
Sistemi in tempo reale
Semaphores

Giuseppe Lipari
http://retis.sssup.it/~lipari

Scuola Superiore Sant’Anna – Pisa

March 24, 2010

http://retis.sssup.it/~lipari


Outline

1 Semaphores
Mutual exclusion
Synchronization
Exercise
Producer / Consumer

2 Solutions



Outline

1 Semaphores
Mutual exclusion
Synchronization
Exercise
Producer / Consumer

2 Solutions



A general mechanism for blocking tasks

The semaphore mechanism was first proposed by Dijkstra
A semaphore is an abstract data type that consists of

a counter
a blocking queue
operation wait
operation signal

The operations on a semaphore must be atomic
the OS makes them atomic by appropriate low-level
mechanisms



Semaphore definition

semaphores are a basic mechanisms for providing
synchronization

it has been shown that every kind of synchronization and
mutual exclusion can be implemented by using
sempahores

we will analyze possible implementation of the semaphore
mechanism later

class Semaphore {
<blocked queue> blocked;
int counter;

public:
Semaphore (int n) : count (n) {...}
void wait();
void signal();

};



Wait and signal

a wait operation has the following behavior:



Wait and signal

a wait operation has the following behavior:

if counter == 0, the requiring thread is blocked;



Wait and signal

a wait operation has the following behavior:

if counter == 0, the requiring thread is blocked;

it is removed from the ready queue and inserted in the
blocked queue;



Wait and signal

a wait operation has the following behavior:

if counter == 0, the requiring thread is blocked;

it is removed from the ready queue and inserted in the
blocked queue;

if counter > 0, then counter--;



Wait and signal

a wait operation has the following behavior:

if counter == 0, the requiring thread is blocked;

it is removed from the ready queue and inserted in the
blocked queue;

if counter > 0, then counter--;

a signal operation has the following behavior:



Wait and signal

a wait operation has the following behavior:

if counter == 0, the requiring thread is blocked;

it is removed from the ready queue and inserted in the
blocked queue;

if counter > 0, then counter--;

a signal operation has the following behavior:

if counter == 0 and there is some blocked thread,
unblock it;



Wait and signal

a wait operation has the following behavior:

if counter == 0, the requiring thread is blocked;

it is removed from the ready queue and inserted in the
blocked queue;

if counter > 0, then counter--;

a signal operation has the following behavior:

if counter == 0 and there is some blocked thread,
unblock it;

the thread is removed from the blocked queue and inserted
in the ready queue



Wait and signal

a wait operation has the following behavior:

if counter == 0, the requiring thread is blocked;

it is removed from the ready queue and inserted in the
blocked queue;

if counter > 0, then counter--;

a signal operation has the following behavior:

if counter == 0 and there is some blocked thread,
unblock it;

the thread is removed from the blocked queue and inserted
in the ready queue

otherwise, increment counter;



Pseudo-code for wait and signal

class Semaphore {
<blocked queue> blocked;
int counter;

public:
Semaphore (int n) : counter (n) {...}
void wait() {
if (counter == 0)

<block the thread>
else counter--;

}
void signal() {
if (<some blocked thread>)

<unblock the thread>
else counter++;

}
};



Outline

1 Semaphores
Mutual exclusion
Synchronization
Exercise
Producer / Consumer

2 Solutions



Mutual exclusion with semaphores

To use a semaphore for mutual exclusions:
define a semaphore initialized to 1
before entering the critical section, perform a wait
after leaving the critical section, perform a signal

void *threadA(void *)
{
...
s.wait();
<critical section>
s.signal();
...

}

void *threadB(void *)
{

...
s.wait();
<critical section>
s.signal();
...

