# Sistemi in tempo reale Anno accademico 2009-2010 <br> Macchine a stati finiti 

Giuseppe Lipari
http://retis.sssup.it/~lipari

Scuola Superiore Sant'Anna

## Introduction

State machines are basic building blocks for computing theory.

- very important in theoretical computer science
- many applications in practical systems
- There are many slightly different definitions, depending on the application area
- A state machine is a Discrete Event Discrete State system
- transitions from one state to another only happen on specific events
- events do not need to occur at specific times
- we only need a temporal order between events (events occur one after the other), not the exact time at which they occur


## Definition

A deterministic finite state machine (DFSM) is a 5 -tuple:
$S$ (finite) set of states
I set of possible input symbols (also called input alphabet)
$s_{0}$ initial state
$\phi$ transitions: a function from (state, input) to a new state

$$
\phi: S \times I \rightarrow S
$$

$\omega$ output function (see later)
An event is a new input symbol presented to the machine.

- In response, the machine will react by updating its state and possibly producing an output. This reaction is istantaneous (synchronous assumption).


## Output function

Two types of machines:
Moore output only depends on state:

$$
\omega_{m r}: S \rightarrow \Omega
$$

Where $\Omega$ is the set of output symbols. In this case, the output only depends on the state, and it is produced upon entrance on a new state.
Mealy output depends on state and input:

$$
\omega_{m l}: S \times I \rightarrow \Omega
$$

In this case, the output is produced upon occurrence of a certain transaction.

## Moore machines

- Moore machines are the simplest ones
- If $\Omega=\{$ yes, no $\}$, the machine is a recognizer
- A recognizer is able to accept or reject sequences of input symbols
- The set of sequences accepted by a recognizer is a regular language


## State diagrams

- FSM can be represented by State Diagrams

- final states are identified by a double circle


## Example: recognizer

- In this example $I=\{a, b\}$. The following state machine recognizes string aba


Example: recognizer II

- Recognize string $a^{n} b^{m}$ with $n$ even and $m$ odd (i.e. aabbb, $b$, aab are all legal sequences, while $a$, aabb, are non legal)

- S4 is an error state. It is not possible to go out from an error state (for every input, no transaction out of the state)
- S 2 is an accepting state, however we do not know the length of the input string, so it is possible to exit from the accepting state if the input continues
- If we want to present a new string we have to reset the machine to its initial state


## Non regular language

- FSM are not so powerful. They can only recognize simple languages
- Example:
- strings of the form $a^{n} b^{n}$ for all $n \geq 0$ cannot be recognized by a FSM (because they only have a finite number of states)
- they could if we put a limit on $n$. For example, $0 \leq n \leq 10$.


## Mealy machines

- In Mealy machines, output is related to both state and input.
- In practice, output can be associated to a transition
- Given the synchronous assumption, the Moore's model is equivalent to the Mealy's model: for every Moore machine, it is possible to derive an equivalent Mealy machine, and viceversa


## Example: parity check

- In this example, we have a Mealy machine that
- outputs 1 if the number of symbols 1 in input so far is odd;
- it outputs 0 otherwise.

- Usually, Mealy machines have a more compact representation than Moore machines (i.e. they perform the same task with a number of states that is no less than the equivalent Moore machine).


## Table representation

- A FSM can be represented through a table
- The table shown below corresponds to the parity-check Mealy FSM shown just before.

|  | 0 | 1 |
| :---: | :---: | :---: |
| $S_{0}$ | $S_{0} / 0$ | $S_{1} / 1$ |
| $S_{1}$ | $S_{1} / 1$ | $S_{0} / 0$ |

## Stuttering symbol

- Input and output alphabets include the absent symbol $\epsilon$
- It correspond to a null input or output
- When the input is absent, the state remains the same, and the output is absent
- Any sequence of inputs can be interleaved or extended with an arbitrary number of absent symbols without changing the behavior of the machine
- the absent symbol is also called the stuttering symbol


## Abbreviations

- If no guard is specified for a transition, the transition is taken for every possible input (except the absent symbol $\epsilon$ )
- If no output is specified for a transition, the output is $\epsilon$
- given a state $S_{0}$, if a symbol $\alpha$ is not used as guard of any transition going out of $S_{0}$, then an implicit transition from $S_{0}$ to itself is defined with $\alpha$ as guard and $\epsilon$ as output



## Exercise

- Draw the state diagram of a FSM with $I=\{0,1\}$, $\Omega=\{0,1\}$, with the following specification:
- let $x(k)$ be the sequence of inputs
- the output $\omega(k)=1$ iff $x(k-2)=x(k-1)=x(k)=1$


## Solution

- three states: $S 0$ is the initial state, $S 1$ if last input was 1 , S2 if last two inputs were 1



## Deterministic machines

- Transitions are associated with
- a source state
- a guard (i.e. a input value)
- a destination state
- a output
- in deterministic FSM, a transition is uniquely identified by the first two.
- in other words, given a source state and a input, the destination and the output are uniquely defined


## Non deterministic FSMs

- A non deterministic finite state machine is identified by a 5-tuple:
/ set of input symbols
$\Omega$ set of output symbols
$S$ set of states
$S_{0}$ set of initial states
$\phi$ transition function:

$$
\phi: S \times I \rightarrow(S \times \Omega)^{*}
$$

where $S^{*}$ denotes the power set of $S$, i.e. the set of all possible subsets of $S$.

- In other words, given a state and an input, the transition returns a set of possible pairs (new state, output).


