
Sistemi in tempo reale
Anno accademico 2009 - 2010

Macchine a stati finiti

Giuseppe Lipari
http://retis.sssup.it/~lipari

Scuola Superiore Sant’Anna

Introduction

State machines are basic building blocks for computing theory.

very important in theoretical computer science

many applications in practical systems

There are many slightly different definitions, depending on
the application area
A state machine is a Discrete Event Discrete State system

transitions from one state to another only happen on
specific events
events do not need to occur at specific times
we only need a temporal order between events (events
occur one after the other), not the exact time at which they
occur

http://retis.sssup.it/~lipari

Definition

A deterministic finite state machine (DFSM) is a 5-tuple:

S (finite) set of states

I set of possible input symbols (also called input alphabet)

s0 initial state

φ transitions: a function from (state,input) to a new state

φ : S × I → S

ω output function (see later)

An event is a new input symbol presented to the machine.

In response, the machine will react by updating its state
and possibly producing an output. This reaction is
istantaneous (synchronous assumption).

Output function

Two types of machines:

Moore output only depends on state:

ωmr : S → Ω

Where Ω is the set of output symbols. In this case, the
output only depends on the state, and it is produced upon
entrance on a new state.

Mealy output depends on state and input:

ωml : S × I → Ω

In this case, the output is produced upon occurrence of a
certain transaction.

Moore machines

Moore machines are the simplest ones

If Ω = {yes, no}, the machine is a recognizer

A recognizer is able to accept or reject sequences of input
symbols

The set of sequences accepted by a recognizer is a
regular language

State diagrams

FSM can be represented by State Diagrams

S0 S1 S2

a

final states are identified by a double circle

Example: recognizer

In this example I = {a, b}. The following state machine
recognizes string aba

S0 S1 S2 S3

S4

a b a

b

a b
a,b

Example: recognizer II

Recognize string anbm with n even and m odd (i.e. aabbb,
b, aab are all legal sequences, while a, aabb, are non
legal)

S0 S1

S2

S3

S4

a

a

b

bb

b

a

a

S4 is an error state. It is not possible
to go out from an error state (for
every input, no transaction out of the
state)

S2 is an accepting state, however we
do not know the length of the input
string, so it is possible to exit from the
accepting state if the input continues

If we want to present a new string we
have to reset the machine to its initial
state

Non regular language

FSM are not so powerful. They can only recognize simple
languages
Example:

strings of the form anbn for all n ≥ 0 cannot be recognized
by a FSM (because they only have a finite number of states)
they could if we put a limit on n. For example, 0 ≤ n ≤ 10.

Mealy machines

In Mealy machines, output is related to both state and
input.

In practice, output can be associated to a transition

Given the synchronous assumption, the Moore’s model is
equivalent to the Mealy’s model: for every Moore machine,
it is possible to derive an equivalent Mealy machine, and
viceversa

Example: parity check

In this example, we have a Mealy machine that
outputs 1 if the number of symbols 1 in input so far is odd;
it outputs 0 otherwise.

S0 S1

1 / 1

1 / 0

0
/0 0

/0

Usually, Mealy machines have a more compact
representation than Moore machines (i.e. they perform the
same task with a number of states that is no less than the
equivalent Moore machine).

Table representation

A FSM can be represented through a table

The table shown below corresponds to the parity-check
Mealy FSM shown just before.

0 1

S0 S0 / 0 S1 / 1
S1 S1 / 1 S0 / 0

Stuttering symbol

Input and output alphabets include the absent symbol ǫ

It correspond to a null input or output

When the input is absent, the state remains the same, and
the output is absent

Any sequence of inputs can be interleaved or extended
with an arbitrary number of absent symbols without
changing the behavior of the machine

the absent symbol is also called the stuttering symbol

Abbreviations

If no guard is specified for a transition, the transition is
taken for every possible input (except the absent symbol ǫ)

If no output is specified for a transition, the output is ǫ

given a state S0, if a symbol α is not used as guard of any
transition going out of S0, then an implicit transition from S0

to itself is defined with α as guard and ǫ as output

S0 S1

α / 0

β / 1

S0 S1

α / 0

β / 1

β
/ǫ

α
/
ǫ

Exercise

Draw the state diagram of a FSM with I = {0, 1},
Ω = {0, 1}, with the following specification:

let x(k) be the sequence of inputs
the output ω(k) = 1 iff x(k − 2) = x(k − 1) = x(k) = 1