}



Mutual exclusion: example

Counter

Semaphore

1
Blocked queue

Ready queue

TATB



Mutual exclusion: example

Counter

Semaphore

0
Blocked queue

Ready queue

TATB

example1.c

s.wait(); (TA)



Mutual exclusion: example

Counter

Semaphore

0
Blocked queue

Ready queue

TATB

example1.c

s.wait(); (TA)
<critical section (1)> (TA)



Mutual exclusion: example

Counter

Semaphore

0
Blocked queue

Ready queue

TBTA

example1.c

s.wait(); (TA)
<critical section (1)> (TA)
s.wait(); (TB)



Mutual exclusion: example

Counter

Semaphore

0
Blocked queue

TB

Ready queue

TA

example1.c

s.wait(); (TA)
<critical section (1)> (TA)
s.wait(); (TB)
<critical section (2)> (TA)



Mutual exclusion: example

Counter

Semaphore

0
Blocked queue

TB

Ready queue

TA

example1.c

s.wait(); (TA)
<critical section (1)> (TA)
s.wait(); (TB)
<critical section (2)> (TA)
s.signal(); (TA)



Mutual exclusion: example

Counter

Semaphore

0
Blocked queue

Ready queue

TBTA

example1.c

s.wait(); (TA)
<critical section (1)> (TA)
s.wait(); (TB)
<critical section (2)> (TA)
s.signal(); (TA)
<critical section> (TB)



Mutual exclusion: example

Counter

Semaphore

1
Blocked queue

Ready queue

TBTA

example1.c

s.wait(); (TA)
<critical section (1)> (TA)
s.wait(); (TB)
<critical section (2)> (TA)
s.signal(); (TA)
<critical section> (TB)
s.signal(); (TB)



Outline

1 Semaphores
Mutual exclusion
Synchronization
Exercise
Producer / Consumer

2 Solutions



Synchronization with semaphores
How to use a semaphore for synchronizing two or more
threads

define a sempahore initialized to 0
at the syncronization point, the task to be blocked performs
a wait
at the synchronization point, the other task performs a
signal

Example: thread A must block if it arrives at the synch
point before thread B

Semaphore s(0);

void *threadA(void *) {
...
s.wait();
...

}

void *threadB(void *) {
...
s.signal();
...

}



Problem 1

How to make each thread wait for the other one?
The first one that arrives at the synchronization point waits
for the other one.



Problem 1

How to make each thread wait for the other one?
The first one that arrives at the synchronization point waits
for the other one.

Solution: use two semaphores!

Semaphore sa(0), sb(0);

void *threadA(void *) {
...
sa.signal();
sb.wait();
...

}

void *threadB(void *) {
...
sb.signal();
sa.wait();
...

}



Outline

1 Semaphores
Mutual exclusion
Synchronization
Exercise
Producer / Consumer

2 Solutions



Problem 2

Generalize the previous synchronization problem to N
threads

The first N-1 threads must block waiting for the last one



Problem 2

Generalize the previous synchronization problem to N
threads

The first N-1 threads must block waiting for the last one

First solution (more elegant)



Problem 2

Generalize the previous synchronization problem to N
threads

The first N-1 threads must block waiting for the last one

First solution (more elegant)

Second solution (more practical)



Outline

1 Semaphores
Mutual exclusion
Synchronization
Exercise
Producer / Consumer

2 Solutions



Producer / Consumer

We now want ot implement a mailbox with a circular array
avoiding busy wait

The producer must be blocked when the mailbox is full
The consumer must be blocked when the mailbox is empty
We use appropriate semaphores to block these threads

Initially we consider only one producer and one consumer



Implementation

circulararray1.c

#define N 10

class CA {
int array[N];
int head(0);
int tail(0);

Semaphore empty(0);
Semaphore full(N);

public:
void insert(int elem);
void extract(int &elem);

};

circulararray1.c

void CA::insert(int elem)
{

full.wait();
array[head++] = elem;
head = head % N;
empty.signal();

}

void CA::extract(int &elem)
{

empty.wait();
elem = array[tail++];
tail = tail % N;
full.signal();

