
Informatica e Sistemi in Tempo Reale
Introduction to C programming

Giuseppe Lipari
http://retis.sssup.it/~lipari

Scuola Superiore Sant’Anna – Pisa

October 25, 2010

G. Lipari (Scuola Superiore Sant’Anna) Introduction to C programming October 25, 2010 1 / 58

http://retis.sssup.it/~lipari

Outline

1 First steps

2 Declarations and definitions

3 Variables
Simple Input/output
First exercises
Advanced operators

4 Statements and control flow
If then else
While loop
For loop
Exercises

G. Lipari (Scuola Superiore Sant’Anna) Introduction to C programming October 25, 2010 2 / 58

Outline

1 First steps

2 Declarations and definitions

3 Variables
Simple Input/output
First exercises
Advanced operators

4 Statements and control flow
If then else
While loop
For loop
Exercises

G. Lipari (Scuola Superiore Sant’Anna) Introduction to C programming October 25, 2010 3 / 58

My first C program

Let’s start with a classic:

hello.c

#include <stdio.h>
int main()
{

printf("Hello world!\n");
return 0;

}

include includes definitions for library functions (in this case, the
printf() function is defined in header file stdio.h)

main function this function must always be present in a C program. It
is the first function to be invoked (the entry point)

return end of the function, returns a value to the shell

G. Lipari (Scuola Superiore Sant’Anna) Introduction to C programming October 25, 2010 4 / 58

./examples/01.intro_c-examples/hello.c

How to compile and run the program

The C language is a compiled language
It means that the above program must be translated into a binary
code before being executed

The compiler does the job
reads the source file, translates it into binary code, and produces
an executable file
In Linux, the following command line produces executable file hello
from source file hello.c

gcc hello.c -o hello

In Windows (with DevC++), you must build the program

When you run the program (from a Linux shell, type ./hello,
from Windows, click on Run), you obtain:

(in Windows you may not be able to see the output because the
shell is automatically closed!)

Hello world!

G. Lipari (Scuola Superiore Sant’Anna) Introduction to C programming October 25, 2010 5 / 58

Compiling the code

The translation from high-level language to binary is done by the
compiler (and the linker)

the compiler translates the code you wrote in the source file
(hello.c)
the linker links external code from libraries of existing functions (in
our case, the printf() function for output on screen)

compile &

link
executable

std library

(printf)

hello.c

gcc hello.c −o hello hello

Figure: Compiling a file

G. Lipari (Scuola Superiore Sant’Anna) Introduction to C programming October 25, 2010 6 / 58

Multiple source files

A program can consist of multiple source files

Every source file is called module and usually consists of a set of
well-defined functions that work together

every source file is compiled separately (it is a compilation unit) to
produce an object file (extension: .o or .obj)

all objects files and libraries are then linked together to produce an
executable

We will see later how it works

G. Lipari (Scuola Superiore Sant’Anna) Introduction to C programming October 25, 2010 7 / 58

Running a program

To execute a program, you must tell the Operating System to
load the program in main memory (RAM)
start executing the program instructions sequentially

The OS is itself a program!
It is a high-order program that controls the execution of user
programs

The OS can:
Execute several user programs concurrently or in parallel
suspend or kill a user program
coordinate and synchronize user programs
let them communicate and exchange data
and many other things!

G. Lipari (Scuola Superiore Sant’Anna) Introduction to C programming October 25, 2010 8 / 58

Outline

1 First steps

2 Declarations and definitions

3 Variables
Simple Input/output
First exercises
Advanced operators

4 Statements and control flow
If then else
While loop
For loop
Exercises

G. Lipari (Scuola Superiore Sant’Anna) Introduction to C programming October 25, 2010 9 / 58

Declarations, functions, expressions

A C program is a sequence of global declarations and definitions
declarations of global variables and functions
definitions of variables and functions
often, declarations are implicit (the definition is an implicit
declaration)
Examples:

int a; // declaration + definition
int b = 10; // declaration + definition + init

int f(int); // declaration only

int f(int p) // definition
{

...
}

int g() // declaration + definition
{

}

G. Lipari (Scuola Superiore Sant’Anna) Introduction to C programming October 25, 2010 10 / 58

Functions

The code goes inside functions
There must be always at least one definition of a function called
main

In the hello example:

hello.c

{
printf("Hello world!\n");
return 0;

}

G. Lipari (Scuola Superiore Sant’Anna) Introduction to C programming October 25, 2010 11 / 58

./examples/01.intro_c-examples/hello.c

Anatomy of the main function

There can be another form of main function:

int main(int argc, char *argv[])
{

...
}

main is the function name, and must be unique in a program
there cannot be two functions with the same name

int is the return type (will see later)
between () parenthesis we have the list of parameters with their
type, separated by commas:

in the example above, two parameters, argc and argv

between {} parenthesis, we have the function body:
the code that is executed when the function is called

