Introduction

State machines are basic building blocks for computing theory.
- very important in theoretical computer science
- many applications in practical systems
- There are many slightly different definitions, depending on the application area
- A state machine is a Discrete Event Discrete State system
 - transitions from one state to another only happen on specific events
 - events do not need to occur at specific times
 - we only need a temporal order between events (events occur one after the other), not the exact time at which they occur
Definition

A deterministic finite state machine (DFSM) is a 5-tuple:

- \(S \) (finite) set of states
- \(I \) set of possible input symbols (also called input alphabet)
- \(S_0 \) initial state
- \(\phi \) transitions: a function from (state,input) to a new state
 \[\phi : S \times I \rightarrow S \]
- \(\omega \) output function (see later)

An event is a new input symbol presented to the machine.

- In response, the machine will react by updating its state and possibly producing an output. This reaction is instantaneous (synchronous assumption).

Output function

Two types of machines:

- **Moore** output only depends on state:
 \[\omega_{mr} : S \rightarrow \Omega \]
 Where \(\Omega \) is the set of output symbols. In this case, the output only depends on the state, and it is produced upon entrance on a new state.

- **Mealy** output depends on state and input:
 \[\omega_{ml} : S \times I \rightarrow \Omega \]
 In this case, the output is produced upon occurrence of a certain transaction.
Moore machines

- Moore machines are the simplest ones
- If $\Omega = \{\text{yes, no}\}$, the machine is a recognizer
- A recognizer is able to accept or reject sequences of input symbols
- The set of sequences accepted by a recognizer is a regular language

State diagrams

- FSM can be represented by State Diagrams

 ![State Diagram](image)

 - final states are identified by a double circle
Example: recognizer

In this example $I = \{a, b\}$. The following state machine recognizes string aba.

Example: recognizer II

Recognize string $a^n b^m$ with n even and m odd (i.e. $aabbb$, b, aab are all legal sequences, while a, $aabb$, are non legal).

- $S4$ is an error state. It is not possible to go out from an error state (for every input, no transaction out of the state).
- $S2$ is an accepting state, however we do not know the length of the input string, so it is possible to exit from the accepting state if the input continues.
- If we want to present a new string we have to reset the machine to its initial state.
Non regular language

- FSM are not so powerful. They can only recognize simple languages
- Example:
 - strings of the form $a^n b^n$ for all $n \geq 0$ cannot be recognized by a FSM (because they only have a finite number of states)
 - they could if we put a limit on n. For example, $0 \leq n \leq 10$.

Mealy machines

- In Mealy machines, output is related to both state and input.
- In practice, output can be associated to a transition
- Given the synchronous assumption, the Moore’s model is equivalent to the Mealy’s model: for every Moore machine, it is possible to derive an equivalent Mealy machine, and viceversa
Example: parity check

In this example, we have a Mealy machine that
- outputs 1 if the number of symbols 1 in input so far is odd;
- it outputs 0 otherwise.

![Mealy machine diagram]

Usually, Mealy machines have a more compact representation than Moore machines (i.e. they perform the same task with a number of states that is no less than the equivalent Moore machine).

Table representation

A FSM can be represented through a table

The table shown below corresponds to the parity-check Mealy FSM shown just before.

<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>S_0</td>
<td>$S_0/0$</td>
<td>$S_1/1$</td>
</tr>
<tr>
<td>S_1</td>
<td>$S_1/1$</td>
<td>$S_0/0$</td>
</tr>
</tbody>
</table>
Stuttering symbol

- Input and output alphabets include the absent symbol ε
- It correspond to a null input or output
- When the input is absent, the state remains the same, and the output is absent
- Any sequence of inputs can be interleaved or extended with an arbitrary number of absent symbols without changing the behavior of the machine
- the absent symbol is also called the stuttering symbol

Abbreviations

- If no guard is specified for a transition, the transition is taken for every possible input (except the absent symbol ε)
- If no output is specified for a transition, the output is ε
- given a state S_0, if a symbol α is not used as guard of any transition going out of S_0, then an implicit transition from S_0 to itself is defined with α as guard and ε as output
Exercise

- Draw the state diagram of a FSM with \(I = \{0, 1\} \), \(\Omega = \{0, 1\} \), with the following specification:
 - let \(x(k) \) be the sequence of inputs
 - the output \(\omega(k) = 1 \) iff \(x(k - 2) = x(k - 1) = x(k) = 1 \)

Solution

- three states: \(S0 \) is the initial state, \(S1 \) if last input was 1, \(S2 \) if last two inputs were 1
Deterministic machines

- Transitions are associated with:
 - a source state
 - a guard (i.e. a input value)
 - a destination state
 - a output

- In deterministic FSM, a transition is uniquely identified by the first two.

