Fixed Priority Scheduling

Giuseppe Lipari
http://feanor.sssup.it/~lipari
Scuola Superiore Sant'Anna - Pisa

November 23, 2011

Outline

(1) Fixed priority
(2) Priority assignment
(3) Scheduling analysis

4 A necessary and sufficient test
(5) Sensitivity

6 Hyperplane analysis
(7) Conclusions

8 Esercizi

- Calcolo del tempo di risposta
- Calcolo del tempo di risposta con aperiodici
- Hyperplane analysis
- Hyperplane analysis - II

Outline

(9) Fixed priority
(2) Priority assignment
(3) Scheduling analysis

4 A necessary and sufficient test
(5) Sensitivity

6 Hyperplane analysis
(7) Conclusions

8 Esercizi

- Calcolo del tempo di risposta
- Calcolo del tempo di risposta con aperiodici
- Hyperplane analysis
- Hyperplane analysis - II

The fixed priority scheduling algorithm

- very simple scheduling algorithm;
- every task τ_{i} is assigned a fixed priority p_{i};
- the active task with the highest priority is scheduled.
- Priorities are integer numbers: the higher the number, the higher the priority;
- In the research literature, sometimes authors use the opposite convention: the lowest the number, the highest the priority.
- In the following we show some examples, considering periodic tasks, and constant execution time equal to the period.

Example of schedule

- Consider the following task set: $\tau_{1}=(2,6,6), \tau_{2}=(2,9,9)$, $\tau_{3}=(3,12,12)$. Task τ_{1} has priority $p_{1}=3$ (highest), task τ_{2} has priority $p_{2}=2$, task τ_{3} has priority $p_{3}=1$ (lowest).

Example of schedule

- Consider the following task set: $\tau_{1}=(2,6,6), \tau_{2}=(2,9,9)$, $\tau_{3}=(3,12,12)$. Task τ_{1} has priority $p_{1}=3$ (highest), task τ_{2} has priority $p_{2}=2$, task τ_{3} has priority $p_{3}=1$ (lowest).

Example of schedule

- Consider the following task set: $\tau_{1}=(2,6,6), \tau_{2}=(2,9,9)$, $\tau_{3}=(3,12,12)$. Task τ_{1} has priority $p_{1}=3$ (highest), task τ_{2} has priority $p_{2}=2$, task τ_{3} has priority $p_{3}=1$ (lowest).

Example of schedule

- Consider the following task set: $\tau_{1}=(2,6,6), \tau_{2}=(2,9,9)$, $\tau_{3}=(3,12,12)$. Task τ_{1} has priority $p_{1}=3$ (highest), task τ_{2} has priority $p_{2}=2$, task τ_{3} has priority $p_{3}=1$ (lowest).

Example of schedule

- Consider the following task set: $\tau_{1}=(2,6,6), \tau_{2}=(2,9,9)$, $\tau_{3}=(3,12,12)$. Task τ_{1} has priority $p_{1}=3$ (highest), task τ_{2} has priority $p_{2}=2$, task τ_{3} has priority $p_{3}=1$ (lowest).

Example of schedule

- Consider the following task set: $\tau_{1}=(2,6,6), \tau_{2}=(2,9,9)$, $\tau_{3}=(3,12,12)$. Task τ_{1} has priority $p_{1}=3$ (highest), task τ_{2} has priority $p_{2}=2$, task τ_{3} has priority $p_{3}=1$ (lowest).

Example of schedule

- Consider the following task set: $\tau_{1}=(2,6,6), \tau_{2}=(2,9,9)$, $\tau_{3}=(3,12,12)$. Task τ_{1} has priority $p_{1}=3$ (highest), task τ_{2} has priority $p_{2}=2$, task τ_{3} has priority $p_{3}=1$ (lowest).

Example of schedule

- Consider the following task set: $\tau_{1}=(2,6,6), \tau_{2}=(2,9,9)$, $\tau_{3}=(3,12,12)$. Task τ_{1} has priority $p_{1}=3$ (highest), task τ_{2} has priority $p_{2}=2$, task τ_{3} has priority $p_{3}=1$ (lowest).

Example of schedule

- Consider the following task set: $\tau_{1}=(2,6,6), \tau_{2}=(2,9,9)$, $\tau_{3}=(3,12,12)$. Task τ_{1} has priority $p_{1}=3$ (highest), task τ_{2} has priority $p_{2}=2$, task τ_{3} has priority $p_{3}=1$ (lowest).

Example of schedule

- Consider the following task set: $\tau_{1}=(2,6,6), \tau_{2}=(2,9,9)$, $\tau_{3}=(3,12,12)$. Task τ_{1} has priority $p_{1}=3$ (highest), task τ_{2} has priority $p_{2}=2$, task τ_{3} has priority $p_{3}=1$ (lowest).

Example of schedule

- Consider the following task set: $\tau_{1}=(2,6,6), \tau_{2}=(2,9,9)$, $\tau_{3}=(3,12,12)$. Task τ_{1} has priority $p_{1}=3$ (highest), task τ_{2} has priority $p_{2}=2$, task τ_{3} has priority $p_{3}=1$ (lowest).

Example of schedule

- Consider the following task set: $\tau_{1}=(2,6,6), \tau_{2}=(2,9,9)$, $\tau_{3}=(3,12,12)$. Task τ_{1} has priority $p_{1}=3$ (highest), task τ_{2} has priority $p_{2}=2$, task τ_{3} has priority $p_{3}=1$ (lowest).

Example of schedule

- Consider the following task set: $\tau_{1}=(2,6,6), \tau_{2}=(2,9,9)$, $\tau_{3}=(3,12,12)$. Task τ_{1} has priority $p_{1}=3$ (highest), task τ_{2} has priority $p_{2}=2$, task τ_{3} has priority $p_{3}=1$ (lowest).

Example of schedule

- Consider the following task set: $\tau_{1}=(2,6,6), \tau_{2}=(2,9,9)$, $\tau_{3}=(3,12,12)$. Task τ_{1} has priority $p_{1}=3$ (highest), task τ_{2} has priority $p_{2}=2$, task τ_{3} has priority $p_{3}=1$ (lowest).

