
Informatica e Sistemi in tempo Reale
Introduzione alla Programmazione C- II

Giuseppe Lipari
http://retis.sssup.it/~lipari

Scuola Superiore Sant’Anna – Pisa

October 5, 2011

G. Lipari (Scuola Superiore Sant’Anna) Introduction to C October 5, 2011 1 / 62

Outline

1 More on statements

2 Arrays
General arrays
Exercises
Strings

3 Functions
Function definition and declaration
Exercises

4 Visibility, scope and lifetime

5 Structures

6 Casting

7 More on input/output
Files
Exercises

G. Lipari (Scuola Superiore Sant’Anna) Introduction to C October 5, 2011 2 / 62

http://retis.sssup.it/~lipari

do while loop

An alternative way to write a loop is to use the do - while loop

do {
statement1;
statement2;
...

} while(condition);

The main difference between the while and the do - while is
that

in the while loop the condition is evaluated before every iteration,
in the do - while case the condition is evaluated after every
iteration

Hence, with do - while the loop is always performed at least
once

G. Lipari (Scuola Superiore Sant’Anna) Introduction to C October 5, 2011 4 / 62

Nested loops

It is possible to define a loop inside another loop. This is very
useful in many cases in which we have to iterate on two variables
What does the following program do?

dloop.c

int main()
{

int i, j;

printf("%d\n", 2);

for (i = 3; i <= 100; i = i + 1) {
for (j = 2; j < i; j = j + 1) {

if (i % j == 0) break;

if (j > sqrt(i)) {
printf("%d\n", i);
break;

}
}

}
return 0;

}
G. Lipari (Scuola Superiore Sant’Anna) Introduction to C October 5, 2011 5 / 62

./examples/02.intro_c-examples/dloop.c

Exercises

1 Write the equivalence between while and do - while

2 Write the equivalence between for and do - while
3 Write a program that, given two numbers, finds all common factors

between them
Example 1: 12 and 15, will output 3
Example 2: 24 and 12, will output 2, 3, 4, 6

G. Lipari (Scuola Superiore Sant’Anna) Introduction to C October 5, 2011 6 / 62

Reading C programs

It is very important to be able to learn how to read C programs
written by someone else

Please, take your time to read programs!
You must look at a program as you were the processor: try to
“execute a program” on paper, writing down the values of the
variables at every step
Also, please try to write “clean” programs!

so that other programs will find easy to read your own programs

G. Lipari (Scuola Superiore Sant’Anna) Introduction to C October 5, 2011 7 / 62

Switch - case

Sometimes, we have to
check several alternatives
on the same value; instead
of a sequence of
if-then-else, we can use a
switch case statement:

switch.c

int main()
{

int number;

printf("Enter a number: ");
scanf("%d", &number);
switch(number) {
case 0 :

printf("None\n");
break;

case 1 :
printf("One\n");
break;

case 2 :
printf("Two\n");
break;

case 3 :
case 4 :
case 5 :

printf("Several\n");
break;

default :
printf("Many\n");
break;

}

G. Lipari (Scuola Superiore Sant’Anna) Introduction to C October 5, 2011 8 / 62

Arrays

Instead of single variables, we can declare arrays of variables of
the same type

They have all the same type and the same name

They can be addressed by using an index

int i;
int a[10];

a[0] = 10;
a[1] = 20;
i = 5;
a[i] = a[i-1] + a[i+1];

Very important: If the array has N elements, index starts at 0,
and last element is at N-1

In the above example, last valid element is a[9]

G. Lipari (Scuola Superiore Sant’Anna) Introduction to C October 5, 2011 11 / 62

./examples/02.intro_c-examples/switch.c

Example

dice.c

#include <stdio.h>
#include <stdlib.h>

int main()
{

int i;
int d1, d2;
int a[13]; /* uses [2..12] */

for (i = 2; i <= 12; i = i + 1) a[i] = 0;

for (i = 0; i < 100; i = i + 1) {
d1 = rand() % 6 + 1;
d2 = rand() % 6 + 1;
a[d1 + d2] = a[d1 + d2] + 1;

}

for(i = 2; i <= 12; i = i + 1)
printf("%d: %d\n", i, a[i]);

return 0;
}

G. Lipari (Scuola Superiore Sant’Anna) Introduction to C October 5, 2011 12 / 62

Quick exercise

You have no more than 5 minutes to complete this exercise!

