
EDF Scheduling

Giuseppe Lipari
http://feanor.sssup.it/~lipari

Scuola Superiore Sant’Anna – Pisa

April 20, 2010

http://feanor.sssup.it/~lipari


Outline

1 Dynamic priority

2 Basic analysis

3 FP vs EDF

4 Processor demand bound analysis
Generalization to deadlines different from period
Synchronous and asynchronous tasks
Examples
Testing algorithm

5 A sufficient pseudo-polynomial test for synchronous sets
Basic idea



Earliest Deadline First

An important class of scheduling algorithms is the class of
dynamic priority algorithms

In dynamic priority algorithms, the priority of a task can
change during its execution
Fixed priority algorithms are a sub-class of the more
general class of dynamic priority algorithms: the priority of
a task does not change.

The most important (and analyzed) dynamic priority
algorithm is Earliest Deadline First (EDF)

The priority of a job (istance) is inversely proportional to its
absolute deadline;
In other words, the highest priority job is the one with the
earliest deadline;
If two tasks have the same absolute deadlines, chose one
of the two at random (ties can be broken arbitrarly).
The priority is dynamic since it changes for different jobs of
the same task.



Example: scheduling with RM
We schedule the following task set with FP (RM priority
assignment).
τ1 = (1, 4), τ2 = (2, 6), τ4 = (3, 8).
U = 1

4 + 2
6 + 3

8 = 23
24

The utilization is greter than the bound: there is a deadline
miss!

0 2 4 6 8 10 12 14 16 18 20 22 24

τ1

τ2

τ3

Observe that at time 6, even if the deadline of task τ3 is
very close, the scheduler decides to schedule task τ2. This
is the main reason why τ3 misses its deadline!



Example: scheduling with EDF
Now we schedule the same task set with EDF.

τ1 = (1, 4), τ2 = (2, 6), τ4 = (3, 8).

U = 1
4 + 2

6 + 3
8 = 23

24

Again, the utilization is very high. However, no deadline
miss in the hyperperiod.

0 2 4 6 8 10 12 14 16 18 20 22 24

τ1

τ2

τ3

Observe that at time 6, the problem does not appear, as
the earliest deadline job (the one of τ3) is executed.



Job-level fixed priority

In EDF, the priority of a job is fixed.

Therefore some author is classifies EDF as of job-level
fixed priority scheduling;

LLF is a job-level dynamic priority scheduling algorithm as
the priority of a job may vary with time;

Another job-level dynamic priority scheduler is p-fair.



Outline

1 Dynamic priority

2 Basic analysis

3 FP vs EDF

4 Processor demand bound analysis
Generalization to deadlines different from period
Synchronous and asynchronous tasks
Examples
Testing algorithm

5 A sufficient pseudo-polynomial test for synchronous sets
Basic idea



A general approach to schedulability analysis

We start from a completely aperiodic model.

A system consists of a (infinite) set of jobs
J = {J1, J2, . . . , Jn, . . .}.

Jk = (ak , ck , dk )

Periodic or sporadic task sets are particular cases of this
system



EDF optimality

Theorem (Dertouzos ’73)
If a set of jobs J is schedulable by an algorithm A, then it is
schedulable by EDF.

Proof.
The proof uses the exchange method.

Transform the schedule σA(t) into σEDF(t), step by step;

At each step, preserve schedulability.

Corollary
EDF is an optimal algorithm for single processors.



Schedulability bound for periodic/sporadic tasks

Theorem
Given a task set of periodic or sporadic tasks, with relative
deadlines equal to periods, the task set is schedulable by EDF
if and only if

U =
N

∑

i=1

Ci

Ti
≤ 1

Corollary
EDF is an optimal algorithm, in the sense that if a task set if
schedulable, then it is schedulable by EDF.

Proof.
In fact, if U > 1 no algorithm can succesfully schedule the task
set; if U ≤ 1, then the task set is schedulable by EDF x(and
maybe by other algorithms).



Outline

1 Dynamic priority

2 Basic analysis

3 FP vs EDF

4 Processor demand bound analysis
Generalization to deadlines different from period
Synchronous and asynchronous tasks
Examples
Testing algorithm

5 A sufficient pseudo-polynomial test for synchronous sets
Basic idea



Advantages of EDF over FP

EDF can schedule all task sets that can be scheduled by
FP, but not vice versa.

Notice also that offsets are not relevant!

There is not need to define priorities
Remember that in FP, in case of offsets, there is not an
optimal priority assignment that is valid for all task sets

In general, EDF has less context switches
In the previous example, you can try to count the number of
context switches in the first interval of time: in particular, at
time 4 there is no context switch in EDF, while there is one
in FP.

Optimality of EDF
We can fully utilize the processor, less idle times.



Disadvantages of EDF over FP

EDF is not provided by any commercial RTOS, because of
some disadvantage
Less predictable

Looking back at the example, let’s compare the response
time of task τ1: in FP is always constant and minimum; in
EDF is variable.