}



Proof of correctness

when the number of elements in the queue is between 1
and 9, there is no problem;



Proof of correctness

when the number of elements in the queue is between 1
and 9, there is no problem;

insert and extract work on different variables (head and tail
respectively) and different elements of the array;



Proof of correctness

when the number of elements in the queue is between 1
and 9, there is no problem;

insert and extract work on different variables (head and tail
respectively) and different elements of the array;
The value of full and empty is always greater than 0, so
neither the producer nor the consumer can block;



Proof of correctness

when the number of elements in the queue is between 1
and 9, there is no problem;

insert and extract work on different variables (head and tail
respectively) and different elements of the array;
The value of full and empty is always greater than 0, so
neither the producer nor the consumer can block;

when there is no element in the queue, head = tail, counter
of empty = 0, counter of full = N;



Proof of correctness

when the number of elements in the queue is between 1
and 9, there is no problem;

insert and extract work on different variables (head and tail
respectively) and different elements of the array;
The value of full and empty is always greater than 0, so
neither the producer nor the consumer can block;

when there is no element in the queue, head = tail, counter
of empty = 0, counter of full = N;

If the extract begins before the end of an insert, it will be
blocked



Proof of correctness

when the number of elements in the queue is between 1
and 9, there is no problem;

insert and extract work on different variables (head and tail
respectively) and different elements of the array;
The value of full and empty is always greater than 0, so
neither the producer nor the consumer can block;

when there is no element in the queue, head = tail, counter
of empty = 0, counter of full = N;

If the extract begins before the end of an insert, it will be
blocked
After an insert, there is an element in the queue, so we are
in the previous case



Proof of correctness

when the number of elements in the queue is between 1
and 9, there is no problem;

insert and extract work on different variables (head and tail
respectively) and different elements of the array;
The value of full and empty is always greater than 0, so
neither the producer nor the consumer can block;

when there is no element in the queue, head = tail, counter
of empty = 0, counter of full = N;

If the extract begins before the end of an insert, it will be
blocked
After an insert, there is an element in the queue, so we are
in the previous case

For symmetry, the same holds for the case of N elements
in the queue. Again, head = tail, counter of empty = N,
counter of full = 0;



Proof of correctness

when the number of elements in the queue is between 1
and 9, there is no problem;

insert and extract work on different variables (head and tail
respectively) and different elements of the array;
The value of full and empty is always greater than 0, so
neither the producer nor the consumer can block;

when there is no element in the queue, head = tail, counter
of empty = 0, counter of full = N;

If the extract begins before the end of an insert, it will be
blocked
After an insert, there is an element in the queue, so we are
in the previous case

For symmetry, the same holds for the case of N elements
in the queue. Again, head = tail, counter of empty = N,
counter of full = 0;

If the insert begins before the end of an extract, it will be
blocked



Proof of correctness

when the number of elements in the queue is between 1
and 9, there is no problem;

insert and extract work on different variables (head and tail
respectively) and different elements of the array;
The value of full and empty is always greater than 0, so
neither the producer nor the consumer can block;

when there is no element in the queue, head = tail, counter
of empty = 0, counter of full = N;

If the extract begins before the end of an insert, it will be
blocked
After an insert, there is an element in the queue, so we are
in the previous case

For symmetry, the same holds for the case of N elements
in the queue. Again, head = tail, counter of empty = N,
counter of full = 0;

If the insert begins before the end of an extract, it will be
blocked
After an extract, we fall back in the previous case



Multiple producers/consumers

Suppose now there are mamy producers and many
consumers;

all producers will act on the same variable head, and all
consumers on tail;
If one producer preempts another producer, an
inconsistency can arise

Exercise: prove the above sentence

Therefore, we need to combine synchronization and
mutual exclusion



First solution

circulararray-wrong.c

#define N 10

class CA {
int array[N];
int head(0);
int tail(0);

Semaphore empty(0);
Semaphore full(N);
Semaphore mutex(1);

public:
void insert(int elem);
void extract(int &elem);

