
Shared Resources and Blocking in Real-Time
Systems

Giuseppe Lipari
http://feanor.sssup.it/~lipari

Scuola Superiore Sant’Anna – Pisa

December 1, 2011

http://feanor.sssup.it/~lipari


Outline

1 Priority inversion

2 Priority Inheritance Protocol
Nested critical sections and deadlock
Blocking time computation and Analysis

3 Priority Ceiling

4 Stack Resouce Policy

5 Shared Resources on EDF
Priority Inheritance
Stack Resource Policy



Outline

1 Priority inversion

2 Priority Inheritance Protocol
Nested critical sections and deadlock
Blocking time computation and Analysis

3 Priority Ceiling

4 Stack Resouce Policy

5 Shared Resources on EDF
Priority Inheritance
Stack Resource Policy



Interacting tasks

Until now, we have considered only independent tasks
a task never blocks or suspends
it can only be suspended when it finishes its istance (job)

However, in reality, many tasks exchange data through
shared memory
Consider as an example three periodic tasks:

One reads the data from the sensors and applies a filter.
The results of the filter are stored in memory.
The second task reads the filtered data and computes
some control law (updating the state and the outputs); both
the state and the outputs are stored in memory;
finally, a third periodic task reads the outputs from memory
and writes on the actuator device.

All three tasks access data in the shared memory

Conflicts on accessing this data in concurrency could
make the data structures inconsistent.



Resources and critical sections

The shared data structure is called resource;

A piece of code accessing the data structure is called
critical section;

Two or more critical sections on the same resource must
be executed in mutual exclusion;

Therefore, each data structure should be protected by a
mutual exclusion mechanism;

In this lecture, we will study what happens when resources
are protected by mutual exclusion semaphores.



Notation

The resource and the corresponding mutex semaphore will
be denoted by symbol Sj .
A system consists of:

A set of N periodic (or sporadic) tasks T = {τ1, . . . , τN};
A set of shared resources S = {S1, . . . ,SM};
We say that a task τi uses resource Sj if it accesses the
resource with a critical section.
The k-th critical of τi on Sj is denoted with csi,j(k).
The length of the longest critical section of τi on Sj is
denoted by ξi,j .



Blocking and priority inversion

A blocking condition happens when a high priority tasks
wants to access a resource that is held by a lower priority
task.

Consider the following example, where p1 > p2.

0 2 4 6 8 10 12 14 16 18 20 22 24

τ1

τ2
L(S)

S

L(S)

S

U(S)

S

U(S)

From time 4 to 7, task τ1 is blocked by a lower priority
taskτ2; this is a priority inversion.

Priority inversion is not avoidable; in fact, τ1 must wait for
τ2 to leave the critical section.

However, in some cases, the priority inversion could be too
large.



Example of priority inversion

Consider the following example, with p1 > p2 > p3.

0 2 4 6 8 10 12 14 16 18 20 22 24

τ1

τ2

τ3
L(S)

S

L(S)

S S

U(S)

S

U(S)

This time the priority inversion is very large: from 4 to 12.

The problem is that, while τ1 is blocked, τ2 arrives and
preempt τ3 before it can leave the critical section.

If there are other medium priority tasks, they could
preempt τ3 as well.

Potentially, the priority inversion could be unbounded!



The Mars Pathfinder

This is not only a theoretical problem. It may happen in
real cases.

The most famous example of such problem was found
during the Mars Pathfinder mission.



Outline

1 Priority inversion

2 Priority Inheritance Protocol
Nested critical sections and deadlock
Blocking time computation and Analysis

3 Priority Ceiling

4 Stack Resouce Policy

5 Shared Resources on EDF
Priority Inheritance
Stack Resource Policy



The Priority Inheritance protocol

The solution of the problem is rather simple;
While the low priority task blocks an higher priority task, it
inherits the priority of the higher priority task;
In this way, every medium priority task cannot make
preemption.



Example

In the previous example:

0 2 4 6 8 10 12 14 16 18 20 22 24

τ1

τ2

τ3
L(S)

S



Example

In the previous example:

0 2 4 6 8 10 12 14 16 18 20 22 24

τ1

τ2

τ3
L(S)

S

L(S)



Example

In the previous example:

0 2 4 6 8 10 12 14 16 18 20 22 24

τ1

τ2

τ3
L(S)

S

L(S)

S



Example

In the previous example:

0 2 4 6 8 10 12 14 16 18 20 22 24

τ1

τ2

τ3
L(S)

S

L(S)

S

Task τ3 inherits the priority of τ1



Example

In the previous example:

0 2 4 6 8 10 12 14 16 18 20 22 24

τ1

τ2

τ3
L(S)

S

L(S)

S S

U(S)

Task τ3 inherits the priority of τ1

Task τ2 cannot preempt τ3 (p2 < p1)



Example

In the previous example:

0 2 4 6 8 10 12 14 16 18 20 22 24

τ1

τ2

τ3
L(S)

S

L(S)

S S

U(S)

S

U(S)

Task τ3 inherits the priority of τ1

Task τ2 cannot preempt τ3 (p2 < p1)



Example

In the previous example:

0 2 4 6 8 10 12 14 16 18 20 22 24

τ1

τ2

τ3
L(S)

S

L(S)

S S

U(S)

S

U(S)

Task τ3 inherits the priority of τ1

Task τ2 cannot preempt τ3 (p2 < p1)



Example

In the previous example:

0 2 4 6 8 10 12 14 16 18 20 22 24

τ1

τ2

τ3
L(S)

S

L(S)

S S

U(S)

S

U(S)

Task τ3 inherits the priority of τ1

Task τ2 cannot preempt τ3 (p2 < p1)



Example

In the previous example:

0 2 4 6 8 10 12 14 16 18 20 22 24

τ1

τ2

τ3
L(S)

S

L(S)

S S

U(S)

S

U(S)

Task τ3 inherits the priority of τ1

Task τ2 cannot preempt τ3 (p2 < p1)



Comments

The blocking (priority inversion) is now bounded to the
length of the critical section of task τ3

Tasks with intermediate priority τ2 cannot interfere with τ1

However, τ2 has a blocking time, even if it does not use any
resource

This is called indirect blocking (or push-through)
due to the fact that τ2 is in the middle between τ1 and τ3

which use the same resource.
This blocking time must be computed and taken into
account in the formula



To be solved

It remains to understand:
What is the maximum blocking time for a task
How we can account for blocking times in the schedulability
analysis

From now on, the maximum blocking time for a task τi is
denoted by Bi .



