
Pro
eedings of the 22nd Real-Time Systems Symposium, London, England, De
. 2001. 1
Minimizing Memory Utilization of Real-Time Task Sets in Single andMulti-Pro
essor Systems-on-a-
hipPaolo Gai, Giuseppe Lipari, Mar
o Di NataleReTiS Lab, S
uola Superiore di Studi e Perfezionamento S. Anna { Pisa,fpj,lipari,mar
og�sssup.itAbstra
tThe resear
h on real-time software systems has pro-du
ed algorithms that allow to e�e
tively s
hedule sys-tem resour
es while guaranteeing the deadlines of theappli
ation and to group tasks in a very short numberof non-preemptive sets whi
h require mu
h less RAMmemory for sta
k. Unfortunately, up to now the re-sear
h fo
us has been on time guarantees rather thanthe optimization of RAM usage. Furthermore, thesete
hniques do not apply to multipro
essor ar
hite
tureswhi
h are likely to be widely used in future mi
ro
on-trollers.This paper presents a fast and simple algorithm forsharing resour
es in multipro
essor systems, togetherwith an innovative pro
edure for assigning preemp-tion thresholds to tasks. This allows to guarantee thes
hedulability of hard real-time task sets while minimiz-ing RAM usage. The experimental part shows the e�e
-tiveness of a simulated annealing-based tool that allowsto �nd a near-optimal task allo
ation. When used in
onjun
tion with our preemption threshold assignmentalgorithm, our tool further redu
es the RAM usage inmultipro
essor systems.1. Introdu
tionMany embedded systems are be
oming in
reasingly
omplex in terms of fun
tionality to be supported.From an analysis of future appli
ations in the
ontextof automotive systems [9℄ it is
lear that a standardunipro
essor mi
ro
ontroller ar
hite
ture will not beable to support the needed
omputing power even tak-ing into a

ount the IC te
hnology advan
es.To in
rease
omputational power in real-time sys-tems there are two possible ways: in
rease the pro-
essor speed or in
rease the parallelism of the ar
hi-te
ture. The �rst option requires the use of
a
hingor deep pipelining whi
h su�er from serious drawba
ksin the
ontext of real-time embedded systems. There-

Figure 1. The Janus Dual Processor systemfore, the best option and the future of many embeddedappli
ations seems to rely on the adoption of multiple-pro
essor-on-a-
hip ar
hite
tures.The Janus system, (see the s
heme of Figure 1) de-veloped by STMi
roele
troni
s in
ooperation with Pa-rades [9℄, is an example of a dual-pro
essor platformfor power train appli
ations featuring two 32-bit ARMpro
essors
onne
ted by a
rossbar swit
h to 4 mem-ory banks and two peripheral buses for I/O pro
essing.The system has been developed in the
ontext of theMADESS1 proje
t. The appli
ations must satisfy avery demanding requirement: in addition to real-timepredi
tability, the OS and the appli
ation must use thesmallest possible amount of RAM memory. RAM is ex-tremely expensive in terms of
hip spa
e and impa
tsheavily on the �nal
ost.In the design of the kernel me
hanisms for theERIKA kernel [10℄, it had been
lear from the be-ginning that the
hoi
e of the real-time s
hedulingdis
ipline in
uen
es both the memory utilization andthe system overhead: for example, sele
ting a non-preemptive s
heduling algorithm
an greatly redu
e theoverall requirement of sta
k memory whereas using apreemptive algorithm
ould in
rease the pro
essor uti-lization.The idea behind this work is based on the
on
ept ofnon-interleaved exe
ution. As explained in Se
tion 4,using a proto
ol
alled Sta
k Resour
e Poli
y (SRP) [1℄,1http://www.madess.
nr.it/Summary.htm

