Fixed Priority Scheduling

Giuseppe Lipari

http://feanor.sssup.it/~lipari

Scuola Superiore Sant'Anna - Pisa

January 13, 2011

Outline

- Fixed priority
- Priority assignment
- Scheduling analysis
- A necessary and sufficient test
- 5 Sensitivity
- 6 Hyperplane analysis
- Conclusions
- 8 Esercizi
 - Calcolo del tempo di risposta
 - Calcolo del tempo di risposta con aperiodici
 - Hyperplane analysis

The fixed priority scheduling algorithm

- very simple scheduling algorithm;
 - every task τ_i is assigned a fixed priority p_i ;
 - the active task with the highest priority is scheduled.
- Priorities are integer numbers: the higher the number, the higher the priority;
 - In the research literature, sometimes authors use the opposite convention: the lowest the number, the highest the priority.
- In the following we show some examples, considering periodic tasks, and constant execution time equal to the period.

Example of schedule

• Consider the following task set: $\tau_1 = (2, 6, 6)$, $\tau_2 = (2, 9, 9)$, $\tau_3 = (3, 12, 12)$. Task τ_1 has priority $p_1 = 3$ (highest), task τ_2 has priority $p_2 = 2$, task τ_3 has priority $p_3 = 1$ (lowest).

Another example (non-schedulable)

• Consider the following task set: $\tau_1 = (3, 6, 6)$, $p_1 = 3$, $\tau_2 = (2, 4, 8)$, $p_2 = 2$, $\tau_3 = (2, 12, 12)$, $p_3 = 1$.

In this case, task τ_3 misses its deadline!

Note

- Some considerations about the schedule shown before:
 - The response time of the task with the highest priority is minimum and equal to its WCET.
 - The response time of the other tasks depends on the *interference* of the higher priority tasks;
 - The priority assignment may influence the schedulability of a task.

Priority assignment

- Given a task set, how to assign priorities?
- There are two possible objectives:
 - Schedulability (i.e. find the priority assignment that makes all tasks schedulable)
 - Response time (i.e. find the priority assignment that minimize the response time of a subset of tasks).
- By now we consider the first objective only
- An optimal priority assignment Opt is such that:
 - If the task set is schedulable with another priority assignment, then it is schedulable with priority assignment Opt.
 - If the task set is not schedulable with *Opt*, then it is not schedulable by any other assignment.

Optimal priority assignment

- Given a periodic task set with all tasks having deadline equal to the period $(\forall i, D_i = T_i)$, and with all offsets equal to $0 \ (\forall i, \phi_i = 0)$:
 - The best assignment is the Rate Monotonic assignment
 - Tasks with shorter period have higher priority
- Given a periodic task set with deadline different from periods, and with all offsets equal to 0 ($\forall i$, $\phi_i = 0$):
 - The best assignement is the Deadline Monotonic assignment
 - Tasks with shorter relative deadline have higher priority
- For sporadic tasks, the same rules are valid as for periodic tasks with offsets equal to 0.

Example revised

• Consider the example shown before with deadline monotonic: $\tau_1 = (3, 6, 6)$, $p_1 = 2$, $\tau_2 = (2, 4, 8)$, $p_2 = 3$, $\tau_3 = (2, 10, 12)$, $p_3 = 1$.

Presence of offsets

- If instead we consider periodic tasks with offsets, then there is no optimal priority assignment
 - In other words,
 - if a task set \mathcal{T}_1 is schedulable by priority O_1 and not schedulable by priority assignment O_2 ,
 - it may exist another task set \mathcal{T}_2 that is schedulable by O_2 and not schedulable by O_1 .
 - For example, \mathcal{T}_2 may be obtained from \mathcal{T}_1 simply changing the offsets!

Example of non-optimality with offsets

Example: priority to τ_1 :

Example: priority to τ_2 :

Changing the offset:

Changing the offset:

Analysis

- Given a task set, how can we guarantee if it is schedulable of not?
- The first possibility is to simulate the system to check that no deadline is missed;
- The execution time of every job is set equal to the WCET of the corresponding task;
 - In case of periodic task with no offsets, it is sufficient to simulate the schedule until the *hyperperiod* $(H = lcm_i(T_i))$.
 - In case of offsets, it is sufficient to simulate until $2H + \phi_{\rm max}$ (Leung and Merril).
 - If tasks periods are prime numbers the hyperperiod can be very large!

