
Sistemi in tempo reale
Anno accademico 2009 - 2010

Cambi di modo

Giuseppe Lipari
http://retis.sssup.it/~lipari

Scuola Superiore Sant’Anna – Pisa

January 13, 2011

Modes

◮ A real-time system can have different working modes
◮ Each mode defines the same system under different

working conditions;
◮ Example: airplane

◮ Typical modes are take-off, cruise, and landing;
◮ During each mode, the system has different control goals;

and it must run different control algorithms.
◮ Example: elevator

◮ Clearly, an elevator goes across different states: idle,
opening/closing doors, moving, etc.

◮ Depending on the abstraction level, each mode can be
sub-divided into internal modes. For example, when a
elevator moves, we can distinguish between acceleration,
stable state, deceleration. Also, we may need to distinguish
between moving up and down

http://retis.sssup.it/~lipari


Modes and transistions
◮ Modes can be represented by a state machine. For

example, consider the previous example of airplane
control:

Stop Roll Take off

Landing Approach Fly

start

stop

clear to go

quote

destination

clear to land

lined up

Modes and transistions

◮ A mode is a node in the diagram (a state)
◮ Each mode is associated with a set of periodic or sporadic

tasks
◮ Different modes may have different task sets, or tasks with

different characteristics
◮ When the mode is active, the corresponding tasks are

executed (steady state)
◮ A transition is an edge between two nodes:

◮ A transition happens when certain conditions are verified;
◮ For example, a user command, an external condition on the

altitude or temperature, the landing of the airplane, etc.
◮ Upon the occurrence of a transition:

◮ terminate all tasks that are in the current mode and will not
be active in the new mode;

◮ optionally, call a transition function;
◮ activate the new set of tasks to be executed.



Modes and tasks

◮ To implement modes:
◮ One manager task that identifies when modes must be

changed;
◮ One global variable that identifies the current working mode

(currmode);
◮ Modes can be implemented in two basic ways;

1. Type 1 A fixed set of tasks for all the modes; each task can
execute different algorithms depending on the current
mode;

2. Type 2 A different set of tasks for each mode.

◮ Of course, it is also possible to mix the two
implementations.

Implementation type 1

◮ Type 1: In this case, each task executes different code
depending on the mode

◮ Suppose we synchronize at the beginning of the task
instance. The code for each task is something like the
following:

while(1) {
switch (currmode) {
M1 : // control algorithm

// for mode 1
break;

M2 : // control algorithm
// for mode 2
break;

default : break;
}
task_endcycle();

}



Implementation type 2

◮ In this case, each task can be active only in a subset of the
modes.

◮ Define T1 the tasks active in mode 1, and T2 the task active
in mode 2.

◮ Suppose that the list of modes for which a task is active are
stored in 2-dimension array modes[task][mode].

◮ If task i is active in mode currmode, then
modes[i][currmode] is true, otherwise it is false.

◮ Typical code of the task;
while (1) {
// control algorithm
if (!mode[i][currmode]) task_disable();
task_endcycle();

}

◮ The primitive task_disable() suspends the periodic
activations; they will be enabled again by an explicit
task_activate () on the current task

Type 1 vs. type 2

◮ In type 1, all tasks have the same parameters (period and
priority) in every mode;

◮ Implementation looks simpler, but does not scale well
◮ The task code depends on the number and type of modes
◮ From a software engineering point of view, the task code

cannot be re-used easily
◮ In type 2, we have different tasks for different modes:

therefore, from one mode to the other, we can change both
the period, the priority and the computation time of a task

◮ Taski mplementation is simple and scales well
◮ The code of each task is self-contained and does not

depend on the number and types of the modes in the
system

◮ Therefore, we can easily reuse this task.
◮ However, the mode manager task is more complex, as it

must take care of deactivating/activating tasks in the proper
way



Problems with mode changes

◮ There are several problems the designer must deal with
when designing a multi-mode real-time system;

◮ The main problem is what happens during the transition
between two modes. In particular, we must deal with

1. Schedulability analysis
◮ The system must remain schedulable across the transition

2. Periodicity
◮ Tasks that are present in both modes must continue to

execute periodically, as nothing happened in the meanwhile
3. Consistency of variables

◮ Resource must remain consistent during mode change
◮ We must take care of adjusting variables that are shared

between old mode and new mode tasks (hybrid systems)
4. Promptness

◮ The transition should happen in the shortest possible interval
of time

◮ Now we start dealing with problem 3.

Consistency

◮ Clearly, we cannot change the control algorithm at any
arbitrary point while the algorithm is executing;

◮ A control algorithm updates its internal state variables while
executing;

◮ we must ensure that the state variable does not remain in
an inconsistent state when we change mode;

◮ the same happens if the task is accessing a shared
resource with a critical section protected by a mutex; we
cannot interrupt it and change algorithm, otherwise the
mutex remains locked!

◮ This means that the change of control algorithm must be
synchronized with appropriate checkpoints;

◮ A checkpoint is a point in the code when it is safe to
interrupt the algorithm, maintaining the consistency of the
data;

◮ The “easiest” checkpoints are at the beginning and at the
end of the task instance.