The OS implicitly calls the main function when the program is
launched

the main function is also called the program entry point

G. Lipari (Scuola Superiore Sant’Anna) Introduction to C programming October 25, 2010 12 / 58

Outline

1 First steps

2 Declarations and definitions

3 Variables
Simple Input/output
First exercises
Advanced operators

4 Statements and control flow
If then else
While loop
For loop
Exercises

G. Lipari (Scuola Superiore Sant’Anna) Introduction to C programming October 25, 2010 13 / 58

Variables and types

A variable is a location in memory with a symbolic name

A variable is used as temporary or permanent storage of data to
perform complex computation

In C, every variable must have a type

Predefined types in C:
int an integer number (usually 32 bits)

char a ASCII character (8 bits)
float floating point number, single precision (32 bits)

double floating point number, double precision (64 bits)

A type dictates the variable range (or domain) (from the number of
bits) and the operations you can perform on a variable

G. Lipari (Scuola Superiore Sant’Anna) Introduction to C programming October 25, 2010 14 / 58

Variable definition

Usually, declaration and definition coincide for variables

The definition consists of the type keyword followed by the name
of the variable, followed by the “;” symbol

Examples

int a; /* an integer variable of name a */
double b; /* a double-precision floating point */
char c; /* a character */
...

a = 10; /* assignment: a now contains 10 */
b = b + 1.5; /* after assignment, b is equal to

the previous value of b plus 1.5 */
c = ’a’; /* c is equal to the ASCII value of

character ’a’ */

G. Lipari (Scuola Superiore Sant’Anna) Introduction to C programming October 25, 2010 15 / 58

Constants

Constants are numeric or alphabetic values that can be used in
operations on variables or in functions

Example:

const double pi = 3.1415; /* a double precision constant */
int a = 325; /* 325 is a constant integer */
char c = ’?’; /* ’?’ is a constant character */
printf("Hello world!\n"); /* "Hello world!\n" is a *

* constant string */

G. Lipari (Scuola Superiore Sant’Anna) Introduction to C programming October 25, 2010 16 / 58

Variable names

Variable names cannot start with a number

cannot contain spaces

cannot contain special symbols like ’+’, ’-’, ’*’, ’/’, ’%’, etc.

cannot be arbitrarily long (255 char max)

cannot be equal to reserved keywords (like int, double, for, etc.)

G. Lipari (Scuola Superiore Sant’Anna) Introduction to C programming October 25, 2010 17 / 58

Variable initialization

It is possible to assign an initial value to a variable during definition

If you do not specify a value, the initial value of the variable is
undefined
It is good programming practice to always initialize a variable

Many programming errors are due to programmers that forget to
initialize a variable before using it

int a = 0; /* the initial value is 0 */
int i; /* undefined initial value */
int b = 4;

b = i + 5; /* error! the value of i is not defined! */

G. Lipari (Scuola Superiore Sant’Anna) Introduction to C programming October 25, 2010 18 / 58

Operations on variables

The basic arithmetic operators are:
+ addition
- subtraction
* multiplication
/ division

% modulus (remainder of the integer division)
Notes:

when division is applied to integers, the result is an integer (it
truncates the decimal part)
modulus can only be applied to integers
multiplication, division and modulus have precedence over addition
and subtraction
to change precedence, you can use parenthesis

G. Lipari (Scuola Superiore Sant’Anna) Introduction to C programming October 25, 2010 19 / 58

Expressions

A C program is a sequence of expressions, and expression is a
combination of operators on variables, constants and functions

Examples of expressions:

/* definitions of variables */
int a, b;
int division;
int remainder;

double area_circle;
double radius;
...

/* expressions */
a = 15;
b = 6;
division = a / b;
remainder = a % b;
radius = 2.4;
area_circle = 3.14 * radius * radius;

G. Lipari (Scuola Superiore Sant’Anna) Introduction to C programming October 25, 2010 20 / 58

Assignment and expressions

Assigning a value to a variable is itself an expression

area_circle = 3.14 * radius * radius;

The above expression is composed by three elements:
the operator is =
the left operand must always be a variable name (cannot be
another expression!)
the right operand can be any expression, (in our case two
multiplications)
the right operand is evaluated first, and then the result is assigned
to the left operand (the variable)

area_circle / 3.14 = radius * radius

the code above is illegal! Why?

G. Lipari (Scuola Superiore Sant’Anna) Introduction to C programming October 25, 2010 21 / 58

Assignment expressions

The following expression is perfectly legal:

int a, b;

b = a = 5;

G. Lipari (Scuola Superiore Sant’Anna) Introduction to C programming October 25, 2010 22 / 58

Assignment expressions

The following expression is perfectly legal:

int a, b;

b = a = 5;

You must read it from right to left:
a=5 is first evaluated by assigning value 5 to variable a; the result
of this expression is 5

G. Lipari (Scuola Superiore Sant’Anna) Introduction to C programming October 25, 2010 22 / 58

Assignment expressions

The following expression is perfectly legal:

int a, b;

b = a = 5;

You must read it from right to left:
a=5 is first evaluated by assigning value 5 to variable a; the result
of this expression is 5
then, the result is assigned to variable b (whose value after
assignment is hence 5)

G. Lipari (Scuola Superiore Sant’Anna) Introduction to C programming October 25, 2010 22 / 58

Assignment expressions

The following expression is perfectly legal:

int a, b;

b = a = 5;