Outline

1 Priority inversion

2 Priority Inheritance Protocol
Nested critical sections and deadlock
Blocking time computation and Analysis

3 Priority Ceiling

4 Stack Resouce Policy

5 Shared Resources on EDF
Priority Inheritance
Stack Resource Policy



Nested critical sections

Critical sections can be nested:

While a task τ is accessing a resource S1, it can lock a
resource S2.



Nested critical sections

Critical sections can be nested:

While a task τ is accessing a resource S1, it can lock a
resource S2.

0 2 4 6 8 10 12 14 16 18 20

τ1 L(S1)
S1

L(S2)
S2

U(S2)
S2

U(S1)



Nested critical sections

Critical sections can be nested:

While a task τ is accessing a resource S1, it can lock a
resource S2.

0 2 4 6 8 10 12 14 16 18 20

τ1 L(S1)
S1

L(S2)
S2

U(S2)
S2

U(S1)

When critical sections are nested, we can have multiple
inheritance



Multiple inheritance
Task τ1 uses resource S1; Task τ2 uses S1 and S2 nested
inside S1; Task τ3 uses only S2.
p1 > p2 > p3;

0 2 4 6 8 10 12 14 16 18 20 22 24

τ1

τ2

τ3 L(S2)

S2



Multiple inheritance
Task τ1 uses resource S1; Task τ2 uses S1 and S2 nested
inside S1; Task τ3 uses only S2.
p1 > p2 > p3;

0 2 4 6 8 10 12 14 16 18 20 22 24

τ1

τ2

τ3 L(S2)

S2

L(S1)

S1



Multiple inheritance
Task τ1 uses resource S1; Task τ2 uses S1 and S2 nested
inside S1; Task τ3 uses only S2.
p1 > p2 > p3;

0 2 4 6 8 10 12 14 16 18 20 22 24

τ1

τ2

τ3 L(S2)

S2

L(S1)

S1

L(S1)



Multiple inheritance
Task τ1 uses resource S1; Task τ2 uses S1 and S2 nested
inside S1; Task τ3 uses only S2.
p1 > p2 > p3;

0 2 4 6 8 10 12 14 16 18 20 22 24

τ1

τ2

τ3 L(S2)

S2

L(S1)

S1

L(S1)



Multiple inheritance
Task τ1 uses resource S1; Task τ2 uses S1 and S2 nested
inside S1; Task τ3 uses only S2.
p1 > p2 > p3;

0 2 4 6 8 10 12 14 16 18 20 22 24

τ1

τ2

τ3 L(S2)

S2

L(S1)

S1

L(S1)

S1

L(S2)



Multiple inheritance
Task τ1 uses resource S1; Task τ2 uses S1 and S2 nested
inside S1; Task τ3 uses only S2.
p1 > p2 > p3;

0 2 4 6 8 10 12 14 16 18 20 22 24

τ1

τ2

τ3 L(S2)

S2

L(S1)

S1

L(S1)

S1

L(S2)



Multiple inheritance
Task τ1 uses resource S1; Task τ2 uses S1 and S2 nested
inside S1; Task τ3 uses only S2.
p1 > p2 > p3;

0 2 4 6 8 10 12 14 16 18 20 22 24

τ1

τ2

τ3 L(S2)

S2

L(S1)

S1

L(S1)

S1

L(S2)

S2

U(S2)

At time t = 7 task τ3 inherits the priority of τ2, which at time
5 had inherited the priority of τ1. Hence, the priority of τ3 is
p1.



Multiple inheritance
Task τ1 uses resource S1; Task τ2 uses S1 and S2 nested
inside S1; Task τ3 uses only S2.
p1 > p2 > p3;

0 2 4 6 8 10 12 14 16 18 20 22 24

τ1

τ2

τ3 L(S2)

S2

L(S1)

S1

L(S1)

S1

L(S2)

S2

U(S2)

S2

U(S2)

At time t = 7 task τ3 inherits the priority of τ2, which at time
5 had inherited the priority of τ1. Hence, the priority of τ3 is
p1.



Multiple inheritance
Task τ1 uses resource S1; Task τ2 uses S1 and S2 nested
inside S1; Task τ3 uses only S2.
p1 > p2 > p3;

0 2 4 6 8 10 12 14 16 18 20 22 24

τ1

τ2

τ3 L(S2)

S2

L(S1)

S1

L(S1)

S1

L(S2)

S2

U(S2)

S2

U(S2)

S1

U(S1)

At time t = 7 task τ3 inherits the priority of τ2, which at time
5 had inherited the priority of τ1. Hence, the priority of τ3 is
p1.



Multiple inheritance
Task τ1 uses resource S1; Task τ2 uses S1 and S2 nested
inside S1; Task τ3 uses only S2.
p1 > p2 > p3;

0 2 4 6 8 10 12 14 16 18 20 22 24

τ1

τ2

τ3 L(S2)

S2

L(S1)

S1

L(S1)

S1

L(S2)

S2

U(S2)

S2

U(S2)

S1

U(S1)

S1

U(S1)

At time t = 7 task τ3 inherits the priority of τ2, which at time
5 had inherited the priority of τ1. Hence, the priority of τ3 is
p1.



Multiple inheritance
Task τ1 uses resource S1; Task τ2 uses S1 and S2 nested
inside S1; Task τ3 uses only S2.
p1 > p2 > p3;

0 2 4 6 8 10 12 14 16 18 20 22 24

τ1

τ2

τ3 L(S2)

S2

L(S1)

S1

L(S1)

S1

L(S2)

S2

U(S2)

S2

U(S2)

S1

U(S1)

S1

U(S1)

At time t = 7 task τ3 inherits the priority of τ2, which at time
5 had inherited the priority of τ1. Hence, the priority of τ3 is
p1.



Deadlock problem

When using nested critical section, the problem of
deadlock can occur; i.e. two or more tasks can be blocked
waiting for each other.
The priority inheritance protocol does not solve
automatically the problem of deadlock, as it is possible to
see in the following example.

