Sistemi in tempo reale
Semaphores

Giuseppe Lipari
http://retis.sssup.it/~lipari

Scuola Superiore Sant’Anna — Pisa

October 5, 2011

Outline

e Semaphores
@ Mutual exclusion
@ Synchronization
@ Exercise
@ Producer / Consumer

9 Solutions

http://retis.sssup.it/~lipari

A general mechanism for blocking tasks

@ The semaphore mechanism was first proposed by Dijkstra

@ A semaphore is an abstract data type that consists of
@ a counter
@ a blocking queue
@ operation wait
@ operation signal
@ The operations on a semaphore must be atomic

o the OS makes them atomic by appropriate low-level
mechanisms

Semaphore definition

@ semaphores are a basic mechanisms for providing
synchronization

@ it has been shown that every kind of synchronization and
mutual exclusion can be implemented by using
sempahores

@ we will analyze possible implementation of the semaphore
mechanism later

cl ass Semaphore {
<bl ocked queue> bl ocked,;
I nt counter;
publi c:
Semaphore (int n) : count (n) {...}
void wait();
voi d signal ();

b

Wait and signal

@ a wait operation has the following behavior:
o ifcount er == 0, the requiring thread is blocked;

@ itis removed from the ready queue and inserted in the
blocked queue;

@ ifcounter > 0, thencounter--;

@ a signal operation has the following behavior:

o ifcount er == 0 and there is some blocked thread,
unblock it;

@ the thread is removed from the blocked queue and inserted
in the ready queue

@ otherwise, increment counter;

Pseudo-code for wait and signal

cl ass Semaphore {
<bl ocked queue> bl ocked,;
I nt counter;
publi c:
Semaphore (int n) : counter (n) {...}
void wait() {
I f (counter == 0)
<bl ock the thread>
el se counter--;
}
void signal () {
I f (<sonme bl ocked thread>)
<unbl ock the thread>
el se count er ++;

}
b

Mutual exclusion with semaphores

@ To use a semaphore for mutual exclusions:

o define a semaphore initialized to 1
@ before entering the critical section, perform a wait
o after leaving the critical section, perform a signal

void *t hreadA(void *)
{

void *threadB(void x)
{

s.wait(); s.wait();

<critical section> <critical section>

s.signal (); s.signal ();

} }
Mutual exclusion: example
_______ - examplel.c
s N

’ Semaphore ™, s wai (). 1A
| Counter :
! () : examplel.c
: Blocked queue ' s.wait(); (TA)
| ' <critical section (1)> (TA
\ TB|

—_——————

Ready queue

B|TA

examplel.c

s.wait(); (TA)
<critical section (1)> (TA
s.wait(); (TB)
examplel.c

s.wait(); (TA)
<critical section (1)> (TA
s.wait(); (TB)
<critical section (2)> (TA

examplel.c

's.wait(): (TA)

Synchronization with semaphores

@ How to use a semaphore for synchronizing two or more
threads
o define a sempahore initialized to O
@ at the syncronization point, the task to be blocked performs
awai t
@ at the synchronization point, the other task performs a
signal

@ Example: thread A must block if it arrives at the synch
point before thread B

Semaphore s(0);

void *threadA(void) { void *threadB(void) {
s.wait(): s. si gnal () ;
} }
Problem 1

@ How to make each thread wait for the other one?

o The first one that arrives at the synchronization point waits
for the other one.

@ Solution: use two semaphores!

Semaphore sa(0), sh(0);

void *threadA(void) { void *threadB(void) {
sa.signal (); sb. signal ();
sb.wait(); sa.wait();

Problem 2

@ Generalize the previous synchronization problem to N
threads

@ The first N-1 threads must block waiting for the last one
@ First solution (more elegant)
@ Second solution (more practical)

Producer / Consumer

@ We now want ot implement a mailbox with a circular array
@ avoiding busy wait
@ The producer must be blocked when the mailbox is full

@ The consumer must be blocked when the mailbox is empty
@ We use appropriate semaphores to block these threads

@ Initially we consider only one producer and one consumer

Implementation

circulararrayl.c circulararrayl.c
#define N 10 void CA::insert(int elem
{
class CA { full.wait();
int array[N; array[head++] = el em
i nt head(0); head = head % N;
int tail (0); enpty. signal ();
}
Semaphore enpty(0);
Semaphore full (N); void CA::extract(int &elem
publ i c: {
void insert(int elem; enpty.wait();
void extract(int &elem; elem= array[tail ++];
}; tail =tail %N,

full.signal ();

Proof of correctness

@ when the number of elements in the queue is between 1
and 9, there is no problem;

@ insert and extract work on different variables (head and tall
respectively) and different elements of the array;

@ The value of full and empty is always greater than 0, so
neither the producer nor the consumer can block;

