Fixed Priority Scheduling

Giuseppe Lipari
http://feanor.sssup.it/~lipari

Scuola Superiore Sant’Anna — Pisa

January 13, 2011

Outline

@ Fixed priority

e Priority assignment

e Scheduling analysis

@ A necessary and sufficient test
e Sensitivity

@ Hyperplane analysis

ﬂ Conclusions

Q Esercizi

@ Calcolo del tempo di risposta
@ Calcolo del tempo di risposta con aperiodici
@ Hyperplane analysis

http://feanor.sssup.it/~lipari

The fixed priority scheduling algorithm

@ very simple scheduling algorithm;

@ every task 7; is assigned a fixed priority p;;
o the active task with the highest priority is scheduled.

@ Priorities are integer numbers: the higher the number, the
higher the priority;

@ In the research literature, sometimes authors use the
opposite convention: the lowest the number, the highest the
priority.

@ In the following we show some examples, considering
periodic tasks, and constant execution time equal to the
period.

Example of schedule

@ Consider the following task set: m = (2,6,6), » =(2,9,9),
3 = (3,12,12). Task 11 has priority p; = 3 (highest), task
To has priority po = 2, task 73 has priority p3 = 1 (lowest).

S RERR SR ARRRRRRRRRE

BRER" RRRRN |

73

0 2 4 6 8 10 12 14 16 18 20 22 24

Another example (non-schedulable)

@ Consider the following task set: 1 = (3,6,6), p1 = 3,
Tp — (2,4,8), p2 — 2, T3 — (27 :|.27 12), p3 = 1

-
|
” |

0 2 4 6 8 10 12 14 16 18 20 22 24

In this case, task 73 misses its deadline!

Note

@ Some considerations about the schedule shown before:

@ The response time of the task with the highest priority is
minimum and equal to its WCET.

@ The response time of the other tasks depends on the
interference of the higher priority tasks;

@ The priority assignment may influence the schedulability of
a task.

Priority assignment

@ Given atask set, how to assign priorities?
@ There are two possible objectives:

@ Schedulability (i.e. find the priority assignment that makes
all tasks schedulable)

@ Response time (i.e. find the priority assignment that
minimize the response time of a subset of tasks).

@ By now we consider the first objective only
@ An optimal priority assignment Opt is such that:

o If the task set is schedulable with another priority
assignment, then it is schedulable with priority assignment
Opt.

o If the task set is not schedulable with Opt, then it is not
schedulable by any other assignment.

Optimal priority assignment

@ Given a periodic task set with all tasks having deadline
equal to the period (Vi, D; = T;), and with all offsets equal
to O (Vi, ¢ = 0):

@ The best assignment is the Rate Monotonic assignment
@ Tasks with shorter period have higher priority

@ Given a periodic task set with deadline different from
periods, and with all offsets equal to O (Vi, ¢; = 0):

@ The best assignement is the Deadline Monotonic
assignment
@ Tasks with shorter relative deadline have higher priority

@ For sporadic tasks, the same rules are valid as for periodic
tasks with offsets equal to O.

Example revised

@ Consider the example shown before with deadline
monotonic: 71 = (3,6,6), p1 =2, » =(2,4,8), p2 = 3,
3 = (2,10, 12), p3 = 1.

T
el | |
|

73

] B B II

0 2 4 6 8 10 12 14 16 18 20 22 24

Presence of offsets

@ If instead we consider periodic tasks with offsets, then
there is no optimal priority assignment
@ In other words,
@ if a task set 7; is schedulable by priority O; and not
schedulable by priority assignment O,
@ it may exist another task set 7; that is schedulable by O, and
not schedulable by O;.
@ For example, 7, may be obtained from 7; simply changing
the offsets!