Example

- Exercise: Compare the hyperperiods of this two task sets:

 - $T_1 = 7, T_2 = 12, T_3 = 25.$
- In case of sporadic tasks, we can assume them to arrive at the highest possible rate, so we fall back to the case of periodic tasks with no offsets!
- In case 1, *H* = 24;
- In case 2, *H* = 2100 !

Utilization analysis

- In many cases it is useful to have a very simple test to see if the task set is schedulable.
- A sufficient test is based on the *Utilization bound*:

Definition

The *utilization least upper bound* for scheduling algorithm \mathcal{A} is the smallest possible utilization U_{lub} such that, for any task set \mathcal{T} , if the task set's utilization U is not greater than U_{lub} ($U \leq U_{lub}$), then the task set is schedulable by algorithm \mathcal{A} .

Utilization bound for RM

Theorem (Liu and Layland, 1973)

Consider n periodic (or sporadic) tasks with relative deadline equal to periods, whose priorities are assigned in Rate Monotonic order. Then,

$$U_{lub} = n(2^{1/n} - 1)$$

- U_{lub} is a decreasing function of n;
- For large n: $U_{lub} \approx 0.69$

n	U _{lub}	n	U _{lub}
2	0.828	7	0.728
3	0.779	8	0.724
4	0.756	9	0.720
5	0.743	10	0.717
6	0.734	11	

Schedulability test

- Therefore the schedulability test consist in:
 - Compute $U = \sum_{i=1}^{n} \frac{C_i}{T_i}$;
 - if $U \leq U_{lub}$, the task set is schedulable;
 - if U > 1 the task set is not schedulable;
 - if $U_{lub} < U \le 1$, the task set may or may not be schedulable;

Example

• Example in which we show that for 3 tasks, if $U < U_{lub}$, the system is schedulable.

$$au_1 = (2,8), au_2 = (3,12), au_3 = (4,16);$$

$$U = 0.75 < U_{lub} = 0.77$$

Example 2

• By increasing the computation time of task τ_3 , the system may still be schedulable . . .

$$au_1 = (2,8), au_2 = (3,12), au_3 = (5,16);$$
 $au_1 = (2,8), au_2 = (3,12), au_3 = (5,16);$

Utilization bound for DM

• If relative deadlines are less than or equal to periods, instead of considering $U = \sum_{i=1}^{n} \frac{C_i}{T_i}$, we can consider:

$$U' = \sum_{i=1}^{n} \frac{C_i}{D_i}$$

• Then the test is the same as the one for RM (or DM), except that we must use U' instead of U.

Pessimism

- The bound is very pessimistic: most of the times, a task set with $U > U_{lub}$ is schedulable by RM.
- A particular case is when tasks have periods that are harmonic:
 - A task set is *harmonic* if, for every two tasks τ_i , tau_j , either P_i is multiple of P_i or P_i is multiple of P_i .
- For a harmonic task set, the utilization bound is $U_{lub} = 1$.
- In other words, Rate Monotonic is an optimal algoritm for harmonic task sets.

Example of harmonic task set

•
$$\tau_1 = (3,6), \tau_2 = (3,12), \tau_3 = (6,24);$$
 $U = 1;$

Response time analysis

- A necessary and sufficient test is obtained by computing the worst-case response time (WCRT) for every task.
- For every task τ_i :
 - Compute the WCRT R_i for task τ_i ;
 - If $R_i \leq D_i$, then the task is schedulable;
 - else, the task is not schedulable; we can also show the situation that make task τ_i miss its deadline!
- To compute the WCRT, we do not need to do any assumption on the priority assignment.
- The algorithm described in the next slides is valid for an arbitrary priority assignment.
- The algorithm assumes periodic tasks with no offsets, or sporadic tasks.

Response time analysis - II

• The critical instant for a set of periodic real-time tasks, with offset equal to 0, or for sporadic tasks, is when all jobs start at the same time.

Theorem (Liu and Layland, 1973)

The WCRT for a task corresponds to the response time of the job activated at the critical instant.

- To compute the WCRT of task τ_i:
 - We have to consider its computation time
 - and the computation time of the higher priority tasks (interference);
 - higher priority tasks can *preempt* task τ_i , and increment its response time.