Task τ1 uses S2 inside S1, while task τ2 uses S1 inside S2.

0 2 4 6 8 10

τ1

τ2 L(S2)

S2

L(S1)

S1

L(S2)

S2

L(S1)

While τ1 is blocked on S2, which is held by τ2, τ2 is blocked
on S1 which is held by τ1: deadlock!



Deadlock avoidance

In the previous example, the priority inheritance protocol
does not help.
To avoid deadlock, it is possible to restrict programming
freedom;

The problem is due to the fact that resouces are accessed
in a random order by τ1 and τ2.



Deadlock avoidance

In the previous example, the priority inheritance protocol
does not help.
To avoid deadlock, it is possible to restrict programming
freedom;

The problem is due to the fact that resouces are accessed
in a random order by τ1 and τ2.
One possibility is to decide an order a-priori before writing
the program.



Deadlock avoidance

In the previous example, the priority inheritance protocol
does not help.
To avoid deadlock, it is possible to restrict programming
freedom;

The problem is due to the fact that resouces are accessed
in a random order by τ1 and τ2.
One possibility is to decide an order a-priori before writing
the program.
Example: resources must be accessed in the order given
by their index (S1 before S2 before S3, and so on).



Deadlock avoidance

In the previous example, the priority inheritance protocol
does not help.
To avoid deadlock, it is possible to restrict programming
freedom;

The problem is due to the fact that resouces are accessed
in a random order by τ1 and τ2.
One possibility is to decide an order a-priori before writing
the program.
Example: resources must be accessed in the order given
by their index (S1 before S2 before S3, and so on).
With this rule, task τ2 is not legal because it accesses S1

inside S2, violating the ordering.



Deadlock avoidance

In the previous example, the priority inheritance protocol
does not help.
To avoid deadlock, it is possible to restrict programming
freedom;

The problem is due to the fact that resouces are accessed
in a random order by τ1 and τ2.
One possibility is to decide an order a-priori before writing
the program.
Example: resources must be accessed in the order given
by their index (S1 before S2 before S3, and so on).
With this rule, task τ2 is not legal because it accesses S1

inside S2, violating the ordering.
If τ2 accesses the resources in the correct order (S2 inside
S1, the deadlock is automatically avoided).



The Priority Inheritance Protocol

Summarising, the main rules are the following;
If a task τi is blocked on a resource protected by a mutex
semaphore S, and the resource is locked by task τj , then τj

inherits the priority of τi ;
If τj is itself blocked on another semaphore by a task τk ,
then τk inherits the priority of τi (multiple inheritance);
If τk is blocked, the chain of blocked tasks is followed until a
non-blocked task is found that inherits the priority of τi .
When a task unlocks a semaphore, it returns to the priority
it had when locking it.



Outline

1 Priority inversion

2 Priority Inheritance Protocol
Nested critical sections and deadlock
Blocking time computation and Analysis

3 Priority Ceiling

4 Stack Resouce Policy

5 Shared Resources on EDF
Priority Inheritance
Stack Resource Policy



Computing the maximum blocking time

We will compute the maximum blocking time only in the
case of non nested critical sections.

Even if we avoid the problem of deadlock, when critical
sections are nested, the computation of the blocking time
becomes very complex due to multiple inheritance.
If critical section are not nested, multiple inheritance cannot
happen, and the computation of the blocking time becomes
simpler.



Theorems

To compute the blocking time, we must consider the
following two important theorems:

Theorem
Under the priority inheritance protocol, a task can be blocked
only once on each different semaphore.

Theorem
Under the priority inheritance protocol, a task can be blocked
by another lower priority task for at most the duration of one
critical section.

A task can be blocked more than once, but only once per
each resource and once by each task.



Blocking time computation

We must build a resource usage table.
On each row, we put a task in decreasing order of priority;

A task can be blocked only by lower priority tasks:
Then, for each task (row), we must consider only the rows
below (tasks with lower priority).



Blocking time computation

We must build a resource usage table.
On each row, we put a task in decreasing order of priority;
On each column we put a resource (the order is not
important);

A task can be blocked only by lower priority tasks:
Then, for each task (row), we must consider only the rows
below (tasks with lower priority).



Blocking time computation

We must build a resource usage table.
On each row, we put a task in decreasing order of priority;
On each column we put a resource (the order is not
important);
On each cell (i , j) we put ξi,j , i.e. the length of the longest
critical section of task τi on resource Sj , or 0 if the task
does not use the resource.

A task can be blocked only by lower priority tasks:
Then, for each task (row), we must consider only the rows
below (tasks with lower priority).



Blocking time computation

We must build a resource usage table.
On each row, we put a task in decreasing order of priority;
On each column we put a resource (the order is not
important);
On each cell (i , j) we put ξi,j , i.e. the length of the longest
critical section of task τi on resource Sj , or 0 if the task
does not use the resource.

A task can be blocked only by lower priority tasks:
Then, for each task (row), we must consider only the rows
below (tasks with lower priority).



Blocking time computation

We must build a resource usage table.
On each row, we put a task in decreasing order of priority;
On each column we put a resource (the order is not
important);
On each cell (i , j) we put ξi,j , i.e. the length of the longest
critical section of task τi on resource Sj , or 0 if the task
does not use the resource.

A task can be blocked only by lower priority tasks:
Then, for each task (row), we must consider only the rows
below (tasks with lower priority).

A task can be blocked only on resources that it uses
directly, or used by higher priority tasks (indirect blocking);

For each task, we must consider only those column on
which it can be blocked (used by itself or by higher priority
tasks).



Example of blocking time computation

let’s start from B1

S1 S2 S3 B
τ1 2 0 0 ?
τ2 0 1 0 ?
τ3 0 0 2 ?
τ4 3 3 1 ?
τ5 1 2 1 ?

τ1 can be blocked only on S1.

Therefore, we must consider only the first column, and take
the maximum, which is 3.



Example of blocking time computation

Now τ2: it can be blocked on S1 (indirect blocking) and on
S2.

S1 S2 S3 B
τ1 2 0 0 3
τ2 0 1 0 ?
τ3 0 0 2 ?
τ4 3 3 1 ?
τ5 1 2 1 ?