Solution

three states: S0 is the initial state, S1 if last input was 1,
S2 if last two inputs were 1

S0 S1 S2

1 / 0 1 / 0

1
/ 1

0 / 0

0 / 0 0/0

Deterministic machines

Transitions are associated with
a source state
a guard (i.e. a input value)
a destination state
a output

in deterministic FSM, a transition is uniquely identified by
the first two.

in other words, given a source state and a input, the
destination and the output are uniquely defined

Non deterministic FSMs

A non deterministic finite state machine is identified by a
5-tuple:

I set of input symbols
Ω set of output symbols
S set of states

S0 set of initial states
φ transition function:

φ : S × I → (S × Ω)∗

where S∗ denotes the power set of S, i.e. the set of all
possible subsets of S.

In other words, given a state and an input, the transition
returns a set of possible pairs (new state, output).

Non determinism

Non determinism is used in many cases:
to model randomness
to build more compact automata

Randomness is when there is more than one possible
behaviour and the system follows one specific behavior at
random

Randomness has nothing to do with probability! we do not
know the probability of occurrence of every behavior, we
only know that they are possible

A more abstract model of a system hides unnecessary
details, and it is more compact (less states)

Example of non deterministic state machine

We now build an automata to recognize all input strings (of
any lenght) that end with a 01

S0 S1 S2

0 1
0,1

Equivalence between D-FSM and N-FSM

It is possible to show that Deterministic FSMs (D-FSMs)
are equivalent to non deterministic ones(N-FSMs)
Proof sketch

Given a N-FSM A, we build an equivalent D-FSM B (i.e.
that recognizes the same strings recognized by the N-FSM.
For every subset of states of the A, we make a state of B.
Therefore, the maximum number of states of B is 2|S|. The
start state of B is the one corresponding to the A. For every
subset of states that are reachable from the start state of
state of A with a certain symbol, we make one transition in
B to the state corresponding to the sub-set. The procedure
is iterated until all transitions have been covered.

Exercise

As an exercise, build the D-FSM equivalent to the previous
example of N-FSM

S0 S1 S2

0 1
0,1

Figure: The N-FSM

Solution

S0 S1 S2

0 1
0,1

Figure: The N-FSM

Initial state: {S0}

state name subset 0 1
q0 {S0} {S0, S1} {S0}
q1 {S0,S1} {S0, S1} {S0, S2}
q2 {S0,S2} {S0, S1} {S0}

Solution

q0 q1 q2
0

1
1

0

0

1

Figure: The equivalent D-FSM

Problems with FSMs

FSM are flat and global
All states stay on the same level, and a transition can go
from one state to another

It is not possible to group states and transitions

Replicated transition problem:

S0 S1 S2 S3

α α α

β
β

β

Product of two FSM

Another problem is related to the cartesian product of two
FSM

Suppose we have two distinct FSMs that we want to
combine into a single one

S0

S1

α

β

Figure: FSM 1

Q0

Q1

Q2γ

δ

γ

δ

Figure: FSM 2

Product result
The result is a state machine FSM 3 where each state
corresponds to a pair of state of the original machine
Also, each transition in FSM 3 corresponds to one
transition in either of the two original state machines

S0-Q0

S1-Q0

S0-Q1

S1-Q1

S0-Q2

S1-Q2

α

β

α

β

α

β

γ

δ

γ

δ

γ

γ

δ

δ

Complexity handling

All these problems have to do with complexity of dealing
with states

In particular, the latter problem is very important, because
we often need to combine different simple state machines

However, the resulting diagram (or table specification) can
become very large

We need a different specification mechanism to deal with
such complexity

In this course, we will study Statecharts (similar to Matlab
StateFlow), first proposed by Harel

States

In H-FSMs, a state can be final or composite

my_state_machine

<<top>>

simple_state comp_state

<<submachine>>

B

C

A

b

a

a

a

State specification

A state consist of:
An entry action, executed once when the system enters the
state
An exit action, executed once before leaving the state
A do action, executed while in the state (the semantic is not
very clear)