Response time analysis - III

- Suppose tasks are ordered by decreasing priority. Therefore, $i < j \rightarrow prio_i > prio_i$.
- Given a task τ_i , let $R_i^{(k)}$ be the WCRT computed at step k.

$$egin{aligned} R_i^{(0)} &= C_i + \sum_{j=1}^{i-1} C_j \ R_i^{(k)} &= C_i + \sum_{j=1}^{i-1} \left \lceil rac{R_i^{(k-1)}}{T_j}
ight
ceil C_j \end{aligned}$$

- The iteration stops when:

 - $R_i^{(k)} = R_i^{(k+1)}$ or $R_i^{(k)} > D_i$ (non schedulable);

Example

• Consider the following task set: $\tau_1 = (2,5)$, $\tau_2 = (2,9)$, $\tau_3 = (5,20)$; U = 0.872.

$$R_i^{(k)} = C_i + \sum_{j=1}^{i-1} \left(\left\lceil \frac{R_i^{(k-1)}}{T_j} \right\rceil \right) C_j$$

- $R_3^{(0)} = C_3 + 1 \cdot C_1 + 1 \cdot C_2 = 9$
- $R_3^{(1)} = C_3 + 2 \cdot C_1 + 1 \cdot C_2 = 11$
- $R_3^{(3)} = C_3 + 3 \cdot C_1 + 2 \cdot C_2 = 15 = R_3^{(2)}$

Another example with DM

- The method is valid for different priority assignments and deadlines different from periods
- $\tau_1 = (1, 4, 4), p_1 = 3, \tau_2 = (4, 6, 15), p_2 = 2, \tau_3 = (3, 10, 10), p_3 = 1; U = 0.72$

$$R_i^{(k)} = C_i + \sum_{j=1}^{i-1} \left\lceil \frac{R_i^{(k-1)}}{T_j} \right\rceil C_j$$

- $R_3^{(0)} = C_3 + 1 \cdot C_1 + 1 \cdot C_2 = 8$
- $R_3^{(1)} = C_3 + 2 \cdot C_1 + 1 \cdot C_2 = 9$

Considerations

- The response time analysis is an efficient algorithm
 - In the worst case, the number of steps *N* for the algorithm to converge is exponential
 - It depends on the total number of jobs of higher priority tasks that may be contained in the interval $[0, D_i]$:

$$N \propto \sum_{j=1}^{i-1} \left\lceil \frac{D_i}{T_j} \right\rceil$$

- If s is the minimum granularity of the time, then in the worst case $N = \frac{D_i}{s}$;
- However, such worst case is very rare: usually, the number of steps is low.

Considerations on WCET

- The response time analysis is a necessary and sufficient test for fixed priority.
- However, the result is very sensitive to the value of the WCET.
 - If we are wrong in estimating the WCET (and for example we put a value that is too low), the actual system may be not schedulable.
- The value of the response time is not helpful: even if the response time is well below the deadline, a small increase in the WCET of a higher priority task makes the response time jump;
- We may see the problem as a sensitivity analysis problem: we have a function $R_i = f_i(C_1, T_1, C_2, T_2, ..., C_{i-1}, T_{i-1}, C_i)$ that is non-continuous.

Example of discontinuity

• Let's consider again the example done *before*; we increment the computation time of τ_1 of 0.1.

Singularities

- The response time of a task τ_i is the first time at which all tasks τ_1, \ldots, τ_i have completed;
- At this point,
 - either a lower priority task τ_j ($p_j < p_i$) is executed
 - or the system becoms idle
 - or it coincides with the arrival time of a higher priority task.
- In the last case, such an instant is also called *i*-level singularity point.
- In the previous example, time 12 is a 3-level singularity point, because:
 - 1 task τ_3 has just finished;
 - 2 and task τ_2 ha just been activated;
- A singularity is a dangerous point!