You must read it from right to left:
a=5 is first evaluated by assigning value 5 to variable a; the result
of this expression is 5
then, the result is assigned to variable b (whose value after
assignment is hence 5)

What are the values of a and b after the following two
expressions?

int a, b;

b = (a = 5) + 1;

b = a = 5 + 1;

G. Lipari (Scuola Superiore Sant’Anna) Introduction to C programming October 25, 2010 22 / 58

Outline

1 First steps

2 Declarations and definitions

3 Variables
Simple Input/output
First exercises
Advanced operators

4 Statements and control flow
If then else
While loop
For loop
Exercises

G. Lipari (Scuola Superiore Sant’Anna) Introduction to C programming October 25, 2010 23 / 58

Formatted output

To output on screen, you can use the printf library function

exprintf.c

/* fprintf example */
#include <stdio.h>

int main()
{

printf ("Characters: %c %c \n", ’a’, 65);
printf ("Decimals: %d %ld\n", 1977, 650000);
printf ("Preceding with blanks: %10d \n", 1977);
printf ("Preceding with zeros: %010d \n", 1977);
printf ("Some different radixes: %d %x %o %#x %#o \n",

100, 100, 100, 100, 100);
printf ("floats: %4.2f %+.0e %E \n", 3.1416, 3.1416, 3.1416);
printf ("Width trick: %*d \n", 5, 10);
printf ("%s \n", "A string");
return 0;

}

G. Lipari (Scuola Superiore Sant’Anna) Introduction to C programming October 25, 2010 24 / 58

./examples/01.intro_c-examples/exprintf.c

Formatted Input

To input variables from the keyboard, you can use the scanf

library function

exscanf.c

/* scanf example */
#include <stdio.h>

int main ()
{

char str [80];
int i;

printf ("Enter your family name: ");
scanf ("%s",str);
printf ("Enter your age: ");
scanf ("%d",&i);
printf ("Mr. %s , %d years old.\n",str,i);
printf ("Enter a hexadecimal number: ");
scanf ("%x",&i);
printf ("You have entered %#x (%d).\n",i,i);

return 0;
}

G. Lipari (Scuola Superiore Sant’Anna) Introduction to C programming October 25, 2010 25 / 58

./examples/01.intro_c-examples/exscanf.c

Outline

1 First steps

2 Declarations and definitions

3 Variables
Simple Input/output
First exercises
Advanced operators

4 Statements and control flow
If then else
While loop
For loop
Exercises

G. Lipari (Scuola Superiore Sant’Anna) Introduction to C programming October 25, 2010 26 / 58

Exercises

1 Write a program that asks the user to enter the radius of a circle,
computes the area and the circumference

define variables and initialize them
use scanf to input radius variable
compute the values
formatted input on screen

2 Write a program that asks for two integer numbers a and b,
computes the quotient and the remainder, and prints them on
screen

G. Lipari (Scuola Superiore Sant’Anna) Introduction to C programming October 25, 2010 27 / 58

Outline

1 First steps

2 Declarations and definitions

3 Variables
Simple Input/output
First exercises
Advanced operators

4 Statements and control flow
If then else
While loop
For loop
Exercises

G. Lipari (Scuola Superiore Sant’Anna) Introduction to C programming October 25, 2010 28 / 58

Shortcuts

It is possible to combine assignment with common operators, as
follows:

a += 5; // equivalent to a = a + 5;

G. Lipari (Scuola Superiore Sant’Anna) Introduction to C programming October 25, 2010 29 / 58

Shortcuts

It is possible to combine assignment with common operators, as
follows:

a += 5; // equivalent to a = a + 5;

x /= 2; // equivalent to x = x / 2;

G. Lipari (Scuola Superiore Sant’Anna) Introduction to C programming October 25, 2010 29 / 58

Shortcuts

It is possible to combine assignment with common operators, as
follows:

a += 5; // equivalent to a = a + 5;

x /= 2; // equivalent to x = x / 2;

y *= x + a; // equivalent to y = y * (x+a);

G. Lipari (Scuola Superiore Sant’Anna) Introduction to C programming October 25, 2010 29 / 58

Shortcuts

It is possible to combine assignment with common operators, as
follows:

a += 5; // equivalent to a = a + 5;

x /= 2; // equivalent to x = x / 2;

y *= x + a; // equivalent to y = y * (x+a);

In general

var <op>= <expr>; // equivalent to var = var <op> (<expr>);

G. Lipari (Scuola Superiore Sant’Anna) Introduction to C programming October 25, 2010 29 / 58

Increment / decrement

If you just need to increment/decrement, you can use the following
shortcuts

x++; // equivalent to x = x + 1;
++x; // equivalent to x = x + 1;

y--; // equivalent to y = y - 1;
--y; // equivalent to y = y - 1;

G. Lipari (Scuola Superiore Sant’Anna) Introduction to C programming October 25, 2010 30 / 58

Increment / decrement

If you just need to increment/decrement, you can use the following
shortcuts

x++; // equivalent to x = x + 1;
++x; // equivalent to x = x + 1;

y--; // equivalent to y = y - 1;
--y; // equivalent to y = y - 1;

Of course, it can only be used on variables;

(a+b)++; // compiler error! cannot increment
// an expression

x = (a+b)++; // error again: use x = (a+b)+1;

G. Lipari (Scuola Superiore Sant’Anna) Introduction to C programming October 25, 2010 30 / 58

Pre and post-increment

What is the difference between x++ and ++x?