Modify the previous program, so that the user can specify the
number of times the two dices will be rolled

Check that the user do not inserts a negative number in which
case you print out an error and exit

G. Lipari (Scuola Superiore Sant’Anna) Introduction to C October 5, 2011 13 / 62

./examples/02.intro_c-examples/dice.c

Index range

What happens if you specify an index outside the array
boundaries?

The compiler does
not complain, but you
can get a random
run-time error!

Consider the
following program:
what will happen?

outbound.c

#include <stdio.h>

int main()
{

int i;
int a[10];

for (i=0; i<15; i++) {
a[i] = 0;
printf("a[%d] = %d\n", i, a[i]);

}

printf("Initialization completed!\n");

return 0;
}

G. Lipari (Scuola Superiore Sant’Anna) Introduction to C October 5, 2011 14 / 62

Questions

Index out of bounds is a programming error
Why the compiler does not complain?
Why the program does not complain at run-time?

What is the memory allocation of the program? Where is the array
allocated?

G. Lipari (Scuola Superiore Sant’Anna) Introduction to C October 5, 2011 15 / 62

./examples/02.intro_c-examples/outbound.c

Initialization

Arrays can be initialized with the following syntax

int a[4] = {0, 1, 2, 3};

This syntax is only for static initialization, and cannot be used for
assignment

int a[4];

a = {0, 1, 2, 3}; // syntax error!

G. Lipari (Scuola Superiore Sant’Anna) Introduction to C October 5, 2011 16 / 62

Matrix

Two- and three-dimensional
arrays (matrices):

double mat[3][3];
int cube[4][4][4];

mat[0][2] = 3.5;

Static and dynamic
initialisation

matrix.c

#include <stdio.h>

int main()
{

int i;
double mat[3][3] = {

{0, 0, 0},
{0, 0, 0},
{0, 0, 0}

};
mat[0][2] = 3.5;
for (i=0; i<9; i++) {

mat[i/3][i%3] = 2.0;
}
printf("Done\n");
return 0;

}G. Lipari (Scuola Superiore Sant’Anna) Introduction to C October 5, 2011 17 / 62

./examples/02.intro_c-examples/matrix.c

Exercises

1 Given 2 arrays of doubles of length 3 that represents vector in a
3-dimensional space, compute the scalar product and the
vectorial product

2 Given an array of 30 integers, compute max, min and average

G. Lipari (Scuola Superiore Sant’Anna) Introduction to C October 5, 2011 19 / 62

Strings

There is not a specific type for strings in C

A string is a sequence of char terminated by value 0

To store strings, it is possible to use arrays of chars

char name[20];

Initialization:

char name[20] = "Lipari";

But again, this syntax is not valid for assignments!

In memory:

[0]name [3] [5][1] [2] [4] [6] [7] [8] [9]

L i p a r i 0

G. Lipari (Scuola Superiore Sant’Anna) Introduction to C October 5, 2011 21 / 62

String length

Important: if you need a string with 10 characters, you must
declare an array of 11 characters! (one extra to store the final 0)

Here is an example of how to compute the length of a string

char s[20];
...
// how many valid characters in s?
int i;
for (i=0; i<20; i++) if (s[i] == 0) break;

if (i<20) printf("String is %d characters long\n", i);
else printf("String is not valid!\n");

G. Lipari (Scuola Superiore Sant’Anna) Introduction to C October 5, 2011 22 / 62

String content

What is in a string?
contents.c

#include <stdio.h>

int main()
{

int i;
char str[20] = "donald duck";

for (i=0; i<20; i++)
printf("%d ", str[i]);

printf("\n");
}

G. Lipari (Scuola Superiore Sant’Anna) Introduction to C October 5, 2011 23 / 62

./examples/02.intro_c-examples/contents.c

String manipulation functions

int strcpy(char s1[], char s2[]);
copies string s2 into string s1

int strcmp(char s1[], char s2[]);
compare strings alphabetically

int strcat(char s1[], char s2[]);
append s2 to s1

int strlen(char s[]);
computes string length

printf(“%s”, str);
prints string on screen

G. Lipari (Scuola Superiore Sant’Anna) Introduction to C October 5, 2011 24 / 62

Safe versions

Previous functions are not safe: if the string is not well terminated,
anything can happen
There are safe versions of each:

int strncpy(char s1[], char s2[], int n);
copies at most n characters

int strncat(char s1[], char s2[], int n);
appends at most n characters

int strncmp(char s1[], char s2[], int n);
compares at most n characters

G. Lipari (Scuola Superiore Sant’Anna) Introduction to C October 5, 2011 25 / 62

Examples

stringex.c

int main()
{

char name[] = "Giuseppe";
char surname[] = "Lipari";
char name2[] = "Roberto";
char result[25];

printf("Comparing %s with %s\n", name, name2);
int r = strncmp(name, name2, 9);
if (r == 0) printf("Same string\n");
else if (r > 0) printf("%s after %s\n", name, name2);
else if(r < 0) printf("%s before %s\n", name, name2);
printf("Code : %d\n", r);

strncpy(result, name, 25);
strncat(result, " ", 25);
strncat(result, surname, 25);
printf("Result: %s\n", result);
return 0;