Therefore, we must consider the first 2 columns;

Then, we must consider all cases where two distinct lower
priority tasks between τ3, τ4 and τ5 access S1 and S2



Example of blocking time computation

Now τ2: it can be blocked on S1 (indirect blocking) and on
S2.

S1 S2 S3 B
τ1 2 0 0 3
τ2 0 1 0 ?
τ3 0 0 2 ?
τ4 3 3 1 ?
τ5 1 2 1 ?

Therefore, we must consider the first 2 columns;

Then, we must consider all cases where two distinct lower
priority tasks between τ3, τ4 and τ5 access S1 and S2

The possibilities are:
τ4 on S1 and τ5 on S2: → 5;
τ4 on S2 and τ5 on S1: → 4;

The maximum is B2 = 5.



Example of blocking time computation

τ3 can be blocked on all 3 resources

S1 S2 S3 B
τ1 2 0 0 3
τ2 0 1 0 5
τ3 0 0 2 ?
τ4 3 3 1 ?
τ5 1 2 1 ?

The possibilities are:
τ4 on S1 and τ5 on S2: → 5;
τ4 on S2 and τ5 on S1 or S3: → 4;
τ4 on S3 and τ5 on S1: → 2;
τ4 on S3 and τ5 on S2 or S3: → 3;

The maximum is B3 = 5.



Example of blocking time computation

Now:
S1 S2 S3 B

τ1 2 0 0 3
τ2 0 1 0 5
τ3 0 0 2 5
τ4 3 3 1 ?
τ5 1 2 1 ?

τ4 can be blocked on all 3 resources, but only by τ5.

The maximum is B4 = 2.

τ5 cannot be blocked by any other task (because it is the
lower priority task!); B5 = 0;



Example: Final result

the final result is:
S1 S2 S3 B

τ1 2 0 0 3
τ2 0 1 0 5
τ3 0 0 2 5
τ4 3 3 1 2
τ5 1 2 1 0



Scheduling analysis

In case of relative deadlines equal to periods, we have:

∀i = 1, . . . ,N
i

∑

j=1

Cj

Tj
+

Bi

Ti
≤ Ulub



Example

In the previous example:

C T U B
τ1 4 16 0.25 3
τ2 3 24 0.125 5
τ3 4 32 0.125 5
τ4 5 40 0.125 2
τ5 4 50 0.08 0

U1 +
B1
T1

= 0.25 + 0.1875 = 0.4375 < 0.743



Example

In the previous example:

C T U B
τ1 4 16 0.25 3
τ2 3 24 0.125 5
τ3 4 32 0.125 5
τ4 5 40 0.125 2
τ5 4 50 0.08 0

U1 +
B1
T1

= 0.25 + 0.1875 = 0.4375 < 0.743

U1 + U2 +
B2
T2

= 0.375 + 0.208 = 0.583 < 0.743



Example

In the previous example:

C T U B
τ1 4 16 0.25 3
τ2 3 24 0.125 5
τ3 4 32 0.125 5
τ4 5 40 0.125 2
τ5 4 50 0.08 0

U1 +
B1
T1

= 0.25 + 0.1875 = 0.4375 < 0.743

U1 + U2 +
B2
T2

= 0.375 + 0.208 = 0.583 < 0.743

U1 + U2 + U3 +
B3
T3

= 0.5 + 0.156 = 0.656 < 0.743



Example

In the previous example:

C T U B
τ1 4 16 0.25 3
τ2 3 24 0.125 5
τ3 4 32 0.125 5
τ4 5 40 0.125 2
τ5 4 50 0.08 0

U1 +
B1
T1

= 0.25 + 0.1875 = 0.4375 < 0.743

U1 + U2 +
B2
T2

= 0.375 + 0.208 = 0.583 < 0.743

U1 + U2 + U3 +
B3
T3

= 0.5 + 0.156 = 0.656 < 0.743

U1 + U2 + U3 + U4 +
B4
T4

= 0.625 + 0.05 = 0.675 < 0.743



Example

In the previous example:

C T U B
τ1 4 16 0.25 3
τ2 3 24 0.125 5
τ3 4 32 0.125 5
τ4 5 40 0.125 2
τ5 4 50 0.08 0

U1 +
B1
T1

= 0.25 + 0.1875 = 0.4375 < 0.743

U1 + U2 +
B2
T2

= 0.375 + 0.208 = 0.583 < 0.743

U1 + U2 + U3 +
B3
T3

= 0.5 + 0.156 = 0.656 < 0.743

U1 + U2 + U3 + U4 +
B4
T4

= 0.625 + 0.05 = 0.675 < 0.743

U1 + U2 + U3 + U4 + U5
B5
T5

= 0.705 + 0 < 0.743



Outline

1 Priority inversion

2 Priority Inheritance Protocol
Nested critical sections and deadlock
Blocking time computation and Analysis

3 Priority Ceiling

4 Stack Resouce Policy

5 Shared Resources on EDF
Priority Inheritance
Stack Resource Policy



Problems of Priority inheritance

Multi blockings
A task can be blocked more than once on different
semaphores

Multiple inheritance
when considering nested resources, the priority can be
inherited multiple times

Deadlock
In case of nested resources, there can be a deadlock



Multiple blocking example

example:

0 2 4 6 8 10 12 14 16 18 20 22 24

τ1

τ2

τ3 L(S1)
S1

task τ1 is blocked twice on two different resources



Multiple blocking example

example:

0 2 4 6 8 10 12 14 16 18 20 22 24

τ1

τ2

τ3 L(S1)
S1

L(S2)
S2

task τ1 is blocked twice on two different resources



Multiple blocking example

example:

0 2 4 6 8 10 12 14 16 18 20 22 24

τ1

τ2

τ3 L(S1)
S1

L(S2)
S2

L(S2)

task τ1 is blocked twice on two different resources



Multiple blocking example

example:

0 2 4 6 8 10 12 14 16 18 20 22 24

τ1

τ2

τ3 L(S1)
S1

L(S2)
S2

L(S2)

S2

U(S2)

task τ1 is blocked twice on two different resources



Multiple blocking example

example:

0 2 4 6 8 10 12 14 16 18 20 22 24

τ1

τ2

τ3 L(S1)
S1

L(S2)
S2

L(S2)

S2

U(S2)

S2

U(S2)L(S1)

task τ1 is blocked twice on two different resources



Multiple blocking example

example:

0 2 4 6 8 10 12 14 16 18 20 22 24

τ1

τ2

τ3 L(S1)
S1

L(S2)
S2

L(S2)

S2

U(S2)

S2

U(S2)L(S1)

S1

U(S1)

task τ1 is blocked twice on two different resources



Multiple blocking example

example:

0 2 4 6 8 10 12 14 16 18 20 22 24

τ1

τ2

τ3 L(S1)
S1

L(S2)
S2

L(S2)

S2

U(S2)

S2

U(S2)L(S1)

S1

U(S1)

S1

U(S1)

task τ1 is blocked twice on two different resources



Possible solution: ceilings

It is possible to avoid this situation by doing an off-line
analysis

Define the concept of resouce ceiling

Anticipate the blocking: a task cannot lock a resource if it
can potentially block another higher priority task later.