Another example (non-schedulable)

- Consider the following task set: $\tau_{1}=(3,6,6), p_{1}=3$, $\tau_{2}=(2,4,8), p_{2}=2, \tau_{3}=(2,12,12), p_{3}=1$.

In this case, task τ_{3} misses its deadline!

Another example (non-schedulable)

- Consider the following task set: $\tau_{1}=(3,6,6), p_{1}=3$, $\tau_{2}=(2,4,8), p_{2}=2, \tau_{3}=(2,12,12), p_{3}=1$.

In this case, task τ_{3} misses its deadline!

Note

- Some considerations about the schedule shown before:
- The response time of the task with the highest priority is minimum and equal to its WCET.
- The response time of the other tasks depends on the interference of the higher priority tasks;
- The priority assignment may influence the schedulability of a task.

Outline

(1) Fixed priority

(2) Priority assignment
(3) Scheduling analysis

4 A necessary and sufficient test
(5) Sensitivity
6. Hyperplane analysis
(7) Conclusions

- Escrcizi
- Calcolo del tempo di risposta
- Calcolo del tempo di risposta con aperiodici
- Hyperplane analysis
- Hyperplane analysis - II

Priority assignment

- Given a task set, how to assign priorities?
- There are two possible objectives:
- Schedulability (i.e. find the priority assignment that makes all tasks schedulable)
- Response time (i.e. find the priority assignment that minimize the response time of a subset of tasks).
- By now we consider the first objective only
- An optimal priority assignment Opt is such that:
- If the task set is schedulable with another priority assignment, then it is schedulable with priority assignment Opt.
- If the task set is not schedulable with Opt, then it is not schedulable by any other assignment.

Optimal priority assignment

- Given a periodic task set with all tasks having deadline equal to the period ($\forall i, \quad D_{i}=T_{i}$), and with all offsets equal to $0\left(\forall i, \quad \phi_{i}=0\right)$:
- The best assignment is the Rate Monotonic assignment
- Tasks with shorter period have higher priority
- Given a periodic task set with deadline different from periods, and with all offsets equal to 0 ($\forall i, \quad \phi_{i}=0$):
- The best assignement is the Deadline Monotonic assignment
- Tasks with shorter relative deadline have higher priority
- For sporadic tasks, the same rules are valid as for periodic tasks with offsets equal to 0 .

Example revised

- Consider the example shown before with deadline monotonic: $\tau_{1}=(3,6,6), p_{1}=2, \tau_{2}=(2,4,8), p_{2}=3$, $\tau_{3}=(2,10,12), p_{3}=1$.

Example revised

- Consider the example shown before with deadline monotonic: $\tau_{1}=(3,6,6), p_{1}=2, \tau_{2}=(2,4,8), p_{2}=3$, $\tau_{3}=(2,10,12), p_{3}=1$.

Example revised

- Consider the example shown before with deadline monotonic: $\tau_{1}=(3,6,6), p_{1}=2, \tau_{2}=(2,4,8), p_{2}=3$, $\tau_{3}=(2,10,12), p_{3}=1$.

Example revised

- Consider the example shown before with deadline monotonic: $\tau_{1}=(3,6,6), p_{1}=2, \tau_{2}=(2,4,8), p_{2}=3$, $\tau_{3}=(2,10,12), p_{3}=1$.

Example revised

- Consider the example shown before with deadline monotonic: $\tau_{1}=(3,6,6), p_{1}=2, \tau_{2}=(2,4,8), p_{2}=3$, $\tau_{3}=(2,10,12), p_{3}=1$.

Example revised

- Consider the example shown before with deadline monotonic: $\tau_{1}=(3,6,6), p_{1}=2, \tau_{2}=(2,4,8), p_{2}=3$, $\tau_{3}=(2,10,12), p_{3}=1$.

Example revised

- Consider the example shown before with deadline monotonic: $\tau_{1}=(3,6,6), p_{1}=2, \tau_{2}=(2,4,8), p_{2}=3$, $\tau_{3}=(2,10,12), p_{3}=1$.

Example revised

- Consider the example shown before with deadline monotonic: $\tau_{1}=(3,6,6), p_{1}=2, \tau_{2}=(2,4,8), p_{2}=3$, $\tau_{3}=(2,10,12), p_{3}=1$.

Example revised

- Consider the example shown before with deadline monotonic: $\tau_{1}=(3,6,6), p_{1}=2, \tau_{2}=(2,4,8), p_{2}=3$, $\tau_{3}=(2,10,12), p_{3}=1$.

Example revised

- Consider the example shown before with deadline monotonic: $\tau_{1}=(3,6,6), p_{1}=2, \tau_{2}=(2,4,8), p_{2}=3$, $\tau_{3}=(2,10,12), p_{3}=1$.

Example revised

- Consider the example shown before with deadline monotonic: $\tau_{1}=(3,6,6), p_{1}=2, \tau_{2}=(2,4,8), p_{2}=3$, $\tau_{3}=(2,10,12), p_{3}=1$.

Example revised

- Consider the example shown before with deadline monotonic: $\tau_{1}=(3,6,6), p_{1}=2, \tau_{2}=(2,4,8), p_{2}=3$, $\tau_{3}=(2,10,12), p_{3}=1$.

Example revised

- Consider the example shown before with deadline monotonic: $\tau_{1}=(3,6,6), p_{1}=2, \tau_{2}=(2,4,8), p_{2}=3$, $\tau_{3}=(2,10,12), p_{3}=1$.

Example revised

- Consider the example shown before with deadline monotonic: $\tau_{1}=(3,6,6), p_{1}=2, \tau_{2}=(2,4,8), p_{2}=3$, $\tau_{3}=(2,10,12), p_{3}=1$.

Example revised

- Consider the example shown before with deadline monotonic: $\tau_{1}=(3,6,6), p_{1}=2, \tau_{2}=(2,4,8), p_{2}=3$, $\tau_{3}=(2,10,12), p_{3}=1$.

Example revised

- Consider the example shown before with deadline monotonic: $\tau_{1}=(3,6,6), p_{1}=2, \tau_{2}=(2,4,8), p_{2}=3$, $\tau_{3}=(2,10,12), p_{3}=1$.