Example of non-optimality with offsets

Example: priority to 7: Example: priority to 7»:

G Emmmams msmzsmski@EGY SSma mS| HH
T —] — L — 1

0 2 4 6 8 10 12 14 16 18 20 0 2 4 6 8 10 12 14 16 18 20

N

Changing the offset: Changing the offset:
T —] HH "V —]

0 2 4 6 8 10 12 14 16 18 20 0O 2 4 6 8 10 12 14 16 18 20

Analysis

@ Given a task set, how can we guarantee if it is schedulable
of not?

@ The first possibility is to simulate the system to check that
no deadline is missed,

@ The execution time of every job is set equal to the WCET
of the corresponding task;

@ In case of periodic task with no offsets, it is sufficient to
simulate the schedule until the hyperperiod (H = lcm;(T;)).

@ In case of offsets, it is sufficient to simulate until 2H + ¢max
(Leung and Merril).

o If tasks periods are prime numbers the hyperperiod can be
very large!

Example

@ Exercise: Compare the hyperperiods of this two task sets:
Q T.=8,T, =12, T3 = 24
Q@ T.=7T,=12 T3 =25

@ In case of sporadic tasks, we can assume them to arrive at
the highest possible rate, so we fall back to the case of
periodic tasks with no offsets!

@ Incase 1, H = 24;

@ Incase 2, H = 2100 !

Utilization analysis

@ In many cases it is useful to have a very simple test to see
if the task set is schedulable.

@ A sufficient test is based on the Utilization bound:

Definition
The utilization least upper bound for scheduling algorithm A is
the smallest possible utilization Uy, such that, for any task set

T, if the task set’s utilization U is not greater than Uy
(U < Upyp), then the task set is schedulable by algorithm A.

U

Utilization bound for RM

Theorem (Liu and Layland, 1973)

Consider n periodic (or sporadic) tasks with relative deadline
equal to periods, whose priorities are assigned in Rate
Monotonic order. Then,

U = n(21/n - 1)

@ Up is a decreasing function of n;
@ For large n: Uyp =~ 0.69

o
\l
\l
©
Ol 00| S
o
\l
)
~

0.743 || 10 | 0.717
0.734 || 11

OOl AW NS
o
\l
ul
(o)}

Schedulabllity test

@ Therefore the schedulability test consist in:
o Compute U =Y,
o if U < Uy, the task set is schedulable;
o if U > 1 the task set is not schedulable;
o if Uy, < U < 1, the task set may or may not be schedulable;

Example

@ Example in which we show that for 3 tasks, if U < Uy, the
system Is schedulable.
= (2,8), ™ = (3,12), 3 = (4,16);

<0 75 < Upp —@

| == ==
NEEE =

73

AEEEE EE [-_)

O 2 4 6 8 10 12 14 16 18 20 22 24

Example 2

@ By increasing the computation time of task 73, the system
may still be schedulable . ..
1 = (278)97_2 - (37 12)77_3 — (57 16)’

60.81 > U :®

- ==
NERET =

73

T1

e —

O 2 4 6 8 10 12 14 16 18 20 22 24

Utilization bound for DM

@ If relative deadlines are less than or equal to periods,
instead of considering U = > , % we can consider:
- |

n
C.
I I

@ Then the test is the same as the one for RM (or DM),
except that we must use U’ instead of U.

Pessimism

@ The bound is very pessimistic: most of the times, a task set
with U > U, IS schedulable by RM.

@ A particular case is when tasks have periods that are
harmonic:

o Atask set is harmonic if, for every two tasks 7, tau;, either
P is multiple of P; or P; is multiple of P;.

@ For a harmonic task set, the utilization bound is U, = 1.

@ In other words, Rate Monotonic is an optimal algoritm for
harmonic task sets.

Example of harmonic task set

@ 1, =(3,6), » =(3,12), 13 = (6, 24);

Q-1

T1

72

73

O 2 4 6 8 10 12 14 16 18 20 22 24

Response time analysis

@ A necessary and sufficient test is obtained by computing
the worst-case response time (WCRT) for every task.