G. Lipari (Scuola Superiore Sant’Anna) Introduction to C programming October 25, 2010 31 / 58

Pre and post-increment

What is the difference between x++ and ++x?

They are both expressions that can be used inside other
expressions (like assignment), as follows;

int a, x;
x = 5;

a = ++x; // what is the value of a after the assignment?

G. Lipari (Scuola Superiore Sant’Anna) Introduction to C programming October 25, 2010 31 / 58

Pre and post-increment

What is the difference between x++ and ++x?

They are both expressions that can be used inside other
expressions (like assignment), as follows;

int a, x;
x = 5;

a = ++x; // what is the value of a after the assignment?

The only difference is the value of the expression:
x++ has the value of x before the increment;
++x has the value of x after the increment;

G. Lipari (Scuola Superiore Sant’Anna) Introduction to C programming October 25, 2010 31 / 58

Pre and post-increment

What is the difference between x++ and ++x?

They are both expressions that can be used inside other
expressions (like assignment), as follows;

int a, x;
x = 5;

a = ++x; // what is the value of a after the assignment?

The only difference is the value of the expression:
x++ has the value of x before the increment;
++x has the value of x after the increment;

x = 5;
a = x++; // value of a is 5, b is 6

G. Lipari (Scuola Superiore Sant’Anna) Introduction to C programming October 25, 2010 31 / 58

Pre and post-increment

What is the difference between x++ and ++x?

They are both expressions that can be used inside other
expressions (like assignment), as follows;

int a, x;
x = 5;

a = ++x; // what is the value of a after the assignment?

The only difference is the value of the expression:
x++ has the value of x before the increment;
++x has the value of x after the increment;

x = 5;
a = x++; // value of a is 5, b is 6

x = 5;
a = ++x; // value of a is 6, b is 6

G. Lipari (Scuola Superiore Sant’Anna) Introduction to C programming October 25, 2010 31 / 58

Boolean operators

In there is no boolean type

Every expression with a value equal to 0 is interpreted as false

Every expression with a value different from 0 is interpreted as
true

It is possible to use the following boolean operators:
&& logical and operator

|| logical or operator
! logical not operator

It is possible to interpret integer values as booleans and vice versa

int a, b, c;
a = 0; b = 5;

c = a && b; // after assignment, c is 0;
c = a || b; // after assignment, c is 1;
c = !b; // after assignment, c is 0;

G. Lipari (Scuola Superiore Sant’Anna) Introduction to C programming October 25, 2010 32 / 58

Comparison operators

These operators compare numbers, giving 0 or 1 (hence a
boolean value) as result

< less than
<= less than or equal to
> greater than

>= greater than or equal to
== equal

!= not equal

G. Lipari (Scuola Superiore Sant’Anna) Introduction to C programming October 25, 2010 33 / 58

Comparison operators

These operators compare numbers, giving 0 or 1 (hence a
boolean value) as result

< less than
<= less than or equal to
> greater than

>= greater than or equal to
== equal

!= not equal
int a = 7; int b = 10; int c = 7;

int res;

res = a < b; // res is 1
res = a <= c; // res is 1
res = a < c; // res is 0

res = b == c; // res is 0

(will come back to these later)

G. Lipari (Scuola Superiore Sant’Anna) Introduction to C programming October 25, 2010 33 / 58

Binary operators

It is possible to do binary operations on integer variables using the
following operators:

& binary (bit-to-bit) and
| binary (bit-to-bit) or

∼ binary (bit-to-bit) not (complement)

unsigned char a = 1; // in binary: 0000 0001
unsigned char b = 2; // in binary: 0000 0010
unsigned char c = 5; // in binary: 0000 0101
unsigned char d;

d = a & b; // d is now 0000 0000
d = a & c; // d is now 0000 0001
d = a | b; // d is now 0000 0011
d = ~a; // d is now 1111 1110

G. Lipari (Scuola Superiore Sant’Anna) Introduction to C programming October 25, 2010 34 / 58

Outline

1 First steps

2 Declarations and definitions

3 Variables
Simple Input/output
First exercises
Advanced operators

4 Statements and control flow
If then else
While loop
For loop
Exercises

G. Lipari (Scuola Superiore Sant’Anna) Introduction to C programming October 25, 2010 35 / 58

Execution flow

Usually, instructions are executed sequentially, one after the other,
until the end of the function

G. Lipari (Scuola Superiore Sant’Anna) Introduction to C programming October 25, 2010 36 / 58

Execution flow

Usually, instructions are executed sequentially, one after the other,
until the end of the function

However, in many cases we must execute alternative instructions,
depending on the value of certain expressions

