Sistemi in tempo reale
Anno accademico 2009 - 2010

Cambi di modo

Giuseppe Lipari
http://retis.sssup.it/~lipari

Scuola Superiore Sant’Anna — Pisa

December 2, 2011

Modes

» A real-time system can have different working modes

» Each mode defines the same system under different
working conditions;

» Example: airplane

» Typical modes are take-off, cruise, and landing;
» During each mode, the system has different control goals;
and it must run different control algorithms.

» Example: elevator

» Clearly, an elevator goes across different states: idle,
opening/closing doors, moving, etc.

» Depending on the abstraction level, each mode can be
sub-divided into internal modes. For example, when a
elevator moves, we can distinguish between acceleration,
stable state, deceleration. Also, we may need to distinguish
between moving up and down


http://retis.sssup.it/~lipari

Modes and transistions

» Modes can be represented by a state machine. For
example, consider the previous example of airplane
control:

start clear to go

clear to land
lined up destination

Modes and transistions

» A mode is a node in the diagram (a state)

» Each mode is associated with a set of periodic or sporadic
tasks

» Different modes may have different task sets, or tasks with
different characteristics

» When the mode is active, the corresponding tasks are
executed (steady state)

» A transition is an edge between two nodes:
» A transition happens when certain conditions are verified;

» For example, a user command, an external condition on the
altitude or temperature, the landing of the airplane, etc.

» Upon the occurrence of a transition:
» terminate all tasks that are in the current mode and will not
be active in the new mode,;
» optionally, call a transition function;
» activate the new set of tasks to be executed.



Modes and tasks

» To implement modes:

» One manager task that identifies when modes must be
changed;
» One global variable that identifies the current working mode
(currmode);
» Modes can be implemented in two basic ways;

1. Type 1 A fixed set of tasks for all the modes; each task can
execute different algorithms depending on the current
mode;

2. Type 2 A different set of tasks for each mode.

» Of course, it is also possible to mix the two
implementations.

Implementation type 1

» Type 1: In this case, each task executes different code
depending on the mode

» Suppose we synchronize at the beginning of the task
instance. The code for each task is something like the
following:

while(l) {

swtch (currnode) {

ML : // control algorithm
/1 for node 1
br eak;

M2 @ // control algorithm
/1 for node 2
br eak;

default : break;

}

t ask_endcycl e() ;

}




Implementation type 2

» In this case, each task can be active only in a subset of the
modes.

» Define 7; the tasks active in mode 1, and 75 the task active
in mode 2.

» Suppose that the list of modes for which a task is active are
stored in 2-dimension array modes[task][mode].

» If task i is active in mode currmode, then
modesJi][currmode] is true, otherwise it is false.

» Typical code of the task;

while (1) {
/1 control algorithm
if (!mode[i][currnode]) task_disable();
task_endcycl e();

}

» The primitive task_disable() suspends the periodic
activations; they will be enabled again by an explicit
task_activate () on the current task

Type 1 vs. type 2

» In type 1, all tasks have the same parameters (period and
priority) in every mode;
» Implementation looks simpler, but does not scale well
» The task code depends on the number and type of modes
» From a software engineering point of view, the task code
cannot be re-used easily

» In type 2, we have different tasks for different modes:
therefore, from one mode to the other, we can change both
the period, the priority and the computation time of a task

» Taski mplementation is simple and scales well

» The code of each task is self-contained and does not
depend on the number and types of the modes in the
system

» Therefore, we can easily reuse this task.

» However, the mode manager task is more complex, as it
must take care of deactivating/activating tasks in the proper
way



Problems with mode changes

» There are several problems the designer must deal with
when designing a multi-mode real-time system;

» The main problem is what happens during the transition
between two modes. In particular, we must deal with

1. Schedulability analysis

» The system must remain schedulable across the transition
2. Periodicity

» Tasks that are present in both modes must continue to

execute periodically, as nothing happened in the meanwhile

3. Consistency of variables

» Resource must remain consistent during mode change

» We must take care of adjusting variables that are shared
between old mode and new mode tasks (hybrid systems)

4. Promptness

» The transition should happen in the shortest possible interval
of time

» Now we start dealing with problem 3.

Consistency

» Clearly, we cannot change the control algorithm at any
arbitrary point while the algorithm is executing;

» A control algorithm updates its internal state variables while
executing;

» we must ensure that the state variable does not remain in
an inconsistent state when we change mode;

» the same happens if the task is accessing a shared
resource with a critical section protected by a mutex; we
cannot interrupt it and change algorithm, otherwise the
mutex remains locked!

» This means that the change of control algorithm must be
synchronized with appropriate checkpoints;

» A checkpoint is a point in the code when it is safe to
interrupt the algorithm, maintaining the consistency of the
data;

» The “easiest” checkpoints are at the beginning and at the
end of the task instance.