- In other words, given a source state and a input, the destination and the output are uniquely defined.

Non deterministic FSMs

- A non deterministic finite state machine is identified by a 5-tuple:
 - I set of input symbols
 - Ω set of output symbols
 - S set of states
 - S_0 set of initial states
 - ϕ transition function:

$$\phi: S \times I \rightarrow (S \times \Omega)^*$$

- Where S^* denotes the power set of S, i.e. the set of all possible subsets of S.

- In other words, given a state and an input, the transition returns a set of possible pairs (new state, output).
Non determinism

- Non determinism is used in many cases:
 - to model randomness
 - to build more compact automata

- Randomness is when there is more than one possible behaviour and the system follows one specific behavior at random

- Randomness has nothing to do with probability! we do not know the probability of occurrence of every behavior, we only know that they are possible

- A more abstract model of a system hides unnecessary details, and it is more compact (less states)

Example of non deterministic state machine

- We now build an automata to recognize all input strings (of any length) that end with a 01

```
S0 -> S1
0,1    0
S1 -> S2
1,1
```
Equivalence between D-FSM and N-FSM

- It is possible to show that Deterministic FSMs (D-FSMs) are equivalent to non deterministic ones (N-FSMs)

Proof sketch
- Given a N-FSM A, we build an equivalent D-FSM B (i.e. that recognizes the same strings recognized by the N-FSM. For every subset of states of the A, we make a state of B. Therefore, the maximum number of states of B is $2^{|S|}$. The start state of B is the one corresponding to the A. For every subset of states that are reachable from the start state of state of A with a certain symbol, we make one transition in B to the state corresponding to the sub-set. The procedure is iterated until all transitions have been covered.

Exercise

- As an exercise, build the D-FSM equivalent to the previous example of N-FSM

![Diagram](image.png)

Figure: The N-FSM
Solution

Initial state: \{S_0\}

<table>
<thead>
<tr>
<th>state name</th>
<th>subset</th>
<th>0</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>q0</td>
<td>{S_0}</td>
<td>{S_0, S_1}</td>
<td>{S_0}</td>
</tr>
<tr>
<td>q1</td>
<td>{S_0, S_1}</td>
<td>{S_0, S_1}</td>
<td>{S_0, S_2}</td>
</tr>
<tr>
<td>q2</td>
<td>{S_0, S_2}</td>
<td>{S_0, S_1}</td>
<td>{S_0}</td>
</tr>
</tbody>
</table>

Figure: The N-FSM

Solution

Figure: The equivalent D-FSM
Problems with FSMs

- FSM are flat and global
- All states stay on the same level, and a transition can go from one state to another
 - It is not possible to group states and transitions
- Replicated transition problem:

```
FSM 1
S0  S1  S2  S3
α   α  α  α
β   β  β  β
```

Product of two FSM

- Another problem is related to the cartesian product of two FSM
 - Suppose we have two distinct FSMs that we want to combine into a single one

```
FSM 1
S0  S1
α  α
β  β
```

```
FSM 2
Q0  Q1  Q2
γ  γ  γ
δ  δ  δ
```

Figure: FSM 1 Figure: FSM 2
Product result

- The result is a state machine FSM 3 where each state corresponds to a pair of state of the original machine.
- Also, each transition in FSM 3 corresponds to one transition in either of the two original state machines.