G. Lipari (Scuola Superiore Sant’Anna) Introduction to C programming October 25, 2010 36 / 58

Execution flow

Usually, instructions are executed sequentially, one after the other,
until the end of the function

However, in many cases we must execute alternative instructions,
depending on the value of certain expressions

Also, sometimes we need to repeat instructions a number of
times, or until a certain condition is verified

G. Lipari (Scuola Superiore Sant’Anna) Introduction to C programming October 25, 2010 36 / 58

Execution flow

Usually, instructions are executed sequentially, one after the other,
until the end of the function

However, in many cases we must execute alternative instructions,
depending on the value of certain expressions

Also, sometimes we need to repeat instructions a number of
times, or until a certain condition is verified

we need to control the execution flow

G. Lipari (Scuola Superiore Sant’Anna) Introduction to C programming October 25, 2010 36 / 58

Outline

1 First steps

2 Declarations and definitions

3 Variables
Simple Input/output
First exercises
Advanced operators

4 Statements and control flow
If then else
While loop
For loop
Exercises

G. Lipari (Scuola Superiore Sant’Anna) Introduction to C programming October 25, 2010 37 / 58

If statement

To select alternative paths, we can use the if then else statement

The general form is the following:

if (<expression>)
statement;

<expression> must be a boolean expression;

G. Lipari (Scuola Superiore Sant’Anna) Introduction to C programming October 25, 2010 38 / 58

If statement

To select alternative paths, we can use the if then else statement

The general form is the following:

if (<expression>)
statement;

<expression> must be a boolean expression;

The statement can be a single code instruction, or a block of code:

if (<expression>) {
statement1;
statement2;
statement3;

}

A block is a set of statements encloses by curly braces {}

G. Lipari (Scuola Superiore Sant’Anna) Introduction to C programming October 25, 2010 38 / 58

Examples

here are two example of usage of if

int x;
...
if (x % 2)

printf("number %d is odd\n", x);

double a;

if (a < 0) {
printf("a is negative!\n");
a = -a;
printf("a is now positive\n");

}

G. Lipari (Scuola Superiore Sant’Anna) Introduction to C programming October 25, 2010 39 / 58

Complete form

In its most complete form:
if (<expression>)

statement1;
else

statement2;

Of course, both statement1 and statement2 can be blocks of
statements;
if (x > 0) {

if (y > 0)
printf("Northeast.\n");

else
printf("Southeast.\n");

}
else {

if (y > 0)
printf("Northwest.\n");

else
printf("Southwest.\n");

}

G. Lipari (Scuola Superiore Sant’Anna) Introduction to C programming October 25, 2010 40 / 58

Statements

A statement can be:
an expression;
a if then else construct;
a block of statements (recursive definition!)

Expressions and statements are not the same thing!
You can use expressions wherever you can use a statement
You cannot use a statement where you see "expression"!

For example, you cannot use a statement inside a if condition!

But you can use another if as a statement

G. Lipari (Scuola Superiore Sant’Anna) Introduction to C programming October 25, 2010 41 / 58

Statements - 2

You can write the following:

if (x > 0) if (y > 0) printf("north east\n");
else printf("south east\n");

else if (y > 0) printf("north west\n");
else printf("south west\n");

here if is used as a statement inside another if

G. Lipari (Scuola Superiore Sant’Anna) Introduction to C programming October 25, 2010 42 / 58

Statements - 2

You can write the following:

if (x > 0) if (y > 0) printf("north east\n");
else printf("south east\n");

else if (y > 0) printf("north west\n");
else printf("south west\n");

here if is used as a statement inside another if

You cannot write the following:

if (if (x > 0)) ...

in facts, an if condition can only be an expression!

G. Lipari (Scuola Superiore Sant’Anna) Introduction to C programming October 25, 2010 42 / 58

Statements - 2

You can write the following:

if (x > 0) if (y > 0) printf("north east\n");
else printf("south east\n");

else if (y > 0) printf("north west\n");
else printf("south west\n");

here if is used as a statement inside another if

You cannot write the following:

if (if (x > 0)) ...

in facts, an if condition can only be an expression!
Remember:

An expression has always a (numerical) value which is the result of
an operation

G. Lipari (Scuola Superiore Sant’Anna) Introduction to C programming October 25, 2010 42 / 58

Statements - 2

You can write the following:

if (x > 0) if (y > 0) printf("north east\n");
else printf("south east\n");

else if (y > 0) printf("north west\n");
else printf("south west\n");

here if is used as a statement inside another if

You cannot write the following:

if (if (x > 0)) ...

in facts, an if condition can only be an expression!
Remember:

An expression has always a (numerical) value which is the result of
an operation
0 is interpreted as false, any other number is interpreted as true

G. Lipari (Scuola Superiore Sant’Anna) Introduction to C programming October 25, 2010 42 / 58

Statements - 2

You can write the following:

if (x > 0) if (y > 0) printf("north east\n");
else printf("south east\n");

else if (y > 0) printf("north west\n");
else printf("south west\n");

here if is used as a statement inside another if

You cannot write the following:

if (if (x > 0)) ...

in facts, an if condition can only be an expression!
Remember:

An expression has always a (numerical) value which is the result of
an operation
0 is interpreted as false, any other number is interpreted as true
A statement may be an expression (in which case it has a
numerical value), or something else

G. Lipari (Scuola Superiore Sant’Anna) Introduction to C programming October 25, 2010 42 / 58

More on if conditions

To check if variable i is between 1 and 10:

if (i <= 10 && i>= 1) ...

or alternatively:

if (1 <= i && i <= 10) ...

