
Scuola Superiore Sant’Anna

A design Methodology for Concurrent
programs

Giuseppe Lipari

ERI Gennaio 2008 2

A DESIGN METHODOLOGY FOR SHARED
MEMORY PROGRAMS

ERI Gennaio 2008 3

Methodology

• We present here a structured methodology for
programming in shared memory systems

• The methodology leads to “safe” programs

• Not necessarily optimized!

• Programmers can always use their intelligence
and come up with “elegant” solutions

ERI Gennaio 2008 4

Shared memory programming

• A program is a set of
– threads that interact by accessing ...

– data structures (shared resources)

• A data structure can be seen as
– a set of variables

– a set of functions operating on the variables

• Threads
– access the data structures only through functions

ERI Gennaio 2008 5

Object Oriented programming

class SharedData {
int array[10];
int first, last;
...

public:
SharedData();
int insert(int a);
int extract();

}

• In C++

• In C struct SharedData {
int array[10];
int first, last;

}; ...

SharedData_init(struct SharedData *d);
int SharedData_insert(struct SharedData *d, int a);
int SharedData_extract(struct SharedData *d);

ERI Gennaio 2008 6

Shared Data structure

• Encapsulating the semaphores
– The data structure

• should already include the mechanisms for mutual exclusion
and synchronization

• for example, the CircularArray data structure

– Functions on the data structure
• should use the semaphores inside the function

– Threads
• can only access the data structure through functions

ERI Gennaio 2008 7

How to program the data structure?

• Some design considerations
– First, design the interface: that is, which functions the

threads need to call

– Mutual exclusion
• for simplicity, all functions on the same data struture should

be in mutual exclusion

• maybe, this is not optimized, but it is SAFE!

ERI Gennaio 2008 8

Mutual exclusion

• For each data structure,
– define a mutual exclusion semaphore, initialized to 1

• For each function
– just after starting the function, take the semaphore,

and leave it before returning

ERI Gennaio 2008 9

Mutual exclusion

• Example
class MyData {

...;
sem_t m;
...;

public:
MyData() {

...
sem_init(&m, 0, 1);

}

int myfun() {
sem_wait(&m);
....
sem_post(&m);

}
};

ERI Gennaio 2008 10

Synchronization

• Design consideration
– Specify the behavior of the functions

• under which conditions a calling thread should be blocked?

– Identify all different blocking conditions

ERI Gennaio 2008 11

Synchronization

• Other design considerations
– identify unblocking conditions

• when a blocked thread should be unblocked

• mark the functions that should unblock those threads

• Putting all togheter
– draw a state diagram for the resource

– STATES: the various states of the resource

– EVENTS: threads that call the functions

ERI Gennaio 2008 12

Example: CircularArray with Manager

• Problem explaination

• Design the data structure interface

• Identify blocking and unblocking conditions

• Draw the state diagram

ERI Gennaio 2008 13

Coding Rules

• For each blocking condition

– a semaphore initialized to 0 (blocking semaphore)

– an integer that counts the number of blocked
threads on the condition (blocking counter) (init to 0)

• One (or more) integer variable(s) to code the state

• Write the initialization function (constructor in C++)

ERI Gennaio 2008 14

The functions

• Finally, code the functions
– take the mutex at the beginning

– check the blocking conditions (if any)

– if the thread has to be blocked,

• increment the blocking counter, signal on the mutex, wait on
the blocking semaphore, wait on the mutex

– perform the code, change state if necessary

– check unblocking conditions

– if a thread has to be unblocked

• decrement the blocked counter, signal the semaphore

ERI Gennaio 2008 15

The code

ERI Gennaio 2008 16

A subtle error

• The “man in the middle” problem

• Solution:
– check blocking conditions in a while() loop

ERI Gennaio 2008 17

Passing “le baton”