Sensitivity on WCETs

- A rule of thumb is to increase the WCET by a certain percentage before doing the analysis. If the task set is still feasible, be are more confident about the schedulability of the original system.
- There are analytical methods for computing the amount of variation that it is possible to allow to a task's WCET without compromising the schedulability

A different analysis approach

• Definition of workload for task τ_i :

$$W_i(t) = \sum_{j=1}^i \left\lceil \frac{t}{T_j} \right\rceil C_j$$

- The workload is the amount of "work" that the set of tasks $\{\tau_1,\ldots,\tau_i\}$ requests in [0,t]
- Example: $\tau_1 = (2, 4), \tau_2 = (4, 15)$:

$$W_2(10) = \left\lceil \frac{10}{4} \right\rceil 2 + \left\lceil \frac{10}{15} \right\rceil 4 = 6 + 4 = 10$$

Workload function

- The workload function for the previous example
 - $\tau_1 = (2,4), \tau_2 = (4,15)$:

Main theorem

Theorem (Lehokzcy 1987)

Let $\mathcal{P}_i = \{ \forall j < i, \forall k, kT_j \leq D_i | kT_j \} \cup \{D_i\}$. Then, task τ_i is schedulable if and only if

$$\exists t \in \mathcal{P}_i, \quad W_i(t) \leq t$$

- Set \mathcal{P}_i is the set of time instants that are multiple of some period of some task τ_j with higher priority than τ_i , plus the deadline of task τ_i (they are potential singularity points)
- In other words, the theorem says that, if the workload is less than t for any of the points in \mathcal{P}_i , then τ_i is schedulable
- Later, Bini simplified the computation of the points in set \mathcal{P}_i

Example with 4 tasks

$$\bullet$$
 $\tau_1 = (2,4)$, $\tau_2 = (4,15)$, $\tau_3 = (4,30)$, $\tau_4 = (4,60)$

- Task τ_4 is schedulable, because $W_4(56)=56$ and $W_4(60)=58<60$
- (see schedule on fp_schedule_1.0_ex4.ods)

Sensitivity analysis

- Proposed by Bini and Buttazzo, 2005
- Let us rewrite the equations for the workload:

$$\exists t \in \mathcal{P}_i \quad \sum_{j=1}^i \left\lceil \frac{t}{T_j} \right\rceil C_j \leq t$$

- If we consider the C_j as variables, we have a set of linear inequalities in OR mode
- each inequality defines a plane in the space R^i of variables C_1, \ldots, Ci
- the result is a concave hyper-solid in that space

Example with two tasks

- $\tau_1 = (x, 4), \tau_2 = (y, 15)$
- $\mathcal{P} = \{4, 8, 12, 15\}$

$$\begin{array}{ll} C_1 + C_2 & \leq 4 \\ 2C_1 + C_2 & \leq 8 \\ 3C_1 + C_2 & \leq 12 \\ 4C_1 + C_2 & \leq 15 \end{array}$$

Graphical representation

• In the R^2 space:

Simplifying non-useful constraints

- The cross represent a (possible) pair of values for (C_1, C_2) .
- The cross must stay always inside the subspace

Sensitivity

- Distance from a constraint represents
 - how much we can increase (C_1, C_2) without exiting from the space
 - or how much we must decrease C_1 or C_2 to enter in the space
 - In the example before: starting from $C_1 = 1$ and $C_2 = 8$ we can increase C_1 of the following:

$$3(1+\Delta)+8\leq 12$$

$$\Delta\leq \frac{4}{3}-1=\frac{1}{3}$$

• **Exercise:** verify schedulability of τ_2 with $C_1 = 1 + \frac{1}{3}$ and $C_2 = 8$ by computing its response time

Summary of schedulability tests for FP

- Utilization bound test:
 - depends on the number of tasks;
 - for large n, $U_{lub} = 0.69$;
 - only sufficient;
 - $\mathcal{O}(n)$ complexity;
- Response time analysis:
 - necessary and sufficient test for periodic tasks with arbitrary deadlines and with no offset
 - complexity: high (pseudo-polynomial);
- Hyperplane analysis
 - necessary and sufficient test for periodic tasks with arbitrary deadlines and with no offset
 - complexity: high (pseudo-polynomial);
 - allows to perform sensitivity analysis

Response time analysis - extensions

- Consider offsets
- Arbitrary patterns of arrivals. Burst, quasi-periodic, etc.