Pro
eedings of the 22nd Real-Time Systems Symposium, London, England, De
. 2001. 2task exe
utions are perfe
tly nested: if task A preemptstask B, it
annot happen that B exe
utes again beforethe end of A. In this way, it is possible to use a singlesta
k for all the exe
ution frames of the tasks.Next,
omes the following observation: if task pre-emption is limited to o

ur only between sele
ted taskgroups, it is possible to bound the maximum number oftask frames
on
urrently a
tive in the sta
k, thereforeredu
ing the maximum requirement of RAM spa
e forsta
k (whi
h is the only way the OS
an limit RAMrequirements).Although this idea is not new (see [18℄), we extendedit along many dire
tions. More spe
i�
ally, a
ompletemethodology for minimizing the memory utilizationof real-time task sets,
ommuni
ating through sharedmemory, in unipro
essor and multipro
essor systemsis presented in this paper. First, the unipro
essor
ase is
onsidered, and the following results are pre-sented: a novel s
heduling algorithm,
alled SRPT,that allows the use of one single sta
k for all the real-time tasks under dynami
 priority s
heduling (EarliestDeadline) s
hemes; an optimization pro
edure for as-signing the s
heduling parameters (preemption thresh-olds and grouping of tasks in non-preemptive sets) so tominimize the maximum sta
k size without jeopardizingthe s
hedulability of the task set.Then, the previous results are extended to multipro-
essor systems. In parti
ular, we developed: a novels
heduling algorithm
alled MSRP, that allows real-time tasks, allo
ated on di�erent pro
essor, to
ommu-ni
ate/intera
t through shared memory; ea
h task isstati
ally allo
ated to one pro
essor, and all tasks onone pro
essor share the same sta
k; an optimizationpro
edure for assigning tasks to pro
essors and for as-signing the s
heduling parameters, so to minimize theoverall sta
k size.The remaining se
tions are organized as follows.Se
tion 2 presents some previous related work. Se
tion3
ontains the de�nitions and the assumptions. Se
-tion 4 introdu
es the SRP and Preemption Thresholdsme
hanisms on whi
h our work is based. Se
tion 5 dis-
usses our integration of SRP and Preemption thresh-olds on top of an EDF s
heduler. Se
tion 6
ontainsthe dis
ussion on how to optimize memory and CPUresour
es in unipro
essor systems. Se
tion 7 dis
ussesthe MSRP S
heduling Algorithm. Se
tion 8
ontainsthe des
ription of our Simulated Annealing approa
hto the task allo
ation problem. Se
tion 9 ends the pa-per with the dis
ussion on the experimental results forsingle and multipro
essor systems.2. Related workThe idea of assigning ea
h task a preemption thresh-old and to group tasks in non-preemptive sets has been

formulated by Saksena and Wang [18℄. The me
ha-nism has been implemented (in a proprietary form) inthe SSX kernel from REALOGY [6℄ and the ThreadXkernel from Express Logi
 [8℄.The algorithms presented in this paper are based onthe Sta
k Resour
e Poli
y (SRP), a syn
hronizationproto
ol presented by Baker in [1℄. The SRP is similarto the Priority Ceiling Proto
ol of Sha, Leho
zky andRajkumar (see [19℄), but has the additional propertythat a task is never blo
ked on
e it starts exe
uting.The problem of s
heduling a set of real-time taskswith shared resour
es on a multipro
essor system isquite
omplex. One of the most
ommon approa
hesis to stati
ally allo
ate tasks to pro
essors and to de-�ne an algorithm for inter-pro
essor
ommuni
ation.Following this approa
h, the problem
an be dividedinto two sub-problems: de�ne a s
heduling algorithmplus a syn
hronization proto
ol for global resour
es;and provide an o�-line algorithm for allo
ating tasksto pro
essors.Solutions have been proposed in the literature forboth sub-problems. The Multipro
essor Priority Ceil-ing Proto
ol (MPCP) has been proposed by Rajku-mar in [17℄ for s
heduling a set of real-time taskswith shared resour
e on a multi-pro
essor. It extendsthe Priority Ceiling Proto
ol [19℄ for global resour
es.However, it is rather
omplex and does not guaran-tee that the exe
ution of tasks will not be interleaved(tasks
annot share the same sta
k). Moreover, no al-lo
ation algorithm is proposed.The problem of allo
ating a set of real-time tasks tom pro
essors has been proved NP-hard in [12℄ and [7℄,even when tasks are
onsidered independent. Severalheuristi
 algorithms have been proposed in the litera-ture [4, 16℄, but none of them expli
itly
onsiders tasksthat intera
t through mutually ex
lusive resour
es.In this paper, we bring
ontributions to both sub-problems. In Se
tion 7, we propose an extension of theSRP proto
ol to multipro
essor systems. In Se
tion 8we propose a simulated annealing based algorithm forallo
ating tasks to pro
essors.3. Basi
 assumptions and terminologyOur system
onsists of a set T = f�1; �2; : : : ; �ngof real time tasks to be exe
uted on a set P =fP1; : : : ; Pmg of pro
essors. First, we
onsider the
aseof a unipro
essor, and then extend the results to the
ase of multi-pro
essor systems. The subset of tasksassigned to pro
essor Pk will be denoted by TPk � T .A real time task �i is a in�nite sequen
e of jobs (orinstan
es) Ji;j . Every job is
hara
terized by a releasetime ri;j , an exe
ution time
i;j and a deadline di;j .A task
an be periodi
 or sporadi
. A task is pe-riodi
 if the release times of two
onse
utive jobs are

