Informatica e Sistemi in tempo Reale

Introduzione alla Programmazione C- Il

Giuseppe Lipari
http://retis.sssup.it/~lipari

Scuola Superiore Sant’Anna — Pisa

October 5, 2011

G. Lipari (Scuola Superiore Sant’Anna) Introduction to C October 5, 2011 1/62

0 More on statements

e Arrays

@ General arrays
@ Exercises
@ Strings

9 Functions
@ Function definition and declaration
@ Exercises

@ Visibility, scope and lifetime

e Structures

@ Casting

e More on input/output
@ Files
@ Exercises

G. Lipari (Scuola Superiore Sant’Anna) Introduction to C October 5, 2011 2/62

http://retis.sssup.it/~lipari

do while loop

@ An alternative way to write a loop is to use the do - while loop

do {
statementl;
statement?2;

} whi | e(condition);

@ The main difference between the while and the do - while is
that

@ in the while loop the condition is evaluated before every iteration,
@ inthe do - while case the condition is evaluated after every
iteration

@ Hence, with do - while the loop is always performed at least
once

G. Lipari (Scuola Superiore Sant’Anna) Introduction to C October 5, 2011 4/62

Nested loops

@ It is possible to define a loop inside another loop. This is very
useful in many cases in which we have to iterate on two variables
@ What does the following program do?

dloop.c

i nt main()

{

int i, j;
printf("%d\n", 2);
for (i=3;i<=100;i=1i+1){
for =2,j<ij=j+1){
if (i % j ==0) break;
if (> sart(i)) {

printf("%d\n", i);
br eak;

G. Lipari (Scuola Superiore Sant’Anna) Introduction to C October 5, 2011 5/62

./examples/02.intro_c-examples/dloop.c

Exercises

@ Write the equivalence between while and do - while

Q Write the equivalence between for and do - while

@ Write a program that, given two numbers, finds all common factors
between them
o Example 1: 12 and 15, will output 3
o Example 2: 24 and 12, will output 2, 3, 4, 6

G. Lipari (Scuola Superiore Sant’Anna) Introduction to C October 5, 2011 6/62

Reading C programs

@ Itis very important to be able to learn how to read C programs
written by someone else

o Please, take your time to read programs!

@ You must look at a program as you were the processor: try to
“execute a program” on paper, writing down the values of the
variables at every step

@ Also, please try to write “clean” programs!

@ so that other programs will find easy to read your own programs

G. Lipari (Scuola Superiore Sant’Anna) Introduction to C October 5, 2011 7162

switch.c

@ Sometimes, we have to i nt main()
check several alternatives {
on the same value; instead

of a sequence of printf("Enter a number: ");
scanf("%d", &number);

if-then-else, we can use a = ¢ e

switch case statement: case O :
printf("None\n");

br eak;

case 1 :
printf("One\n");
br eak;

case 2 :
printf("Two\n");
br eak;

case 3 :

case 4 :

case 5 :
printf("Several\n");
br eak;

def aul t

i nt number;

G. Lipari (Scuola Superiore Sant’Anna) Introduction to C October 5, 2011 8/62

@ Instead of single variables, we can declare arrays of variables of
the same type

@ They have all the same type and the same name
@ They can be addressed by using an index

int i
i nt a[l0];

al0]
al1]

10;
20;

aiil

o

Cafi-1] + afi+1]:

@ Very important: If the array has N elements, index starts at O,
and last element is at N-1

@ In the above example, last valid element is a[9]

G. Lipari (Scuola Superiore Sant’Anna) Introduction to C October 5, 2011 11/62

./examples/02.intro_c-examples/switch.c

dice.c

#i ncl ude <stdio.h>
#i ncl ude <stdlib.h>

i nt main()
{
int i
int di, dz;
int a[l3]; /* uses [2..12] =/
for (i=2;1<=12;i =1+ 1) afi] = 0;
for (i=0;1<100;i=1+1){
dl = rand() % 6 + 1,
d2 = rand() % 6 + 1,
a[dl + d2] = a[dl + d2] + 1,
}
for(i=2i<=12;1i =1 + 1)
printf("%d: %d\n", i, a[i]);
return O;

G. Lipari (Scuola Superiore Sant’Anna) Introduction to C October 5, 2011 12 /62

Quick exercise

@ You have no more than 5 minutes to complete this exercise!

