
Sistemi in tempo reale
Anno accademico 2006 - 2007

Concorrenza - II

Giuseppe Lipari
http://feanor.sssup.it/~lipari

Scuola Superiore Sant’Anna

The need for concurrency

There are many reason for concurrency

functional

performance

expressive power

Functional
many users may be connected to the same system at the
same time

each user can have its own processes that execute
concurrently with the processes of the other users

perform many operations concurrently
for example, listen to music, write with a word processor,
burn a CD, etc...
they are all different and independent activities
they can be done at the same time

http://feanor.sssup.it/~lipari


The need for concurrency (2)

Performance
take advantage of blocking time

while some thread waits for a blocking condition, another
thread performs another operation

parallelism in multi-processor machines
if we have a multi-processor machine, independent
activities can be carried out on different processors are the
same time

Expressive power

many control application are inherently concurrent

concurrency support helps in expressing concurrency,
making application development simpler

Concurrency model

a system is a set of concurrent activities
they can be processes or threads

they interact in two ways
access the hardware resources (processor, disk, memory,
etc.)
exchange data

these activities compete for the resources and/or
cooperate for some common objective



Resources

a resource can be
a HW resource like a I/O device
a SW resource, i.e. a data structure
in both cases, access to a resource must be regulated to
avoid interference

Example 1
if two processes want to print on the same printer, their
access must be sequentialised, otherwise the two printing
could be intermangled!

Example 2
if two threads access the same data structure, the
operation on the data must be sequentialized otherwise the
data could be inconsistent!

Interaction model

Activities can interact according to two fundamental models
shared memory

All activities access the same memory space

message passing
All activities communicate each other by sending messages
through OS primitives

we will analize both models in the following slides



Shared memory

Shared memory communication

it was the first one to be supported in old OS

it is the simplest one and the closest to the machine

all threads can access the same memory locations

Mutual Exclusion Problem

We do not know in advance the relative speed of the
processes

hence, we do not know the order of execution of the
hardware instructions

Recall the example of incrementing variable x
incrementing x is not an atomic operation
atomic behavior can be obtained using interrupt disabling or
special atomic instructions



Example 1

/* Shared memory */
int x;

void *threadA(void *)
{
...;
x = x + 1;
...;

}

void *threadB(void *)
{

...;
x = x + 1;
...;

}

Bad Interleaving:

...
LD R0, x (TA) x = 0
LD R0, x (TB) x = 0
INC R0 (TB) x = 0
ST x, R0 (TB) x = 1
INC R0 (TA) x = 1
ST x, R0 (TA) x = 1
...

Example 2

// Shared object (sw resource)
class A {

int a;
int b;

public:
A() : a(1), b(1) {};
void inc() {

a = a + 1; b = b +1;
}
void mult() {

b = b * 2; a = a * 2;
}

} obj;

Consistency: After each operation,
a == b

a = a + 1; TA a = 2
b = b * 2; TB b = 2
b = b + 1; TA b = 3
a = a * 2; TB a = 4

void * threadA(void *)
{

...
obj.inc();
...

}

void * threadB(void *)
{

...
obj.mult();
...

}

Resource in a non-consistent state!!



Consistency

for any resource, we can state a set of consistency
properties

a consistency property Ci is a boolean expression on the
values of the internal variables
a consistency property must hold before and after each
operation
it does not need to hold during an operation
if the operations are properly sequentialized, the
consistency properties will always hold

formal verification

let R be a resource, and let C(R) be a set of consistency
properties on the resource
C(R) = {Ci}
A concurrent program is correct if, for every possible
interleaving of the operations on the resource, ∀Ci ∈ C(R),
Ci holds.