Less controllable
if we want to reduce the response time of a task, in FP is
only sufficient to give him an higher priority; in EDF we
cannot do anything;
We have less control over the execution



Overhead

More implementation overhead
FP can be implemented with a very low overhead even on
very small hardware platforms (for example, by using only
interrupts);
EDF instead requires more overhead to be implemented
(we have to keep track of the absolute deadline in a long
data structure);
There are method to implement the queueing operations in
FP in O(1); in EDF, the queueing operations take O(log N),
where N is the number of tasks.



Domino effect

In case of overhead (U > 1), we can have the domino
effect with EDF: it means that all tasks miss their deadlines.

An example of domino effect is the following;

0 2 4 6 8 10 12 14 16 18 20 22 24

τ1

τ2

τ3

τ4

All tasks missed their deadline almost at the same time.



Domino effect: considerations
FP is more predictable: only lower priority tasks miss their
deadlines! In the previous example, if we use FP:

0 2 4 6 8 10 12 14 16 18 20 22 24

τ1

τ2

τ3

τ4

As you can see, while τ1 and τ2 never miss their deadlines,
τ3 misses a lot of deadline, and τ4 does not execute!

However, it may happen that some task never executes in
case of high overload, while EDF is more fair (all tasks are
treated in the same way).



Response time computation

Computing the response time in EDF is very difficult, and
we will not present it in this course.

In FP, the response time of a task depends only on its
computation time and on the interference of higher priority
tasks
In EDF, it depends in the parameters of all tasks!
If all offset are 0, in FP the maximum response time is
found in the first job of a task,
In EDF, the maximum response time is not found in the first
job, but in a later job.



Outline

1 Dynamic priority

2 Basic analysis

3 FP vs EDF

4 Processor demand bound analysis
Generalization to deadlines different from period
Synchronous and asynchronous tasks
Examples
Testing algorithm

5 A sufficient pseudo-polynomial test for synchronous sets
Basic idea



Outline

1 Dynamic priority

2 Basic analysis

3 FP vs EDF

4 Processor demand bound analysis
Generalization to deadlines different from period
Synchronous and asynchronous tasks
Examples
Testing algorithm

5 A sufficient pseudo-polynomial test for synchronous sets
Basic idea



Generalization to deadlines different from period

EDF is still optimal when relative deadlines are not equal to
the periods

However, the schedulability analysis formula becomes
more complex

If all relative deadlines are less than or equal to the
periods, a first trivial (sufficient) test consist in substituting
Ti with Di :

U ′ =
N

∑

i=1

Ci

Di
≤ 1

In fact, if we consider each task as a sporadic task with
interarrival time Di instead of Ti , we are increasing the
utilization, U < U ′. If it is still less than 1, then the task set
is schedulable. If it is larger than 1, then the task set may
or may not be schedulable



Demand bound analysis

In the following slides, we present a general methodology
for schedulability analysis of EDF scheduling

Let’s start from the concept of demand function

Definition: the demand function for a task τi is a function
of an interval [t1, t2] that gives the amount of computation
time that must be completed in [t1, t2] for τi to be
schedulable:

dfi(t1, t2) =
∑

aij≥t1
dij≤t2

cij

For the entire task set:

df (t1, t2) =
N

∑

i=0

dfi(t1, t2)



Example of demand function

τ1 = (1, 4, 6), τ2 = (2, 6, 8), τ3 = (3, 5, 10)

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32

τ1

τ2

τ3

Let’s compute df () in some intervals;



Example of demand function

τ1 = (1, 4, 6), τ2 = (2, 6, 8), τ3 = (3, 5, 10)

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32

τ1

τ2

τ3

Let’s compute df () in some intervals;

df (7, 22) = 2 · C1 + 2 · C2 + 1 · C3 = 9;



Example of demand function

τ1 = (1, 4, 6), τ2 = (2, 6, 8), τ3 = (3, 5, 10)

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32

τ1

τ2

τ3

Let’s compute df () in some intervals;

df (7, 22) = 2 · C1 + 2 · C2 + 1 · C3 = 9;

df (3, 13) = 1 · C1 = 1;



Example of demand function

τ1 = (1, 4, 6), τ2 = (2, 6, 8), τ3 = (3, 5, 10)

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32

τ1

τ2

τ3

Let’s compute df () in some intervals;

df (7, 22) = 2 · C1 + 2 · C2 + 1 · C3 = 9;

df (3, 13) = 1 · C1 = 1;

df (10, 25) = 2 · C1 + 1 · C2 + 2 · C3 = 7;



A necessary condition

Theorem
A necessary condition for any job set to be schedulable by any
scheduling algorithm when executed on a single processor is
that:

∀t1, t2 df(t1, t2) ≤ t2 − t1

Proof.
By contradiction. Suppose that ∃t1, t2 df(t1, t2) > t2 − t1 . If the
system is schedulable, then it exists a scheduling algorithm that
can execute more than t2 − t1 units of computations in an
interval of length t2 − t1. Absurd!



