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Methodology

• We present here a structured methodology for 
programming in shared memory systems

• The methodology leads to “safe” programs

• Not necessarily optimized! 

• Programmers can always use their intelligence 
and come up with “elegant” solutions
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Shared memory programming

• A program is a set of 
– threads that interact by accessing ...

– data structures (shared resources)

• A data structure can be seen as
– a set of variables

– a set of functions operating on the variables

• Threads
– access the data structures only through functions
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Object Oriented programming

class SharedData {
int array[10];
int first, last; 
...

public:
SharedData();
int insert(int a);
int extract();

}

• In C++

• In C struct SharedData {
int array[10];
int first, last; 

}; ...

SharedData_init(struct SharedData *d);
int SharedData_insert(struct SharedData *d,  int a);
int SharedData_extract(struct SharedData *d);
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Shared Data structure

• Encapsulating the semaphores
– The data structure 

• should already include the mechanisms for mutual exclusion 
and synchronization

• for example, the CircularArray data structure

– Functions on the data structure
• should use the semaphores inside the function

– Threads
• can only access the data structure through functions
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How to program the data structure?

• Some design considerations
– First, design the interface: that is, which functions the 

threads need to call

– Mutual exclusion
• for simplicity, all functions on the same data struture should 

be in mutual exclusion

• maybe, this is not optimized, but it is SAFE!
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Mutual exclusion

• For each data structure, 
– define a mutual exclusion semaphore, initialized to 1

• For each function
– just after starting the function, take the semaphore, 

and leave it before returning
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Mutual exclusion

• Example
class MyData {

...;
sem_t m;
...;

public:
MyData() { 

...
sem_init(&m, 0, 1);

}

int myfun() {
sem_wait(&m);
....
sem_post(&m);

}
};
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Synchronization

• Design consideration
– Specify the behavior of the functions 

• under which conditions a calling thread should be blocked?

– Identify all different blocking conditions
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Synchronization

• Other design considerations
– identify unblocking conditions

• when a blocked thread should be unblocked

• mark the functions that should unblock those threads

• Putting all togheter
– draw a state diagram for the resource

– STATES: the various states of the resource

– EVENTS: threads that call the functions
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Example: CircularArray with Manager

• Problem explaination

• Design the data structure interface

• Identify blocking and unblocking conditions

• Draw the state diagram
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Coding Rules

• For each blocking condition

– a semaphore initialized to 0 (blocking semaphore)

– an integer that counts the number of blocked 
threads on the condition (blocking counter) (init to 0)

• One (or more) integer variable(s) to code the state

• Write the initialization function (constructor in C++)
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The functions

• Finally, code the functions
– take the mutex at the beginning

– check the blocking conditions (if any)

– if the thread has to be blocked, 

• increment the blocking counter, signal on the mutex, wait on 
the blocking semaphore, wait on the mutex

– perform the code, change state if necessary

– check unblocking conditions

– if a thread has to be unblocked

• decrement the blocked counter, signal the semaphore
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The code
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A subtle error

• The “man in the middle” problem

• Solution:
– check blocking conditions in a while() loop
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Passing “le baton”

• A (more elegant) solution
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MONITORS
PTHREADS – MUTEXES AND CONDITION 

VARIABLES
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Monitors

 Monitors are a language structure equivalent 
to semaphores, but cleaner
 A monitor is similar to an object in a OO 

language
 It contains variables and provides procedures to 

other software modules
 Only one thread can execute a procedure at a 

certain time
Any other thread that has invoked the procedure is 

blocked and waits for the first threads to exit
Therefore, a monitor implicitely provides mutual 

exclusion
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Monitors

 Monitors support synchronization with Condition 
Variables
 A condition variable is a blocking queue
 Two operations are defined on a condition variable

wait() -> suspends the calling thread on the queue
 signal() -> resume execution of one thread blocked on the 

queue

 Important note: 
 wait() and signal() operation on a condition variable are 

different from wait and signal on a semaphore!
 There is not any counter in a condition variable!
 If we do a signal on a condition variable with an empty 

queue, the signal is lost
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Monitors in Java

• Java provides something that vaguely resembles 
monitors
– the “synchronized” keyword allows to define classes 

with protected functions

– every “synchronized” class has one implicit condition 
variable

– you can “signal” one thread with notify(); and all 
threads with notifyAll();
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Monitors in POSIX

• It is not possible to provide monitors in C
– C and C++ do not provide any concurrency control 

mechanism; they are “purely sequential languages”

• POSIX allows something similar to Monitors 
through library calls
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Slides on POSIX monitors
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Exercises on POSIX monitors
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COMPLEX SYNCHRONIZATION PROBLEMS

READERS - WRITERS
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Readers/writers

 One shared buffer
 Readers: 

 They read the content of the buffer
 Many readers can read at the same time

 Writers
 They write in the buffer
 While one writer is writing no other reader or 

writer can access the buffer

 Use semaphores to implement the resource



ERI Gennaio 2008 27

Simple implementation

class Buffer {
Semaphore wsem;
Semaphore x;
int nr;

public: 
Buffer() : wsem(1), x(1), nr(0) {}
void read();
void write();

} buffer;

void Buffer::read() {
x.wait();
nr++;
if (nr==1) wsem.wait();
x.signal();
<read the buffer>
x.wait();
nr--;
if (nr==0) wsem.signal();
x.signal();

}

void Buffer::write() {
wsem.wait();
<write the buffer>
wsem.signal();