• A (more elegant) solution

ERI Gennaio 2008 18

MONITORS
PTHREADS – MUTEXES AND CONDITION

VARIABLES

ERI Gennaio 2008 19

Monitors

 Monitors are a language structure equivalent
to semaphores, but cleaner
 A monitor is similar to an object in a OO

language
 It contains variables and provides procedures to

other software modules
 Only one thread can execute a procedure at a

certain time
Any other thread that has invoked the procedure is

blocked and waits for the first threads to exit
Therefore, a monitor implicitely provides mutual

exclusion

ERI Gennaio 2008 20

Monitors

 Monitors support synchronization with Condition
Variables
 A condition variable is a blocking queue
 Two operations are defined on a condition variable

wait() -> suspends the calling thread on the queue
 signal() -> resume execution of one thread blocked on the

queue

 Important note:
 wait() and signal() operation on a condition variable are

different from wait and signal on a semaphore!
 There is not any counter in a condition variable!
 If we do a signal on a condition variable with an empty

queue, the signal is lost

ERI Gennaio 2008 21

Monitors in Java

• Java provides something that vaguely resembles
monitors
– the “synchronized” keyword allows to define classes

with protected functions

– every “synchronized” class has one implicit condition
variable

– you can “signal” one thread with notify(); and all
threads with notifyAll();

ERI Gennaio 2008 22

Monitors in POSIX

• It is not possible to provide monitors in C
– C and C++ do not provide any concurrency control

mechanism; they are “purely sequential languages”

• POSIX allows something similar to Monitors
through library calls

ERI Gennaio 2008 23

Slides on POSIX monitors

ERI Gennaio 2008 24

Exercises on POSIX monitors

ERI Gennaio 2008 25

COMPLEX SYNCHRONIZATION PROBLEMS

READERS - WRITERS

ERI Gennaio 2008 26

Readers/writers

 One shared buffer
 Readers:

 They read the content of the buffer
 Many readers can read at the same time

 Writers
 They write in the buffer
 While one writer is writing no other reader or

writer can access the buffer

 Use semaphores to implement the resource

ERI Gennaio 2008 27

Simple implementation

class Buffer {
Semaphore wsem;
Semaphore x;
int nr;

public:
Buffer() : wsem(1), x(1), nr(0) {}
void read();
void write();

} buffer;

void Buffer::read() {
x.wait();
nr++;
if (nr==1) wsem.wait();
x.signal();
<read the buffer>
x.wait();
nr--;
if (nr==0) wsem.signal();
x.signal();

}

void Buffer::write() {
wsem.wait();
<write the buffer>
wsem.signal();

}

ERI Gennaio 2008 28

Problem: starvation

 Suppose we have 2 readers (R1 and R2)
and 1 writer (W1)
 Suppose that R1 starts to read
 While R1 is reading, W1 blocks because it wants

to write
 Now R2 starts to read
 Now R1 finishes, but, since R2 is reading, W1

cannot be unblocked
 Before R2 finishes to read, R1 starts to read

again
 When R2 finishes, W1 cannot be unblocked

because R1 is reading

ERI Gennaio 2008 29

Priority to writers!

class Buffer {
Semaphore x, y, z, wsem, rsem;
int nr, nw;

public:
Buffer() : x(1), y(1), z(1), wsem(1), rsem(1), nr(0), nw(0) {}

}

void Buffer::read() {
z.wait();
rsem.wait();
x.wait();
nr++;
if (nr==1) wsem.wait();
x.signal();
rsem.signal();
z.signal();
<read the buffer>
x.wait();
nr--;
if (nr==0) wsem.signal();
x.signal();

}

void Buffer::write() {
y.wait();
nw++;
if (nw==1) rsem.wait();
y.signal();
wsem.wait();
<write the buffer>
wsem.signal();
y.wait();
nw--;
if (nw == 0) rsem.signal();
y.signal();

}

ERI Gennaio 2008 30

Problem

 Can you solve the readers/writers problem in
the general case?
 No starvation for readers
 No starvation for writers

 Solution
 Maintain a FIFO ordering with requests

If at least one writer is blocked, every next reader
blocks

If at least one reader is blocked, every next writer
blocks

One single semaphore!