G. Lipari (Scuola Superiore Sant’Anna) Introduction to C programming October 25, 2010 43 / 58

More on if conditions

To check if variable i is between 1 and 10:

if (i <= 10 && i>= 1) ...

or alternatively:

if (1 <= i && i <= 10) ...

Don’t use the following:

if (1 <= i <= 10) ...

(what happens? check out
./examples/01.intro_c-examples/condition1.c)

G. Lipari (Scuola Superiore Sant’Anna) Introduction to C programming October 25, 2010 43 / 58

./examples/01.intro_c-examples/condition1.c

Common mistakes

One common mistake is the following:

int a = 5;
if (a = 0) printf("a is 0\n");
else printf("a is different from 0\n");

What does the code above print on screen? (see
./examples/01.intro_c-examples/condition2.c)

G. Lipari (Scuola Superiore Sant’Anna) Introduction to C programming October 25, 2010 44 / 58

./examples/01.intro_c-examples/condition2.c

Common mistakes

One common mistake is the following:

int a = 5;
if (a = 0) printf("a is 0\n");
else printf("a is different from 0\n");

What does the code above print on screen? (see
./examples/01.intro_c-examples/condition2.c)

The value of expression a = 0 (which is an assignment, not a
comparison!) is 0, i.e. the value of a after the assignment

Probably, the programmer wanted to say something else:

if (a == 0) printf("a is 0\n");
else printf("a is different from 0\n");

G. Lipari (Scuola Superiore Sant’Anna) Introduction to C programming October 25, 2010 44 / 58

./examples/01.intro_c-examples/condition2.c

Outline

1 First steps

2 Declarations and definitions

3 Variables
Simple Input/output
First exercises
Advanced operators

4 Statements and control flow
If then else
While loop
For loop
Exercises

G. Lipari (Scuola Superiore Sant’Anna) Introduction to C programming October 25, 2010 45 / 58

Loops

In many cases, we need to execute the same code many times,
each time on a different set of values
Example:

Given an integer number stored in variable a, print “number is
prime” if the number is prime (divisible only by 1 and by itself)

G. Lipari (Scuola Superiore Sant’Anna) Introduction to C programming October 25, 2010 46 / 58

Loops

In many cases, we need to execute the same code many times,
each time on a different set of values
Example:

Given an integer number stored in variable a, print “number is
prime” if the number is prime (divisible only by 1 and by itself)
To solve the problem, we need to check the remainder of the
division between a and all numbers less than a. If it is always
different from 0, then the number is prime

G. Lipari (Scuola Superiore Sant’Anna) Introduction to C programming October 25, 2010 46 / 58

Loops

In many cases, we need to execute the same code many times,
each time on a different set of values
Example:

Given an integer number stored in variable a, print “number is
prime” if the number is prime (divisible only by 1 and by itself)
To solve the problem, we need to check the remainder of the
division between a and all numbers less than a. If it is always
different from 0, then the number is prime
However, we do not know the value of a before program execution;
how many division should we do?

G. Lipari (Scuola Superiore Sant’Anna) Introduction to C programming October 25, 2010 46 / 58

Loops

In many cases, we need to execute the same code many times,
each time on a different set of values
Example:

Given an integer number stored in variable a, print “number is
prime” if the number is prime (divisible only by 1 and by itself)
To solve the problem, we need to check the remainder of the
division between a and all numbers less than a. If it is always
different from 0, then the number is prime
However, we do not know the value of a before program execution;
how many division should we do?

G. Lipari (Scuola Superiore Sant’Anna) Introduction to C programming October 25, 2010 46 / 58

Loops

In many cases, we need to execute the same code many times,
each time on a different set of values
Example:

Given an integer number stored in variable a, print “number is
prime” if the number is prime (divisible only by 1 and by itself)
To solve the problem, we need to check the remainder of the
division between a and all numbers less than a. If it is always
different from 0, then the number is prime
However, we do not know the value of a before program execution;
how many division should we do?