Pro
eedings of the 22nd Real-Time Systems Symposium, London, England, De
. 2001. 3separated by a
onstant period; a task is sporadi
 whenthe release times of two
onse
utive job are separatedby a variable time interval, with a lower bound, also
alled minimum interarrival time.Without loss of generality, we use the same symbol�i to indi
ate the period of a periodi
 task and theminimum interarrival time of a sporadi
 task �i. In thefollowing a task will be
hara
terized by a worst
aseexe
ution time Ci = maxf
i;jg and a period �i. Weassume that the relative deadline of a task is equal to�i: thus, di;j = ri;j + �i.Tasks
an a

ess mutually ex
lusive resour
esthrough
riti
al se
tions. Let R = f�1; : : : ; �pg be theset of shared resour
es. The k{th
riti
al se
tion of task�i on resour
e �j is denoted by �jik and its maximumduration is denoted by !jik.4. Ba
kground
4.1. Stack Resource Policy (SRP)The Sta
k Resour
e Poli
y was proposed by Bakerin [1℄ for s
heduling a set of real-time tasks on a sin-gle pro
essor. It
an be used togheter with the RateMonotoni
 (RM) s
heduler or with the Earliest Dead-line First (EDF) s
heduler. A

ording to the SRP, ev-ery real-time (periodi
 and sporadi
) task �i is assigneda priority pi and a stati
 preemption level �i, su
h thatthe following essential property holds:�i is not allowed to preempt �j , unless �i > �j .Under EDF and RM, the previous property is veri�edif preemption levels are inversely proportional to theperiods of tasks.Every resour
e �k is assigned a stati
2
eiling de�ned as:
eil(�k) = maxif�i j �i uses �kg: Finally, a dynami
system
eiling is de�ned as�s(t) = max[f
eil(�k) j �k is
urrently lo
kedg[f0g℄:Then, the SRP s
heduling rule states that: \a job isnot allowed to start exe
uting until its priority is thehighest among the a
tive jobs and its preemption levelis greater than the system
eiling". The SRP ensuresthat on
e a job is started, it
annot be blo
ked until
ompletion; it
an only be preempted by higher prior-ity jobs. However, the exe
ution of a job Ji;k with thehighest priority in the system
ould be delayed by alower priority job, whi
h is lo
king some resour
e, andhas raised the system
eiling to a value greater than orequal to the preemption level �i. This delay is
alledblo
king time and denoted by Bi. Given the maximumblo
king time for ea
h task, it is possible to perform a2In the
ase of multi-units resour
es, the
eiling of ea
h re-sour
e is dynami
 as it depends on the
urrent number of freeunits.