@ Modify the previous program, so that the user can specify the
number of times the two dices will be rolled

@ Check that the user do not inserts a negative number in which
case you print out an error and exit

G. Lipari (Scuola Superiore Sant’Anna) Introduction to C October 5, 2011 13/62

./examples/02.intro_c-examples/dice.c

Index range

@ What happens if you specify an index outside the array
boundaries?

outbound.c
@ The compiler does #i ncl ude <stdio.h>
not complain, but you nt maing
can get a random {
run-time error! int i
) i nt a[l0];
@ Consider the
following program: el SE]O?_'<01_5? ++) {
what will happen? printf("a[%d] = %d\n", i, al[il);
}
printf("Initialization completed\n");
return O;
}

G. Lipari (Scuola Superiore Sant’Anna) Introduction to C October 5, 2011 14 /62

Questions

@ Index out of bounds is a programming error
@ Why the compiler does not complain?
@ Why the program does not complain at run-time?
@ What is the memory allocation of the program? Where is the array
allocated?

G. Lipari (Scuola Superiore Sant’Anna) Introduction to C October 5, 2011 15/62

./examples/02.intro_c-examples/outbound.c

Initialization

@ Arrays can be initialized with the following syntax

int a[4] = {0, 1, 2, 3}

@ This syntax is only for static initialization, and cannot be used for
assignment

i nt a[4];

a={0, 1, 2, 3} /'l syntax error!

G. Lipari (Scuola Superiore Sant’Anna) Introduction to C October 5, 2011 16 /62

@ Two- and three-dimensional doubl e mat[3][3];
arrays (matrices): i nt - cube[4][4][4];
mat[0][2] = 3.5;

matrix.c
@ Static and dynamic #i ncl ude <stdio.h>
initialisation . :
i nt main()
{ a o
I nt I
doubl e mat[3][3] = {
{0, 0, 0},
{0, 0, 0},
{0, 0, 0}
I

mat[0][2] = 3.5;
for (i=0; i<9; i++) {
mati/3][i%3] = 2.0;
}
printf("Done\n");
a n_()-
G. Lipari (Scuola Superiore Sant’Anna) Introduction to C October 5, 2011

./examples/02.intro_c-examples/matrix.c

Exercises

@ Given 2 arrays of doubles of length 3 that represents vector in a
3-dimensional space, compute the scalar product and the
vectorial product

Q@ Given an array of 30 integers, compute max, min and average

G. Lipari (Scuola Superiore Sant’Anna) Introduction to C October 5, 2011 19/62

@ There is not a specific type for strings in C
@ A string is a sequence of char terminated by value 0
@ To store strings, it is possible to use arrays of chars

char name[20];

@ Initialization:

char name[20] = "Lipari";

@ But again, this syntax is not valid for assignments!

@ In memory:

name o [2 (3 [4 [&8 [6 [71 [8 [9]

G. Lipari (Scuola Superiore Sant’Anna) Introduction to C October 5, 2011 21/62

String length

@ Important: if you need a string with 10 characters, you must
declare an array of 11 characters! (one extra to store the final 0)

@ Here is an example of how to compute the length of a string

char s[20];

/1 how many valid characters in s?

int i

for (i=0; i<20; i++) i f (s[li] == 0) br eak;

I f (i<20) printf("String is %d characters long\n", i);
el se printf("String is not valid\n");

G. Lipari (Scuola Superiore Sant’Anna) Introduction to C October 5, 2011 22 /62

String content

@ What is in a string?

contents.c

#i ncl ude <stdio.h>

i nt main()
{
int i
char str[20] = "donald duck";
for (i=0; i<20; i++)

printf("%d ", str[i]);
printf("\n");

G. Lipari (Scuola Superiore Sant’Anna) Introduction to C October 5, 2011 23 /62

./examples/02.intro_c-examples/contents.c

String manipulation functions

@ int strcpy(char si[], char s2[]);
@ copies string s2 into string s1

@ int strcmp(char s1[], char s2[]);
@ compare strings alphabetically

@ int strcat(char sl1[], char s2[]);
@ append s2to sl

@ int strlen(char s[));
@ computes string length

@ printf(“%s”, str);
@ prints string on screen

G. Lipari (Scuola Superiore Sant’Anna) Introduction to C October 5, 2011 24/ 62

Safe versions

@ Previous functions are not safe: if the string is not well terminated,
anything can happen
@ There are safe versions of each:
@ int strncpy(char si[], char s2[], int n);
@ copies at most n characters
@ int strncat(char sl[], char s2[], int n);
@ appends at most n characters
@ int strncmp(char sl[], char s2[], int n);
@ compares at most n characters

G. Lipari (Scuola Superiore Sant’Anna) Introduction to C October 5, 2011 25/62

stringex.c

i nt main()