Example revised

- Consider the example shown before with deadline monotonic: $\tau_{1}=(3,6,6), p_{1}=2, \tau_{2}=(2,4,8), p_{2}=3$, $\tau_{3}=(2,10,12), p_{3}=1$.

Presence of offsets

- If instead we consider periodic tasks with offsets, then there is no optimal priority assignment
- In other words,
- if a task set \mathcal{T}_{1} is schedulable by priority O_{1} and not schedulable by priority assignment O_{2},
- it may exist another task set \mathcal{T}_{2} that is schedulable by O_{2} and not schedulable by O_{1}.
- For example, \mathcal{T}_{2} may be obtained from \mathcal{T}_{1} simply changing the offsets!

Example of non-optimality with offsets

Example: priority to τ_{1} :

Changing the offset:

Example of non-optimality with offsets

Example: priority to τ_{1} :

Changing the offset:

Example: priority to τ_{2} :

Changing the offset:

Outline

(1) Fixed priority
(2) Priority assignment
(3) Scheduling analysis
(4) A necessary and sufficient test
(5) Sensitivity
6. Hypernlane analysis
(7) Conclusions
8) Esercizi

- Calcolo del tempo di risposta
- Calcolo del tempo di risposta con aperiodici
- Hyperplane analysis
- Hyperplane analysis - II

Analysis

- Given a task set, how can we guarantee if it is schedulable of not?
- The first possibility is to simulate the system to check that no deadline is missed;
- The execution time of every job is set equal to the WCET of the corresponding task;
- In case of periodic task with no offsets, it is sufficient to simulate the schedule until the hyperperiod $\left(H=\operatorname{lcm} m_{i}\left(T_{i}\right)\right)$.
- In case of offsets, it is sufficient to simulate until $2 H+\phi_{\max }$ (Leung and Merril).
- If tasks periods are prime numbers the hyperperiod can be very large!

Example

- Exercise: Compare the hyperperiods of this two task sets:
(1) $T_{1}=8, T_{2}=12, T_{3}=24$;
(2) $T_{1}=7, T_{2}=12, T_{3}=25$.
- In case of sporadic tasks, we can assume them to arrive at the highest possible rate, so we fall back to the case of periodic tasks with no offsets!

Example

- Exercise: Compare the hyperperiods of this two task sets:
(1) $T_{1}=8, T_{2}=12, T_{3}=24$;
(2) $T_{1}=7, T_{2}=12, T_{3}=25$.
- In case of sporadic tasks, we can assume them to arrive at the highest possible rate, so we fall back to the case of periodic tasks with no offsets!
- In case $1, H=24$;

Example

- Exercise: Compare the hyperperiods of this two task sets:
(1) $T_{1}=8, T_{2}=12, T_{3}=24$;
(2) $T_{1}=7, T_{2}=12, T_{3}=25$.
- In case of sporadic tasks, we can assume them to arrive at the highest possible rate, so we fall back to the case of periodic tasks with no offsets!
- In case $1, H=24$;
- In case $2, H=2100$!

Utilization analysis

- In many cases it is useful to have a very simple test to see if the task set is schedulable.
- A sufficient test is based on the Utilization bound:

Definition

The utilization least upper bound for scheduling algorithm \mathcal{A} is the smallest possible utilization $U_{l u b}$ such that, for any task set \mathcal{T}, if the task set's utilization U is not greater than $U_{\text {lub }}$
($U \leq U_{\text {lub }}$), then the task set is schedulable by algorithm \mathcal{A}.

Utilization bound for RM

Theorem (Liu and Layland, 1973)

Consider n periodic (or sporadic) tasks with relative deadline equal to periods, whose priorities are assigned in Rate Monotonic order. Then,

$$
U_{l u b}=n\left(2^{1 / n}-1\right)
$$

- $U_{\text {lub }}$ is a decreasing function of n;
- For large $n: U_{\text {lub }} \approx 0.69$

\mathbf{n}	$\mathbf{U}_{\text {lub }}$	\mathbf{n}	$\mathbf{U}_{\text {lub }}$
2	0.828	7	0.728
3	0.779	8	0.724
4	0.756	9	0.720
5	0.743	10	0.717
6	0.734	11	\ldots

Schedulability test

- Therefore the schedulability test consist in:
- Compute $U=\sum_{i=1}^{n} \frac{C_{i}}{T_{i}}$;
- if $U \leq U_{\text {lub }}$, the task set is schedulable;
- if $U>1$ the task set is not schedulable;
- if $U_{\text {lub }}<U \leq 1$, the task set may or may not be schedulable;

Example

- Example in which we show that for 3 tasks, if $U<U_{l u b}$, the system is schedulable.

$$
\begin{gathered}
\tau_{1}=(2,8), \tau_{2}=(3,12), \tau_{3}=(4,16) ; \\
U=0.75<U_{\text {lub }}=0.77
\end{gathered}
$$

Example

- Example in which we show that for 3 tasks, if $U<U_{l u b}$, the system is schedulable.

$$
\begin{gathered}
\tau_{1}=(2,8), \tau_{2}=(3,12), \tau_{3}=(4,16) ; \\
U=0.75<U_{\text {lub }}=0.77
\end{gathered}
$$

Example

- Example in which we show that for 3 tasks, if $U<U_{l u b}$, the system is schedulable.

$$
\begin{gathered}
\tau_{1}=(2,8), \tau_{2}=(3,12), \tau_{3}=(4,16) ; \\
U=0.75<U_{\text {lub }}=0.77
\end{gathered}
$$

Example

- Example in which we show that for 3 tasks, if $U<U_{l u b}$, the system is schedulable.

$$
\begin{gathered}
\tau_{1}=(2,8), \tau_{2}=(3,12), \tau_{3}=(4,16) ; \\
U=0.75<U_{\text {lub }}=0.77
\end{gathered}
$$

Example

- Example in which we show that for 3 tasks, if $U<U_{l u b}$, the system is schedulable.

$$
\begin{gathered}
\tau_{1}=(2,8), \tau_{2}=(3,12), \tau_{3}=(4,16) ; \\
U=0.75<U_{\text {lub }}=0.77
\end{gathered}
$$