s
hedulability test, depending on the s
heduling algo-rithm.In [1℄ Baker proposed the following s
hedulability
ondition for the EDF s
heduler:8i; 1 � i � n nXk=1 Ck�k + Bi�i � 1 (1)The maximum lo
al blo
king time for ea
h task �i
an be
al
ulated as the longest
riti
al se
tion �kjh a
-
essed by tasks with longer periods and with a
eilinggreater than or equal to the preemption level of �i.Bi = max�j2T ;8hf!kjh j�i > �j ^ �i �
eil(�k)g: (2)The Sta
k Resour
e Poli
y has several interestingproperties. It prevents deadlo
k, bounds the maximumblo
king times of tasks, redu
es the number of
ontextswit
hes and
an be easily extended to multi-unit re-sour
es. From an implementation viewpoint, it allowstasks to share a unique sta
k. In fa
t, a task neverblo
ks its exe
ution: it simply
annot start exe
utingif its preemption level is not high enough. Moreover,the implementation of the SRP is straightforward asthere is no need to implement waiting queues.However, SRP does not s
ale to multipro
essor sys-tems. In se
tion 7 we will propose a possible extensionof the SRP to be used in multi-pro
essor systems.
4.2. Preemption ThresholdsGiven a non-interleaved exe
ution of the appli
ationtasks, the use of a preemptive s
heduling algorithmmakes the maximum number of task frames on thesta
k equal to the number of priority levels, whereasusing a non-preemptive algorithm there
an be onlyone frame on the sta
k. However, a non-preemptive al-gorithm in general is less responsive and
ould produ
ean infeasible s
hedule. Hen
e, the goal is to �nd analgorithm that sele
tively disables preemption in orderto minimize the maximum sta
k size requirement whilerespe
ting the s
hedulability of the task set.Based on this idea, Wang and Saksena, [18℄ devel-oped the
on
ept of Preemption Threshold : ea
h task�i is assigned a nominal priority �i and a preemptionthreshold
i with �i �
i. When the task is a
tivated,it is inserted in the ready queue using the nominal pri-ority; when the task begins exe
ution, its priority israised to its preemption threshold; in this way, all thetasks with priority less than or equal to the preemp-tion threshold of the exe
uting task
annot make pre-emption. A

ording to [18℄, we introdu
e the followingde�nitions:De�nition 1 Two tasks �i and �j are mutually non-preemptive if (�i �
j) ^ (�j �
i).

Pro
eedings of the 22nd Real-Time Systems Symposium, London, England, De
. 2001. 4De�nition 2 A set of tasks G = f�1; �2; : : : ; �mg is anon-preemptive group if, for every pair of tasks �j 2G and �k 2 G, �j and �k are mutually non{preemptive.By assigning ea
h task the appropriate preemptionthreshold, we
an redu
e the number of preemptionsin the system without jeopardizing the s
hedulabil-ity of the tasks set. Given an assignment of preemp-tion thresholds, the task set
an be partitioned intonon{preemptive groups. Obviously, a small number ofgroups results in a lower requirement for the sta
k size.In the following, we will show how it is possible toeÆ
iently implement the Preemption Threshold me
h-anism using the SRP, and extend it to be used underEDF.5. Integrating Preemption Thresholdwith the SRPOur approa
h is based on the observation that thethreshold values used in the Preemption Thresholdme
hanism are very similar to the resour
e
eilings ofthe SRP. In the SRP, when a task a

esses a
riti
alse
tion, the system
eiling is raised to the maximumbetween the
urrent system
eiling and the resour
e
eiling. In this way, an arriving task
annot preemptthe exe
uting task unless its preemption level is greaterthan the
urrent system
eiling. This me
hanism
anbe thought as another way of limiting preemptability.Thus, if we want to make task �i and task �j mutu-ally non-preemptive, we
an let them share a pseudo-resour
e �k: the
eiling of resour
e �k is the maximumbetween the preemption levels of �i and �j . At runtime, instan
es of �i or �j will lo
k �k when they startexe
uting and hold the lo
k until they �nish.Suppose task �i needs a set of pseudo-resour
es�1; : : : ; �h. When �i starts exe
ution, it lo
ks all ofthem: in the SRP, this
orresponds to raising the sys-tem
eiling to maxk
eil(�k). We de�ne this value as thepreemption threshold
i of task �i. Now, the problemof �nding an optimal assignment of thresholds to tasksis equivalent to �nding the set of pseudo-resour
es forea
h task. In the remaining of this paper, we will indi-
ate this modi�
ation of the SRP as SRPT (SRP withThresholds).Sin
e SRPT
an be thought as an extension of theSRP that add pseudo-resour
es
ompatibles with thetraditional SRP resour
es, it
an be easily shown thatSRPT retains all the properties of SRP.The feasibility test for SRPT is given by Equation(1), ex
ept for the
omputation of the blo
king time,that is: Bi = max(Blo
ali ; Bpseudoi), where Blo
ali andBpseudoi are respe
tively the blo
king time due to lo-
al resour
es and the blo
king time due to pseudo-resour
es.