Implementation type 1

◮ Checkpoint at the job boundary
◮ The task cannot change mode while is executing. It can

only change mode at the beginning of one of its istance;
◮ In this way we guarantee consistency of internal and

external variables (state variables and output variables).
◮ The only problem is that, if the task execution time is large,

we must wait for the job to complete before we can
complete the mode change

◮ the mode change delay can be large

◮ To introduce other checkpoints, we could complicate the
code:

◮ divide each control algorithm in different blocks
◮ check the change of mode at the end of every block.

◮ The code becomes much more complex!

Implementation type 2

◮ In this case, the implementation of the mode change is
outside the task

◮ the mode manager activates and deactivates the tasks
◮ We must guarantee that the mode manager does not kill a

task while it is executing in the middle of a control task
update! (asynchronous cancellation)

◮ Therefore, we have to implement a specific protocol to
synchronize the mode manager task with the control task

◮ The mode manager sends a signal to the control task and
waits for it to respond

◮ The control task will respond (and finish its execution) when
reaching a propose checkpoint



Mode manager

◮ The “mode manager” task manages Mode Change
Requests (MCRs)

◮ The mode manager can be a periodic or aperiodic task;
◮ In the first case (periodic), it periodically observes the state

of the system and of the external variables and decides if a
mode change must be performed;

◮ In the second case (aperiodic), it is attached to an external
interrupt (external condition) or it is explicitely activated by
another task;

◮ The mode manager implements the state machine and
controls transition between modes.

◮ From now on, we consider only type 2 implementations.

Implementation type 2: manager
◮ The task manager is structured as follows

while (1) {
if (modeIsChanged()) {

old_mode = curr_mode;
curr_mode = getNewMode();
transition(old_mode, new_mode);
for (i=0; i < NTASK; i++) {

if (mode[i][curr_mode] && !mode[i][old_mode])
task_activate(tid[i]);

}
}
task_endcycle();

}

◮ The manager is a periodic task that periodically checks for
occurrence of mode changes.

◮ It waits for a change of mode (function modeIsChanged())
◮ When it happens, deactivates old mode tasks and

performs transition functions, then activates all tasks
belonging to the new mode and not active in the old mode.



Transitions

◮ Suppose the system must change from mode 1 to mode 2.
◮ To ensure a smooth transition between two modes, the

states of control algorithms of mode 2 must be properly
initialized;

◮ In other words, the initial conditions of mode 2 depend on
the state conditions of mode 1.

◮ Suppose, as an example, that we want to guarantee
continuity of the signal and of the first derivative of the
signal.

◮ The, the internal conditions of the controller for mode 2
must be set so to ensure these two conditions;

◮ From a software point of view, for each transition we must
call a set of functions to adjust the initial conditions of all
control algorithms

◮ This can be done, for example, by specifying an
appropriate entry behavior for the states

Scheduling analysis

◮ Another important problem is schedulability:
◮ Suppose we are changing from mode 1 to mode 2, and

that T1 is the set of tasks active in mode 1 and T2 is the set
of tasks that are active during mode 2.

◮ Set T1\T2 is the set of tasks that leave the mode;
◮ Set T2\T1 is the set of tasks that enter the mode.

◮ It is important to guarantee that the system continues to be
schedulable;

◮ Even if T1 and T2, each one considered in isolation, are
schedulable, if the transistion is not done properly, some
deadline could be missed during the transitory.



Example of deadline miss during transition

◮ Consider T1 = {τ1, τ2, τ3} and T2 = {τ1, τ2, τ4} with:
◮ τ1 = (1,4), τ2 = (2,9), τ3 = (5,12), and τ4 = (3,9)

◮ Transition starts at time t = 9
◮ Task τ4 must execute instead of task τ3 from time t = 9

0 2 4 6 8 10 12 14 16 18 20 22 24

τ1

τ2

τ3

τ4

Mode Change protocols

◮ There are many ways to avoid this problem
1. We can wait for the first idle time in the system (idle time

protocol)
◮ At that point, all tasks have completed their execution,
◮ So we can safely deactivate the old-mode tasks and activate

the new-mode ones
◮ Old-mode tasks cannot influence new-mode tasks
◮ Advantages: simplicity, does not require a specific

schedulability analysis
◮ Drawbacks: the transition delay can be large

2. We can introduce new tasks as soon as it is possible, if the
schedulability is guaranteed

◮ old-mode task may complete their last instance after the
MCR

◮ new-mode tasks must be activated with a proper offset with
respect to the MCR, so that no deadline is missed

◮ Advantages: reduce the transition delay
◮ Drawbacks: require schedulability analysis, may be difficult

to implement



Idle-Time protocol

◮ Implementation strategies:
1. Low-priority mode manager

◮ Mode manager running in low priority mode (thus executing
only when all other tasks have finished

◮ It activates deactivates old mode tasks, executes transition
code, activates new mode tasks

◮ Tasks must check their re-activation before starting
2. dual priority mode manager

◮ The mode runs at highest priority
◮ At MCR, first deactivates old-mode tasks, then it goes to

low-priority
◮ When executing again, check completion of old-mode tasks,

hence executes transition code and activates new-mode
tasks

◮ Tasks have to check their deactivation before sleeping


	State machines and real-time
	Modes
	Problems with mode changes
	Consistency
	Mode manager

	Scheduling
	Mode change protocol