@ For every task 7;:

@ Compute the WCRT R; for task 7;

o If R; < Dj, then the task is schedulable;

@ else, the task is not schedulable; we can also show the
situation that make task 7 miss its deadline!

@ To compute the WCRT, we do not need to do any
assumption on the priority assignment.

@ The algorithm described in the next slides is valid for an
arbitrary priority assignment.

@ The algorithm assumes periodic tasks with no offsets, or
sporadic tasks.

Response time analysis -

@ The critical instant for a set of periodic real-time tasks, with
offset equal to O, or for sporadic tasks, is when all jobs
start at the same time.

Theorem (Liu and Layland, 1973)

The WCRT for a task corresponds to the response time of the
job activated at the critical instant.

@ To compute the WCRT of task 7:

@ We have to consider its computation time

@ and the computation time of the higher priority tasks
(interference);

@ higher priority tasks can preempt task 7;, and increment its
response time.

Response time analysis - Il

@ Suppose tasks are ordered by decreasing priority.
Therefore, i <] — prio; > prio;.

@ Given a task 7, let Ri(k) be the WCRT computed at step k.

@ The iteration stops when:
o RM =Rk or
° Ri(k) > D; (non schedulable);

Example
@ Consider the following task set: 1 = (2,5), m» = (2,9), 73 = (5,20); U = 0.872.

@ RY=Cs+1.C;+1.C,=9
@ RYV=c3+2.C;+1.Co=11
@ RP=c3+3.c;+2.C,=15
@ RPY=c3+3.C;+2.C,=15=R?

™ -

. W m

S —— . |

0 2 4 6 8 10 12 14 16 18 20

Another example with DM

@ The method is valid for different priority assignments and deadlines different from
periods

Q@ 1, =(1,4,4),p1 =3, =(4,6,15),p, = 2, 3 = (3,10,10),p3 = 1; U = 0.72

(k 1)

RY=Ccs+1.Cc;+1.C,=8

RY=Cs+2.C;+1.C, =9
RY =C3+3.C;+2.C, =10

© 66 6 ¢

R® =c3+3.c;,+2.c; =10=RP

i EEE EE - m.
"\ |
h T

0 2 4 6 8 10 12 14 16 18 20

Considerations

@ The response time analysis is an efficient algorithm

@ In the worst case, the number of steps N for the algorithm
to converge is exponential

@ It depends on the total number of jobs of higher priority tasks
that may be contained in the interval [0, Di]:

i—1 D.
N _!
> Z |7TJ']
j=1
@ If s is the minimum granularity of the time, then in the worst
case N = 2;
@ However, such worst case is very rare: usually, the number
of steps is low.

Considerations on WCET

@ The response time analysis is a necessary and sufficient
test for fixed priority.

@ However, the result is very sensitive to the value of the
WCET.

o If we are wrong in estimating the WCET (and for example
we put a value that is too low), the actual system may be
not schedulable.

@ The value of the response time is not helpful: even if the
response time is well below the deadline, a small increase
in the WCET of a higher priority task makes the response
time jump;

@ We may see the problem as a sensitivity analysis problem:
we have a function R; = fj(C1,T1,Co, To,...,Ci_1,Ti_1,Cj)
that is non-continuous.

Example of discontinuity

@ Let’s consider again the example done before; we
iIncrement the computation time of ; of 0.1.

| == ==
L =

T3

e —

0 2 4 §]

3 10 12 14 @ 16 18
" g e =
’ e

73

20 22 24

_--I[__,

~ ~ a ~ ~ an~ an~ A 4 an~ an~ ~A~ ~~ ~ a

Singularities

@ The response time of a task 7; is the first time at which all
tasks 71, ..., have completed,;
@ At this point,
o either a lower priority task 7; (p; < pi) is executed
@ or the system becoms idle
@ or it coincides with the arrival time of a higher priority task.
@ In the last case, such an instant is also called i-level
singularity point.
@ In the previous example, time 12 is a 3-level singularity
point, because:
@ task 73 has just finished;
@ and task 7, ha just been activated:;

@ A singularity is a dangerous point!