Main theorem
Theorem
A necessary and sufficient condition for a set of jobs J to be
schedulable by EDF is that

∀t1, t2 df(t1, t2) ≤ t2 − t1 (1)

Proof.
The proof is based on the same technique used by Liu &
Layland in their seminal paper. We only need to prove the
sufficient part.



Main theorem
Theorem
A necessary and sufficient condition for a set of jobs J to be
schedulable by EDF is that

∀t1, t2 df(t1, t2) ≤ t2 − t1 (1)

Proof.
The proof is based on the same technique used by Liu &
Layland in their seminal paper. We only need to prove the
sufficient part.

By contradiction: assume a deadline is missed and the
condition holds



Main theorem
Theorem
A necessary and sufficient condition for a set of jobs J to be
schedulable by EDF is that

∀t1, t2 df(t1, t2) ≤ t2 − t1 (1)

Proof.
The proof is based on the same technique used by Liu &
Layland in their seminal paper. We only need to prove the
sufficient part.

By contradiction: assume a deadline is missed and the
condition holds

Assume the first deadline miss is at y



Main theorem
Theorem
A necessary and sufficient condition for a set of jobs J to be
schedulable by EDF is that

∀t1, t2 df(t1, t2) ≤ t2 − t1 (1)

Proof.
The proof is based on the same technique used by Liu &
Layland in their seminal paper. We only need to prove the
sufficient part.

By contradiction: assume a deadline is missed and the
condition holds

Assume the first deadline miss is at y

We find an opportune x < y such that df(x , y) > y − x .



Proof

Suppose the first deadline miss is at time y . Let x be the
last instant prior to y such that:

all jobs with arrival time before x and deadline before y
have already completed by x ;
x coincides with the arrival time of a job with deadline less
of equal to y
Such instant always exists (it could be time 0).



Proof

Suppose the first deadline miss is at time y . Let x be the
last instant prior to y such that:

all jobs with arrival time before x and deadline before y
have already completed by x ;
x coincides with the arrival time of a job with deadline less
of equal to y
Such instant always exists (it could be time 0).

Since x is the last such instant, it follows that:
there is no idle time in [x , y ]



Proof

Suppose the first deadline miss is at time y . Let x be the
last instant prior to y such that:

all jobs with arrival time before x and deadline before y
have already completed by x ;
x coincides with the arrival time of a job with deadline less
of equal to y
Such instant always exists (it could be time 0).

Since x is the last such instant, it follows that:
there is no idle time in [x , y ]



Proof

Suppose the first deadline miss is at time y . Let x be the
last instant prior to y such that:

all jobs with arrival time before x and deadline before y
have already completed by x ;
x coincides with the arrival time of a job with deadline less
of equal to y
Such instant always exists (it could be time 0).

Since x is the last such instant, it follows that:
there is no idle time in [x , y ]
No job with deadline greater than y executes in [x , y ]
only jobs with arrival time greater or equal to x , and
deadline less than or equal to y execute in [x , y ]



Proof

Suppose the first deadline miss is at time y . Let x be the
last instant prior to y such that:

all jobs with arrival time before x and deadline before y
have already completed by x ;
x coincides with the arrival time of a job with deadline less
of equal to y
Such instant always exists (it could be time 0).

Since x is the last such instant, it follows that:
there is no idle time in [x , y ]
No job with deadline greater than y executes in [x , y ]
only jobs with arrival time greater or equal to x , and
deadline less than or equal to y execute in [x , y ]

Since there is a deadline miss in [x , y ], df(x , y) > y − x ,
and the theorem follows.



Feasibility analysis

The previous theorem gives a first hint at how to perform a
schedulability analysis.

However, the condition should be checked for all pairs
[t1, t2].
This is impossible in practice! (an infinite number of
intervals!).
First observation: function df changes values only at
discrete instants, corresponding to arrival times and
deadline of a job set.



Feasibility analysis

The previous theorem gives a first hint at how to perform a
schedulability analysis.

However, the condition should be checked for all pairs
[t1, t2].
This is impossible in practice! (an infinite number of
intervals!).
First observation: function df changes values only at
discrete instants, corresponding to arrival times and
deadline of a job set.
Second, for periodic tasks we could use some periodicity
(hyperperiod) to limit the number of points to be checked to
a finite set.



Outline

1 Dynamic priority

2 Basic analysis

3 FP vs EDF

4 Processor demand bound analysis
Generalization to deadlines different from period
Synchronous and asynchronous tasks
Examples
Testing algorithm

5 A sufficient pseudo-polynomial test for synchronous sets
Basic idea



Simplifying the analysis

A periodic task set is synchronous if all task offsets are
equal to 0

In other words, for a synchronous task set, all tasks start at
time 0.

A task set is asynchronous is some task has a non-zero
offset.