Blo
king due to lo
al resour
es. Assuming relativedeadlines equal to periods, the maximum lo
al blo
kingtime for ea
h task �i
an be
al
ulated using Equation(2). This
an be easily proved: supposing the absen
eof pseudo-resour
es, the SRPT redu
es to the SRP, andthe blo
king times
an be
al
ulated using equation 2.Blo
king due to pseudo-resour
es. A task �i mayexperien
e an additional blo
king time due to the non-preemptability of lower priority tasks. This blo
kingtime
an be
omputed as follows:Bpseudoi = max�j2TPifCj j�i > �j ^ �i �
jgThe non-preemptability of lower task is due to theuse of pseudo-resour
es. The formula of Bpseudoi isanother way of writing formula 2, be
ause:
i ismaxk
eil(�k) =
eil(�k0) where k0 2 fk :
i =
eil(�k)g and Ci is the
riti
al se
tion duration for re-sour
e k0 (remember that pseudo-resour
es are lo
kedwhen an instan
e starts and is unlo
ked when an in-stan
e �nish; moreover, we
an
onsider only the k0
riti
al se
tion for ea
h task sin
e they all have lengthequal to Ci and 8 k;
eil(�k) �
eil(�k0) =
i.The SRPT presents two main advantages: it seam-lessly integrates a

ess to mutually ex
lusive resour
esand preemption threshold with a very little implemen-tation e�ort and with no additional overhead, and itpermits to implement the preemption threshold me
h-anism on top of EDF. The last issue
an lead to fur-ther optimizations: the EDF s
heduling algorithm hasbeen proven optimal both in the preemptive [14, 2, 3℄and in the non-preemptive3 version [11℄; furthermore,in [13℄ the authors
laim that EDF+SRP is an opti-mal algorithm for s
heduling sporadi
 task sets withshared resour
es. Sin
e EDF is optimal, it is morelikely that a given assignment of preemption thresholdsprodu
es a feasible s
hedule. Therefore, we expe
t abetter
han
e to trade pro
essor utilization with a re-du
tion in the maximum sta
k spa
e requirement byredu
ing preemption.6. Optimizing sta
k usage in Unipro
es-sorsIn this se
tion we present an algorithm that allowsthe optimization of the total sta
k spa
e requirementof a set of tasks using the SRPT proto
ol on unipro
es-sor systems. To simplify the presentation, we do not
onsider here the use of shared resour
es. The
om-plete algorithm for multipro
essors will be presentedin Se
tion 8.3The non-preemptive version of the EDF algorithm is optimalfor sporadi
 task sets among all the non-idle (work
onserving)non-preemptive s
heduling algorithms.

Pro
eedings of the 22nd Real-Time Systems Symposium, London, England, De
. 2001. 5The algorithm requires ea
h task to be
hara
ter-ized by its worst
ase exe
ution time Ci, its period �i,its maximum sta
k requirement (in bytes) si, its pri-ority �i and its preemption level �i. At the end of theoptimization algorithm, ea
h task �i will be assigned apreemption threshold
i and will be inserted in a non-preemptive group Gk. The goal of the optimizationalgorithm is:step 1 to �nd an optimal assignment of preemptionthresholds to tasks, and step 2 to �nd an optimal set ofnon-preemptive groups that minimizes the total sta
ksize, maintaining the feasibility of the s
hedule.The algorithm sele
ts a possible assignment of pre-emption thresholds and tests the feasibility of thes
heduling using Equation (1). Our optimization algo-rithm works as follows: tasks are ordered by de
reasingpreemption level �; we use the algorithm des
ribed in[18℄ to explore the spa
e of possible threshold assign-ments4: starting with the task having the highest pre-emption level, we try to raise the preemption threshold
 of ea
h task, until the task set remains s
hedulablea