Sensitivity on WCETs

@ A rule of thumb is to increase the WCET by a certain
percentage before doing the analysis. If the task set is still
feasible, be are more confident about the schedulability of
the original system.

@ There are analytical methods for computing the amount of
variation that it is possible to allow to a task’s WCET
without compromising the schedulability

A different analysis approach

@ Definition of workload for task 7:

Wi(t) = IZ {H c

=1

@ The workload is the amount of “work” that the set of tasks
{T1,...,7} requests in [0, t]
@ Example: m, = (2,4), 7, = (4,15):
10 10

W;(10) = {ZWLL [1—5}4:6+4:10

Workload function

@ The workload function for the previous example
o 1 =(2,4), » = (4,15):

Workload task 2

Time
w2

T T T T T T T T T T T T T T 1
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

el el
OF N WRARUOONOOWWOORENWRARUWUV
I T S Y O Y N TR N TR RO B B

Main theorem

Theorem (Lehokzcy 1987)

Let P, = {V] < i, VK, ij < Di|ij} U {Di}. Then, task 7 is
schedulable if and only if

dtep, Wit) <t

@ Set P is the set of time instants that are multiple of some
period of some task 7; with higher priority than 7, plus the
deadline of task 7; (they are potential singularity points)

@ In other words, the theorem says that, if the workload is
less than t for any of the points in P;, then 7; is schedulable

@ Later, Bini simplified the computation of the points in set P,

Example with 4 tasks

Q@ 7 = (2,4), Ty = (4, 15), T3 — (4,30), T4 = (4,60)

Workload task 4

60
55+
501
45+

354
30
251
20+ T

15
10

@ Task 74 is schedulable, because W,4(56) = 56 and
W,4(60) =58 < 60

@ (see schedule on fp_schedule 1.0 ex4.ods)

Sensitivity analysis

@ Proposed by Bini and Buttazzo, 2005
@ Let us rewrite the equations for the workload:

i
dt € P, Z[%—‘Cjét

fi=n I
@ If we consider the C; as variables, we have a set of linear

inequalities in OR mode

@ each inequality defines a plane in the space R' of variables
Cq,...,Ci

@ the result is a concave hyper-solid in that space

Example with two tasks

Q7 = (X74)! T2 = (y715)
o P = {4,8,12,15)

C,+C, <4
2C; +C, <8
3C; +C, <12
4C, +C, <15

Graphical representation

@ In the R? space:

C2

Ci1

@ Simplifying non-useful constraints

C2

Ci

@ The cross represent a (possible) pair of values for (Cq, C»).
@ The cross must stay always inside the subspace

Sensitivity

@ Distance from a constraint represents
@ how much we can increase (C1, C,) without exiting from the
space
@ or how much we must decrease C; or C, to enter in the
space
@ In the example before: starting from C; =1 and C, = 8 we
can increase C; of the following:

3(L+A)+8<12
4 1
<-—_—1==
A < 3 1 3
@ Exercise: verify schedulability of 7, with C; =1 + % and
C, = 8 by computing its response time

Summary of schedulabllity tests for FP

@ Utilization bound test:

@ depends on the number of tasks;
o for large n, Uy, = 0.69;
@ only sufficient;
@ O(n) complexity;
@ Response time analysis:
@ necessary and sufficient test for periodic tasks with
arbitrary deadlines and with no offset
@ complexity: high (pseudo-polynomial);
@ Hyperplane analysis
@ necessary and sufficient test for periodic tasks with
arbitrary deadlines and with no offset
@ complexity: high (pseudo-polynomial);
@ allows to perform sensitivity analysis

Response time analysis - extensions

@ Consider offsets
@ Arbitrary patterns of arrivals. Burst, quasi—periodic, etc.