}
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Problem: starvation

 Suppose we have 2 readers (R1 and R2) 
and 1 writer (W1)
 Suppose that R1 starts to read
 While R1 is reading, W1 blocks because it wants 

to write
 Now R2 starts to read
 Now R1 finishes, but, since R2 is reading, W1 

cannot be unblocked
 Before R2 finishes to read, R1 starts to read 

again
 When R2 finishes, W1 cannot be unblocked 

because R1 is reading
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Priority to writers!

class Buffer {
Semaphore x, y, z, wsem, rsem;
int nr, nw;

public: 
Buffer() : x(1), y(1), z(1), wsem(1), rsem(1), nr(0), nw(0) {}

} 

void Buffer::read() {
z.wait();
rsem.wait();
x.wait();
nr++;
if (nr==1) wsem.wait();
x.signal();
rsem.signal();
z.signal();
<read the buffer>
x.wait();
nr--;
if (nr==0) wsem.signal();
x.signal();

}

void Buffer::write() {
y.wait();
nw++;
if (nw==1) rsem.wait();
y.signal();
wsem.wait();
<write the buffer>
wsem.signal();
y.wait();
nw--;
if (nw == 0) rsem.signal();
y.signal();

}



ERI Gennaio 2008 30

Problem

 Can you solve the readers/writers problem in 
the general case?
 No starvation for readers
 No starvation for writers

 Solution
 Maintain a FIFO ordering with requests

If at least one writer is blocked, every next reader 
blocks

If at least one reader is blocked, every next writer 
blocks

One single semaphore!
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Solution

class Buffer {
int nbr, nbw;
int nr, nw;
Semaphore rsem, wsem;
Semaphore m;

public:
Buffer():

nbw(0),nbr(0), nr(0), nw(0), 
rsem(0), wsem(0) {}

void read();
void write();

};
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Solution

void Buffer::read()
{

m.wait();
if (nw || nbw) { 

nbr++;
m.signal();rsem.wait();m.wait();
while (nbr>0) 

{nbr--;rsem.signal();}
}
nr++;
m.signal();
<read buffer>;
m.wait();
nr--;
if (nbw && nr == 0) wsem.signal();
m.signal();

}

void Buffer::write()
{

m.wait();
if (nw || nbw || nr || nbr) { 

nbw++;
m.signal();wsem.wait();m.wait();
nbw--;

}
nw++;
m.signal();
<read buffer>;
m.wait();
nw--;
if (nbr) {nbr--; rsem.signal();}
else if (nbw) wsem.signal();
m.signal();

}
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MESSAGE PASSING
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Message passing

 Message passing systems are based on the 
basic concept of message

 Two basic operations
 send(destination, message);

 receive(source, &message);

 Two variants
Both operations can be synchronous or asynchronous

receive can be symmetric or asymmetric
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Producer/Consumer with MP 

 The producer executes send(consumer, 
data)

 The consumer executes receive(producer, 
data);

 No need for a special communication 
structure (already contained in the 
send/receive semantic)

Producer Consumer
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Synchronous communication

 Synchronous send/receive
producer:  
   s_send(consumer, d);

consumer:
   s_receive(producer, &d);

producer consumer

send

receive

blocked

producer consumer

send

receive

blocked



ERI Gennaio 2008 37

Async send/ Sync receive

 Asynchronous send / synchronous receive
producer:  

   a_send(consumer, d);

consumer:

   s_receive(producer, &d);

producer consumer

send

receiveproducer consumer

send

receive

blocked
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Asymmetric receive

 Symmetric receive
 receive(source, &data);

 Often, we do not know who is the sender
 Imagine a web server; 

the programmer cannot know in advance the address 
of the browser that will request the service

Many browser can ask for the same service

 Asymmetric receive
 source = receive(&data);
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Message passing systems

 In message passing
 Each resource needs one threads manager
 The threads manager is responsible for giving 

access to the resource
 Example: let’s try to implement mutual 

exclusion with message passing primitives
 One thread will ensure mutual exclusion
 Every thread that wants to access the resourec 

must
send a message to the manager thread
access the critical section
send a message to signal the leaving of the critical 

section
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Sync send / sync receive

void * manager(void *)
{

thread_t source;
int d;
while (true) {

source = s_receive(&d);
s_receive_from(source, &d);

}
}

void * thread(void *)
{

int d;
while (true) {

s_send(manager, d);
<critical section>
s_send(manager, d);

}
}

manager

TA

TB

<critical section>

<critical section>

rec_from rec rec_fromrec

send send

send send
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With Async send and sync receive

void * manager(void *)
{

thread_t source;
int d;
while (true) {

source = s_receive(&d);
a_send(source,d);
s_receive_from(source,&d);

}
}

void * thread(void *)
{

int d;
while (true) {

a_send(manager, d);
s_receive_from(manager, &d);
<critical section>
a_send(manager, d);

}
}

manager

TA

TB

<critical section>

<critical section>

rec_fro
m

rec rec_fromrec send send
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A different approach

• Shared memory
– each resource is a class

– threads ask for services 
through functions calls

– they synchronize through 
mutexes and condition 
variable

• Message Passing
– each resource has a 

manager thread

– threads ask for services 
through messages and 
receive response through 
messages

– they synchronize through 
blocking receives
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Resources and Manager

• For each resource
– a “manager” thread takes care of executing the 

services on behalf of the clients/threads

– general structure of a manager:
• wait for a message

• decode the message, execute the service

• eventually, send back the response

– The manager sequentializes all services
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