Demand bound function

Theorem
For a set of synchronous periodic tasks (i.e. with no offset),

∀t1, t2 > t1 df (t1, t2) ≤ df (0, t2 − t1)

In plain words, the worst case demand is found for
intervals starting at 0.

Definition: Demand Bound function:

dbf (L) = max
t

(df (t , t + L)) = df (0, L).



Demand bound function - II

The maximum is when the task is activated at the
beginning of the interval.

For a periodic task τi :

dbfi(L) =

(⌊

L − Di

Ti

⌋

+ 1
)

0
Ci

0 2 4 6 8 10 12 14 16 18 20

τ1



Demand bound function - II

The maximum is when the task is activated at the
beginning of the interval.

For a periodic task τi :

dbfi(L) =

(⌊

L − Di

Ti

⌋

+ 1
)

0
Ci

0 2 4 6 8 10 12 14 16 18 20

τ1



Demand bound function - II

The maximum is when the task is activated at the
beginning of the interval.

For a periodic task τi :

dbfi(L) =

(⌊

L − Di

Ti

⌋

+ 1
)

0
Ci

0 2 4 6 8 10 12 14 16 18 20

τ1



Demand bound function - II

The maximum is when the task is activated at the
beginning of the interval.

For a periodic task τi :

dbfi(L) =

(⌊

L − Di

Ti

⌋

+ 1
)

0
Ci

0 2 4 6 8 10 12 14 16 18 20

τ1



Demand bound function - II

The maximum is when the task is activated at the
beginning of the interval.

For a periodic task τi :

dbfi(L) =

(⌊

L − Di

Ti

⌋

+ 1
)

0
Ci

0 2 4 6 8 10 12 14 16 18 20

τ1



Demand bound function - II

The maximum is when the task is activated at the
beginning of the interval.

For a periodic task τi :

dbfi(L) =

(⌊

L − Di

Ti

⌋

+ 1
)

0
Ci

0 2 4 6 8 10 12 14 16 18 20

τ1



Demand bound function - II

The maximum is when the task is activated at the
beginning of the interval.

For a periodic task τi :

dbfi(L) =

(⌊

L − Di

Ti

⌋

+ 1
)

0
Ci

0 2 4 6 8 10 12 14 16 18 20

τ1



Demand bound function - II

The maximum is when the task is activated at the
beginning of the interval.

For a periodic task τi :

dbfi(L) =

(⌊

L − Di

Ti

⌋

+ 1
)

0
Ci

0 2 4 6 8 10 12 14 16 18 20

τ1



Demand bound function - II

The maximum is when the task is activated at the
beginning of the interval.

For a periodic task τi :

dbfi(L) =

(⌊

L − Di

Ti

⌋

+ 1
)

0
Ci

0 2 4 6 8 10 12 14 16 18 20

τ1



Demand bound function - II

The maximum is when the task is activated at the
beginning of the interval.

For a periodic task τi :

dbfi(L) =

(⌊

L − Di

Ti

⌋

+ 1
)

0
Ci

0 2 4 6 8 10 12 14 16 18 20

τ1



Demand bound function - II

The maximum is when the task is activated at the
beginning of the interval.

For a periodic task τi :

dbfi(L) =

(⌊

L − Di

Ti

⌋

+ 1
)

0
Ci

0 2 4 6 8 10 12 14 16 18 20

τ1



Synchronous periodic task sets

Theorem (Baruah, Howell, Rosier ’90)

A synchronous periodic task set T is schedulable by EDF
if and only if:

∀L ∈ dead(T ) dbf(L) ≤ L

where dead(T ) is the set of deadlines in [0, H]

Proof next slide.



Proof

Sufficiency: eq. holds → task set is schedulable.
By contradiction

Necessity: task set is schedulable → eq. holds



Proof

Sufficiency: eq. holds → task set is schedulable.
By contradiction
If deadline is missed in y , then ∃x , y y − x < df(x , y)

Necessity: task set is schedulable → eq. holds



Proof

Sufficiency: eq. holds → task set is schedulable.
By contradiction
If deadline is missed in y , then ∃x , y y − x < df(x , y)
it follows that y − x < df(x , y) ≤ dbf(y − x)

Necessity: task set is schedulable → eq. holds



Proof

Sufficiency: eq. holds → task set is schedulable.
By contradiction
If deadline is missed in y , then ∃x , y y − x < df(x , y)
it follows that y − x < df(x , y) ≤ dbf(y − x)

Necessity: task set is schedulable → eq. holds
By contradiction



Proof

Sufficiency: eq. holds → task set is schedulable.
By contradiction
If deadline is missed in y , then ∃x , y y − x < df(x , y)
it follows that y − x < df(x , y) ≤ dbf(y − x)

Necessity: task set is schedulable → eq. holds
By contradiction
eq. does not hold for L.