}

G. Lipari (Scuola Superiore Sant’Anna) Introduction to C October 5, 2011 26 / 62

Function definition and declaration

A function is defined by:
a unique name
a return value
a list of arguments (also called parameters)
a body enclosed in curly braces

An example: this function
elevates a double number to an
integer power

/* returns the power of x to y */
double power(double x, int y)
{

int i;
double result = 1;

for (i=0; i < y; i++)
result = result * x;

return result;
}

G. Lipari (Scuola Superiore Sant’Anna) Introduction to C October 5, 2011 29 / 62

./examples/02.intro_c-examples/stringex.c

Function call

This is how the function is
called.

The formal parameters x
and y are substituted by the
actual parameters (the
values of xx and yy)

power.c

int main()
{

double myx;
int myy;
double res;

printf("Enter x and y\n");
printf("x? ");
scanf("%lg", &myx);
printf("y? ");
scanf("%d", &myy);

res = power(myx, myy);

printf("x^y = %lgt\n", res);
}

G. Lipari (Scuola Superiore Sant’Anna) Introduction to C October 5, 2011 30 / 62

Parameters

Modifications on local parameters have no effect on the caller

int multbytwo(int x)
{

x = x * 2;
return x;

}

int main()
{

...
i = 5;
res = multbytwo(i);
/* how much is i here? */
...

}

x is just a copy of i

modifying x modifies the copy,
not the original value

We say that in C parameters
are passed by value

There is only one exception to
this rule: arrays

An array parameter is never
copied, so modification to the
local parameter are
immediately reflected to the
original array

G. Lipari (Scuola Superiore Sant’Anna) Introduction to C October 5, 2011 31 / 62

./examples/02.intro_c-examples/power.c

Array parameters

swap.c

#include <stdio.h>

void swap (int a[])
{

int tmp;
tmp = a[0];
a[0] = a[1];
a[1] = tmp;
return;

}

int main()
{

int my[2] = {1,5}
printf ("before swap: %d %d",

my[0], my[1]);

swap(my);

printf ("after swap: %d %d",
my[0], my[1]);

}

The array is not copied
modification on array a are
reflected in modification on
array my

(this can be understood
better when we study
pointers)

Notice also:
the swap function does not
need to return anything: so
the return type is void
the array my is initialised
when declared

G. Lipari (Scuola Superiore Sant’Anna) Introduction to C October 5, 2011 32 / 62

Exercises

1 Write a function that, given a string, returns it’s length
2 Write a function that, given two strings s1 and s2, returns 1 if s2 is

contained in s1
3 Write a function that given a string, substitutes all lower case

characters to upper case

G. Lipari (Scuola Superiore Sant’Anna) Introduction to C October 5, 2011 34 / 62

./examples/02.intro_c-examples/swap.c

Definitions

Global variables are variables defined outside of any function

Local variables are defined inside a function
The visibility (or scope) of a variable is the set of statements that
can “see” the variable

remember that a variable (or any other object) must be declared
before it can be used

The lifetime of a variable is the time during which the variable
exists in memory

G. Lipari (Scuola Superiore Sant’Anna) Introduction to C October 5, 2011 36 / 62

Examples

#include <stdio.h>

int pn[100];

int is_prime(int x)
{

int i,j;
...

}

int temp;

int main()
{

int res;
char s[10];
...

}

pn is a global variable
scope: all program
lifetime: duration of the program

x is a parameter
scope: body of function is_prime
lifetime: during function execution

i,j are local variables
scope: body of function is_prime
lifetime: during function execution

temp is a global variable
scope: all objects defined after temp
lifetime: duration of the program

res and s[] are local variables
scope: body of function main
lifetime: duration of the program

G. Lipari (Scuola Superiore Sant’Anna) Introduction to C October 5, 2011 37 / 62

Global scope

A global variable is declared outside all functions
This variable is created before the program starts executing, and it
exists until the program terminates
Hence, it’s lifetime is the program duration

The scope depends on the point in which it is declared
All variables and functions defined after the declaration can use it
Hence, it’s scope depends on the position

G. Lipari (Scuola Superiore Sant’Anna) Introduction to C October 5, 2011 38 / 62

Local variables

Local variables are defined inside functions

int g;

int myfun()
{

int k; double a;
...