{
char name[] = "Giuseppe";
char surname[] = "Lipari®;
char name2[] = "Roberto”;

char result[25];

printf(*Comparing %s with %s\n", name, name2);

i nt r = strncmp(name, name2, 9);

if (r == 0) printf("Same string\n");

else if (r > 0) printf("%s after %s\n", name, name2);
el se if(r < 0) printf("%s before %s\n", name, name2);
printf("Code : %d\n",);

strncpy(result, name, 25);
strncat(result, " ", 25);
strncat(result, surname, 25);
printf("Result: %s\n", result);
return O;

G. Lipari (Scuola Superiore Sant’Anna) Introduction to C October 5, 2011

Function definition and declaration

@ A function is defined by:

@ a unigue name

@ areturn value

@ a list of arguments (also called parameters)
@ a body enclosed in curly braces

@ An example: this function /[« returns the power of x toy =/
elevates a double number to an ?OUb' e power(double x, int y)
integer power a0

doubl e result = 1;
for (i=0; i <vy; i++)
result = result * X
return result;
}

G. Lipari (Scuola Superiore Sant’Anna) Introduction to C October 5, 2011

./examples/02.intro_c-examples/stringex.c

Function call

power.c

@ This is how the function is
called.

@ The formal parameters x
and y are substituted by the
actual parameters (the
values of xx and yy)

i nt main()

{

doubl e myx;
i nt myy;
doubl e res;

printf("Enter x and y\n");
printf("x? ");

scanf("%lg", &myx);
printf("y? ");

scanf("%d", &myy);

res = power(myx, myy);

printf("x*y = %lIgt\n", res);

Introduction to C

30/62

G. Lipari (Scuola Superiore Sant’Anna)

October 5, 2011

Parameters

@ Modifications on local parameters have no effect on the caller

i nt multbytwo(int Xx)
{
X = X * 2
return x;
}
i nt main()
{
i = 5;
res = multbytwo(i);
[* how much is i here? x/
}

Introduction to C

@ X is just a copy of i

@ modifying x modifies the copy,
not the original value

@ We say that in C parameters
are passed by value

@ There is only one exception to
this rule: arrays

@ An array parameter is never
copied, so modification to the
local parameter are
immediately reflected to the
original array

G. Lipari (Scuola Superiore Sant’Anna)

October 5, 2011 31/62

./examples/02.intro_c-examples/power.c

Array parameters

swap.c

#i ncl ude <stdio.h>

void swap (int af]

{
i nt tmp;
tmp = a0];
al0] = a[l];
a[l] = tmp;
return;

}

i nt main()

{

int my[2] = {1,5}
my[0], my[1]);
swap(my);

printf ("after swap: %d %d",
my[0], my[1]);

G. Lipari (Scuola Superiore Sant’Anna)

Exercises

printf ("before swap: %d %d",

@ The array is not copied

@ modification on array a are
reflected in modification on
array my

@ (this can be understood
better when we study
pointers)

@ Notice also:

@ the swap function does not
need to return anything: so
the return type is void

@ the array myis initialised
when declared

Introduction to C October 5, 2011 32/62

@ Write a function that, given a string, returns it's length
@ Write a function that, given two strings s1 and s2, returns 1 if s2 is

contained in sl

@ Write a function that given a string, substitutes all lower case

characters to upper case

Introduction to C October 5, 2011 34 /62

G. Lipari (Scuola Superiore Sant’Anna)

./examples/02.intro_c-examples/swap.c

@ Global variables are variables defined outside of any function

@ Local variables are defined inside a function

@ The visibility (or scope) of a variable is the set of statements that
can “see” the variable

@ remember that a variable (or any other object) must be declared
before it can be used
@ The lifetime of a variable is the time during which the variable
exists in memory

G. Lipari (Scuola Superiore Sant’Anna) Introduction to C October 5, 2011 36 /62

pn is a global variable
scope: all program
lifetime: duration of the program

#i ncl ude <stdio.h>

i nt pn[100];
X is a parameter

int is_prime(int x) / scope: body of function is_prime

{ lifetime: during function execution ‘

int ij;
(—\\ i,j are local variables

} scope: body of function is_prime

, lifetime: during function execution

int temp;

i nt main() (—\\ temp isaglopal variaple

{ scope: all objects defined after temp
int res: lifetime: duration of the program
char s[lO]\
—res and s[] are local variables

} scope: body of function main

lifetime: duration of the program

G. Lipari (Scuola Superiore Sant’Anna) Introduction to C October 5, 2011 37162

Global scope

@ A global variable is declared outside all functions
@ This variable is created before the program starts executing, and it
exists until the program terminates
@ Hence, it’s lifetime is the program duration
@ The scope depends on the point in which it is declared