Solution: use the while construct

G. Lipari (Scuola Superiore Sant’Anna) Introduction to C programming October 25, 2010 46 / 58

While loop

The general form:

while (<expression>) statement;

As usual, statement can also be a block of statements

G. Lipari (Scuola Superiore Sant’Anna) Introduction to C programming October 25, 2010 47 / 58

While loop

The general form:

while (<expression>) statement;

As usual, statement can also be a block of statements

Similar to an if, but the statement is performed iteratively while the
condition is “true” (i.e. different from 0)

Example: sum the first 10 numbers:

int sum = 0;
int i = 0;

while (i < 10) {
sum = sum + i;
i = i + 1;

}

printf("The sum of the first 10 numbers: %d\n", sum);

G. Lipari (Scuola Superiore Sant’Anna) Introduction to C programming October 25, 2010 47 / 58

Break and continue statements

Sometimes we need to go out of the loop immediately, without
completing the rest of the statements. To do this we can use the
break statement
int i = 0;
while (i < 10) {

i++;
if ((i % 5) == 0) break;
printf("%d is not divisible by 5\n", i);

}
printf("Out of the loop");

G. Lipari (Scuola Superiore Sant’Anna) Introduction to C programming October 25, 2010 48 / 58

Break and continue statements

Sometimes we need to go out of the loop immediately, without
completing the rest of the statements. To do this we can use the
break statement
int i = 0;
while (i < 10) {

i++;
if ((i % 5) == 0) break;
printf("%d is not divisible by 5\n", i);

}
printf("Out of the loop");

Another possibility is to continue with the next iteration without
complete the rest of the statements:
int i = 0;
while (i < 10) {

i++;
if (i % 5 != 0) continue;
printf("%d is divisible by 5\n", i);

}
printf("Out of the loop\n");

G. Lipari (Scuola Superiore Sant’Anna) Introduction to C programming October 25, 2010 48 / 58

Prime numbers

isprime.c

int main()
{

int k, i, flag;

printf("This program tests if a number is prime\n");
printf("Insert a number: ");
scanf("%d", &k);

flag = 1;
i = 2;

while (i < k) {
if (k % i == 0) {

printf("%d is a divisor: %d = %d x %d\n", i, k, i, k/i);
flag = 0;
break;

}
i++;

}
printf("%d is ", k);
if (!flag) printf("not ");
printf("prime\n");

G. Lipari (Scuola Superiore Sant’Anna) Introduction to C programming October 25, 2010 49 / 58

./examples/01.intro_c-examples/isprime.c

Outline

1 First steps

2 Declarations and definitions

3 Variables
Simple Input/output
First exercises
Advanced operators

4 Statements and control flow
If then else
While loop
For loop
Exercises

G. Lipari (Scuola Superiore Sant’Anna) Introduction to C programming October 25, 2010 50 / 58

Loops

if then else and while constructs are all we need to program

G. Lipari (Scuola Superiore Sant’Anna) Introduction to C programming October 25, 2010 51 / 58

Loops

if then else and while constructs are all we need to program
It can be proved in theoretical computer science that with one loop
construct and one selection construct, the language is equivalent to
a Turing Machine, the simplest and more general kind of calculator

G. Lipari (Scuola Superiore Sant’Anna) Introduction to C programming October 25, 2010 51 / 58

Loops

if then else and while constructs are all we need to program
It can be proved in theoretical computer science that with one loop
construct and one selection construct, the language is equivalent to
a Turing Machine, the simplest and more general kind of calculator

However, sometimes using only while loops can be annoying

G. Lipari (Scuola Superiore Sant’Anna) Introduction to C programming October 25, 2010 51 / 58

Loops

if then else and while constructs are all we need to program
It can be proved in theoretical computer science that with one loop
construct and one selection construct, the language is equivalent to
a Turing Machine, the simplest and more general kind of calculator

However, sometimes using only while loops can be annoying

The C language provides two more loop constructs: for loops and
do-while loops

G. Lipari (Scuola Superiore Sant’Anna) Introduction to C programming October 25, 2010 51 / 58

For loop

The most general form is the following:

for(<expr1>; <expr2>; <expr3>) statement;

G. Lipari (Scuola Superiore Sant’Anna) Introduction to C programming October 25, 2010 52 / 58

For loop

The most general form is the following:

for(<expr1>; <expr2>; <expr3>) statement;

expr1 is also called initialization; it is executed before entering the
first loop iteration
expr2 is also called condition; it is checked before every iteration;

if it is false, the loop is terminated;
if it is true, the iteration is performed

expr3 is also called instruction; it is performed at the end of every
iteration

The most common usage is the following:

for (i=0; i<10; i++)
printf("The value of i is now %d\n", i);

G. Lipari (Scuola Superiore Sant’Anna) Introduction to C programming October 25, 2010 52 / 58

Sum the first 10 numbers

int n = 10;
int i;
int sum = 0;

for (i=0; i<n; i++) sum += i;

printf("The sum of the first %d numbers is %d\n", n, sum);

G. Lipari (Scuola Superiore Sant’Anna) Introduction to C programming October 25, 2010 53 / 58

Prime numbers

isprime2.c

int main()
{

int k, i, flag;

printf("This program tests if a number is prime\n");
printf("Insert a number: ");
scanf("%d", &k);

flag = 1;

for (i=2; i<k/2; i++)
if (k % i == 0) {

printf("%d is a divisor: %d = %d x %d\n", i, k, i, k/i);
flag = 0;
break;

}

printf("%d is ", k);
if (!flag) printf("not ");
printf("prime\n");

G. Lipari (Scuola Superiore Sant’Anna) Introduction to C programming October 25, 2010 54 / 58

./examples/01.intro_c-examples/isprime2.c

Equivalence between for and while

We can always rewrite any while loop as a for loop, and vice versa

G. Lipari (Scuola Superiore Sant’Anna) Introduction to C programming October 25, 2010 55 / 58

Equivalence between for and while

We can always rewrite any while loop as a for loop, and vice versa

for (expr1; expr2; expr3) statement;

can be rewritten as:

expr1;
while (expr2) {

statement;
expr3;

