Sistemi in tempo reale
Anno accademico 2009 - 2010

Macchine a stati finiti

Giuseppe Lipari
http://retis.sssup.it/~lipari

Scuola Superiore Sant’Anna

Introduction

State machines are basic building blocks for computing theory.
@ very important in theoretical computer science
@ many applications in practical systems

@ There are many slightly different definitions, depending on
the application area

@ A state machine is a Discrete Event Discrete State system

@ transitions from one state to another only happen on
specific events

@ events do not need to occur at specific times

@ we only need a temporal order between events (events
occur one after the other), not the exact time at which they
occur

http://retis.sssup.it/~lipari

Definition

A deterministic finite state machine (DFSM) is a 5-tuple:
S (finite) set of states
| set of possible input symbols (also called input alphabet)
Sp Initial state
¢ transitions: a function from (state,input) to a new state

p:Sxl—S

w output function (see later)
An event is a new input symbol presented to the machine.

@ In response, the machine will react by updating its state
and possibly producing an output. This reaction is
istantaneous (synchronous assumption).

Output function

Two types of machines:
Moore output only depends on state:

wmr » S — N

Where (2 is the set of output symbols. In this case, the

output only depends on the state, and it is produced upon
entrance on a new state.

Mealy output depends on state and input:

In this case, the output is produced upon occurrence of a
certain transaction.

Moore machines

@ Moore machines are the simplest ones
@ If Q = {yes, no}, the machine is a recognizer

@ A recognizer is able to accept or reject sequences of input
symbols

@ The set of sequences accepted by a recognizer is a
regular language

State diagrams

@ FSM can be represented by State Diagrams

O & ®

@ final states are identified by a double circle

Example: recognizer

@ In this example | = {a,b}. The following state machine
recognizes string aba

Example: recognizer Il

@ Recognize string a"b™ with n even and m odd (i.e. aabbb,
b, aab are all legal sequences, while a, aabb, are non
legal)

@.@ @ S4is an error state. It is not possible

to go out from an error state (for
every input, no transaction out of the
state)

(o
@ S2is an accepting state, however we
do not know the length of the input
string, so it is possible to exit from the
accepting state if the input continues

o @ If we want to present a new string we
2 have to reset the machine to its initial

@ state

Non regular language

@ FSM are not so powerful. They can only recognize simple
languages

@ Example:
@ strings of the form a"b" for all n > 0 cannot be recognized
by a FSM (because they only have a finite number of states)
@ they could if we put a limit on n. For example, 0 < n < 10.

Mealy machines

@ In Mealy machines, output is related to both state and
input.

@ In practice, output can be associated to a transition

@ Given the synchronous assumption, the Moore’s model is
equivalent to the Mealy’s model: for every Moore machine,
it is possible to derive an equivalent Mealy machine, and
viceversa

Example: parity check

@ In this example, we have a Mealy machine that

@ outputs 1 if the number of symbols 1 in input so far is odd;
@ it outputs O otherwise.

@ Usually, Mealy machines have a more compact
representation than Moore machines (i.e. they perform the
same task with a number of states that is no less than the

equivalent Moore machine).

Table representation

@ A FSM can be represented through a table

@ The table shown below corresponds to the parity-check
Mealy FSM shown just before.

0 1
So || So/0| S1/1
Sy || S1/1|Sp/0

Stuttering symbol

@ Input and output alphabets include the absent symbol e
@ It correspond to a null input or output

@ When the input is absent, the state remains the same, and
the output is absent

@ Any sequence of inputs can be interleaved or extended
with an arbitrary number of absent symbols without
changing the behavior of the machine

@ the absent symbol is also called the stuttering symbol

Abbreviations

@ If no guard is specified for a transition, the transition is
taken for every possible input (except the absent symbol ¢)

@ If no output is specified for a transition, the output is ¢

@ given a state Sy, if a symbol « is not used as guard of any
transition going out of Sp, then an implicit transition from Sg
to itself is defined with « as guard and ¢ as output

al0 al0
\‘“ Q
Q o
pl1 811

Exercise

@ Draw the state diagram of a FSM with | = {0, 1},
(2 ={0,1}, with the following specification:
o let x(k) be the sequence of inputs
o the output w(k) =1iff x(k —2) =x(k —1) =x(k) =1

Solution

@ three states: SO is the initial state, S1 if last input was 1,
S2 if last two inputs were 1

1/0 1/0
i":J \'\’
0/0 ~

0/0

Deterministic machines

@ Transitions are associated with

@ a source state

@ aguard (i.e. a input value)
@ a destination state

@ a output

@ in deterministic FSM, a transition is uniquely identified by
the first two.