ERI Gennaio 2008 31

Solution

class Buffer {
int nbr, nbw;
int nr, nw;
Semaphore rsem, wsem;
Semaphore m;

public:
Buffer():

nbw(0),nbr(0), nr(0), nw(0),
rsem(0), wsem(0) {}

void read();
void write();

};

ERI Gennaio 2008 32

Solution

void Buffer::read()
{

m.wait();
if (nw || nbw) {

nbr++;
m.signal();rsem.wait();m.wait();
while (nbr>0)

{nbr--;rsem.signal();}
}
nr++;
m.signal();
<read buffer>;
m.wait();
nr--;
if (nbw && nr == 0) wsem.signal();
m.signal();

}

void Buffer::write()
{

m.wait();
if (nw || nbw || nr || nbr) {

nbw++;
m.signal();wsem.wait();m.wait();
nbw--;

}
nw++;
m.signal();
<read buffer>;
m.wait();
nw--;
if (nbr) {nbr--; rsem.signal();}
else if (nbw) wsem.signal();
m.signal();

}

ERI Gennaio 2008 33

MESSAGE PASSING

ERI Gennaio 2008 34

Message passing

 Message passing systems are based on the
basic concept of message

 Two basic operations
 send(destination, message);

 receive(source, &message);

 Two variants
Both operations can be synchronous or asynchronous

receive can be symmetric or asymmetric

ERI Gennaio 2008 35

Producer/Consumer with MP

 The producer executes send(consumer,
data)

 The consumer executes receive(producer,
data);

 No need for a special communication
structure (already contained in the
send/receive semantic)

Producer Consumer

ERI Gennaio 2008 36

Synchronous communication

 Synchronous send/receive
producer:
 s_send(consumer, d);

consumer:
 s_receive(producer, &d);

producer consumer

send

receive

blocked

producer consumer

send

receive

blocked

ERI Gennaio 2008 37

Async send/ Sync receive

 Asynchronous send / synchronous receive
producer:

 a_send(consumer, d);

consumer:

 s_receive(producer, &d);

producer consumer

send

receiveproducer consumer

send

receive

blocked

ERI Gennaio 2008 38

Asymmetric receive

 Symmetric receive
 receive(source, &data);

 Often, we do not know who is the sender
 Imagine a web server;

the programmer cannot know in advance the address
of the browser that will request the service

Many browser can ask for the same service

 Asymmetric receive
 source = receive(&data);

ERI Gennaio 2008 39

Message passing systems

 In message passing
 Each resource needs one threads manager
 The threads manager is responsible for giving

access to the resource
 Example: let’s try to implement mutual

exclusion with message passing primitives
 One thread will ensure mutual exclusion
 Every thread that wants to access the resourec

must
send a message to the manager thread
access the critical section
send a message to signal the leaving of the critical

section

ERI Gennaio 2008 40

Sync send / sync receive

void * manager(void *)
{

thread_t source;
int d;
while (true) {

source = s_receive(&d);
s_receive_from(source, &d);

}
}

void * thread(void *)
{

int d;
while (true) {

s_send(manager, d);
<critical section>
s_send(manager, d);

}
}

manager

TA

TB

<critical section>

<critical section>

rec_from rec rec_fromrec

send send

send send

ERI Gennaio 2008 41

With Async send and sync receive

void * manager(void *)
{

thread_t source;
int d;
while (true) {

source = s_receive(&d);
a_send(source,d);
s_receive_from(source,&d);

}
}

void * thread(void *)
{

int d;
while (true) {

a_send(manager, d);
s_receive_from(manager, &d);
<critical section>
a_send(manager, d);

}
}

manager

TA

TB

<critical section>

<critical section>

rec_fro
m

rec rec_fromrec send send

ERI Gennaio 2008 42

A different approach

• Shared memory
– each resource is a class

– threads ask for services
through functions calls

– they synchronize through
mutexes and condition
variable

• Message Passing
– each resource has a

manager thread

– threads ask for services
through messages and
receive response through
messages

– they synchronize through
blocking receives

ERI Gennaio 2008 43

Resources and Manager

• For each resource
– a “manager” thread takes care of executing the

services on behalf of the clients/threads

– general structure of a manager:
• wait for a message

• decode the message, execute the service

• eventually, send back the response

– The manager sequentializes all services

	A short introduction to the C programming language
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43

