 / safe

0 1

tick/expired

2 3 4

coin100 / safe

tick / safe

coin25 / safe

tick/expired tick / safetick / safe

coin25 / safe coin25 / safe

coin100 / safe
coin100 / safe

The example: preparing for PMeter

enum Signal {
TICK, COIN25, COIN100

};
enum State {

S_0, S_1, S_2, S_3, S_4
};

coin25 / safe

0 1

tick/expired

2 3 4

coin100 / safe

tick / safe

coin25 / safe

tick/expired tick / safetick / safe

coin25 / safe coin25 / safe

coin100 / safe
coin100 / safe

The Example: the PMeter “class”

SUBCLASS(PMeter, StateTab)
METHODS

void PMeterCtor(PMeter *me) {
StateTabCtor(me, &myTable[0][0], MAX_STATE, MAX_SIGNAL);

}
void PMeterinit(PMeter *me) {me->myState_ = S_0;};
void PMeterShowSafe();
void PMeterShowExpired();

END_CLASS

coin25 / safe

0 1

tick/expired

2 3 4

coin100 / safe

tick / safe

coin25 / safe

tick/expired tick / safetick / safe

coin25 / safe coin25 / safe

coin100 / safe
coin100 / safe

An example

Tran const myTable[MAX_STATE][MAX_SIGNAL] = {
{{ &doNothing, S_0},
{ &PMeterShowSafe, S_1},
{ &PMeterShowSafe, S_4}},
{{ &PMeterShowExpired, S_0},
{ &doNothing, S_2},
{ &doNothing, S_4}},
{{ &doNothing, S_1},
{ &doNothing, S_3},
{ &doNothing, S_4}},
{{ &doNothing, S_2},
{ &doNothing, S_4},
{ &doNothing, S_4}},
{{ &doNothing, S_3},
{ &doNothing, S_4},
{ &doNothing, S_4}},

}; coin25 / safe

0 1

tick/expired

2 3 4

coin100 / safe

tick / safe

coin25 / safe

tick/expired tick / safetick / safe

coin25 / safe coin25 / safe

coin100 / safe
coin100 / safe