@ All variables and functions defined after the declaration can use it
@ Hence, it's scope depends on the position

G. Lipari (Scuola Superiore Sant’Anna) Introduction to C October 5, 2011 38/62

Local variables

@ Local variables are defined inside functions

int g;

<_\
i nt myfun()
{

—— gisglobal I

int ki double a T———_ kand a are local to myfun() |

\

i nt yourfun() — in function yourfun(), it is possible to use

{ variable g but you cannot use variable k
/ and a (out of scope)

}

@ k and a cannot be used in yourfun() because their scope is
limited to function myfun()

G. Lipari (Scuola Superiore Sant’Anna) Introduction to C October 5, 2011 39/62

Local variable lifetime

@ Local variable are created only when the function is invoked,;
@ They are destroyed when the function terminates
@ Their lifetime corresponds to the function execution
@ Since they are created at every function call, they hold only
temporary values useful for calculations

int fun(int x)

{
int i = 0;

i += X \
return i
} \ i is initialized to O at every fun() call

i nt main()

{int a, b; /—

a = fun(b);
b = fun(6);

at this point, ais 5 and b is 6;

G. Lipari (Scuola Superiore Sant’Anna) Introduction to C October 5, 2011 40/ 62

Modifying lifetime

@ To modify the lifetime of a local variable, use the static keyword

i nt myfun()
t static int i = O: | This is a static variable: it is initialised
only once (during the first call), then the
++: value is maintained across successive
calls
return i
} o
This prints 1 |
i nt main()
{
printf("%d ", myfun()); — This prints 2
printf("%d ", myfun()); - b I
}

G. Lipari (Scuola Superiore Sant’Anna) Introduction to C October 5, 2011 41/ 62

@ It is possible to define two variables with the same name in two
different scopes

@ The compiler knows which variable to use depending on the scope
@ Itis also possible to hide a variable

int funl() nt i
{ - int funl()
' { _Increments the

} int i J local variable of
int fun2() increments the i++; funl()
{ local variable of ||}

int i fun2() |{nt fun2()

it . Increments the

o+) ’ <~ | global variable
}

G. Lipari (Scuola Superiore Sant’Anna) Introduction to C October 5, 2011 42/ 62

Structure definition

@ In many cases we need to aggregate variables of different types
that are related to the same concept

@ each variable in the structure is called a field
@ the structure is sometimes called record

@ Example
struct student { struct position {
char name[20]; doubl e x;
char surname[30]; doubl e v;
i nt age; doubl e z;
i nt marks[20]; b
char address[100];
char country[100]; struct position pl, p2, p3;
I
struct student si;

G. Lipari (Scuola Superiore Sant’Anna) Introduction to C October 5, 2011

Accessing data

@ To access a field of a structure, use the dot notation

struct student si;

printf("Name: %s\n", sl.name);
printf("Age : %d\n", sl.age);

#i ncl ude <math.h>
struct position pl;
pl.x
ply

10 * cos(0.74);
10 * sin(0.74);

G. Lipari (Scuola Superiore Sant’Anna) Introduction to C October 5, 2011 45/ 62

Array of structures

@ It is possible to declare array of structures as follows:

struct student my_students[20];
int i

my_student[0].name = "...";
my_student[0].age = "...";

for (i=0; i<20; i++) {
printf("Student %d\n", i);
printf("Name: %s\n", my_student[i].name);
printf("Age: %d\n", my_student[i].age);

G. Lipari (Scuola Superiore Sant’Anna) Introduction to C October 5, 2011 46 / 62

Other operations with structures

@ When calling functions, structures are passed by value

@ that is, if you modify the parameter, you modify only the copy, and
the original value is not modified

@ Initialization: you can use curly braces to initialize a structure

struct point {
doubl e x;
doubl e v;

|3

struct point x = {0.5, -7.1};

G. Lipari (Scuola Superiore Sant’Anna) Introduction to C October 5, 2011 47 | 62

Copying structures

@ You can use normal assignment between structures of the same
type
@ the result is a field-by-field copy

struct point {
doubl e x;
doubl e v;

5
struct point x = {4.1, 5.0}

struct point vy;

y =X

G. Lipari (Scuola Superiore Sant’Anna) Introduction to C October 5, 2011 48 / 62

Converting variables between types

@ Sometimes we need to convert a variable between different types

@ Example:
Here we have an implicit conversion from int to dou-
ble; the compiler does not complain
int a =5
doubl e x;

Here we have an implicit conversion from int to dou-

% = A " ble. However, the conversion is performed on the
’ result of the division; therefore the result is 2 and not
N 2.5 as one might expect!

a=x * 2 Here we have a conversion from double to int. With
this conversion, we might lose in precision, hence the
compiler issues a warning

G. Lipari (Scuola Superiore Sant’Anna) Introduction to C October 5, 2011 50/ 62

Explicit casting

@ It is possible to make casting explicit as follows

Here the conversion is not explicit. First, a is con-
int a verted to double; then, the division is performed (a
doubl e x; fractional one); then the result (a double) is assigned
to x.
X = ((double) a) / 2;
_ | Here the compiler does not issue any warning, be-
a=(in)x = 2);, __— cause the programmer has made it explicit that

he/she wants to do this operation.