They are all optional

MyState

entry / onEntry()

exit / beforeExit()

do / whileInside()

Figure: Entry, exit and do behaviors

Transitions

A transition can have:
A triggering event, which activates the transition
A guard, a boolean expression that enables the transition. If
not specified, the transition is always enabled
An action to be performed if the transition is activated and
enabled, just after the exit operation of the leaving state,
and before the entry operation of the entering state

Only the triggering event specification is mandatory, the
other two are optional

Second StateFirst State

myEvent [temp>0] / turnOnHeater()

Figure: Transition, with event, guard and action specified

Or composition
A state can be decomposed into substates
When the machine enters state Composite, it goes into
state Comp1
Then, if event e2 it goes in Comp2, if event e3 it goes in
Comp3, else if event e4 it exits from Composite.

extState
Composite

<<submachine>>

anotherState

Comp3

Comp2

Comp1

e2

e1

e4

e3

Figure: A composite state

History
When the machine exits from a composite state, normally it
forgets in which states it was, and when it enters again, it
starts from the starting state
To “remember” the state, so that when entering again it will
go in the same state it had before exiting, we must use the
history symbol

extState
Composite

<<submachine>>

anotherState

Comp3

Comp2

Comp1

e2

e1

e4

e5 e3

Figure: Example of history

AND decomposition
A state can be decomposed in orthogonal regions, each
one contains a different sub-machine
When entering the state, the machine goes into one
substate for each sub-machine

extState

Compound

<<submachine>>

numbers

upperCase

arrows

lowerCase

capsLock

numLock

capsLock

numLock

Figure: Orthogonal states for a keyboard

Elevator

Let’s define an “intelligent” elevator
For a 5-stores building (ground floor, and four additional
floors)
Users can “reserve” the elevator
The elevator serves all people in order of reservation

We assume at most one user (or group of users) per each
“trip”, and they all need to go to the same floor

Design considerations

How do you encode at which floor the elevator is?
1 One different state per each floor

Does not scale well; for 100 floors bulding, we need 100
states!

2 The floor is encoded as an extended state, i.e. a variable cf

It scales, but more difficult to design
3 It always depends on what we want to describe!

Which events do we have?
An user press a button to “reserve” the elevator, setting
variable rf

An user inside the elevator presses the button to change
floor, setting variable df

First design

elevator_machine

<<machine>>

Ready to Load

Idle

Move to destination

Destination reached

Move To Reserve

press button

reserve [cf == rf]

motor stop

timeout

timeout

motor stop

reserve [cf != rf]

Doors

The previous design does not capture all aspects of our
systems

Let’s start to add details by adding the description of how
the doors behave
Abstraction level

The level of details of a design depends on what the
designer is more interested in describing with the
specification
In the previous design, we were not interested in describing
all aspects, but only on giving a few high-level details
The design can be refined by adding details when needed

The doors submachine

door_machine

<<machine>>

closingdoors_closed

doors_openopening

open doors

open_end

close doors

close_end

The elevator, second design

elevator_machine

<<machine>>

Destination reached

entry / open doors

Move to destination

entry / close doors

Ready to Load

entry / open doors

Idle

entry / close doors

Move To Reserve

reserve [cf == rf]

reserve [cf != rf]

gomotor stop

motor stop

timeout

timeout

Putting everything together

Global Elevator

<<machine>>

Idle

entry / close doors

doors_closed

Move To Reserve

Destination reached

entry / open doors

opening doors_open

Ready to Load

entry / open doors

Move to destination

entry / close doors

closing

motor stop

timeout

reserve [cf != rf]
reserve [cf == rf]

close_end

gomotor stop

close doorsopen doors

timeout

open_end

	Finite State Machines (FSMs)
	Introduction
	Moore and Mealy machines
	State Diagrams
	Example
	Mealy machines
	Exercise

	Non deterministic FSMs
	Non determinism
	Exercise

	Hierarchical Finite State Machines
	Problems with FSMs
	H-FSM specification

	The Elevator Example
	Simple FSM
	Improved design