Possible solution: ceilings

It is possible to avoid this situation by doing an off-line
analysis

Define the concept of resouce ceiling

Anticipate the blocking: a task cannot lock a resource if it
can potentially block another higher priority task later.

Definition
The ceiling of a resource is the priority of the highest priority
task that can access it

ceil(Sk ) = max
i

{pi |τi uses Sk}



The priority ceiling protocol

Basic rules
When a task τi tries to lock a semaphore Sk , the operation
is permitted only if the following two conditions hold:

1 Sk is free and
2 pi > maxceili where:

maxceili = max {ceil(Sj)|Sj is locked by a task different from τi}

Otherwise, the task is blocked, and the blocking task
inherits the priority

The blocking task is the one that holds the lock on the
semaphore corresponding to the maximum ceiling
maxceili .



Example:
ceil(S1) = p1 and ceil(S2) = p1

0 2 4 6 8 10 12 14 16 18 20 22 24

τ1

τ2

τ3 L(S1)
S1

task τ3 acquires the lock



Example:
ceil(S1) = p1 and ceil(S2) = p1

0 2 4 6 8 10 12 14 16 18 20 22 24

τ1

τ2

τ3 L(S1)
S1

L(S2)

task τ3 acquires the lock
task τ2 is blocked because p2 < maxceil = p1

task τ3 inherits τ2’s priority



Example:
ceil(S1) = p1 and ceil(S2) = p1

0 2 4 6 8 10 12 14 16 18 20 22 24

τ1

τ2

τ3 L(S1)
S1

L(S2)

S1

L(S2)

task τ3 acquires the lock
task τ2 is blocked because p2 < maxceil = p1

task τ3 inherits τ2’s priority
task τ1 is blocked for the same reason
task τ3 inherits τ1’s priority



Example:
ceil(S1) = p1 and ceil(S2) = p1

0 2 4 6 8 10 12 14 16 18 20 22 24

τ1

τ2

τ3 L(S1)
S1

L(S2)

S1

L(S2)

S1

U(S1)

task τ3 acquires the lock
task τ2 is blocked because p2 < maxceil = p1

task τ3 inherits τ2’s priority
task τ1 is blocked for the same reason
task τ3 inherits τ1’s priority
task τ3 returns to its original priority, since it is not blocking
anyone



Example:
ceil(S1) = p1 and ceil(S2) = p1

0 2 4 6 8 10 12 14 16 18 20 22 24

τ1

τ2

τ3 L(S1)
S1

L(S2)

S1

L(S2)

S1

U(S1)

S2

U(S2)L(S1)
S1

U(S1)

S2

U(S1)

task τ3 acquires the lock
task τ2 is blocked because p2 < maxceil = p1

task τ3 inherits τ2’s priority
task τ1 is blocked for the same reason
task τ3 inherits τ1’s priority
task τ3 returns to its original priority, since it is not blocking
anyone



Blocking

In the previous example:

0 2 4 6 8 10 12 14 16 18 20 22 24

τ1

τ2

τ3 L(S1)
S1

L(S2)

S1

L(S2)

S1

U(S1)

S2

U(S2)L(S1)
S1

U(S1)

S2

U(S1)



Blocking

In the previous example:

0 2 4 6 8 10 12 14 16 18 20 22 24

τ1

τ2

τ3 L(S1)
S1

L(S2)

S1

L(S2)

S1

U(S1)

S2

U(S2)L(S1)
S1

U(S1)

S2

U(S1)

Blocking time for τ1: 2



Blocking

In the previous example:

0 2 4 6 8 10 12 14 16 18 20 22 24

τ1

τ2

τ3 L(S1)
S1

L(S2)

S1

L(S2)

S1

U(S1)

S2

U(S2)L(S1)
S1

U(S1)

S2

U(S1)

Blocking time for τ1: 2

Blocking time for τ2: 4



Blocking

In the previous example:

0 2 4 6 8 10 12 14 16 18 20 22 24

τ1

τ2

τ3 L(S1)
S1

L(S2)

S1

L(S2)

S1

U(S1)

S2

U(S2)L(S1)
S1

U(S1)

S2

U(S1)

Blocking time for τ1: 2

Blocking time for τ2: 4

No multiple blockings!



Properties of PCP

Theorem
A task can be blocked at most once by any resource or task.



Properties of PCP

Theorem
A task can be blocked at most once by any resource or task.

Theorem
The Priority Ceiling Protocol prevents deadlock

Therefore, we can nest critical sections safely



Properties of PCP

Theorem
A task can be blocked at most once by any resource or task.

Theorem
The Priority Ceiling Protocol prevents deadlock

Therefore, we can nest critical sections safely

Corollary
The maximum blocking time for a task is at most the length of
one critical section

It follows that in the resource table, we have to consider
only one cell



Example of blocking time computation – PCP

let’s start from B1

S1 S2 S3 B
τ1 2 0 0 ?
τ2 0 1 0 ?
τ3 0 0 2 ?
τ4 3 3 1 ?
τ5 1 2 1 ?

τ1 can be blocked only on S1.

Therefore, we must consider only the first column, and take
the maximum, which is 3.



Example of blocking time computation – PCP

Now τ2: it can be blocked on S1 (indirect blocking) and on
S2.

S1 S2 S3 B
τ1 2 0 0 3
τ2 0 1 0 ?
τ3 0 0 2 ?
τ4 3 3 1 ?
τ5 1 2 1 ?