G. Lipari (Scuola Superiore Sant’Anna) Introduction to C October 5, 2011 51/62

A brief overview

@ In the next slides we will present a quick overview of some
functions to manipulate file

® These are useful to solve some exercises
@ We will come back to these functions at some point

G. Lipari (Scuola Superiore Sant’Anna) Introduction to C October 5, 2011 54 /62

@ A file is a sequence of bytes, usually stored on mass-storage
devices

@ We can read and/or write bytes from/to files sequentially (as in
magnetic tapes)
@ File can contais sequences of bytes (binary) or sequence of
characters (text files)
@ There is really no difference: a character is nothing more than a
byte
@ It's the interpretation that counts

G. Lipari (Scuola Superiore Sant’Anna) Introduction to C October 5, 2011 55/62

File operations

@ Before operating on a file, we must open it
@ then we can operate on it
@ finally we have to close the file when we have done

@ In a C program, a file is identified by a variable of type
FILE =

@ The * denotes a pointer: we will see next lecture what a pointer is

G. Lipari (Scuola Superiore Sant’Anna) Introduction to C October 5, 2011 56 /62

Opening a file

@ To open a file, call fopen

FILE =*fopen(char =*filename, char *mode);

@ filename and mode are strings

o filename is the name of the file (may include the path, relative or

absolute)
@ mode is the opening mode

@ “r’ for reading or “w” for writing or “a” for writing in append mode

@ Example: open a file in reading mode

FILE =*myfile;

myf”e = fopen("teXtﬁletXt", "I’");

fclose(myfile);

G. Lipari (Scuola Superiore Sant’Anna) Introduction to C October 5, 2011 57 162

Reading and writing

@ At this stage, we will consider only text files

@ You can use fprintf() and fscan() , similar to the functions
we have already seen

G. Lipari (Scuola Superiore Sant’Anna) Introduction to C October 5, 2011 58/62

input.c

#i ncl ude <stdio.h>

FILE *myfile;
i nt main()
{
int a, b, c;

char str[100];
myfile = fopen('textfile.txt", "r");

fscanf(myfile, "%d %d", &a, &b);
fscanf(myfile, "%s", str);
fscanf(myfile, "%d", &c);

printf("what |1 have read:\n");
printf("a = %d b = %d c = %d\n", a, b, c);
printf("str = %s\n", str);

G. Lipari (Scuola Superiore Sant’Anna) Introduction to C October 5, 2011 59 /62

./examples/02.intro_c-examples/input.c

fprintf and fgets

output.c

#i ncl ude <stdio.h>

FILE »myfilel;
FILE »myfile2;

i nt main()

{
i nt i, nlines = 0O;
char str[255];

myfilel = fopen(“textfile.txt", "r");
myfile2 = fopen("copyfile.txt", "w");
fgets(str, 255, myfilel);

whi | e (feof(myfilel) {
fprintf(myfile2, "%s", str);
nlines++;
fgets (str, 255, myfilel);
}
printf(“file has been copied\n");
printf("%d lines read\n", nlines);

G. Lipari (Scuola Superiore Sant’Anna) Introduction to C October 5, 2011 60/ 62

Exercises with files

@ Write a program that reads a file line by line and prints every line
reversed

@ Hint: Write a function that reverts a string

@ Write a function that reads a file and counts the number of words

@ Hint: two words are separated by spaces, commas “,”, full stop “." ,
semicolon “;”, colon *:”, question mark “?”, exclamation mark “1”,
dash “-”, brackets. see
http://en.wikipedia.org/wiki/Punctuation

o this is called tokenize

G. Lipari (Scuola Superiore Sant’Anna) Introduction to C October 5, 2011 62 /62

./examples/02.intro_c-examples/output.c
http://en.wikipedia.org/wiki/Punctuation

	More on statements
	Arrays
	General arrays
	Exercises
	Strings

	Functions
	Function definition and declaration
	Exercises

	Visibility, scope and lifetime
	Structures
	Casting
	More on input/output
	Files
	Exercises