Esercizio

@ Dato il seguente task set:

Task Ci D; T;
- 11 4| 4
- 2 19]9
- 3| 6 | 12
T4 3 | 20| 20

@ Calcolare il tempo di risposta dei vari task nell'ipotesi che le priorita siano
assegnate con RM o con DM.

@ Risposta: Nel caso di RM,
R(T]_):l R(Tg):3 R(T3):7 R(T4):18
@ Nel caso di DM,

R(T]_):l R(Tz):7 R(T3):4 R(T4):18

Esercizio

@ Consideriamo il seguente task 71 non periodico:
o Sejépari, alloraa;; = 8- ;
o Se | e dispari, alloraa; ; =3+ 8- HJ
@ Inognicaso, 1 = 2;
@ La priorita del task =, € p1 = 3.
@ Nel sistema, consideriamo anche i task periodici
™ = (2,12,12) e 3 = (3,16, 16), con prioritap, =2 e
p3 = 1. Calcolare il tempo di risposta dei task m, e 73.

Soluzione - |

@ |l pattern di arrivo del task m; € il seguente:

0 2 4 6 8 10 12 14 16 18 20 22 24 26

@ |l task 71 € ad alta priorita, quindi il suo tempo di risposta &
pari a 2.

@ In che modo questo task interferisce con gli altri due task a
bassa priorita

Soluzione - |l

@ Bisogna estendere la formula del calcolo del tempo di risposta. La
generalizzazione € la seguente:

i—1
RY =ci+ > Nist(R*V)g;
=1

dove Nist;(t) rappresenta il numero di istanze del task 7; che “arrivano”
nell'intervallo [0, t).

@ Seil task 7; & periodico, allora Nist; (t) = {TLJ

@ Nel caso invece del task m; (che non éperiodico):

Nisty (t) = EW n [ww

@ |l primo termine tiene conto delle istanze con j pari, mentre il secondo termine
tiene conto delle istanze con j dispari.

Soluzione - Il

@ Applicando la formula per calcolare il tempo di risposta del
task 7:

RO =242=4 RM=24+2.2-6
RP=2+2.2=6

@ Per il task T3:

RO =34+2+4+2=7 RM=3+2.241.2=09
RP=3+3.241.2=11 R{®=343.24+1.2=11

Soluzione - IV (schedulazione)

@ Schedulazione risultante:
T2

0 M [- []
1 M [0 [

0 2 4 6 8 10 12 14 16 18 20 22 24 26

73

Esercizio sulla sensitivity

@ Dato il seguente insieme di task: 71 = (2,5), » = (3,12)
@ Vedere se il sistema e schedulabile con I'analisi
Hyperplanes

@ Calcolare di quando puo aumentare (o di quanto si puo
diminuire) il tempo di calcolo di = per farlo rimanere
(diventare) schedulabile

@ Calcolare di quanto si puo diminuire la potenza del
processore mantenendo il sistema schedulabile

Soluzione

@ Le equazioni da considerare sono:

C:+C, < 5
2C,+C, < 10
3C;1+C, < 12

@ Tutte verificate perC; =2e C, =3
@ Fissando Cq, si ha:

3
6
6

Q)
N
IAIA A

@ Ricordandoci che sono in OR, la soluzione e C, < 6,
quindi possiamo aumentare C, di 3 mantenendo il sistema
schedulabile

Soluzione 2

@ Se il processore ha velocita variabile, le equazioni possono
essere riscritte come:

aCq + aC»
20Cq1 + aCy
3aCq + aCy

10
12

IA A A

@ E nel punto considerato:

1
10
12

Q
o
9«

IAIA A

@ Quindi, a = 1.428571, e possiamo rallentare il processore
(cioé incrementare i tempi di calcolo) del 43% circa.

	Fixed priority
	Priority assignment
	Scheduling analysis
	A necessary and sufficient test
	Sensitivity
	Hyperplane analysis
	Conclusions
	Esercizi
	Calcolo del tempo di risposta
	Calcolo del tempo di risposta con aperiodici
	Hyperplane analysis