Example: Circular Array
Implementation of a FIFO queue.

struct CA {
int array[10];
int head, tail, num;

}

void init(struct CA *ca) {
ca->head=0; ca->tail=0;
ca->num=0;

}
boolean insert(struct CA *ca, int elem) {
if (ca->num == 10) return false;
ca->array[ca->head] = elem;
ca->head = (ca->head + 1) % 10;
ca->num ++;
return true;

}
boolean extract(struct CA *ca, int *elem) {
if (ca->num == 0) return false;

*elem = ca->array[ca->tail];
ca->tail = (ca->tail + 1) % 10;
ca->num--;
return true;

}



Example: empty queue

head

tail

head: index of the first free element in the queue
here will be inserted the next element

tail: index of the first occupied element in the queue
will be the one that will be extracted next time

the queue is empty, hence head == tail

Example: insert

3 8 2 5 9

headheadtail

boolean insert(struct CA *ca,
int elem)

{
if (ca->num == 10)

return false;
ca->array[ca->head] = elem;
ca->head = (ca->head+1)%10;
ca->num++;
return true;

}

num = (head - tail) % 8 → num = 4;

insert(ca, 9);

head and num have been increased



Example: concurrent insert

0 1 2 3 4 5 6 7 8 9

3 8 2 9

head

4

headhead

Two threads, the first calls insert(9),
the second calls insert(4);

thread 1 calls insert(ca, 9);

preemption by second thread

second thread completes

there is a hole! At some point, the
extract will read a 4 and a random
value, instead of a 9 and a 4.

boolean insert(struct CA *ca,
int elem)

{
if (ca->num == 10)

return false;
ca->array[ca->head] = elem;

...
boolean insert(struct CA *ca,

int elem)
{
if (ca->num == 10)

return false;
ca->array[ca->head] = elem;
ca->head = (ca->head+1)%10;
ca->num++;
return true;

}
...

ca->head = (ca->head+1)%10;
ca->num++;
return true;

}

Consistency properties for struct CA

1 when the queue is empty, or when the queue is full,
head == tail

2 num is equal to the number of times insert has been called
minus the number of times that extract has been called

3 . . .
4 if element x has been inserted, eventually it must be

extracted with an appropriate number of extracts
5 Every element that is extracted, has been inserted

sometime in the past.

Last two can also be expressed as:

Let (x1, x2, . . . , xk ) be the sequence of inserted elements,
and let (y1, y2, . . . , yk ) be the sequence of extracted
elements;

then ∀i = 1, . . . , k yi = xi



Correctness of Circular Array implementation

The previous program is not correct, as the last property is
not verified

the sequence of elements extracted does not correspond to
the sequence of elements inserted
The problem is that the first thread was preempted while
updating the data structure in a critical point.
we must prevent thread 2 from accessing the data structure
while another thread is completing an operation on it

Proving non-correctness is easy, in the sense that we must
find a counterexample
Proving correctness is a very complex task!

it is necessary to prove the correctness for every possible
interleaving of every operation, for every possible input
data, and for every possible internal state

Insert and Extract

Let’s assume that increments and decrements are atomic
operations

Producer: thread that inserts elements

Consumer: thread that extracts elements

It can be proved that interleaving exactly one producer and
one consumer does not bring any problem

proof: if 0 < num < 10, insert() and extract() are
independent
if num==0

if extract() begins before insert, it immediately returns
false,
if insert begins before, extract will still return false, so it
cannot interfere with insert

same thing when num==10

correctness is guaranteed for one consumer and one
producer.



Insert and Extract - II

What happens if we exchange the sequence of instructions
in insert?

boolean insert(struct CA *ca,
int elem)

{
if (ca->num == 10)

return false;
ca->num++;
ca->array[ca->head] = elem;
ca->head = (ca->head+1)%10;
return true;

}

It is easy to prove that in this case insert() cannot be
interleaved with extract

Critical sections

the shared object where the conflict may happen is a
resource

the parts of the code where the problem may happen are
called critical sections

a critical section is a sequence of operations that cannot
be interleaved with other operations on the same resource

two critical sections on the same resource must be
properly sequentialized

we say that two critical sections on the same resource
must execute in MUTUAL EXCLUSION

there are three ways to obtain mutual exclusion

implementing the critical section as an atomic operation
disabling the preemption (system-wide)
selectively disabling the preemption (using semaphores
and mutex)



Implementing atomic operations

In single processor systems
disable interrupts during a
critical section
non-voluntary context switch is
disabled!

CLI;
<critical section>
STI;

Limitations:
if the critical section is long, no interrupt can arrive during
the critical section

consider a timer interrupt that arrives every 1 msec.
if a critical section lasts for more than 1 msec, a timer
interrupt could be lost
It must be done only for very short critical section;

Non voluntary context switch is disabled during the critical
section

Disabling interrupts is a very low level solution: it is not
possible in user space.