Proof

Sufficiency: eq. holds → task set is schedulable.
By contradiction
If deadline is missed in y , then ∃x , y y − x < df(x , y)
it follows that y − x < df(x , y) ≤ dbf(y − x)

Necessity: task set is schedulable → eq. holds
By contradiction
eq. does not hold for L.
build a schedule starting at 0, for which dbf(L) = df(0, L)



Proof

Sufficiency: eq. holds → task set is schedulable.
By contradiction
If deadline is missed in y , then ∃x , y y − x < df(x , y)
it follows that y − x < df(x , y) ≤ dbf(y − x)

Necessity: task set is schedulable → eq. holds
By contradiction
eq. does not hold for L.
build a schedule starting at 0, for which dbf(L) = df(0, L)
Hence task set is not schedulable



Sporadic task

Sporadic tasks are equivalent to synchronous periodic task
sets.

For them, the worst case is when they all arrive at their
maximum frequency and starting synchronously.



Synchronous and asynchronous

Let T be a asynchronous task set.

We call T ′ the corresponding synchronous set, obtained by
setting all offset equal to 0.

Corollary

If T ′ is schedulable, then T is schedulable too.

Conversely, if T is schedulable, T ′ may not be schedulable.

The proof follows from the definition of dbf(L).



A pseudo-polynomial test

Theorem (Baruah, Howell, Rosier, ’90)
Given a synchronous periodic task set T , with deadlines less
than or equal to the period, and with load U < 1, the system is
schedulable by EDF if and only if:

∀L ∈ deadShort(T ) dbf(L) ≤ L

where deadShort(T ) is the set of all deadlines in interval [0, L∗]
and

L∗ =
U

1 − U
max

i
(Ti − Di)

Corollary
The complexity of the above analysis is pseudo-polynomial.



Outline

1 Dynamic priority

2 Basic analysis

3 FP vs EDF

4 Processor demand bound analysis
Generalization to deadlines different from period
Synchronous and asynchronous tasks
Examples
Testing algorithm

5 A sufficient pseudo-polynomial test for synchronous sets
Basic idea



Example of computation of the dbf
τ1 = (1, 4, 6), τ2 = (2, 6, 8), τ3 = (3, 5, 10)

U = 1/6 + 1/4 + 3/10 = 0.7167, L∗ = 12.64.
We must analyze all deadlines in [0, 12], i.e. (3, 5, 6, 10).

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32

τ1

τ2

τ3

Let’s compute dbf ()



Example of computation of the dbf
τ1 = (1, 4, 6), τ2 = (2, 6, 8), τ3 = (3, 5, 10)

U = 1/6 + 1/4 + 3/10 = 0.7167, L∗ = 12.64.
We must analyze all deadlines in [0, 12], i.e. (3, 5, 6, 10).

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32

τ1

τ2

τ3

Let’s compute dbf ()
df (0, 4) = C1 = 1 < 4;



Example of computation of the dbf
τ1 = (1, 4, 6), τ2 = (2, 6, 8), τ3 = (3, 5, 10)

U = 1/6 + 1/4 + 3/10 = 0.7167, L∗ = 12.64.
We must analyze all deadlines in [0, 12], i.e. (3, 5, 6, 10).

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32

τ1

τ2

τ3

Let’s compute dbf ()
df (0, 4) = C1 = 1 < 4;
df (0, 5) = C1 + C3 = 4 < 5;



Example of computation of the dbf
τ1 = (1, 4, 6), τ2 = (2, 6, 8), τ3 = (3, 5, 10)

U = 1/6 + 1/4 + 3/10 = 0.7167, L∗ = 12.64.
We must analyze all deadlines in [0, 12], i.e. (3, 5, 6, 10).

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32

τ1

τ2

τ3

Let’s compute dbf ()
df (0, 4) = C1 = 1 < 4;
df (0, 5) = C1 + C3 = 4 < 5;
df (0, 6) = C1 + C2 + C3 = 6 ≤ 6;



Example of computation of the dbf
τ1 = (1, 4, 6), τ2 = (2, 6, 8), τ3 = (3, 5, 10)

U = 1/6 + 1/4 + 3/10 = 0.7167, L∗ = 12.64.
We must analyze all deadlines in [0, 12], i.e. (3, 5, 6, 10).

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32

τ1

τ2

τ3

Let’s compute dbf ()
df (0, 4) = C1 = 1 < 4;
df (0, 5) = C1 + C3 = 4 < 5;
df (0, 6) = C1 + C2 + C3 = 6 ≤ 6;
df (0, 10) = 2C1 + C2 + C3 = 7 ≤ 10;



Example of computation of the dbf
τ1 = (1, 4, 6), τ2 = (2, 6, 8), τ3 = (3, 5, 10)

U = 1/6 + 1/4 + 3/10 = 0.7167, L∗ = 12.64.
We must analyze all deadlines in [0, 12], i.e. (3, 5, 6, 10).