Therefore, we must consider the first 2 columns;

The maximum is B2 = 3.



Example of blocking time computation – PCP

τ3 can be blocked on all 3 resources

S1 S2 S3 B
τ1 2 0 0 3
τ2 0 1 0 3
τ3 0 0 2 ?
τ4 3 3 1 ?
τ5 1 2 1 ?

The maximum is B3 = 3.



Example of blocking time computation – PCP

Now :
S1 S2 S3 B

τ1 2 0 0 3
τ2 0 1 0 3
τ3 0 0 2 3
τ4 3 3 1 ?
τ5 1 2 1 ?

τ4 can be blocked on all 3 resources,

The maximum is B4 = 2.

τ5 cannot be blocked by any other task (because it is the
lower priority task!); B5 = 0;



Example: Final result – PCP

Final result:
S1 S2 S3 B

τ1 2 0 0 3
τ2 0 1 0 3
τ3 0 0 2 3
τ4 3 3 1 2
τ5 1 2 1 0



PCP – problems

The PCP has some disadvantages

The implementation is very complex, even more than PI

Very little known implementations,
difficult to prove correctness of implementation

The PCP causes still many context switches

we need something simpler to be implemented!



Outline

1 Priority inversion

2 Priority Inheritance Protocol
Nested critical sections and deadlock
Blocking time computation and Analysis

3 Priority Ceiling

4 Stack Resouce Policy

5 Shared Resources on EDF
Priority Inheritance
Stack Resource Policy



Stack Resource Policy

This protocol is also known with the name of Immediate
Priority Ceiling Protocol (IPCP).
The basic ideas are the following:

We anticipate the blocking even more
the task cannot even start executing if it is not guaranteed
to take all resources

Properties:
Very simple implementation
A task blocks at most once before starting execution
The execution order is like a “stack”.



Preemption levels and rules
The preemption level πi of a task is a generalization of the
concept of priority for preemptive scheduling;
In Fixed Priority, the preemption level of a task is defined
as its priority: πi = pi .
In EDF the preemption level will be defined as the inverse
of the relative deadline of a task.

Definition
The ceiling of a resource is the preemption level of the task with
the highest preemption level among those that can access the
resource

ceil(Sk ) = max
i

{πi |τi uses Sk}

Definition
The system ceiling at any instant of time is the maximum ceiling
among all locked resources

Πs(t) = max{ceil(S)|Sis locked att}



SRP rule

The protocol rule is:
A task that arrives at time t can start executing only if:

1 it is the highest priority task
2 its preemption level is greater than current system ceiling:

πi > Πs(t)



Example
Example

0 2 4 6 8 10 12 14 16 18 20 22 24

τ1

τ2

τ3 L(S1)

Task τ3 raises the sys ceiling to p1



Example
Example

0 2 4 6 8 10 12 14 16 18 20 22 24

τ1

τ2

τ3 L(S1)
S1

Task τ3 raises the sys ceiling to p1

Task τ2 cannot start because p2 < Πs = p1



Example
Example

0 2 4 6 8 10 12 14 16 18 20 22 24

τ1

τ2

τ3 L(S1)
S1 S1

Task τ3 raises the sys ceiling to p1

Task τ2 cannot start because p2 < Πs = p1

Task τ1 cannot start because p1 = Πs = p1



Example
Example

0 2 4 6 8 10 12 14 16 18 20 22 24

τ1

τ2

τ3 L(S1)
S1 S1 S1

U(S1)

Task τ3 raises the sys ceiling to p1

Task τ2 cannot start because p2 < Πs = p1

Task τ1 cannot start because p1 = Πs = p1

When task τ3 unlocks, the sys ceiling goes down, and all
other tasks can start executing



Example
Example

0 2 4 6 8 10 12 14 16 18 20 22 24

τ1

τ2

τ3 L(S1)
S1 S1 S1

U(S1)

L(S2)
S2

U(S2)L(S1)
S1

U(S1)

L(S2)
S2

U(S1)

Task τ3 raises the sys ceiling to p1

Task τ2 cannot start because p2 < Πs = p1

Task τ1 cannot start because p1 = Πs = p1

When task τ3 unlocks, the sys ceiling goes down, and all
other tasks can start executing



Properties

The same properties of PCP hold, in particular:

Theorem
A task can be blocked at most once by any resource or task.



Properties

The same properties of PCP hold, in particular:

Theorem
A task can be blocked at most once by any resource or task.

Theorem
The Stack Resource Policy prevents deadlock

Therefore, we can nest critical sections safely

Corollary
The maximum blocking time for a task is at most the length of
one critical section

Therefore, the blocking time is the same as PCP.



Properties

The same properties of PCP hold, in particular:

Theorem
A task can be blocked at most once by any resource or task.

Theorem
The Stack Resource Policy prevents deadlock

Therefore, we can nest critical sections safely

Corollary
The maximum blocking time for a task is at most the length of
one critical section

Therefore, the blocking time is the same as PCP.
It can be proven that this is the minimal possible blocking time



SRP vs. PCP

SRP reduces the number of preemptions
SRP is very easy to be implemented

No need to do inheritance
No need to block tasks in semaphore queues
It makes it possible for all tasks to share the same stack



Non preemptive scheduling

Using SRP is equivalent to selectively disable preemption
for a limited amount of time

We can disable preemption only for some group of tasks

The SRP is a generalization of the preemption-threshold
mechanism



Outline

1 Priority inversion

2 Priority Inheritance Protocol
Nested critical sections and deadlock
Blocking time computation and Analysis

3 Priority Ceiling

4 Stack Resouce Policy

5 Shared Resources on EDF
Priority Inheritance
Stack Resource Policy



Outline

1 Priority inversion

2 Priority Inheritance Protocol
Nested critical sections and deadlock
Blocking time computation and Analysis

3 Priority Ceiling

4 Stack Resouce Policy

5 Shared Resources on EDF
Priority Inheritance
Stack Resource Policy



Synchronization protocols with EDF

Both the Priority inheritance Protocol and the Stack
Resource Policy can be used under EDF without any
modification.
Let’s first consider PI.

When a higher priority job is blocked by a lower priority job
on a shared mutex sempahore, then the lower priority job
inherits the priority of the blocked job.