Example

- Example in which we show that for 3 tasks, if $U<U_{l u b}$, the system is schedulable.

$$
\begin{gathered}
\tau_{1}=(2,8), \tau_{2}=(3,12), \tau_{3}=(4,16) ; \\
U=0.75<U_{\text {lub }}=0.77
\end{gathered}
$$

Example

- Example in which we show that for 3 tasks, if $U<U_{l u b}$, the system is schedulable.

$$
\begin{gathered}
\tau_{1}=(2,8), \tau_{2}=(3,12), \tau_{3}=(4,16) ; \\
U=0.75<U_{\text {lub }}=0.77
\end{gathered}
$$

Example

- Example in which we show that for 3 tasks, if $U<U_{l u b}$, the system is schedulable.

$$
\begin{gathered}
\tau_{1}=(2,8), \tau_{2}=(3,12), \tau_{3}=(4,16) ; \\
U=0.75<U_{\text {lub }}=0.77
\end{gathered}
$$

Example

- Example in which we show that for 3 tasks, if $U<U_{l u b}$, the system is schedulable.

$$
\begin{gathered}
\tau_{1}=(2,8), \tau_{2}=(3,12), \tau_{3}=(4,16) ; \\
U=0.75<U_{\text {lub }}=0.77
\end{gathered}
$$

Example

- Example in which we show that for 3 tasks, if $U<U_{l u b}$, the system is schedulable.

$$
\begin{gathered}
\tau_{1}=(2,8), \tau_{2}=(3,12), \tau_{3}=(4,16) ; \\
U=0.75<U_{\text {lub }}=0.77
\end{gathered}
$$

Example

- Example in which we show that for 3 tasks, if $U<U_{l u b}$, the system is schedulable.

$$
\begin{gathered}
\tau_{1}=(2,8), \tau_{2}=(3,12), \tau_{3}=(4,16) ; \\
U=0.75<U_{\text {lub }}=0.77
\end{gathered}
$$

Example 2

- By increasing the computation time of task τ_{3}, the system may still be schedulable ...

$$
\begin{gathered}
\tau_{1}=(2,8), \tau_{2}=(3,12), \tau_{3}=(5,16) ; \\
U=0.81>U_{\text {lub }}=0.77
\end{gathered}
$$

Utilization bound for DM

- If relative deadlines are less than or equal to periods, instead of considering $U=\sum_{i=1}^{n} \frac{C_{i}}{T_{i}}$, we can consider:

$$
U^{\prime}=\sum_{i=1}^{n} \frac{C_{i}}{D_{i}}
$$

- Then the test is the same as the one for RM (or DM), except that we must use U^{\prime} instead of U.

Pessimism

- The bound is very pessimistic: most of the times, a task set with $U>U_{\text {lub }}$ is schedulable by RM.
- A particular case is when tasks have periods that are harmonic:
- A task set is harmonic if, for every two tasks τ_{i}, tau ${ }_{j}$, either P_{i} is multiple of P_{j} or P_{j} is multiple of P_{i}.
- For a harmonic task set, the utilization bound is $U_{l u b}=1$.
- In other words, Rate Monotonic is an optimal algoritm for harmonic task sets.

Example of harmonic task set

$$
\begin{aligned}
& \text { - } \tau_{1}=(3,6), \tau_{2}=(3,12), \tau_{3}=(6,24) \text {; } \\
& U=1
\end{aligned}
$$

Outline

(1) Fixed priority
(2) Priority assignment
(3.) Scheduling analysis

4 A necessary and sufficient test
(5) Sensitivity

6 Hyperplane analysis
(7) Conclusions

8 Esercizi

- Calcolo del tempo di risposta
- Calcolo del tempo di risposta con aperiodici
- Hyperplane analysis
- Hyperplane analysis - II

Response time analysis

- A necessary and sufficient test is obtained by computing the worst-case response time (WCRT) for every task.
- For every task τ_{i} :
- Compute the WCRT R_{i} for task τ_{i};
- If $R_{i} \leq D_{i}$, then the task is schedulable;
- else, the task is not schedulable; we can also show the situation that make task τ_{i} miss its deadline!
- To compute the WCRT, we do not need to do any assumption on the priority assignment.
- The algorithm described in the next slides is valid for an arbitrary priority assignment.
- The algorithm assumes periodic tasks with no offsets, or sporadic tasks.

Response time analysis - II

- The critical instant for a set of periodic real-time tasks, with offset equal to 0 , or for sporadic tasks, is when all jobs start at the same time.

Theorem (Liu and Layland, 1973)

The WCRT for a task corresponds to the response time of the job activated at the critical instant.

- To compute the WCRT of task τ_{i} :
- We have to consider its computation time
- and the computation time of the higher priority tasks (interference);
- higher priority tasks can preempt task τ_{i}, and increment its response time.

Response time analysis - III

- Suppose tasks are ordered by decreasing priority. Therefore, $i<j \rightarrow$ prio $_{i}>$ prio $_{j}$.
- Given a task τ_{i}, let $R_{i}^{(k)}$ be the WCRT computed at step k.

$$
\begin{aligned}
& R_{i}^{(0)}=C_{i}+\sum_{j=1}^{i-1} C_{j} \\
& R_{i}^{(k)}=C_{i}+\sum_{j=1}^{i-1}\left\lceil\frac{R_{i}^{(k-1)}}{T_{j}}\right\rceil C_{j}
\end{aligned}
$$

- The iteration stops when:
- $R_{i}^{(k)}=R_{i}^{(k+1)}$ or
- $R_{i}^{(k)}>D_{i}$ (non schedulable);

Example

- Consider the following task set: $\tau_{1}=(2,5), \tau_{2}=(2,9), \tau_{3}=(5,20) ; U=0.872$.

$$
R_{i}^{(k)}=C_{i}+\sum_{j=1}^{i-1}\left[\frac{R_{i}^{(k-1)}}{T_{j}}\right] C_{j}
$$

- $R_{3}^{(0)}=C_{3}+1 \cdot C_{1}+1 \cdot C_{2}=9$

Example

- Consider the following task set: $\tau_{1}=(2,5), \tau_{2}=(2,9), \tau_{3}=(5,20) ; U=0.872$.