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32

τ1

τ2

τ3

Let’s compute dbf ()
df (0, 4) = C1 = 1 < 4;
df (0, 5) = C1 + C3 = 4 < 5;
df (0, 6) = C1 + C2 + C3 = 6 ≤ 6;
df (0, 10) = 2C1 + C2 + C3 = 7 ≤ 10;
The task set is schedulable.



Idle time and busy period

The interval between time 0 and the first idle time is called
busy period.

The analysis can be stopped at the first idle time (Spuri,
’94).

The first idle time can be found with the following recursive
equations:

W (0) =
N

∑

i=1

Ci

W (k) =
N

∑

i=1

⌈

W (k − 1)

Ti

⌉

Ci

The iteration stops when W (k − 1) = W (k).



Another example

Consider the following example

Ci Di Ti

τ1 1 2 4
τ2 2 4 5
τ3 4.5 8 15

U = 0.9; L∗ = 9 ∗ 7 = 63;



Another example

Consider the following example

Ci Di Ti

τ1 1 2 4
τ2 2 4 5
τ3 4.5 8 15

U = 0.9; L∗ = 9 ∗ 7 = 63;

W = 14.5.



Another example

Consider the following example

Ci Di Ti

τ1 1 2 4
τ2 2 4 5
τ3 4.5 8 15

U = 0.9; L∗ = 9 ∗ 7 = 63;

W = 14.5.

Then we can check all deadline in interval [0, 14.5].



Outline

1 Dynamic priority

2 Basic analysis

3 FP vs EDF

4 Processor demand bound analysis
Generalization to deadlines different from period
Synchronous and asynchronous tasks
Examples
Testing algorithm

5 A sufficient pseudo-polynomial test for synchronous sets
Basic idea



Algorithm

Of course, it should not be necessary to draw the schedule
to see if the system is schedulable or not.

First of all, we need a formula for the dbf :

dbf (L) =
N

∑

i=1

(⌊

L − Di

Ti

⌋

+ 1
)

Ci

The algorithm works as follows:
We list all deadlines of all tasks until L∗.
Then, we compute the dbf for each deadline and verify the
condition.



The previous example

In the previous example: deadlines of the tasks:

τ1 4 10
τ2 6
τ3 5

dbf in tabular form
L 4 5 6 10
dbf 1 4 6 7

Since, for all L < L∗ we have dbf (L) ≤ L, then the task set
is schedulable.



Another example

Consider the followin task set
Ci Di Ti

τ1 1 2 4
τ2 2 4 5
τ3 4.5 8 15

U = 0.9; L∗ = 9 ∗ 7 = 63;

hint: if L∗ is too large, we can stop at the first idle time.

The first idle time can be found with the following recursive equations:

W (0) =
N

X

i=1

Ci

W (k) =
N

X

i=1

‰

W (k − 1)

Ti

ı

Ci

The iteration stops when W (k − 1) = W (k).

In our example W = 14.5. Then we can check all deadline in interval [0, 14.5].



Example

Deadlines of the tasks:

τ1 2 6 10 14
τ2 4 9 14
τ3 8

Demand bound function in tabular form
t 2 4 6 8 9 10 14
dbf 1 3 4 8.5

The task set is not schedulable! Deadline miss at 8.



In the schedule...

The schedule is as follows:

0 2 4 6 8 10 12

τ1

τ2

τ3



Outline

1 Dynamic priority

2 Basic analysis

3 FP vs EDF

4 Processor demand bound analysis
Generalization to deadlines different from period
Synchronous and asynchronous tasks
Examples
Testing algorithm

5 A sufficient pseudo-polynomial test for synchronous sets
Basic idea



Outline

1 Dynamic priority

2 Basic analysis

3 FP vs EDF

4 Processor demand bound analysis
Generalization to deadlines different from period
Synchronous and asynchronous tasks
Examples
Testing algorithm

5 A sufficient pseudo-polynomial test for synchronous sets
Basic idea



Differences between synchronous and asynchronous
sets

Let’s recall the previous Corollary and Theorem



Differences between synchronous and asynchronous
sets

Let’s recall the previous Corollary and Theorem

Let us analyze the reasons why.
When computing dbf(L) we do the following steps:

Consider any interval [t1, t2] of lenght L
”push back” activations until the first jobs starts at t1;
Compute the dbf as the sum of the computation of all jobs
with deadline no later than t2.



Differences between synchronous and asynchronous
sets

Let’s recall the previous Corollary and Theorem

Let us analyze the reasons why.
When computing dbf(L) we do the following steps:

Consider any interval [t1, t2] of lenght L
”push back” activations until the first jobs starts at t1;
Compute the dbf as the sum of the computation of all jobs
with deadline no later than t2.



Differences between synchronous and asynchronous
sets

Let’s recall the previous Corollary and Theorem

Let us analyze the reasons why.
When computing dbf(L) we do the following steps:

Consider any interval [t1, t2] of lenght L
”push back” activations until the first jobs starts at t1;
Compute the dbf as the sum of the computation of all jobs
with deadline no later than t2.
Problem: by “pushing back” the instance we are modyfing
the task set!