Synchronization protocols with EDF

Both the Priority inheritance Protocol and the Stack
Resource Policy can be used under EDF without any
modification.
Let’s first consider PI.

When a higher priority job is blocked by a lower priority job
on a shared mutex sempahore, then the lower priority job
inherits the priority of the blocked job.
In EDF, the priority of a job is inversely proportional to its
absolute deadline.
Here, you should substiture higher priority job with job with
an early deadline and inherits the priority with inherits the
absolute deadline.



Preemption levels

To compute the blocking time, we must first order the tasks
based on their preemption levels.

Definition
Every task τi is assigned a preemption level πi such that it can
preempt a task τj if and only if πi > πj .

In fixed priority, the preemption level is the same as the
priority.

In EDF, the preemption level is defined as πi =
1
Di

.



Preemption Levels - II

If τi can preempt τj , then the following two conditions must
hold:

τi arrives after τj has started to execute and hence ai > aj ,

the absolute deadline of τi is shorter than the absolute
deadline of τj (di ≤ dj ).

It follows that

di = ai + Di ≤ dj = aj + Dj ⇒
Di − Dj ≤ aj − ai < 0 ⇒

Di < Dj ⇒
πi > πj



Preemption levels

With a graphical example:

0 2 4 6 8 10 12

τ1

τ2

Notice that π1 > π2;

In this case, τ1 preempts τ2.



Preemption levels

With a graphical example:

0 2 4 6 8 10 12

τ1

τ2

Notice that π1 > π2;

τ2 cannot preempt τ1 (because its relative deadline is
greater than τ1).



Computing the blocking time

To compute the blocking time for EDF + PI, we use the
same algorithms as for FP + PI. In particular, the
fundamental theorem for PI is still valid:

Theorem
Each task can be blocked only once per each resource, and
only for the length of one critical section per each task.



Computing the blocking time - II

In case on non-nested critical sections, build a resource
usage table

At each row put a task, ordered by decreasing preemption
levels
At each column, put a resource
In each cell, put the worst case duration ξij of any critical
section of task τi on resource Sj



Computing the blocking time - II

In case on non-nested critical sections, build a resource
usage table

At each row put a task, ordered by decreasing preemption
levels
At each column, put a resource
In each cell, put the worst case duration ξij of any critical
section of task τi on resource Sj

The algorithm for the blocking time for task τi is the same:
Select the rows below the i-th;
we must consider only those column on which it can be
blocked (used by itself or by higher priority tasks)
Select the maximum sum of the ξk,j with the limitation of at
most one ξk,j for each k and for each j .



Schedulability formula

In case of relative deadlines equal to periods, we have:

∀i = 1, . . . ,N
i

∑

j=1

Cj

Tj
+

Bi

Ti
≤ 1

In case of relative deadlines less than the periods:

∀i = 1, . . . ,N ∀L < L∗

N
∑

j=1

(⌊

L − Dj

Tj

⌋

+ 1
)

Cj + Bi ≤ L

L∗ =
U

1 − U
max

i
(Ti − Di)



Complete example

Here we analyze a complete example, from the
parameters of the tasks, and from the resource usage
table, we compute the Bis, and test schedulability.

Ci Ti Ui R1 R2 Bi

τ1 2 10 .2 1 0 ?
τ2 5 15 .33 2 1 ?
τ3 4 20 .2 0 2 ?
τ4 9 45 .2 3 4 ?



Complete example: blocking times

Blocking time for τ1:

Ci Ti Ui R1 R2 Bi

τ1 2 10 .2 1 0 3
τ2 5 15 .33 2 1 ?
τ3 4 20 .2 0 2 ?
τ4 9 45 .2 3 4 ?



Complete example: blocking times

Blocking time for τ2:

Ci Ti Ui R1 R2 Bi

τ1 2 10 .2 1 0 3
τ2 5 15 .33 2 1 5
τ3 4 20 .2 0 2 ?
τ4 9 45 .2 3 4 ?



Complete example: blocking times

Blocking time for τ3:

Ci Ti Ui R1 R2 Bi

τ1 2 10 .2 1 0 3
τ2 5 15 .33 2 1 5
τ3 4 20 .2 0 2 4
τ4 9 45 .2 3 4 ?



Complete example: blocking times

Blocking time for τ4:

Ci Ti Ui R1 R2 Bi

τ1 2 10 .2 1 0 3
τ2 5 15 .33 2 1 5
τ3 4 20 .2 0 2 4
τ4 9 45 .2 3 4 0



Complete Example: schedulability test

General formula:

∀i = 1, . . . , 4
i

∑

j=1

Cj

Tj
+

Bi

Ti
≤ 1

Task τ1:
C1

T1
+

B1

T1
= .2 + .3 = .5 ≤ 1



Complete Example: schedulability test

General formula:

∀i = 1, . . . , 4
i

∑

j=1

Cj

Tj
+

Bi

Ti
≤ 1

Task τ2:

C1

T1
+

C2

T2
+

B2

T2
= .5333 + .3333 = .8666 ≤ 1



Complete Example: schedulability test

General formula:

∀i = 1, . . . , 4
i

∑

j=1

Cj

Tj
+

Bi

Ti
≤ 1

Task τ3:

C1

T1
+

C2

T2
+

C3

T3
+

B3

T3
= .2 + .333 + .2 + .2 = 0.9333 ≤ 1



Complete Example: schedulability test

General formula:

∀i = 1, . . . , 4
i

∑

j=1

Cj

Tj
+

Bi

Ti
≤ 1

Task τ4:

C1

T1
+

C2

T2
+

C3

T3
+

C4

T4
+

B4

T4
= .2+.3333+.2+.2+0 = .9333 ≤ 1



Complete example: scheduling

Now we do an example of possible schedule.

We assume that the task access the resources as follows:

0 2 4 6 8 10 12 14 16

τ1

τ2

τ3

τ4

L(S1)

S1

U(S1)

L(S1)

S1

U(S1)L(S2)

S2

U(S2)

L(S2)

S2

U(S2)

L(S1)

S1

U(S1)L(S2)

S2

U(S2)



Complete example: schedule
Example

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34

τ1

τ2

τ3

τ4

L1

L2

L1

L1

S1

U1
S1

U1

S1

U1 L2

S2

U2

S2

L1

S1

U1

L2

L1

S1

U1 L2

S2

U2

S2

U2

L1

S1

U1

L2

S2

U2

In the graph, L1 = Lock(S1), U1 = Unlock(S1),
L2 = Lock(S2), U2 = Unlock(S2).
The tasks start with an offset, because in the example we
want to highlight the blocking times at the beginning.