$$
\left.R_{i}^{(k)}=C_{i}+\sum_{j=1}^{i-1} \frac{R_{i}^{(k-1)}}{T_{j}}\right] C_{j}
$$

- $R_{3}^{(0)}=C_{3}+1 \cdot C_{1}+1 \cdot C_{2}=9$
- $R_{3}^{(1)}=C_{3}+2 \cdot C_{1}+1 \cdot C_{2}=11$

Example

- Consider the following task set: $\tau_{1}=(2,5), \tau_{2}=(2,9), \tau_{3}=(5,20) ; U=0.872$.

$$
\left.R_{i}^{(k)}=C_{i}+\sum_{j=1}^{i-1} \frac{R_{i}^{(k-1)}}{T_{j}}\right) C_{j}
$$

- $R_{3}^{(0)}=C_{3}+1 \cdot C_{1}+1 \cdot C_{2}=9$
- $R_{3}^{(1)}=C_{3}+2 \cdot C_{1}+1 \cdot C_{2}=11$
- $R_{3}^{(2)}=C_{3}+3 \cdot C_{1}+2 \cdot C_{2}=15$

Example

- Consider the following task set: $\tau_{1}=(2,5), \tau_{2}=(2,9), \tau_{3}=(5,20) ; U=0.872$.

$$
\left.R_{i}^{(k)}=C_{i}+\sum_{j=1}^{i-1} \frac{R_{i}^{(k-1)}}{T_{j}}\right) C_{j}
$$

- $R_{3}^{(0)}=C_{3}+1 \cdot C_{1}+1 \cdot C_{2}=9$
- $R_{3}^{(1)}=C_{3}+2 \cdot C_{1}+1 \cdot C_{2}=11$
- $R_{3}^{(2)}=C_{3}+3 \cdot C_{1}+2 \cdot C_{2}=15$
- $R_{3}^{(3)}=C_{3}+3 \cdot C_{1}+2 \cdot C_{2}=15=R_{3}^{(2)}$

Another example with DM

- The method is valid for different priority assignments and deadlines different from periods
- $\tau_{1}=(1,4,4), p_{1}=3, \tau_{2}=(4,6,15), p_{2}=2, \tau_{3}=(3,10,10), p_{3}=1 ; U=0.72$

$$
R_{i}^{(k)}=C_{i}+\sum_{j=1}^{i-1}\left\lceil\frac{R_{i}^{(k-1)}}{T_{j}}\right\rceil C_{j}
$$

- $R_{3}^{(0)}=C_{3}+1 \cdot C_{1}+1 \cdot C_{2}=8$

Another example with DM

- The method is valid for different priority assignments and deadlines different from periods
- $\tau_{1}=(1,4,4), p_{1}=3, \tau_{2}=(4,6,15), p_{2}=2, \tau_{3}=(3,10,10), p_{3}=1 ; U=0.72$

$$
R_{i}^{(k)}=C_{i}+\sum_{j=1}^{i-1}\left\lceil\frac{R_{i}^{(k-1)}}{T_{j}}\right\rceil C_{j}
$$

- $R_{3}^{(0)}=C_{3}+1 \cdot C_{1}+1 \cdot C_{2}=8$
- $R_{3}^{(1)}=C_{3}+2 \cdot C_{1}+1 \cdot C_{2}=9$

Another example with DM

- The method is valid for different priority assignments and deadlines different from periods
- $\tau_{1}=(1,4,4), p_{1}=3, \tau_{2}=(4,6,15), p_{2}=2, \tau_{3}=(3,10,10), p_{3}=1 ; U=0.72$

$$
R_{i}^{(k)}=C_{i}+\sum_{j=1}^{i-1}\left\lceil\frac{R_{i}^{(k-1)}}{T_{j}}\right\rceil C_{j}
$$

- $R_{3}^{(0)}=C_{3}+1 \cdot C_{1}+1 \cdot C_{2}=8$
- $R_{3}^{(1)}=C_{3}+2 \cdot C_{1}+1 \cdot C_{2}=9$
- $R_{3}^{(2)}=C_{3}+3 \cdot C_{1}+2 \cdot C_{2}=10$

Another example with DM

- The method is valid for different priority assignments and deadlines different from periods
- $\tau_{1}=(1,4,4), p_{1}=3, \tau_{2}=(4,6,15), p_{2}=2, \tau_{3}=(3,10,10), p_{3}=1 ; U=0.72$

$$
R_{i}^{(k)}=C_{i}+\sum_{j=1}^{i-1}\left\lceil\frac{R_{i}^{(k-1)}}{T_{j}}\right\rceil C_{j}
$$

- $R_{3}^{(0)}=C_{3}+1 \cdot C_{1}+1 \cdot C_{2}=8$
- $R_{3}^{(1)}=C_{3}+2 \cdot C_{1}+1 \cdot C_{2}=9$
- $R_{3}^{(2)}=C_{3}+3 \cdot C_{1}+2 \cdot C_{2}=10$
- $R_{3}^{(3)}=C_{3}+3 \cdot C_{1}+2 \cdot C_{2}=10=R_{3}^{(2)}$

Considerations

- The response time analysis is an efficient algorithm
- In the worst case, the number of steps N for the algorithm to converge is exponential
- It depends on the total number of jobs of higher priority tasks that may be contained in the interval $\left[0, D_{i}\right]$:

$$
N \propto \sum_{j=1}^{i-1}\left\lceil\frac{D_{i}}{T_{j}}\right\rceil
$$

- If s is the minimum granularity of the time, then in the worst case $N=\frac{D_{i}}{s}$;
- However, such worst case is very rare: usually, the number of steps is low.

Outline

(1) Fixed priority
(2) Priority assignment
(3) Scheduling analysis
(4) A necessary and sufficient test
(5) Sensitivity
(6) Hyperplane analysis
(7) Conclusions
(8) Esercizi

- Calcolo del tempo di risposta
- Calcolo del tempo di risposta con aperiodici
- Hyperplane analysis
- Hyperplane analysis - II

Considerations on WCET

- The response time analysis is a necessary and sufficient test for fixed priority.
- However, the result is very sensitive to the value of the WCET.
- If we are wrong in estimating the WCET (and for example we put a value that is too low), the actual system may be not schedulable.
- The value of the response time is not helpful: even if the response time is well below the deadline, a small increase in the WCET of a higher priority task makes the response time jump;
- We may see the problem as a sensitivity analysis problem: we have a function $R_{i}=f_{i}\left(C_{1}, T_{1}, C_{2}, T_{2}, \ldots, C_{i-1}, T_{i-1}, C_{i}\right)$ that is non-continuous.

