
Scuola Superiore Sant’Anna 

Deadlock and Starvation

Giuseppe Lipari



ERI Gennaio 2008 2

Deadlock

 Deadlock is the situation in which a group of 
threads are permanently blocked waiting for 
some resource

 Deadlock can happen in many subtle cases
 Here we will study ways of avoiding 

deadlock situations



ERI Gennaio 2008 3

DEADLOCK!!

Example of deadlock

void *threadA(void *)
{

...
s1.wait();
s2.wait();
...
s1.signal();
s2.signal();
...

}

void *threadB(void *)
{

...
s2.wait();
s1.wait();
...
s2.signal();
s1.signal();
...

}

Semaphore s1(1);
Semaphore s2(1);

TA

TB

s1.wait()

s2.wait()

s2.wait()

s1.wait()



ERI Gennaio 2008 4

Graphical situation

TA

TB

g
e
t s1

g
e
t s2

get s2

get s1
Deadlock

not
avoidable

release s2

release s1

re
le

a
se

 s1

re
le

a
se

 s2

TA and TB
want s1

TA and TB
want s2



ERI Gennaio 2008 5

Deadlock
not 

avoidable

Graphical situation

TA

TB

g
e
t s1

g
e
t s2

get s2

get s1

release s2

release s1

re
le

a
se

 s1

re
le

a
se

 s2



ERI Gennaio 2008 6

Example with no deadlock

TA

TB

g
e
t s1

g
e
t s2

get s2

get s1

release s2

release s1

re
le

a
se

 s1

re
le

a
se

 s2



ERI Gennaio 2008 7

Other examples of deadlock

 Bad situations can happen even when the 
resource is not “on-off”

 Consider a memory allocator
 Suppose that the maximum memory allocable is 

200 Kb

void * threadA(void *)
{

request(80kb);
...
request(60kb);
...
release(140kb);

}

void * threadB(void *)
{

request(70kb);
...
request(80kb);
...
release(150kb);

}



ERI Gennaio 2008 8

Consumable and reusable resources

 Reusable resources
 It can be safely used by only one thread at time and is nod 

depleted by the use
 Threads must request the resource and later release it, so 

it can be reused by other threads
 Examples are processor, memory, semaphores, etc.

 Consumable resources
 It is created and destroyed dynamically
 Once the resource is acquired by a thread, it is immediately 

“destroyed” and cannot be reused
 Examples are messages in a FIFO queue, interrupts, I/O 

data, etc.



ERI Gennaio 2008 9

Deadlock with consumable resources

void *threadA(void *)
{

s_receive_from(threadB, msg1);
...
s_send(threadB, msg2);
...

}

void *threadB(void *)
{

s_receive_from(threadA, msg1);
...
s_send(threadA, msg2);
...

}

TA

TB

s_receive_from(threadB,msg1)

s_receive_from(threadA,msg1)



ERI Gennaio 2008 10

Conditions for deadlock

 Three conditions
 Mutual exclusion

Only one process may use the resource at the same time
 Hold and wait

A process may hold allocated resources when it blocks
 No preemption

The resource cannot be revoked

 If the three above conditions hold and 
 Circular wait

A closed chain of threads exists such that each thread holds 
at least one resources needed by the next thread in the chain

 then a deadlock can occur!
 These are necessary and sufficient conditions for a 

deadlock



ERI Gennaio 2008 11

How to solve the problem of deadlock

 To prevent deadlock from happening we can 
distinguish two class of techniques
 Static: we impose strict rules in the way resources may be 

requested so that a deadlock cannot occur
 Dynamic: dynamically, we avoid the system to enter in 

dangerous situations

 The basic idea is to avoid that one of the previous 
conditions hold

 Three strategies
 Deadlock prevention (static)
 Deadlock avoidance (dynamic)
 Deadlock detection (dynamic)



ERI Gennaio 2008 12

Conditions

 Mutual exclusion
 This cannot be disallowed. If a resource must be 

accessed in mutual exclusion, there is nothing 
else we can do!

 Hold and wait
 We can impose the tasks to take all resources at 

the same time with a single operation
 This is very restrictive! Even if we use the 

resource for a small interval of time, we must 
take it at the beginning! 

 Reduces concurrency



ERI Gennaio 2008 13

Conditions

 No preemption
 This technique can be done only if we can 

actually suspend what we are doing on a 
resource and give it to another thread

 For the “processor” resource, this is what we do 
with a thread switch!

 For other kinds of resources, we should “undo” 
what we were doing on the resource

 This may not be possible in many cases!



ERI Gennaio 2008 14

Conditions

 Circular wait
 This condition can be prevented by defining a 

linear ordering of the resources
 For example: we impose that each thread must 

access resources in a certain well-defined order

void *threadA(void *)
{

...
s1.wait();
s2.wait();
...
s1.signal();
s2.signal();
...

}

void *threadB(void *)
{

...
s2.wait();
s1.wait();
...
s2.signal();
s1.signal();
...

}



ERI Gennaio 2008 15

Why this strategy works?

 Let us define a oriented graph
 A vertex can be 

a thread (round vertex)

a resource (square vertex)

 An arrow from a thread to a resource denotes 
that the thread requires the resource

 An arrow from a resource to a thread denotes 
that the resource is granted to the thread

 Deadlock definition
 A deadlock happens if at some point in time there 

is a cycle in the graph



ERI Gennaio 2008 16

Graph

void *threadA(void *)
{

...
s1.wait();
s2.wait();
...
s1.signal();
s2.signal();
...

}

void *threadB(void *)
{

...
s2.wait();
s1.wait();
...
s2.signal();
s1.signal();
...

}

TA

TB

S1

S2



ERI Gennaio 2008 17

Theorem

 If all threads access resources in a given order, a 
deadlock cannot occur
 Proof: by contradiction.
 Suppose that a deadlock occurs. Then, there is a cycle. 
 By hypothesis all threads access resources by order
 Therefore, each thread is blocked on a resource that has 

an order number grater than the resources it holds.
 Starting from a thread and following the cycle, the order 

number of the resource should always increase. However, 
since there is a cycle, we go back to the first thread. Then 
there must be a thread T that holds a resource Ra and 
requests a Resource Rb with Ra < Rb

 This is a contradiction! 



ERI Gennaio 2008 18

Hierarchies of locks

• To use the previous technique efficiently
– divide the software into layers (usually the SW is 

already in layers!)
– Each layer defines its own locks and semaphores
– A layer can only call functions from the same layer or 

from lower layers
– In this way the resource ordering is automatically 

guaranteed



ERI Gennaio 2008 19

Deadlock avoidance

 This technique consists in monitoring the 
system to avoid deadlock
 We check the behaviour of the system
 If we see that we are going into a dangerous 

situation, we block the thread that is doing the 
request, even if the resource is free



ERI Gennaio 2008 20

Deadlock detection

 In this strategy, we monitor the system to 
check for deadlocks after they happen
 We look for cycles between threads and 

resources
 How often should we look?

It is a complex thing to do, so it takes precious 
processing time

It can be done not so often

 Once we discover deadlock, we must recover
 The idea is to kill some blocked thread



ERI Gennaio 2008 21

Recovery

1. Abort all threads
 Used in almost all OS. The simplest thing to do.

2. Check point
 All threads define safe check points. When the OS 

discover a deadlock, all involved threads are restarted to 
a previous check point
 Problem. The can go in the same deadlock again!

3. Abort one thread at time
 Threads are aborted one after the other until deadlock 

disappears

4. Successively preempt resources
 Preempt resources one at time until the deadlock 

disappears


	A short introduction to the C programming language
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21