## Non determinism

- Non determinism is used in many cases:
- to model randomness
- to build more compact automata
- Randomness is when there is more than one possible behaviour and the system follows one specific behavior at random
- Randomness has nothing to do with probability! we do not know the probability of occurrence of every behavior, we only know that they are possible
- A more abstract model of a system hides unnecessary details, and it is more compact (less states)


## Example of non deterministic state machine

- We now build an automata to recognize all input strings (of any lenght) that end with a 01



## Equivalence between D-FSM and N-FSM

- It is possible to show that Deterministic FSMs (D-FSMs) are equivalent to non deterministic ones(N-FSMs)
- Proof sketch
- Given a N-FSM $\mathcal{A}$, we build an equivalent D-FSM $\mathcal{B}$ (i.e. that recognizes the same strings recognized by the N-FSM. For every subset of states of the $\mathcal{A}$, we make a state of $\mathcal{B}$. Therefore, the maximum number of states of $\mathcal{B}$ is $2^{|S|}$. The start state of $\mathcal{B}$ is the one corresponding to the $\mathcal{A}$. For every subset of states that are reachable from the start state of state of $\mathcal{A}$ with a certain symbol, we make one transition in $\mathcal{B}$ to the state corresponding to the sub-set. The procedure is iterated until all transitions have been covered.


## Exercise

- As an exercise, build the D-FSM equivalent to the previous example of $\mathrm{N}-\mathrm{FSM}$


Figure: The N-FSM

## Solution



Figure: The N-FSM

- Initial state: $\{S 0\}$

| state name | subset | 0 | 1 |
| :---: | :---: | :---: | :---: |
| q 0 | $\{\mathrm{~S} 0\}$ | $\{\mathrm{S} 0, \mathrm{~S} 1\}$ | $\{\mathrm{S} 0\}$ |
| q 1 | $\{\mathrm{SO}, \mathrm{S} 1\}$ | $\{\mathrm{SO}, \mathrm{S} 1\}$ | $\{\mathrm{S} 0, \mathrm{~S} 2\}$ |
| q 2 | $\{\mathrm{~S} 0, \mathrm{~S} 2\}$ | $\{\mathrm{SO}, \mathrm{S} 1\}$ | $\{\mathrm{S} 0\}$ |

## Solution



Figure: The equivalent D-FSM

## Problems with FSMs

- FSM are flat and global
- All states stay on the same level, and a transition can go from one state to another
- It is not possible to group states and transitions
- Replicated transition problem:



## Product of two FSM

- Another problem is related to the cartesian product of two FSM
- Suppose we have two distinct FSMs that we want to combine into a single one


Figure: FSM 2

## Product result

- The result is a state machine FSM 3 where each state corresponds to a pair of state of the original machine
- Also, each transition in FSM 3 corresponds to one transition in either of the two original state machines



## Complexity handling

- All these problems have to do with complexity of dealing with states
- In particular, the latter problem is very important, because we often need to combine different simple state machines
- However, the resulting diagram (or table specification) can become very large
- We need a different specification mechanism to deal with such complexity
- In this course, we will study Statecharts (similar to Matlab StateFlow), first proposed by Harel


## States

- In H-FSMs, a state can be final or composite



## State specification

- A state consist of:
- An entry action, executed once when the system enters the state
- An exit action, executed once before leaving the state
- A do action, executed while in the state (the semantic is not very clear)
- They are all optional

| MyState |
| ---: |
| entry / onEntry() |
| exit / beforeExit() |
| do / whileInside() |

Figure: Entry, exit and do behaviors

## Transitions

- A transition can have:
- A triggering event, which activates the transition
- A guard, a boolean expression that enables the transition. If not specified, the transition is always enabled
- An action to be performed if the transition is activated and enabled, just after the exit operation of the leaving state, and before the entry operation of the entering state
- Only the triggering event specification is mandatory, the other two are optional


Figure: Transition, with event, guard and action specified

## Or composition

- A state can be decomposed into substates
- When the machine enters state Composite, it goes into state Comp1
- Then, if event e2 it goes in Comp2, if event e3 it goes in Comp3, else if event e4 it exits from Composite.


Figure: A composite state

- When the machine exits from a composite state, normally it forgets in which states it was, and when it enters again, it starts from the starting state
- To "remember" the state, so that when entering again it will go in the same state it had before exiting, we must use the history symbol


Figure: Example of history

## AND decomposition

- A state can be decomposed in orthogonal regions, each one contains a different sub-machine
- When entering the state, the machine goes into one substate for each sub-machine


Figure: Orthogonal states for a keyboard

## Elevator

- Let's define an "intelligent" elevator
- For a 5-stores building (ground floor, and four additional floors)
- Users can "reserve" the elevator
- The elevator serves all people in order of reservation
- We assume at most one user (or group of users) per each "trip", and they all need to go to the same floor


## Design considerations

- How do you encode at which floor the elevator is?
(1) One different state per each floor
- Does not scale well; for 100 floors bulding, we need 100 states!
(2) The floor is encoded as an extended state, i.e. a variable cf
- It scales, but more difficult to design
(3) It always depends on what we want to describe!
- Which events do we have?
- An user press a button to "reserve" the elevator, setting variable rf
- An user inside the elevator presses the button to change floor, setting variable df


## First design



## Doors

- The previous design does not capture all aspects of our systems
- Let's start to add details by adding the description of how the doors behave
- Abstraction level
- The level of details of a design depends on what the designer is more interested in describing with the specification
- In the previous design, we were not interested in describing all aspects, but only on giving a few high-level details
- The design can be refined by adding details when needed


## The doors submachine



## The elevator, second design



## Putting everything together