Example of discontinuity

- Let's consider again the example done before; we increment the computation time of τ_{1} of 0.1.

Example of discontinuity

- Let's consider again the example done before; we increment the computation time of τ_{1} of 0.1.

- $R_{3}=12^{2} \rightarrow 15.2$

Singularities

- The response time of a task τ_{i} is the first time at which all tasks $\tau_{1}, \ldots, \tau_{i}$ have completed;
- At this point,
- either a lower priority task $\tau_{j}\left(p_{j}<p_{i}\right)$ is executed
- or the system becoms idle
- or it coincides with the arrival time of a higher priority task.
- In the last case, such an instant is also called i-level singularity point.
- In the previous example, time 12 is a 3-level singularity point, because:
(1) task τ_{3} has just finished;
(2) and task τ_{2} ha just been activated;
- A singularity is a dangerous point!

Sensitivity on WCETs

- A rule of thumb is to increase the WCET by a certain percentage before doing the analysis. If the task set is still feasible, be are more confident about the schedulability of the original system.
- There are analytical methods for computing the amount of variation that it is possible to allow to a task's WCET without compromising the schedulability

Outline

(1) Fixed priority
(2) Priority assignment
3. Scheduling analysis
(4) A necessary and sufficient test
(5) Sensitivity

6 Hyperplane analysis
(7) Conclusions
(8) Esercizi

- Calcolo del tempo di risposta
- Calcolo del tempo di risposta con aperiodici
- Hyperplane analysis
- Hyperplane analysis - II

A different analysis approach

- Definition of workload for task τ_{i} :

$$
W_{i}(t)=\sum_{j=1}^{i}\left\lceil\frac{t}{T_{j}}\right\rceil C_{j}
$$

- The workload is the amount of "work" that the set of tasks $\left\{\tau_{1}, \ldots, \tau_{i}\right\}$ requests in $[0, t]$
- Example: $\tau_{1}=(2,4), \tau_{2}=(4,15)$:

$$
W_{2}(10)=\left\lceil\frac{10}{4}\right\rceil 2+\left\lceil\frac{10}{15}\right\rceil 4=6+4=10
$$

Workload function

- The workload function for the previous example
- $\tau_{1}=(2,4), \tau_{2}=(4,15)$:

Workload task 2

Main theorem

Theorem (Lehokzcy 1987)
Let $\mathcal{P}_{i}=\left\{\forall j<i, \forall k, k T_{j} \leq D_{i} \mid k T_{j}\right\} \cup\left\{D_{i}\right\}$. Then, task τ_{i} is schedulable if and only if

$$
\exists t \in \mathcal{P}_{i}, \quad W_{i}(t) \leq t
$$

- Set \mathcal{P}_{i} is the set of time instants that are multiple of some period of some task τ_{j} with higher priority than τ_{i}, plus the deadline of task τ_{i} (they are potential singularity points)
- In other words, the theorem says that, if the workload is less than t for any of the points in \mathcal{P}_{i}, then τ_{i} is schedulable
- Later, Bini simplified the computation of the points in set \mathcal{P}_{i}

Example with 4 tasks

- $\tau_{1}=(2,4), \tau_{2}=(4,15), \tau_{3}=(4,30), \tau_{4}=(4,60)$

Workload task 4

- Task τ_{4} is schedulable, because $W_{4}(56)=56$ and $W_{4}(60)=58<60$
- (see schedule on fp_schedule_1.0_ex4.ods)

Sensitivity analysis

- Proposed by Bini and Buttazzo, 2005
- Let us rewrite the equations for the workload:

$$
\exists t \in \mathcal{P}_{i} \quad \sum_{j=1}^{i}\left\lceil\frac{t}{T_{j}}\right\rceil C_{j} \leq t
$$

- If we consider the C_{j} as variables, we have a set of linear inequalities in OR mode
- each inequality defines a plane in the space R^{i} of variables $C_{1}, \ldots, C i$
- the result is a concave hyper-solid in that space

Example with two tasks

$$
\begin{aligned}
& \text { - } \tau_{1}=(x, 4), \tau_{2}=(y, 15) \\
& \text { - } \mathcal{P}=\{4,8,12,15\}
\end{aligned}
$$

$$
\| \begin{array}{ll}
C_{1}+C_{2} & \leq 4 \\
2 C_{1}+C_{2} & \leq 8 \\
3 C_{1}+C_{2} & \leq 12 \\
4 C_{1}+C_{2} & \leq 15
\end{array}
$$

Graphical representation

- In the R^{2} space:

Graphical representation

- In the R^{2} space:
- Notice that there are 4 overlapping regions, however only two concur to define the admissible region

Graphical representation

- In the R^{2} space:
- Notice that there are 4 overlapping regions, however only two concur to define the admissible region
- Also, notice that the final region is the union of all the regions

Example, cont.

- Simplifying non-useful constraints
- The red dot represent a (possible) pair of values for $\left(C_{1}, C_{2}\right)$.
- The red dot must stay always inside the subspace

Sensitivity

- Distance from a constraint represents
- how much we can increase $\left(C_{1}, C_{2}\right)$ without exiting from the space
- or how much we must decrease C_{1} or C_{2} to enter in the space
- In the example before: starting from $C_{1}=1$ and $C_{2}=8$ we can increase C_{1} of the following:

$$
\begin{aligned}
3(1+\Delta)+8 & \leq 12 \\
\Delta & \leq \frac{4}{3}-1=\frac{1}{3}
\end{aligned}
$$

- Exercise: verify schedulability of τ_{2} with $C_{1}=1+\frac{1}{3}$ and $C_{2}=8$ by computing its response time