Outline

1 Priority inversion

2 Priority Inheritance Protocol
Nested critical sections and deadlock
Blocking time computation and Analysis

3 Priority Ceiling

4 Stack Resouce Policy

5 Shared Resources on EDF
Priority Inheritance
Stack Resource Policy



Stack Resource Policy

Once we have defined the preemption levels, it is easy to
extend the stack resource policy to EDF.
The main rule is the following:

The ceiling of a resource is defined as the highest
preemption level among the ones of all tasks that access it;
At each instant, the system ceiling is the highest among the
ceilings of the locked resources;
A task is not allowed to start executing until its deadline is
the shortest one and its preemption level is strictly greater
than the system ceiling;



Complete Example

Now we analyze the previous example, assuming
EDF+SRP.

Ci Ti Ui R1 R2 Bi

τ1 2 10 .2 1 0 ?
τ2 5 15 .33 2 1 ?
τ3 4 20 .2 0 2 ?
τ4 9 45 .2 3 4 ?

Let us first assign the preemption levels.
The actual value of the preemption levels is not important,
as long as they are assigned in the right order.
To make calcumations easy, we set π1 = 4, π2 = 3, π3 = 2 ,
π4 = 1.

Then the resource ceilings:
ceil(R1) = π1 = 4, ceil(R2) = π2 = 3.



Schedule

Schedule

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34

τ1

τ2

τ3

τ4

L1

At this point, the system ceiling is raised to π1 (the ceiling
of R1).



Schedule
Schedule

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34

τ1

τ2

τ3

τ4

L1

At this point, the system ceiling is raised to π1 (the ceiling
of R1). Task τ3 cannot start executing, because π3 < π1.
Same for τ2.



Schedule
Schedule

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34

τ1

τ2

τ3

τ4

L1

S1

U1

At this point, the system ceiling is raised to π1 (the ceiling
of R1). Task τ3 cannot start executing, because π3 < π1.
Same for τ2.
The system ceiling goes back to 0. Now τ2 can start.



Schedule
Schedule

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34

τ1

τ2

τ3

τ4

L1

S1

U1

L1

At this point, the system ceiling is raised to π1 (the ceiling
of R1). Task τ3 cannot start executing, because π3 < π1.
Same for τ2.
The system ceiling goes back to 0. Now τ2 can start.
in this example, we assume that τ2 locks R1 just before τ1

arrives. Then, sys ceil = π1 and τ1 cannot preempt.



Schedule
Schedule

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34

τ1

τ2

τ3

τ4

L1

S1

U1

L1

S1

U1

At this point, the system ceiling is raised to π1 (the ceiling
of R1). Task τ3 cannot start executing, because π3 < π1.
Same for τ2.
The system ceiling goes back to 0. Now τ2 can start.
in this example, we assume that τ2 locks R1 just before τ1

arrives. Then, sys ceil = π1 and τ1 cannot preempt.



Schedule
Schedule

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34

τ1

τ2

τ3

τ4

L1

S1

U1

L1

S1

U1

L1

S1

U1

At this point, the system ceiling is raised to π1 (the ceiling
of R1). Task τ3 cannot start executing, because π3 < π1.
Same for τ2.
The system ceiling goes back to 0. Now τ2 can start.
in this example, we assume that τ2 locks R1 just before τ1

arrives. Then, sys ceil = π1 and τ1 cannot preempt.



Schedule
Schedule

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34

τ1

τ2

τ3

τ4

L1

S1

U1

L1

S1

U1

L1

S1

U1
L2

S2

U2
L2

S2

U2

L1

S1

U1

At this point, the system ceiling is raised to π1 (the ceiling
of R1). Task τ3 cannot start executing, because π3 < π1.
Same for τ2.
The system ceiling goes back to 0. Now τ2 can start.
in this example, we assume that τ2 locks R1 just before τ1

arrives. Then, sys ceil = π1 and τ1 cannot preempt.



Schedule
Schedule

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34

τ1

τ2

τ3

τ4

L1

S1

U1

L1

S1

U1

L1

S1

U1
L2

S2

U2
L2

S2

U2

L1

S1

U1

At this point, the system ceiling is raised to π1 (the ceiling
of R1). Task τ3 cannot start executing, because π3 < π1.
Same for τ2.
The system ceiling goes back to 0. Now τ2 can start.
in this example, we assume that τ2 locks R1 just before τ1

arrives. Then, sys ceil = π1 and τ1 cannot preempt.



Schedule
Schedule

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34

τ1

τ2

τ3

τ4

L1

S1

U1

L1

S1

U1

L1

S1

U1
L2

S2

U2
L2

S2

U2

L1

S1

U1

L2

S2

U2

L1

S1

U1 L2

S2

U2

L1

S1

U1

L2

S2

U2

At this point, the system ceiling is raised to π1 (the ceiling
of R1). Task τ3 cannot start executing, because π3 < π1.
Same for τ2.
The system ceiling goes back to 0. Now τ2 can start.
in this example, we assume that τ2 locks R1 just before τ1

arrives. Then, sys ceil = π1 and τ1 cannot preempt.



Blocking time computation

The computation of the blocking time is the same as in the
case of FP + SRP;

The only difference is that, when the resource access table
is built, tasks are ordered by decreasing preemption level,
instead than by priority.

In the previous example:

Ci Ti Ui R1 R2 Bi

τ1 2 10 .2 1 0 3
τ2 5 15 .33 2 1 4
τ3 4 20 .2 0 2 4
τ4 9 45 .2 3 4 0

Notice that, since the blocking times in this case are less
than in the case of Priority Inheritance, then the system is
schedulable. As an exercise, check that the schedulability
condition holds.


	Priority inversion
	Priority Inheritance Protocol
	Nested critical sections and deadlock
	Blocking time computation and Analysis

	Priority Ceiling
	Stack Resouce Policy
	Shared Resources on EDF
	Priority Inheritance
	Stack Resource Policy