@ when there is no element in the queue, head = tail, counter
of empty = 0, counter of full = N;

o If the extract begins before the end of an insert, it will be
blocked

@ After an insert, there is an element in the queue, so we are
in the previous case

@ For symmetry, the same holds for the case of N elements
in the queue. Again, head = tail, counter of empty = N,
counter of full = O;

o If the insert begins before the end of an extract, it will be
blocked
@ After an extract, we fall back in the previous case

Multiple producers/consumers

@ Suppose now there are mamy producers and many

consumers,

@ all producers will act on the same variable head, and all

consumers on tail;

@ If one producer preempts another producer, an

Inconsistency can arise

@ Exercise: prove the above sentence
@ Therefore, we need to combine synchronization and

mutual exclusion

First solution

circulararray-wrong.c

circulararray-wrong.c

#define N 10

class CA {
int array[N;
i nt head(0);
int tail (0);

Semaphore enpty(0);

Semaphore full (N);

Semaphore mutex(1);
publi c:

void insert(int elem;

void extract(int &elem;

void CA::insert(int elem
{
mut ex. wai t () ;
full.wait();
array[head++] = elem
head = head % N;
enpty. signal ();
mut ex. si gnal ();

}

void CA: :extract(int &elem
{

nmut ex. wai t () ;

enpty.wait();
elem= array[tail ++];
tail =tail %N,

full.signal ();
mut ex. si gnal () ;

Wrong solution

@ The previous solution is wrong!
@ Counter example:

@ A consumer thread executes first, locks the mutex and
blocks on the empty semaphore

@ All other threads (producers or consumers) will block on the
mutex

@ Lesson learned: never block inside a mutex!

Deadlock

@ Deadlock situation

@ A thread executes mutex.wait() and then blocks on a
synchronisation semaphore

@ To be unblocked another thread must enter a critical section
guarded by the same mutex semaphore

@ So, the first thread cannot be unblocked and free the mutex

@ The situation cannot be solved

Correct solution

circulararray-correct.c

circulararray-correct.c

#define N 10

class CA {
int array[N ;
i nt head(O0);
int tail (0);

Semaphore enpty(0);

Semaphore full (N);

Semaphore mutex(1);
publ i c:

void insert(int elem;

void extract(int &elem;

Exercises

void CA::insert(int elem
{
full.wait();
mut ex. wai t () ;
array[head++] = el em
head = head % N
mut ex. si gnal ();
enpty. signal ();
}

void CA::extract(int &elem

{
enpty.wait();
nmut ex. wai t () ;
elem= array[tail ++];
tail =tail %N,
nmut ex. si gnal () ;
full.signal ();

@ Solve the previous exercise with two mutex (one for the
consumers and one for the producers)

@ Prove the solution is correct

@ Suppose there are one producer and N consumer. Every
message has to be received by each consumer.

o Write the data structure, the insert and extract functions

@ Suppose that extract() takes an additional arguments that
specifies the consumer ID (between 0 and N-1).

First solution to problem 2

Elegant solution. Uses many semaphores! (with the pthread

interface)

prob2-solutionl.c

prob2-solutionl.c

#i ncl ude <stdi o. h>
#i ncl ude <pt hread. h>
#i ncl ude <senaphore. h>

#define N 8
semt S[NI[N];
void init()

{

int i, j;
for (i=0; i<N i++)
for(j=0; j<N j++)
seminit(&[i][j], 0, 0);

}
void *thread(void arg)
{
int k =x*((int) arg); int j;
printf("THYX: before synch\n", Kk);
for (j=0; j<N j++)
if (j!=k) sempost(&s[K][j]);
for (j=0; j<N j++)
if (j!'=k) semwait(&s[j][k]);
printf("TH¥@: after synch\n", k);
return O;
}

int main()
{
pthread_t tid[N;
int i;
int args[N;

init();

for (i=0; i<N, i++) {
args[i] =1;
pthread_create(&id[i], O, thread,
(void *)&args[i]);

Second solution to problem 2

Practical solution. We need a mutex semaphore, a counter, and
a semaphore to block threads. (with the pthread interface)

solution2.c

solution2.c

struct synch {

int count;

semt m // mutex

semt b; // blocked

int N /1 nunmber of threads

}

voi d initsynch(struct synch *s, int n)
o
int i;
s->count = 0;
seminit(&->m 0, 1);
seminit(&->b, 0, 0);
s->N = n;

}

voi d my_synch(struct synch =*s)
{
int i;
sem wai t (&s->n);
if (++s->count < s->N) {
sem post (&s->n) ;
sem wai t (&s->b);
}
el se {
for (i=0; i < s->N- 1; i++)
sem post (&s- >b) ;
sem post (&s->n) ;
}
}

struct synch sp;

void *thread(void *arg)

{
mysynch(&sp) ;
o

	Semaphores
	Mutual exclusion
	Synchronization
	Exercise
	Producer / Consumer

	Solutions