Atomic operations on multiprocessors

Disabling interrupts is not sufficient
disabling interrupts on one processor lets a thread on
another processor free to access the resource

Solution: use lock() and unlock() operations
define a flag s for each resource, and then surround a
critical section with lock(s) and unlock(s);

int s;
...
lock(s);
<critical section>
unlock(s);
...



Disabling preemption

On single processor systems

in some scheduler, it is possible to disable preemption for a
limited interval of time

problems:

if a high priority critical thread needs to execute, it cannot
make preemption and it is delayed
even if the high priority task does not access the resource!

disable_preemption();
<critical section>
enable_preemption();

no context switch may happen during
the critical section,
but interrupts are enabled

Software mutual exclusion

In the past, many algorithms have been proposed that only
use a software approach to synchronization.

Such algorithms are not very general, and not very
efficient. They are useful for didactic purpouse, as the
readr may get some insight into the problem



Dekker’s algorithm
Global data

bool f0 = false;
bool f1 = false;
int turn = 0;

Process 0

f0 = true;
while (f1) {

if (turn != 0) {
f0 = false;
while (turn != 0);
f0 = true;

}
}

// critical section
...
turn = 1
f0 = false

Process 1

f1 = true;
while (f0) {

if (turn != 1) {
f1 = false;
while (turn != 1);
f1 = true;

}
}

// critical section
...
turn = 0
f1 = false

Peterson’s algorithm

Global data

bool flag[0] = false;
bool flag[1] = false;
int turn = 0;

Thread 1

flag[0] = true;
turn = 1;
while(flag[1] && turn == 1);

// critical section
...
flag[0] = false;

Thread 2

flag[0] = true;
turn = 1;
while(flag[1] && turn == 1);

// critical section
...
flag[0] = false;



Lamport’s bakery algorithms
Global data

bool Entering[N]; // init to false
int Number[N]; // init to 0

Lock for thread i

void lock(int i) {
Entering[i] = true;
Number[i] = 1 + max(Number[1], ..., Number[N]);
Entering[i] = false;
for (j = 1; j <= N; j++) {

while (Entering[j]);
while ((Number[j] != 0) && ((Number[j], j) < (Number[i], i)));

}
}

Unlock for thread i

unlock(integer i) {
Number[i] = 0;

}

Thread code

Thread(integer i) {
...
lock(i);
// The critical section goes here...
unlock(i);
...

}

Critical sections: a general approach

General techniques exists to protect critical sections
Semaphores
Mutex

Properties:
Interrupts always enabled
Preemption always enabled

Basic idea:
if a thread is inside a critical section on a given resource
all other threads are blocked upon entrance on a critical
section on the same resource

We will study such techniques in the following



Producer / Consumer model

mutual exclusion is not the only problem

we need a way of synchronise two or more threads

example: producer/consumer

suppose we have two threads,
one produces some integers and sends them to another
thread (PRODUCER)
another one takes the integer and elaborates it
(CONSUMER)

Producer Consumer

Implementation with the circular array

Suppose that the two threads have different speeds
for example, the producer is much faster than the consumer
we need to store the temporary results of the producer in
some memory buffer
for our example, we will use the circular array structure



Producer/Consumer implementation

struct CA qu;

void *producer(void *)
{
bool res;
int data;
while(1) {

<obtain data>
while (!insert(&qu, data));

}
}

void *consumer(void *)
{

bool res;
int data;
while(1) {

while (!extract(&qu, &data));
<use data>

}
}

Problem with this approach:
if the queue is full, the producer waits actively
if the queue is empty, the consumer waits actively

A more general approach

we need to provide a general mechanism for
synchonisation and mutual exclusion

requirements

provide mutual exclusion between critical sections

avoid two interleaved insert operations
(semaphores, mutexes)

synchronise two threads on one condition

for example, block the producer when the queue is full
(semaphores, condition variables)


	Introduction to concurrency
	Models of concurrency: shared memory
	Critical Sections
	Software approach
	Synchronization