Esercizio

Dato il seguente task set:

•				
Task	C_i	D_i	T_i	
$ au_1$	1	4	4	
$ au_2$	2	9	9	
$ au_3$	3	6	12	
$ au_4$	3	20	20	

- Calcolare il tempo di risposta dei vari task nell'ipotesi che le priorità siano assegnate con RM o con DM.
- Risposta: Nel caso di RM,

$$R(\tau_1) = 1$$
 $R(\tau_2) = 3$ $R(\tau_3) = 7$ $R(\tau_4) = 18$

Nel caso di DM,

$$R(\tau_1) = 1$$
 $R(\tau_2) = 7$ $R(\tau_3) = 4$ $R(\tau_4) = 18$

Esercizio

- Consideriamo il seguente task τ_1 non periodico:
 - Se j è pari, allora $a_{1,j} = 8 \cdot \frac{j}{2}$;
 - Se j è dispari, allora $a_{1,j} = 3 + 8 \cdot \left| \frac{j}{2} \right|$;
 - In ogni caso, $c_{1,j} = 2$;
 - La priorità del task τ_1 è $p_1 = 3$.
- Nel sistema, consideriamo anche i task periodici $\tau_2 = (2, 12, 12)$ e $\tau_3 = (3, 16, 16)$, con priorità $p_2 = 2$ e $p_3 = 1$. Calcolare il tempo di risposta dei task τ_2 e τ_3 .

Soluzione - I

• Il pattern di arrivo del task τ_1 è il seguente:

- Il task τ₁ è ad alta priorità, quindi il suo tempo di risposta è pari a 2.
- In che modo questo task interferisce con gli altri due task a bassa priorità

Soluzione - II

Bisogna estendere la formula del calcolo del tempo di risposta. La generalizzazione è la seguente:

$$R_i^{(k)} = C_i + \sum_{i=1}^{i-1} Nist_i(R_i^{(k-1)})C_i$$

dove $Nist_j(t)$ rappresenta il numero di istanze del task τ_j che "arrivano" nell'intervallo [0, t).

- Se il task τ_j è periodico, allora $\mathit{Nist}_j(t) = \left\lceil \frac{t}{T_i} \right\rceil$.
- Nel caso invece del task τ_1 (che non èperiodico):

$$Nist_1(t) = \left\lceil \frac{t}{8} \right\rceil + \left\lceil \frac{\max(0, t-3)}{8} \right\rceil$$

Il primo termine tiene conto delle istanze con j pari, mentre il secondo termine tiene conto delle istanze con j dispari.

Soluzione - III

• Applicando la formula per calcolare il tempo di risposta del task τ_2 :

$$R_2^{(0)} = 2 + 2 = 4$$
 $R_2^{(1)} = 2 + 2 \cdot 2 = 6$ $R_2^{(2)} = 2 + 2 \cdot 2 = 6$

• Per il task τ_3 :

$$R_3^{(0)} = 3 + 2 + 2 = 7$$
 $R_3^{(1)} = 3 + 2 \cdot 2 + 1 \cdot 2 = 9$ $R_3^{(2)} = 3 + 3 \cdot 2 + 1 \cdot 2 = 11$ $R_3^{(3)} = 3 + 3 \cdot 2 + 1 \cdot 2 = 11$

Soluzione - IV (schedulazione)

Esercizio sulla sensitivity

- Dato il seguente insieme di task: $\tau_1 = (2,5)$, $\tau_2 = (3,12)$
- Vedere se il sistema è schedulabile con l'analisi Hyperplanes
- Calcolare di quando può aumentare (o di quanto si può diminuire) il tempo di calcolo di τ_2 per farlo rimanere (diventare) schedulabile
- Calcolare di quanto si può diminuire la potenza del processore mantenendo il sistema schedulabile

Soluzione

Le equazioni da considerare sono:

$$C_1 + C_2 \le 5$$

 $2C_1 + C_2 \le 10$
 $3C_1 + C_2 \le 12$

- Tutte verificate per $C_1 = 2$ e $C_2 = 3$
- Fissando C_1 , si ha:

$$\begin{array}{lcl} C_2 & \leq & 3 \\ C_2 & \leq & 6 \\ C_2 & \leq & 6 \end{array}$$

• Ricordandoci che sono in OR, la soluzione è $C_2 \le 6$, quindi possiamo aumentare C_2 di 3 mantenendo il sistema schedulabile

Soluzione 2

 Se il processore ha velocità variabile, le equazioni possono essere riscritte come:

$$\alpha C_1 + \alpha C_2 \leq 5$$
 $2\alpha C_1 + \alpha C_2 \leq 10$
 $3\alpha C_1 + \alpha C_2 \leq 12$

E nel punto considerato:

$$\alpha \leq 1$$
 $7\alpha \leq 10$
 $9\alpha \leq 12$

• Quindi, $\alpha = 1.428571$, e possiamo rallentare il processore (cioé incrementare i tempi di calcolo) del 43% circa.