Example of asynchronous task set

τ1 = (0, 4, 7, 9) and τ2 = (2, 5, 8, 12)

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28

τ1

τ2

df(0, 8) = 4



Example of asynchronous task set

τ1 = (0, 4, 7, 9) and τ2 = (2, 5, 8, 12)

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28

τ1

τ2

df(0, 8) = 4

df(2, 10) = 5



Example of asynchronous task set

τ1 = (0, 4, 7, 9) and τ2 = (2, 5, 8, 12)

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28

τ1

τ2

df(0, 8) = 4

df(2, 10) = 5



Example of asynchronous task set

τ1 = (0, 4, 7, 9) and τ2 = (2, 5, 8, 12)

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28

τ1

τ2



Example of asynchronous task set

τ1 = (0, 4, 7, 9) and τ2 = (2, 5, 8, 12)

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28

τ1

τ2



Example of asynchronous task set

τ1 = (0, 4, 7, 9) and τ2 = (2, 5, 8, 12)

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28

τ1

τ2



Example of asynchronous task set

τ1 = (0, 4, 7, 9) and τ2 = (2, 5, 8, 12)

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28

τ1

τ2



Example of asynchronous task set

τ1 = (0, 4, 7, 9) and τ2 = (2, 5, 8, 12)

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28

τ1

τ2



Example of asynchronous task set

τ1 = (0, 4, 7, 9) and τ2 = (2, 5, 8, 12)

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28

τ1

τ2

dbf(8) = 9



Example of asynchronous task set

τ1 = (0, 4, 7, 9) and τ2 = (2, 5, 8, 12)

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28

τ1

τ2

dbf(8) = 9

The dbf is too pessimistic.



Trade off between pessimism and complexity

The problem is that we do not know what is the worst
pattern of arrivals for asynchronous task sets.

We know for synchronous: instant 0

For asynchronous, we should check for every possible
pattern



Key observation

The distance between any arrival of task τi and any arrival
of task τj is:

aj,k1 − ai,k2 = φj + k1Tj −φi − k2Ti = φj −φi + k(gcd(Ti , Tj))



Key observation

The distance between any arrival of task τi and any arrival
of task τj is:

aj,k1 − ai,k2 = φj + k1Tj −φi − k2Ti = φj −φi + k(gcd(Ti , Tj))

Imposing that the difference must not be negative, and k
must be integer, we get:

k ≥
φi − φj

gcd(Ti , Tj)
⇒ k =

⌈

φi − φj

gcd(Ti , Tj)

⌉



Key observation

The distance between any arrival of task τi and any arrival
of task τj is:

aj,k1 − ai,k2 = φj + k1Tj −φi − k2Ti = φj −φi + k(gcd(Ti , Tj))

Imposing that the difference must not be negative, and k
must be integer, we get:

k ≥
φi − φj

gcd(Ti , Tj)
⇒ k =

⌈

φi − φj

gcd(Ti , Tj)

⌉

The minimum distance is:

∆i,j = φj − φi +

⌈

φi − φj

gcd(Ti , Tj)

⌉

gcd(Ti , Tj)



Observations

From the formula we can derive the following observations:

The value of ∆i,j is an integer in interval [0, gcd(Ti , Tj) − 1]
If Ti and Tj are prime between them (i.e. gcd = 1), then
∆i,j = 0.

Now we are ready to explain the basic idea behind the new
scheduling analysis methodology.



Basic Idea

Given an hypothetical interval [x , y ]

Assume task τi arrival time coincides with x



Basic Idea

Given an hypothetical interval [x , y ]

Assume task τi arrival time coincides with x
We “push back” all other tasks until they reach the
minimum distance from τi arrival time



Basic Idea

Given an hypothetical interval [x , y ]

Assume task τi arrival time coincides with x
We “push back” all other tasks until they reach the
minimum distance from τi arrival time

there is no need to push it back further (it would be too
pessimistic!)

The df in all intervals starting with x can only increase after
the “pushing back”.



Basic Idea

Given an hypothetical interval [x , y ]

Assume task τi arrival time coincides with x
We “push back” all other tasks until they reach the
minimum distance from τi arrival time

there is no need to push it back further (it would be too
pessimistic!)

The df in all intervals starting with x can only increase after
the “pushing back”.

Therefore, if no deadline is missed in [x , y ], then no
deadline is missed in any interval of length (y − x).



Basic Idea

Given an hypothetical interval [x , y ]

Assume task τi arrival time coincides with x
We “push back” all other tasks until they reach the
minimum distance from τi arrival time

there is no need to push it back further (it would be too
pessimistic!)

The df in all intervals starting with x can only increase after
the “pushing back”.

Therefore, if no deadline is missed in [x , y ], then no
deadline is missed in any interval of length (y − x).