}

G. Lipari (Scuola Superiore Sant’Anna) Introduction to C programming October 25, 2010 55 / 58

Equivalence between for and while

We can always rewrite any while loop as a for loop, and vice versa

for (expr1; expr2; expr3) statement;

can be rewritten as:

expr1;
while (expr2) {

statement;
expr3;

}

On the other hand, the following while loop;

while (expr) statement;

can be rewritten as:

for(; expr ;) statement;

G. Lipari (Scuola Superiore Sant’Anna) Introduction to C programming October 25, 2010 55 / 58

Outline

1 First steps

2 Declarations and definitions

3 Variables
Simple Input/output
First exercises
Advanced operators

4 Statements and control flow
If then else
While loop
For loop
Exercises

G. Lipari (Scuola Superiore Sant’Anna) Introduction to C programming October 25, 2010 56 / 58

Exercises

1 Given the following for loop, rewrite it as a while loop;

int k, i=0; j=8;
for (k=0; k<j; k++) {

i = k+j;
j--;
printf("i is now %d\n", i);

}

G. Lipari (Scuola Superiore Sant’Anna) Introduction to C programming October 25, 2010 57 / 58

Exercises

1 Given the following for loop, rewrite it as a while loop;

int k, i=0; j=8;
for (k=0; k<j; k++) {

i = k+j;
j--;
printf("i is now %d\n", i);

}

2 Write a program that, given an integer number in input, prints on
screen all prime factors of the number,

G. Lipari (Scuola Superiore Sant’Anna) Introduction to C programming October 25, 2010 57 / 58

Exercises

1 Given the following for loop, rewrite it as a while loop;

int k, i=0; j=8;
for (k=0; k<j; k++) {

i = k+j;
j--;
printf("i is now %d\n", i);

}

2 Write a program that, given an integer number in input, prints on
screen all prime factors of the number,

For example, given 6, prints 2, 3

G. Lipari (Scuola Superiore Sant’Anna) Introduction to C programming October 25, 2010 57 / 58

Exercises

1 Given the following for loop, rewrite it as a while loop;

int k, i=0; j=8;
for (k=0; k<j; k++) {

i = k+j;
j--;
printf("i is now %d\n", i);

}

2 Write a program that, given an integer number in input, prints on
screen all prime factors of the number,

For example, given 6, prints 2, 3
given 24, prints 2, 2, 2, 3

G. Lipari (Scuola Superiore Sant’Anna) Introduction to C programming October 25, 2010 57 / 58

Exercises

1 Given the following for loop, rewrite it as a while loop;

int k, i=0; j=8;
for (k=0; k<j; k++) {

i = k+j;
j--;
printf("i is now %d\n", i);

}

2 Write a program that, given an integer number in input, prints on
screen all prime factors of the number,

For example, given 6, prints 2, 3
given 24, prints 2, 2, 2, 3
given 150, prints 2, 3, 5, 5

G. Lipari (Scuola Superiore Sant’Anna) Introduction to C programming October 25, 2010 57 / 58

Exercises

1 Given the following for loop, rewrite it as a while loop;

int k, i=0; j=8;
for (k=0; k<j; k++) {

i = k+j;
j--;
printf("i is now %d\n", i);

}

2 Write a program that, given an integer number in input, prints on
screen all prime factors of the number,

For example, given 6, prints 2, 3
given 24, prints 2, 2, 2, 3
given 150, prints 2, 3, 5, 5
etc.

G. Lipari (Scuola Superiore Sant’Anna) Introduction to C programming October 25, 2010 57 / 58

Exercises

1 Given the following for loop, rewrite it as a while loop;

int k, i=0; j=8;
for (k=0; k<j; k++) {

i = k+j;
j--;
printf("i is now %d\n", i);

}

2 Write a program that, given an integer number in input, prints on
screen all prime factors of the number,

For example, given 6, prints 2, 3
given 24, prints 2, 2, 2, 3
given 150, prints 2, 3, 5, 5
etc.
Suggestion: use a while loop initially

G. Lipari (Scuola Superiore Sant’Anna) Introduction to C programming October 25, 2010 57 / 58

Exercises: strange for loops

Since an expression can be pretty much everything, you can write lot
of strange things with for loops

1 Incrementing 2 variables with the comma operator:

int i, j;
for (i=0, j=0; i < 5; i++, j+=2)

printf(" i = %d, j = %d\n", i, j);

What does the code above print on screen?

2 What the code below prints on screen?

int i;
int g=0;
for (i=0; i<10; g += i++);
printf("%d", g);

G. Lipari (Scuola Superiore Sant’Anna) Introduction to C programming October 25, 2010 58 / 58

	First steps
	Declarations and definitions
	Variables
	Simple Input/output
	First exercises
	Advanced operators

	Statements and control flow
	If then else
	While loop
	For loop
	Exercises

