

A design Methodology for Concurrent programs

Giuseppe Lipari

A DESIGN METHODOLOGY FOR SHARED MEMORY PROGRAMS

Methodology

- We present here a structured methodology for programming in shared memory systems
- The methodology leads to "safe" programs
- Not necessarily optimized!
- Programmers can always use their intelligence and come up with "elegant" solutions

- A program is a set of
 - threads that interact by accessing ...
 - data structures (shared resources)
- A data structure can be seen as
 - a set of variables
 - a set of functions operating on the variables
- Threads
 - access the data structures only through functions

Object Oriented programming

• In C++

class SharedData { int array[10]; int first, last;

```
public:
```

SharedData(); int insert(int a); int extract();

• In C

```
struct SharedData {
    int array[10];
    int first, last;
}; ...
SharedData_init(struct SharedData *d);
int SharedData_insert(struct SharedData *d, int a);
int SharedData_extract(struct SharedData *d);
```


Shared Data structure

- Encapsulating the semaphores
 - The data structure
 - should already include the mechanisms for mutual exclusion and synchronization
 - for example, the CircularArray data structure
 - Functions on the data structure
 - should use the semaphores inside the function
 - Threads
 - can only access the data structure through functions

- Some design considerations
 - First, design the interface: that is, which functions the threads need to call
 - Mutual exclusion
 - for simplicity, all functions on the same data struture should be in mutual exclusion
 - maybe, this is not optimized, but it is SAFE!

Mutual exclusion

- For each data structure,
 - define a mutual exclusion semaphore, initialized to 1
- For each function
 - just after starting the function, take the semaphore, and leave it before returning

Mutual exclusion

• Example

```
class MyData {
     ···;
     sem_t m;
     ....,
public:
     MyData() {
           ....
           sem_init(&m, 0, 1);
     }
     int myfun() {
           sem_wait(&m);
           ....
           sem_post(&m);
     }
};
```


Synchronization

- Design consideration
 - Specify the behavior of the functions
 - under which conditions a calling thread should be blocked?
 - Identify all different blocking conditions

Synchronization

- Other design considerations
 - identify unblocking conditions
 - when a blocked thread should be unblocked
 - mark the functions that should unblock those threads
- Putting all togheter
 - draw a state diagram for the resource
 - STATES: the various states of the resource
 - EVENTS: threads that call the functions

- Problem explaination
- Design the data structure interface
- Identify blocking and unblocking conditions
- Draw the state diagram

Coding Rules

- For each blocking condition
 - a semaphore initialized to 0 (*blocking semaphore*)
 - an integer that counts the number of blocked threads on the condition (*blocking counter*) (init to 0)
- One (or more) integer variable(s) to code the state
- Write the initialization function (constructor in C++)

The functions

- Finally, code the functions
 - take the mutex at the beginning
 - check the blocking conditions (if any)
 - if the thread has to be blocked,
 - increment the blocking counter, signal on the mutex, wait on the blocking semaphore, wait on the mutex
 - perform the code, change state if necessary
 - check unblocking conditions
 - if a thread has to be unblocked
 - decrement the blocked counter, signal the semaphore

The code

A subtle error

- The "man in the middle" problem
- Solution:
 - check blocking conditions in a while() loop

Passing "le baton"

• A (more elegant) solution

MONITORS PTHREADS – MUTEXES AND CONDITION VARIABLES

Monitors

- Monitors are a language structure equivalent to semaphores, but cleaner
 - A monitor is similar to an object in a OO language
 - It contains variables and provides procedures to other software modules
 - Only one thread can execute a procedure at a certain time
 - Any other thread that has invoked the procedure is blocked and waits for the first threads to exit
 - Therefore, a monitor implicitely provides mutual exclusion

Monitors

- Monitors support synchronization with Condition Variables
 - A condition variable is a blocking queue
 - Two operations are defined on a condition variable
 ✓ wait() -> suspends the calling thread on the queue
 - ✓ signal() -> resume execution of one thread blocked on the queue
- Important note:
 - wait() and signal() operation on a condition variable are different from wait and signal on a semaphore!
 - There is not any counter in a condition variable!
 - If we do a signal on a condition variable with an empty queue, the signal is lost

- Java provides something that vaguely resembles monitors
 - the "synchronized" keyword allows to define classes with protected functions
 - every "synchronized" class has one implicit condition variable
 - you can "signal" one thread with notify(); and all threads with notifyAll();

Monitors in POSIX

- It is not possible to provide monitors in C
 - C and C++ do not provide any concurrency control mechanism; they are "purely sequential languages"
- POSIX allows something similar to Monitors through library calls

Slides on POSIX monitors

Exercises on POSIX monitors

COMPLEX SYNCHRONIZATION PROBLEMS READERS - WRITERS

Readers/writers

- One shared buffer
- Readers:
 - They read the content of the buffer
 - Many readers can read at the same time
- Writers
 - They write in the buffer
 - While one writer is writing no other reader or writer can access the buffer
- Use semaphores to implement the resource