@ in other words, given a source state and a input, the
destination and the output are uniquely defined

Non deterministic FSMs

@ A non deterministic finite state machine is identified by a
5-tuple:
| set of input symbols
(2 set of output symbols
S set of states
Sy set of initial states
¢ transition function:

¢:Sxl—(SxQ)*

where S* denotes the power set of S, i.e. the set of all
possible subsets of S.

@ In other words, given a state and an input, the transition
returns a set of possible pairs (new state, output).

Non determinism

@ Non determinism is used in many cases:
@ to model randomness
@ to build more compact automata
@ Randomness is when there is more than one possible
behaviour and the system follows one specific behavior at
random

@ Randomness has nothing to do with probability! we do not
know the probability of occurrence of every behavior, we
only know that they are possible

@ A more abstract model of a system hides unnecessary
details, and it is more compact (less states)

Example of non deterministic state machine

@ We now build an automata to recognize all input strings (of
any lenght) that end with a 01

Equivalence between D-FSM and N-FSM

@ It is possible to show that Deterministic FSMs (D-FSMs)
are equivalent to non deterministic ones(N-FSMs)

@ Proof sketch

@ Given a N-FSM A, we build an equivalent D-FSM B (i.e.
that recognizes the same strings recognized by the N-FSM.
For every subset of states of the A, we make a state of 5.
Therefore, the maximum number of states of B is 2/S!. The
start state of B is the one corresponding to the A. For every
subset of states that are reachable from the start state of
state of A with a certain symbol, we make one transition in
B to the state corresponding to the sub-set. The procedure
Is iterated until all transitions have been covered.

Exercise

@ As an exercise, build the D-FSM equivalent to the previous
example of N-FSM

Figure: The N-FSM

Solution

Figure: The N-FSM

@ Initial state: {SO}

state name | subset 0 1
go {S0} {S0, S1} {S0}
gl {S0,S1} | {SO, S1} | {SO, S2}
g2 {S0,S2} | {SO, S1} {S0}

Solution

Figure: The equivalent D-FSM

Problems with FSMs

@ FSM are flat and global

@ All states stay on the same level, and a transition can go
from one state to another

@ It is not possible to group states and transitions
@ Replicated transition problem:

Product of two FSM

@ Another problem is related to the cartesian product of two
FSM

@ Suppose we have two distinct FSMs that we want to
combine into a single one

Figure: FSM 1 Figure: FSM 2

Product result

@ The result is a state machine FSM 3 where each state
corresponds to a pair of state of the original machine

@ Also, each transition in FSM 3 corresponds to one
transition in either of the two original state machines

Complexity handling

@ All these problems have to do with complexity of dealing
with states

@ In particular, the latter problem is very important, because
we often need to combine different simple state machines

@ However, the resulting diagram (or table specification) can
become very large

@ We need a different specification mechanism to deal with
such complexity

@ In this course, we will study Statecharts (similar to Matlab
StateFlow), first proposed by Harel

States

@ In H-FSMs, a state can be final or composite

my_state_machine

<<top>>

e N
simple_state & comp_state
<<submachine>>
[.
\G @
b

State specification

@ A state consist of:
@ An entry action, executed once when the system enters the
state
@ An exit action, executed once before leaving the state
@ A do action, executed while in the state (the semantic is not
very clear)

@ They are all optional

MyState

entry / onEntry()
exit / beforeExit()
do / whilelnside()

ﬁ

Figure: Entry, exit and do behaviors

Transitions

@ A transition can have:

@ A triggering event, which activates the transition

@ A guard, a boolean expression that enables the transition. If
not specified, the transition is always enabled

@ An action to be performed if the transition is activated and
enabled, just after the exit operation of the leaving state,
and before the entry operation of the entering state

@ Only the triggering event specification is mandatory, the
other two are optional

myEvent [temp>0] / turnOnHeater()
First State } [Second State)

Figure: Transition, with event, guard and action specified

Or composition

@ A state can be decomposed into substates

@ When the machine enters state Composite, it goes into
state Compl

@ Then, if event e2 it goes in Comp2, if event e3 it goes in
Comp3, else if event e4 it exits from Composite.

()

extState | ©! Composite
<<submachine>>
Comp2
y

—
e4
anotherState
%

.

Figure: A composite state

History

@ When the machine exits from a composite state, normally it
forgets in which states it was, and when it enters again, it
starts from the starting state

@ To “remember” the state, so that when entering again it will
go in the same state it had before exiting, we must use the
history symbol

extState | €' Composite

<<submachine>>

Comp2
e4 e2
anotherState /

e5 M
@

.

Figure: Example of history

AND decomposition

@ A state can be decomposed in orthogonal regions, each
one contains a different sub-machine

@ When entering the state, the machine goes into one
substate for each sub-machine

s N
Compound

<<submachine>>

capsLock \L
capslLock
extState

| numLock \l/

=) ().
numLock

.

Figure: Orthogonal states for a keyboard

Elevator

@ Let's define an “intelligent” elevator

@ For a 5-stores building (ground floor, and four additional
floors)

@ Users can “reserve” the elevator

@ The elevator serves all people in order of reservation

@ We assume at most one user (or group of users) per each
“trip”, and they all need to go to the same floor

Design considerations

@ How do you encode at which floor the elevator is?
@ One different state per each floor

@ Does not scale well; for 100 floors bulding, we need 100
states!

© The floor is encoded as an extended state, i.e. a variable cf

@ It scales, but more difficult to design
© It always depends on what we want to describe!
@ Which events do we have?
@ An user press a button to “reserve” the elevator, setting
variable rf

@ An user inside the elevator presses the button to change
floor, setting variable df

First design

elevator_machine

<<machine>>

Idle l timeout

reserve [cf

Destination reached]

timeout
motor $top

{ Move to destination]

N
(Ready to Load

reserve(cf == rf]

[Move To Reserve]

motor stop

press button

Doors

@ The previous design does not capture all aspects of our
systems

@ Let’s start to add details by adding the description of how
the doors behave

@ Abstraction level

@ The level of details of a design depends on what the
designer is more interested in describing with the
specification

@ In the previous design, we were not interested in describing
all aspects, but only on giving a few high-level details

@ The design can be refined by adding details when needed

The doors submachine

f N
door_machine
<<machine>>
close_end r . \
doors_closed closing
\
open dgors close dpors
£ (
opening doors_open
open_end
N
The elevator, second design
4 N\

Idle

entry / close doors

elevator_machine

<<machine>>

timeout

reserve [df = rf]

[Move To Reserve

motor stop

reser

timeout

[cf ==rf]

(Destination reached
L entry / open doors

motor stop

Move to destination

entry / close doors

go

(
L

Ready to Load

entry / open doors

Putting everything together

Global Elevator

<<machine>>

~
Idle . Destination reached
. timeout
entry / close doors L entry / open doors
motor $top
reserve [cf I=rf]
N
A Ready to Load Move to destination
motor stop go
Move To Reserve _—
entry / open doors entry / close doors

close_end
. doors_closed — closing

open dgors close dgors

\ open_end (
opening doors_open

	Finite State Machines (FSMs)
	Introduction
	Moore and Mealy machines
	State Diagrams
	Example
	Mealy machines
	Exercise

	Non deterministic FSMs
	Non determinism
	Exercise

	Hierarchical Finite State Machines
	Problems with FSMs
	H-FSM specification

	The Elevator Example
	Simple FSM
	Improved design