More than 2 tasks

- In case of more than two tasks, schedulability must be checked on all tasks:
- For a system to be schedulable, all tasks must be schedulable
- This means that for each task we must apply the procedure described above, obtaining a system of inequalities in OR.
- Then all systems must be valid, i.e. they must all be put in AND
- there must be at least one valid equation for each system
- See the exercise below

Outline

(4) Fixed priority
(2) Priority assignment
(3) Scheduling analysis
(4) A necessary and sufficient test
(5) Sensitivity

6 Hyperplane analysis
(7) Conclusions

8 Esercizi

- Calcolo del tempo di risposta
- Calcolo del tempo di risposta con aperiodici
- Hyperplane analysis
- Hyperplane analysis - II

Summary of schedulability tests for FP

- Utilization bound test:
- depends on the number of tasks;
- for large $n, U_{\text {lub }}=0.69$;
- only sufficient;
- $\mathcal{O}(n)$ complexity;
- Response time analysis:
- necessary and sufficient test for periodic tasks with arbitrary deadlines and with no offset
- complexity: high (pseudo-polynomial);
- Hyperplane analysis
- necessary and sufficient test for periodic tasks with arbitrary deadlines and with no offset
- complexity: high (pseudo-polynomial);
- allows to perform sensitivity analysis

Response time analysis - extensions

- Consider offsets
- Arbitrary patterns of arrivals. Burst, quasi-periodic, etc.

Outline

Fixed priority
 Priority assignment
 Scheduling analysis
 A necessary and sufficient test
 Sensitivity
 6. Hyperplane analysis
 (7) Conclusions

(8) Esercizi

- Calcolo del tempo di risposta
- Calcolo del tempo di risposta con aperiodici
- Hyperplane analysis
- Hyperplane analysis - II

Outline

(1) Fixed priority
(2) Priority assignment
(3.) Scheduling analysis
(4) A necessary and sufficient test
(5) Sensitivity
6. Hyperplane analysis
(7) Conclusions
(8) Esercizi

- Calcolo del tempo di risposta
- Calcolo del tempo di risposta con aperiodici
- Hyperplane analysis
- Hyperplane analysis - II

Esercizio

- Dato il seguente task set:

Task	C_{i}	D_{i}	T_{i}
τ_{1}	1	4	4
τ_{2}	2	9	9
τ_{3}	3	6	12
τ_{4}	3	20	20

- Calcolare il tempo di risposta dei vari task nell'ipotesi che le priorità siano assegnate con RM o con DM.
- Risposta: Nel caso di RM,

$$
R\left(\tau_{1}\right)=1 \quad R\left(\tau_{2}\right)=3 \quad R\left(\tau_{3}\right)=7 \quad R\left(\tau_{4}\right)=18
$$

Esercizio

- Dato il seguente task set:

Task	C_{i}	D_{i}	T_{i}
τ_{1}	1	4	4
τ_{2}	2	9	9
τ_{3}	3	6	12
τ_{4}	3	20	20

- Calcolare il tempo di risposta dei vari task nell'ipotesi che le priorità siano assegnate con RM o con DM.
- Risposta: Nel caso di RM,

$$
R\left(\tau_{1}\right)=1 \quad R\left(\tau_{2}\right)=3 \quad R\left(\tau_{3}\right)=7 \quad R\left(\tau_{4}\right)=18
$$

- Nel caso di DM,

$$
R\left(\tau_{1}\right)=1 \quad R\left(\tau_{2}\right)=7 \quad R\left(\tau_{3}\right)=4 \quad R\left(\tau_{4}\right)=18
$$

Outline

Fixed priority

(h) Priority assignment
(3) Scheduling analysis

4 A necessary and sufficient test
(5) Sensitivity

6 Hyperplane analysis
(7) Conclusions
(8) Esercizi

- Calcolo del tempo di risposta
- Calcolo del tempo di risposta con aperiodici
- Hyperplane analysis
- Hyperplane analysis - II

Esercizio

- Consideriamo il seguente task τ_{1} non periodico:
- Se j è pari, allora $a_{1, j}=8 \cdot \frac{j}{2}$;
- Se j è dispari, allora $a_{1, j}=3+8 \cdot\left\lfloor\frac{j}{2}\right\rfloor$;
- In ogni caso, $c_{1, j}=2$;
- La priorità del task τ_{1} è $p_{1}=3$.
- Nel sistema, consideriamo anche i task periodici $\tau_{2}=(2,12,12)$ e $\tau_{3}=(3,16,16)$, con priorità $p_{2}=2 \mathrm{e}$ $p_{3}=1$. Calcolare il tempo di risposta dei task τ_{2} e τ_{3}.

Soluzione - I

- Il pattern di arrivo del task τ_{1} è il seguente:

- Il task τ_{1} è ad alta priorità, quindi il suo tempo di risposta è pari a 2.
- In che modo questo task interferisce con gli altri due task a bassa priorità

Soluzione - II

- Bisogna estendere la formula del calcolo del tempo di risposta. La generalizzazione è la seguente:

$$
R_{i}^{(k)}=C_{i}+\sum_{j=1}^{i-1} \operatorname{Nist} t_{j}\left(R_{i}^{(k-1)}\right) C_{j}
$$

dove $\operatorname{Nist}_{j}(t)$ rappresenta il numero di istanze del task τ_{j} che "arrivano" nell'intervallo $[0, t)$.

- Se il task τ_{j} è periodico, allora $\operatorname{Nist}_{j}(t)=\left\lceil\frac{t}{T_{j}}\right\rceil$.
- Nel caso invece del task τ_{1} (che non èperiodico):

$$
\operatorname{Nist}_{1}(t)=\left\lceil\frac{t}{8}\right\rceil+\left\lceil\frac{\max (0, t-3)}{8}\right\rceil
$$

- Il primo termine tiene conto delle istanze con j pari, mentre il secondo termine tiene conto delle istanze con j dispari.