}

int yourfun()
{

...
}

g is global

k and a are local to myfun()

in function yourfun(), it is possible to use
variable g but you cannot use variable k
and a (out of scope)

k and a cannot be used in yourfun() because their scope is
limited to function myfun() .

G. Lipari (Scuola Superiore Sant’Anna) Introduction to C October 5, 2011 39 / 62

Local variable lifetime

Local variable are created only when the function is invoked;
They are destroyed when the function terminates

Their lifetime corresponds to the function execution
Since they are created at every function call, they hold only
temporary values useful for calculations

int fun(int x)
{
int i = 0;

i += x;
return i;

}

int main()
{
int a, b;

a = fun(5);
b = fun(6);

...
}

i is initialized to 0 at every fun() call

at this point, a is 5 and b is 6;

G. Lipari (Scuola Superiore Sant’Anna) Introduction to C October 5, 2011 40 / 62

Modifying lifetime

To modify the lifetime of a local variable, use the static keyword

int myfun()
{

static int i = 0;

i++;

return i;
}

int main()
{

printf("%d ", myfun());
printf("%d ", myfun());

}

This is a static variable: it is initialised
only once (during the first call), then the
value is maintained across successive
calls

This prints 1

This prints 2

G. Lipari (Scuola Superiore Sant’Anna) Introduction to C October 5, 2011 41 / 62

Hiding

It is possible to define two variables with the same name in two
different scopes

The compiler knows which variable to use depending on the scope

It is also possible to hide a variable

int fun1()
{

int i;
...

}
int fun2()
{

int i;
...
i++;

}

increments the
local variable of
fun2()

int i;
int fun1()
{

int i;
i++;

}
int fun2()
{

i++;
}

Increments the
local variable of
fun1()

Increments the
global variable

G. Lipari (Scuola Superiore Sant’Anna) Introduction to C October 5, 2011 42 / 62

Structure definition

In many cases we need to aggregate variables of different types
that are related to the same concept

each variable in the structure is called a field

the structure is sometimes called record

Example

struct student {
char name[20];
char surname[30];
int age;
int marks[20];
char address[100];
char country[100];

};

struct student s1;

struct position {
double x;
double y;
double z;

};

struct position p1, p2, p3;

G. Lipari (Scuola Superiore Sant’Anna) Introduction to C October 5, 2011 44 / 62

Accessing data

To access a field of a structure, use the dot notation

struct student s1;
...
printf("Name: %s\n", s1.name);
printf("Age : %d\n", s1.age);

#include <math.h>

struct position p1;
...
p1.x = 10 * cos(0.74);
p1.y = 10 * sin(0.74);

G. Lipari (Scuola Superiore Sant’Anna) Introduction to C October 5, 2011 45 / 62

Array of structures

It is possible to declare array of structures as follows:

struct student my_students[20];
int i;

my_student[0].name = "...";
my_student[0].age = "...";
...

for (i=0; i<20; i++) {
printf("Student %d\n", i);
printf("Name: %s\n", my_student[i].name);
printf("Age: %d\n", my_student[i].age);

...
}

G. Lipari (Scuola Superiore Sant’Anna) Introduction to C October 5, 2011 46 / 62

Other operations with structures

When calling functions, structures are passed by value
that is, if you modify the parameter, you modify only the copy, and
the original value is not modified

Initialization: you can use curly braces to initialize a structure

struct point {
double x;
double y;

};

struct point x = {0.5, -7.1};

G. Lipari (Scuola Superiore Sant’Anna) Introduction to C October 5, 2011 47 / 62

Copying structures

You can use normal assignment between structures of the same
type

the result is a field-by-field copy

struct point {
double x;
double y;

};

struct point x = {4.1, 5.0};

struct point y;

y = x;

G. Lipari (Scuola Superiore Sant’Anna) Introduction to C October 5, 2011 48 / 62

Converting variables between types

Sometimes we need to convert a variable between different types

Example:

int a = 5;
double x;

x = a;

x = a / 2;

a = x * 2;

Here we have an implicit conversion from int to dou-
ble; the compiler does not complain

Here we have an implicit conversion from int to dou-
ble. However, the conversion is performed on the
result of the division; therefore the result is 2 and not
2.5 as one might expect!