We could build such interval by selecting a task τi to start
at the beginning of the interval, and setting the arrival
times of the other tasks at their minimum distances



Problem

We do not know which task to start with in the interval

Simple solution: just select each task in turn



Example

τ1 = (0, 4, 7, 9) and τ2 = (2, 5, 8, 12)

We select τ1 to start at 0.

0 2 4 6 8 10 12 14 16 18 20 22 24 26

τ1

τ2



Example

τ1 = (0, 4, 7, 9) and τ2 = (2, 5, 8, 12)

We select τ1 to start at 0.
τ2 starts at

φ2 − φ1 +

⌈

φ1 − φ2

T1modT2

⌉

(T1 mod T2) = 2 +

⌈

−2
3

⌉

3 = 2

0 2 4 6 8 10 12 14 16 18 20 22 24 26

τ1

τ2



Example

τ1 = (0, 4, 7, 9) and τ2 = (2, 5, 8, 12)

Next, we select τ2 to start at 0.



Example

τ1 = (0, 4, 7, 9) and τ2 = (2, 5, 8, 12)

Next, we select τ2 to start at 0.

τ1 starts at

φ1 − φ2 +

⌈

φ2 − φ1

T2 mod T1

⌉

(T2 mod T1) = −2 +

⌈

2
3

⌉

3 = 1



Example

τ1 = (0, 4, 7, 9) and τ2 = (2, 5, 8, 12)

Next, we select τ2 to start at 0.

τ1 starts at

φ1 − φ2 +

⌈

φ2 − φ1

T2 mod T1

⌉

(T2 mod T1) = −2 +

⌈

2
3

⌉

3 = 1



Example

τ1 = (0, 4, 7, 9) and τ2 = (2, 5, 8, 12)

Next, we select τ2 to start at 0.

τ1 starts at

φ1 − φ2 +

⌈

φ2 − φ1

T2 mod T1

⌉

(T2 mod T1) = −2 +

⌈

2
3

⌉

3 = 1

0 2 4 6 8 10 12 14 16 18 20 22 24 26

τ1

τ2



Main theorem

Given an asynchronous task set T
Let T ′

i be the task set obtained by
fixing the offset of τi at 0
setting the offset of all other tasks at their minimum
distance from τi



Main theorem

Given an asynchronous task set T
Let T ′

i be the task set obtained by
fixing the offset of τi at 0
setting the offset of all other tasks at their minimum
distance from τi

Theorem (Pellizzoni and Lipari, ECRTS ’04)
Given task set T with U ≤ 1, scheduled on a single processor,
if ∀ 1 ≤ i ≤ N all deadlines in task set T ′

i are met until the first
idle time, then T is feasible.



Performance

0.8 0.82 0.84 0.86 0.88 0.9 0.92 0.94 0.96 0.98 1
0.4

0.5

0.6

0.7

0.8

0.9

1

total utilization

pe
rc

en
ta

ge
 o

f f
ea

si
bl

e 
ta

sk
 s

et
s

synchronous
1 fixed task
2 fixed tasks
3 fixed tasks
NP−Hard

Figure: 10 tasks with periods multiple of 10



Conclusions

What is this for?
Feasibility analysis of asynchronous task set is used for:

Reduction of output jitter: by setting an offset it is possible
to reduce response time and jitter
Analysis of distributed transactions (i.e. chains of tasks
related by precedence constraints).



Conclusions

What is this for?
Feasibility analysis of asynchronous task set is used for:

Reduction of output jitter: by setting an offset it is possible
to reduce response time and jitter
Analysis of distributed transactions (i.e. chains of tasks
related by precedence constraints).

in both cases, the analysis must be iteratively repeated
many times with different offsets;



Conclusions

What is this for?
Feasibility analysis of asynchronous task set is used for:

Reduction of output jitter: by setting an offset it is possible
to reduce response time and jitter
Analysis of distributed transactions (i.e. chains of tasks
related by precedence constraints).

in both cases, the analysis must be iteratively repeated
many times with different offsets;

hence we need an efficient analysis (even though it is only
sufficient)



References I

M. L. Dertouzos
Control Robotics: The Procedural Control of Physical
Processes
Information Processing, 1974

@ J.Y.-T. Leung and M.L. Merril,
A Note on Preemptive Scheduling of Periodic Real-Time
Tasks
Information Processing Letters, vol 3, no 11, 1980

S.K. Baruah, L.E. Rosier and R.R. Howell,
Algorithms and Complexity Concerning the Preemptive
Scheduling of Periodic Real-Time Tasks on One Processor
Real-Time Systems Journal, vol. 2, 1990



References II

R. Pellizzoni and G. Lipari
Feasibility Analysis of Real-Time Periodic Tasks with
Offsets
Real-Time Systems Journal, 2005


	Dynamic priority
	Basic analysis
	FP vs EDF
	Processor demand bound analysis
	Generalization to deadlines different from period
	Synchronous and asynchronous tasks
	Examples
	Testing algorithm

	A sufficient pseudo-polynomial test for synchronous sets
	Basic idea

	Appendix