Soluzione - III

- Applicando la formula per calcolare il tempo di risposta del task τ_{2} :

$$
\begin{aligned}
& R_{2}^{(0)}=2+2=4 \quad R_{2}^{(1)}=2+2 \cdot 2=6 \\
& R_{2}^{(2)}=2+2 \cdot 2=6
\end{aligned}
$$

Soluzione - III

- Applicando la formula per calcolare il tempo di risposta del task τ_{2} :

$$
\begin{aligned}
& R_{2}^{(0)}=2+2=4 \quad R_{2}^{(1)}=2+2 \cdot 2=6 \\
& R_{2}^{(2)}=2+2 \cdot 2=6
\end{aligned}
$$

- Per il task τ_{3} :

$$
\begin{array}{ll}
R_{3}^{(0)}=3+2+2=7 & R_{3}^{(1)}=3+2 \cdot 2+1 \cdot 2=9 \\
R_{3}^{(2)}=3+3 \cdot 2+1 \cdot 2=11 & R_{3}^{(3)}=3+3 \cdot 2+1 \cdot 2=11
\end{array}
$$

Soluzione - IV (schedulazione)

- Schedulazione risultante:

Outline

Fixed priority

D. Priority assignment
(3) Scheduling analysis

4 A necessary and sufficient test
(5) Sensitivity

6 Hyperplane analysis
(7) Conclusions
(8) Esercizi

- Calcolo del tempo di risposta
- Calcolo del tempo di risposta con aperiodici
- Hyperplane analysis
- Hyperplane analysis - II

Esercizio sulla sensitivity

- Dato il seguente insieme di task: $\tau_{1}=(2,5), \tau_{2}=(3,12)$
- Vedere se il sistema è schedulabile con l'analisi Hyperplanes
- Calcolare di quando può aumentare (o di quanto si può diminuire) il tempo di calcolo di τ_{2} per farlo rimanere (diventare) schedulabile
- Calcolare di quanto si può diminuire la potenza del processore mantenendo il sistema schedulabile

Soluzione

- Le equazioni da considerare sono:

$$
\| \begin{array}{ll}
C_{1}+C_{2} & \leq 5 \\
2 C_{1}+C_{2} & \leq 10 \\
3 C_{1}+C_{2} & \leq 12
\end{array}
$$

- Tutte verificate per $C_{1}=2$ e $C_{2}=3$
- Fissando C_{1}, si ha:

$$
\| \begin{array}{ll}
C_{2} & \leq 3 \\
C_{2} & \leq 6 \\
C_{2} & \leq 6
\end{array}
$$

- Ricordandoci che sono in $O R$, la soluzione è $C_{2} \leq 6$, quindi possiamo aumentare C_{2} di 3 mantenendo il sistema schedulabile

Soluzione 2

- Se il processore ha velocità variabile, le equazioni possono essere riscritte come:

$$
\| \begin{array}{ll}
\alpha C_{1}+\alpha C_{2} & \leq 5 \\
2 \alpha C_{1}+\alpha C_{2} & \leq 10 \\
3 \alpha C_{1}+\alpha C_{2} & \leq 12
\end{array}
$$

- E nel punto considerato:

$$
\| \begin{array}{ll}
\alpha & \leq 1 \\
7 \alpha & \leq 10 \\
9 \alpha & \leq 12
\end{array}
$$

- Quindi, $\alpha=1.428571$, e possiamo rallentare il processore (cioé incrementare i tempi di calcolo) del 43% circa.

Outline

Fixed priority

(2) Priority assignment
(3) Scheduling analysis
(4) A necessary and sufficient test
(5) Sensitivity

6 Hyperplane analysis
(7) Conclusions
(8) Esercizi

- Calcolo del tempo di risposta
- Calcolo del tempo di risposta con aperiodici
- Hyperplane analysis
- Hyperplane analysis - II

Esercizio con 4 tasks

Considerare il seguente insieme di task schedulati con DM.

- Controllare la schedulabilità.
- Dire di quanto è possibile aumentare/diminuire il tempo di calcolo del task τ_{3} per mantenere il sistema schedulabile (o renderlo schedulabile se non lo è già).

Task	\mathbf{C}	\mathbf{T}	\mathbf{D}
τ_{1}	1	5	5
τ_{2}	2	8	8
τ_{3}	3	15	10
τ_{4}	3	20	16

Soluzione

- Per controllare la schedulabilità possiamo usare il metodo del response time oppure direttamente il metodo degli hyperplanes. Per semplificare i calcoli usiamo questo secondo approccio
- Disequazioni per il task 2

$$
\| \begin{array}{ll}
C_{1}+C_{2} & \leq 5 \\
2 C_{1}+C_{2} & \leq 8
\end{array}
$$

- Entrambe sono pienamente rispettate. Passiamo al task 3

$$
\| \begin{array}{ll}
C_{1}+C_{2}+C_{3} & \leq 5 \\
2 C_{1}+C_{2}+C_{3} & \leq 8 \\
2 C_{1}+2 C_{2}+C_{3} & \leq 10
\end{array}
$$

- Sostituendo si ha che la seconda e la terza sono rispettate con i dati iniziali

Soluzione - cont.

- Controlliamo ora il quarto task:

$$
\| \begin{array}{ll}
C_{1}+C_{2}+C_{3}+C_{4} & \leq 5 \\
2 C_{1}+C_{2}+C_{3}+C_{4} & \leq 8 \\
2 C_{1}+2 C_{2}+C_{3}+C_{4} & \leq 10 \\
3 C_{1}+2 C_{2}+C_{3}+C_{4} & \leq 15 \\
4 C_{1}+2 C_{2}+2 C_{3}+C_{4} & \leq 16
\end{array}
$$

- Notiamo che la terza equazione è rispettata
- Poiché c'è almeno una disequazione rispettata per ogni sistema, allora il task set è schedulabile

Soluzione - cont.

- Vediamo ora la sensitivity rispetto al task 3. Dobbiamo considerare il secondo e il terzo sistema (il primo non dipende dal terzo task)

$$
\left\|\begin{array}{ll}
C_{3} \leq 2 \\
C_{3} \leq 4 \\
C_{3} \leq 4
\end{array}\right\| \begin{array}{ll}
C_{3} & \leq-1 \\
C_{3} & \leq 1 \\
C_{3} & \leq 1 \\
C_{3} & \leq 5 \\
C_{3} & \leq 5 / 2
\end{array}
$$

- Prendiamo il max di ogni sistema, e poi facciamo il minimo. Ne segue che $C_{3} \leq 4$.