Implementation type 1

» Checkpoint at the job boundary

» The task cannot change mode while is executing. It can
only change mode at the beginning of one of its istance;

» In this way we guarantee consistency of internal and
external variables (state variables and output variables).

» The only problem is that, if the task execution time is large,
we must wait for the job to complete before we can
complete the mode change

» the mode change delay can be large

» To introduce other checkpoints, we could complicate the
code:

» divide each control algorithm in different blocks
» check the change of mode at the end of every block.

» The code becomes much more complex!

Implementation type 2

» In this case, the implementation of the mode change is
outside the task

» the mode manager activates and deactivates the tasks

» We must guarantee that the mode manager does not kill a
task while it is executing in the middle of a control task
update! (asynchronous cancellation)

» Therefore, we have to implement a specific protocol to
synchronize the mode manager task with the control task
» The mode manager sends a signal to the control task and
waits for it to respond
» The control task will respond (and finish its execution) when
reaching a propose checkpoint



Mode manager

» The “mode manager” task manages Mode Change
Requests (MCRS)

» The mode manager can be a periodic or aperiodic task;

» In the first case (periodic), it periodically observes the state
of the system and of the external variables and decides if a
mode change must be performed;

» In the second case (aperiodic), it is attached to an external
interrupt (external condition) or it is explicitely activated by
another task;

» The mode manager implements the state machine and

controls transition between modes.
» From now on, we consider only type 2 implementations.

Implementation type 2. manager

» The task manager is structured as follows

while (1) {
i f (nodel sChanged()) {
ol d_node = curr _node;
curr_node = get Newibde();
transition(ol d_node, new_node);
for (i=0; i < NTASK; i++) {
if (nmode[i][curr_node] && !'node[i]][old_node])
task_activate(tid[i]);
}
}

task_endcycl e();

» The manager is a periodic task that periodically checks for
occurrence of mode changes.

» It waits for a change of mode (function modelsChanged())

» When it happens, deactivates old mode tasks and
performs transition functions, then activates all tasks
belonging to the new mode and not active in the old mode.



Transitions

» Suppose the system must change from mode 1 to mode 2.

» To ensure a smooth transition between two modes, the
states of control algorithms of mode 2 must be properly
initialized;

» In other words, the initial conditions of mode 2 depend on
the state conditions of mode 1.

» Suppose, as an example, that we want to guarantee
continuity of the signal and of the first derivative of the
signal.

» The, the internal conditions of the controller for mode 2
must be set so to ensure these two conditions;

» From a software point of view, for each transition we must

call a set of functions to adjust the initial conditions of all
control algorithms

» This can be done, for example, by specifying an
appropriate entry behavior for the states

Scheduling analysis

» Another important problem is schedulability:

» Suppose we are changing from mode 1 to mode 2, and
that 77 is the set of tasks active in mode 1 and 75 is the set
of tasks that are active during mode 2.

» Set 71\ 72 is the set of tasks that leave the mode;
» Set 7>\ 71 is the set of tasks that enter the mode.
» It is important to guarantee that the system continues to be
schedulable;

» Even if 7; and 7>, each one considered in isolation, are
schedulable, if the transistion is not done properly, some
deadline could be missed during the transitory.



Example of deadline miss during transition

» Consider 71 = {m, 2,73} and T, = {m, 1, 74} with:
» 11 =(1,4), 2 =(2,9), 3 =(5,12), and 74 = (3,9)
» Transition starts at timet =9
» Task 74 must execute instead of task 3 from timet =9

LIS S S S

. 1

" o B -

" S 1

O 2 4 6 8 10 12 14 16 18 20 22 24

Mode Change protocols

» There are many ways to avoid this problem

1. We can wait for the first idle time in the system (idle time
protocol)

» At that point, all tasks have completed their execution,

» So we can safely deactivate the old-mode tasks and activate
the new-mode ones

» Old-mode tasks cannot influence new-mode tasks

» Advantages: simplicity, does not require a specific
schedulability analysis

» Drawbacks: the transition delay can be large

2. We can introduce new tasks as soon as it is possible, if the
schedulability is guaranteed

» old-mode task may complete their last instance after the
MCR

» new-mode tasks must be activated with a proper offset with
respect to the MCR, so that no deadline is missed

» Advantages: reduce the transition delay

» Drawbacks: require schedulability analysis, may be difficult
to implement



|dle-Time protocol

» Implementation strategies:
1. Low-priority mode manager

» Mode manager running in low priority mode (thus executing
only when all other tasks have finished

» It activates deactivates old mode tasks, executes transition
code, activates new mode tasks

» Tasks must check their re-activation before starting

2. dual priority mode manager

» The mode runs at highest priority

» At MCR, first deactivates old-mode tasks, then it goes to
low-priority

» When executing again, check completion of old-mode tasks,
hence executes transition code and activates new-mode
tasks

» Tasks have to check their deactivation before sleeping



	State machines and real-time
	Modes
	Problems with mode changes
	Consistency
	Mode manager

	Scheduling
	Mode change protocol