Here we have a conversion from double to int. With
this conversion, we might lose in precision, hence the
compiler issues a warning

G. Lipari (Scuola Superiore Sant’Anna) Introduction to C October 5, 2011 50 / 62

Explicit casting

It is possible to make casting explicit as follows

int a;
double x;

x = ((double) a) / 2;

a = (int)(x * 2);

Here the conversion is not explicit. First, a is con-
verted to double; then, the division is performed (a
fractional one); then the result (a double) is assigned
to x.

Here the compiler does not issue any warning, be-
cause the programmer has made it explicit that
he/she wants to do this operation.

G. Lipari (Scuola Superiore Sant’Anna) Introduction to C October 5, 2011 51 / 62

A brief overview

In the next slides we will present a quick overview of some
functions to manipulate file

These are useful to solve some exercises

We will come back to these functions at some point

G. Lipari (Scuola Superiore Sant’Anna) Introduction to C October 5, 2011 54 / 62

Files

A file is a sequence of bytes, usually stored on mass-storage
devices

We can read and/or write bytes from/to files sequentially (as in
magnetic tapes)

File can contais sequences of bytes (binary) or sequence of
characters (text files)

There is really no difference: a character is nothing more than a
byte
It’s the interpretation that counts

G. Lipari (Scuola Superiore Sant’Anna) Introduction to C October 5, 2011 55 / 62

File operations

Before operating on a file, we must open it

then we can operate on it

finally we have to close the file when we have done

In a C program, a file is identified by a variable of type
FILE *

The * denotes a pointer: we will see next lecture what a pointer is

G. Lipari (Scuola Superiore Sant’Anna) Introduction to C October 5, 2011 56 / 62

Opening a file

To open a file, call fopen

FILE * fopen(char * filename, char * mode);

filename and mode are strings
filename is the name of the file (may include the path, relative or
absolute)
mode is the opening mode

“r” for reading or “w” for writing or “a” for writing in append mode

Example: open a file in reading mode

FILE * myfile;

myfile = fopen("textfile.txt", "r");
...

fclose(myfile);

G. Lipari (Scuola Superiore Sant’Anna) Introduction to C October 5, 2011 57 / 62

Reading and writing

At this stage, we will consider only text files

You can use fprintf() and fscan() , similar to the functions
we have already seen

G. Lipari (Scuola Superiore Sant’Anna) Introduction to C October 5, 2011 58 / 62

Input

input.c

#include <stdio.h>

FILE * myfile;

int main()
{

int a, b, c;
char str[100];

myfile = fopen("textfile.txt", "r");

fscanf(myfile, "%d %d", &a, &b);
fscanf(myfile, "%s", str);
fscanf(myfile, "%d", &c);

printf("what I have read:\n");
printf("a = %d b = %d c = %d\n", a, b, c);
printf("str = %s\n", str);

}

G. Lipari (Scuola Superiore Sant’Anna) Introduction to C October 5, 2011 59 / 62

./examples/02.intro_c-examples/input.c

fprintf and fgets

output.c

#include <stdio.h>

FILE * myfile1;
FILE * myfile2;

int main()
{

int i, nlines = 0;
char str[255];

myfile1 = fopen("textfile.txt", "r");
myfile2 = fopen("copyfile.txt", "w");
fgets(str, 255, myfile1);

while (!feof(myfile1) {
fprintf(myfile2, "%s", str);
nlines++;
fgets (str, 255, myfile1);

}
printf("file has been copied!\n");
printf("%d lines read\n", nlines);

}

G. Lipari (Scuola Superiore Sant’Anna) Introduction to C October 5, 2011 60 / 62

Exercises with files

Write a program that reads a file line by line and prints every line
reversed

Hint: Write a function that reverts a string

Write a function that reads a file and counts the number of words
Hint: two words are separated by spaces, commas “,”, full stop “.” ,
semicolon “;”, colon “:”, question mark “?”, exclamation mark “!”,
dash “-”, brackets. see
http://en.wikipedia.org/wiki/Punctuation
this is called tokenize

G. Lipari (Scuola Superiore Sant’Anna) Introduction to C October 5, 2011 62 / 62

./examples/02.intro_c-examples/output.c
http://en.wikipedia.org/wiki/Punctuation

	More on statements
	Arrays
	General arrays
	Exercises
	Strings

	Functions
	Function definition and declaration
	Exercises

	Visibility, scope and lifetime
	Structures
	Casting
	More on input/output
	Files
	Exercises