};

circulararray-wrong.c

void CA::insert(int elem)
{

mutex.wait();
full.wait();
array[head++] = elem;
head = head % N;
empty.signal();
mutex.signal();

}

void CA::extract(int &elem)
{

mutex.wait();
empty.wait();
elem = array[tail++];
tail = tail % N;
full.signal();
mutex.signal();

}



Wrong solution

The previous solution is wrong!
Counter example:

A consumer thread executes first, locks the mutex and
blocks on the empty semaphore
All other threads (producers or consumers) will block on the
mutex

Lesson learned: never block inside a mutex!



Deadlock

Deadlock situation
A thread executes mutex.wait() and then blocks on a
synchronisation semaphore
To be unblocked another thread must enter a critical section
guarded by the same mutex semaphore
So, the first thread cannot be unblocked and free the mutex
The situation cannot be solved



Correct solution

circulararray-correct.c

#define N 10

class CA {
int array[N];
int head(0);
int tail(0);

Semaphore empty(0);
Semaphore full(N);
Semaphore mutex(1);

public:
void insert(int elem);
void extract(int &elem);

};

circulararray-correct.c

void CA::insert(int elem)
{

full.wait();
mutex.wait();
array[head++] = elem;
head = head % N;
mutex.signal();
empty.signal();

}

void CA::extract(int &elem)
{

empty.wait();
mutex.wait();
elem = array[tail++];
tail = tail % N;
mutex.signal();
full.signal();

}



Exercises

Solve the previous exercise with two mutex (one for the
consumers and one for the producers)

Prove the solution is correct

Suppose there are one producer and N consumer. Every
message has to be received by each consumer.

Write the data structure, the insert and extract functions
Suppose that extract() takes an additional arguments that
specifies the consumer ID (between 0 and N-1).



Outline

1 Semaphores
Mutual exclusion
Synchronization
Exercise
Producer / Consumer

2 Solutions



First solution to problem 2
Elegant solution. Uses many semaphores! (with the pthread
interface)

prob2-solution1.c

#include <stdio.h>
#include <pthread.h>
#include <semaphore.h>
#define N 8

sem_t s[N][N];

void init()
{

int i, j;
for (i=0; i<N; i++)

for(j=0; j<N; j++)
sem_init(&s[i][j], 0, 0);

}

void *thread(void *arg)
{

int k = *((int *) arg); int j;
printf("TH%d: before synch\n", k);
for (j=0; j<N; j++)

if (j!=k) sem_post(&s[k][j]);
for (j=0; j<N; j++)

if (j!=k) sem_wait(&s[j][k]);
printf("TH%d: after synch\n", k);
return 0;

}

prob2-solution1.c

int main()
{

pthread_t tid[N];
int i;
int args[N];

init();

for (i=0; i<N; i++) {
args[i] = i;
pthread_create(&tid[i], 0, thread,

(void *)&args[i]);
}



Second solution to problem 2

Practical solution. We need a mutex semaphore, a counter, and
a semaphore to block threads. (with the pthread interface)

solution2.c

struct synch {
int count;
sem_t m; // mutex
sem_t b; // blocked
int N; // number of threads

};

void initsynch(struct synch *s, int n)
{

int i;
s->count = 0;
sem_init(&s->m, 0, 1);
sem_init(&s->b, 0, 0);
s->N = n;

}

solution2.c

void my_synch(struct synch *s)
{
int i;
sem_wait(&s->m);
if (++s->count < s->N) {

sem_post(&s->m);
sem_wait(&s->b);

}
else {

for (i=0; i < s->N - 1; i++)
sem_post(&s->b);

sem_post(&s->m);
}

}

struct synch sp;

void *thread(void *arg)
{
...
mysynch(&sp);
...

}


	Semaphores
	Mutual exclusion
	Synchronization
	Exercise
	Producer / Consumer

	Solutions