![State Machine Diagram]

Complexity handling

- All these problems have to do with *complexity* of dealing with states.
- In particular, the latter problem is very important, because we often need to combine different simple state machines.
- However, the resulting diagram (or table specification) can become very large.
- We need a different specification mechanism to deal with such complexity.
- In this course, we will study Statecharts (similar to Matlab StateFlow), first proposed by Harel.
States

- In H-FSMs, a state can be final or composite

![Diagram of a state machine with states A, B, and C, transitions labeled a and b, and actions labeled entry, exit, and do.]

State specification

- A state consist of:
 - An *entry* action, executed once when the system enters the state
 - An *exit* action, executed once before leaving the state
 - A *do* action, executed *while* in the state (the semantic is not very clear)

- They are all optional

![MyState state machine diagram with actions entry/onEntry(), exit/beforeExit(), and do/whileInside().]

Figure: Entry, exit and do behaviors
Transitions

- A transition can have:
 - A *triggering event*, which activates the transition
 - A *guard*, a boolean expression that *enables* the transition. If not specified, the transition is always enabled
 - An *action* to be performed if the transition is activated and enabled, just after the exit operation of the leaving state, and before the entry operation of the entering state

- Only the triggering event specification is mandatory, the other two are optional

![Diagram](image1.png)

Figure: Transition, with event, guard and action specified

Or composition

- A state can be decomposed into substates
- When the machine enters state *Composite*, it goes into state *Comp1*
- Then, if event *e2* it goes in *Comp2*, if event *e3* it goes in *Comp3*, else if event *e4* it exits from *Composite.*

![Diagram](image2.png)

Figure: A composite state
History

- When the machine exits from a composite state, normally it *forgets* in which states it was, and when it enters again, it starts from the starting state.
- To “remember” the state, so that when entering again it will go in the same state it had before exiting, we must use the *history* symbol.

![Example of history](image1)

Figure: Example of history

AND decomposition

- A state can be decomposed in orthogonal regions, each one contains a different sub-machine.
- When entering the state, the machine goes into one substate for each sub-machine.

![Orthogonal states for a keyboard](image2)

Figure: Orthogonal states for a keyboard
Elevator

- Let’s define an “intelligent” elevator
 - For a 5-stores building (ground floor, and four additional floors)
 - Users can “reserve” the elevator
 - The elevator serves all people in order of reservation
- We assume at most one user (or group of users) per each “trip”, and they all need to go to the same floor

Design considerations

- How do you encode at which floor the elevator is?
 - One different state per each floor
 - Does not scale well; for 100 floors bulding, we need 100 states!
 - The floor is encoded as an extended state, i.e. a variable cf
 - It scales, but more difficult to design
 - It always depends on what we want to describe!
- Which events do we have?
 - An user press a button to “reserve” the elevator, setting variable rf
 - An user inside the elevator presses the button to change floor, setting variable df
Doors

- The previous design does not capture all aspects of our systems
- Let’s start to add details by adding the description of how the doors behave
- Abstraction level
 - The level of details of a design depends on what the designer is more interested in describing with the specification
 - In the previous design, we were not interested in describing all aspects, but only on giving a few high-level details
 - The design can be refined by adding details when needed
The doors submachine

```
+-------------------+          +-------------------+
| doors_closed      | close_end | closing           |
| open doors        |          |                  |
+-------------------+          +-------------------+
| opening           | open_end | doors_open        |
+-------------------+          +-------------------+
```

doors_machine
<<machine>>

death

The elevator, second design

```
+-------------------+          +-------------------+
| Idle              | timeout | Destination reached |
| entry / close doors|          | entry / open doors |
| reserve [cf != rf]|          | motor stop         |
+-------------------+          +-------------------+
| Move To Reserve   | timeout | Move to destination |
|                   |          | entry / close doors|
+-------------------+          +-------------------+
| Ready to Load     | go       |                   |
| entry / open doors|          |                   |
| motor stop        |          |                   |
+-------------------+          +-------------------+
```
Putting everything together

Global Elevator

Idle
entry / close doors

timeout

Destination reached
entry / open doors

motor stop

Move To Reserve

moveto contemplated

ready [cf = rf]

timeout

Ready to Load
entry / open doors

go

Move to destination
entry / close doors

damping

damping

doors closed

close_end

open doors

closing

close doors

door

open_end

doors open