Simple implementation


```
void Buffer::read() {
    x.wait();
    nr++;
    if (nr==1) wsem.wait();
    x.signal();
    <read the buffer>
    x.wait();
    nr--;
    if (nr==0) wsem.signal();
    x.signal();
}
```

void Buffer::write() {
 wsem.wait();
 <write the buffer>
 wsem.signal();
}

Problem: starvation

- Suppose we have 2 readers (R1 and R2) and 1 writer (W1)
 - Suppose that R1 starts to read
 - While R1 is reading, W1 blocks because it wants to write
 - Now R2 starts to read
 - Now R1 finishes, but, since R2 is reading, W1 cannot be unblocked
 - Before R2 finishes to read, R1 starts to read again
 - When R2 finishes, W1 cannot be unblocked because R1 is reading


```
class Buffer {
             Semaphore x, y, z, wsem, rsem;
             int nr, nw;
   public:
             Buffer() : x(1), y(1), z(1), wsem(1), rsem(1), nr(0), nw(0) {}
void Buffer::write() {
                                          void Buffer::read() {
                                                   z.wait();
         y.wait();
                                                   rsem.wait();
         nw++;
         if (nw==1) rsem.wait();
                                                   x.wait();
         y.signal();
                                                   nr++;
         wsem.wait();
                                                   if (nr==1) wsem.wait();
         <write the buffer>
                                                   x.signal();
         wsem.signal();
                                                   rsem.signal();
         y.wait();
                                                   z.signal();
                                                    <read the buffer>
         nw--;
         if (nw == 0) rsem.signal();
                                                   x.wait();
         y.signal();
                                                   nr--;
                                                   if (nr==0) wsem.signal();
}
                                                   x.signal();
                              ERI Gennaio 2008
                                                                          29
```


Problem

- Can you solve the readers/writers problem in the general case?
 - No starvation for readers
 - No starvation for writers
- Solution
 - Maintain a FIFO ordering with requests
 - ✓ If at least one writer is blocked, every next reader blocks
 - ✓ If at least one reader is blocked, every next writer blocks
 - ✓ One single semaphore!


```
class Buffer {
       int nbr, nbw;
       int nr, nw;
       Semaphore rsem, wsem;
       Semaphore m;
public:
       Buffer():
              nbw(0),nbr(0), nr(0), nw(0),
              rsem(0), wsem(0) {}
       void read();
       void write();
};
```



```
void Buffer::read()
{
    m.wait();
    if (nw || nbw) {
         nbr++;
         m.signal();rsem.wait();m.wait();
         while (nbr>0)
              {nbr--;rsem.signal();}
    }
    nr++;
    m.signal();
    <read buffer>;
    m.wait();
                                                nw--;
    nr--;
    if (nbw && nr == 0) wsem.signal();
    m.signal();
                                                m.signal();
}
```

```
void Buffer::write()
    m.wait();
    if (nw || nbw || nr || nbr) {
         nbw++;
         m.signal();wsem.wait();m.wait();
         nbw--;
    nw++;
    m.signal();
    <read buffer>;
    m.wait();
    if (nbr) {nbr--; rsem.signal();}
    else if (nbw) wsem.signal();
```


MESSAGE PASSING

Message passing

- Message passing systems are based on the basic concept of message
- Two basic operations
 - send(destination, message);
 - receive(source, &message);
 - Two variants

 \checkmark Both operations can be synchronous or asynchronous

✓ receive can be symmetric or asymmetric

Producer/Consumer with MP

- The producer executes send(consumer, data)
- The consumer executes receive(producer, data);
- No need for a special communication structure (already contained in the send/receive semantic)

Synchronous communication

Synchronous send/receive

Async send/ Sync receive

Asynchronous send / synchronous receive

- Symmetric receive
 - receive(source, &data);
- Often, we do not know who is the sender
 - Imagine a web server;
 - ✓ the programmer cannot know in advance the address of the browser that will request the service
 - ✓ Many browser can ask for the same service
- Asymmetric receive
 - source = receive(&data);

- In message passing
 - Each resource needs one threads manager
 - The threads manager is responsible for giving access to the resource
- Example: let's try to implement mutual exclusion with message passing primitives
 - One thread will ensure mutual exclusion
 - Every thread that wants to access the resource must
 - \checkmark send a message to the manager thread
 - \checkmark access the critical section
 - ✓ send a message to signal the leaving of the critical section

Sync send / sync receive

With Async send and sync receive

A different approach

Shared memory

- each resource is a class
- threads ask for services through functions calls
- they synchronize through mutexes and condition variable

Message Passing

- each resource has a manager thread
- threads ask for services through messages and receive response through messages
- they synchronize through blocking receives

Resources and Manager

- For each resource
 - a "manager" thread takes care of executing the services on behalf of the clients/threads
 - general structure of a manager:
 - wait for a message
 - decode the message, execute the service
 - eventually, send back the response
 - The manager sequentializes all services