ording to Equation (1). Then, given a feasible as-signment of preemption thresholds, we partition thetask set into non-preemptive groups and
ompute themaximum sta
k size. Our algorithm di�ers from theone in [18℄ in the �nal optimization obje
tive: whilethe algorithm in [18℄ tries to minimize the number ofnon-preemptive groups, our algorithm a

ounts for thesta
k usage of ea
h task and tries to minimize the to-tal amount of required sta
k. In fa
t, there are
asesin whi
h the minimum overall sta
k requirement doesnot
orrespond to the minimum number of groups.The algorithm that is used to partition the task setinto preemption groups is more
omplex and
an beonly outlined as follows:Step 1: Tasks are ordered by in
reasing preemptionthresholds; ties are broken in order of de
reasing sta
krequirements.Step 2: The algorithm starts by �nding the maximalgroup for ea
h task. A maximal group for task �i is thebiggest non-preemptive group that
an be
reated us-ing �i as a representative task. A representative task fora non-preemptive group is the task having the small-est threshold among all tasks in the group. Maximalgroups are
omputed with the algorithm shown in Fig-ure 2.Step 3: Then, the algorithm
alls a re
ursive fun
tionthat allo
ates all tasks to non-preemptive groups usingthe information
omputed in the previous step. Thefun
tion,
alled
reate group(), re
ursively
omputesall solutions
onsisting in the partitioning of tasks intoa set of non-preemptive groups Gi.The fun
tion
reate group(g, min sta
k, sum)is the
ore of the pro
edure. Its pseudo
ode des
rip-4Sin
e EDF is optimal, there is no need to �nd an initialpriority assignment for the task set.

forea
h �i in T fMi = emptylist;forea
h �j in f�k : �k 2 T and k > igif (�j �
i) insert(Mi; j);g
Figure 2. Finding the maximal groups.tion is outlined in Figure 3. At this point ea
h task isassigned a new index whi
h
orresponds to its positionin the order of preemption thresholds (starting from0).When
alled, the fun
tion
omputes a set of newgroups starting from Gg where g is the index of thegroup's representative task; min sta
k points to the
urrent minimum for the overall sta
k requirementsand sum to the (partial) sta
k requirement for the so-lution being
omputed.The �rst time the fun
tion is
alled, g has the value0 (the algorithm starts from the task with the lowestthreshold), min sta
k refers a variable
ontaining thesum �isi of all sta
k requirements (the worst
ase sta
krequirement), and sum equals 0 (no task allo
ated toany group yet). No group Gi has been
omputed yet.Lines 9-31 are used to sele
tively extra
t a subsetof Mg that will be inserted into Gg for testing the op-timality of a solution. The subsets that are tried as
andidate for Gg are all the possible subset of Mg ,plus the representative task �g .Please also note that in the fun
tion
reategroup()the index i always refers to the position in list Mgrather than Gg .At line 7 the group Gg is initialized (the represen-tative task �g is inserted in its group). The i variable(initialized at the index of the �rst element in Mg line8) is used to mark the next index of the
andidate rep-resentative for a new group.Lines 10-12 insert all the unallo
ated tasks belong-ing to Mg and following �i into the group Gg . Line13
omputes the maximum sta
k requirement of thenon-preemptive group Gg , and line 14 adds it to thetemporary a

umulator new sum.If there remains a task to be allo
ated, line 16 �nds atask that will be the representative for the next group,and line 17
alls re
ursively the
reategroup() fun
-tion with g set to that task index, and sum set to the
urrent sta
k usage.The rest of the fun
tion implements the
leanup be-fore a new iteration or ba
ktra
king for sear
hing anew solution. This means removing some tasks fromthe
urrent group and setting up new representativetasks for a di�erent group partitioning. If the
urrentgroup Gg is not
omposed by its representative taskonly, line 19 removes all tasks from the tail of Gg untilthe sta
k requirement of the group de
reases (the task

Pro
eedings of the 22nd Real-Time Systems Symposium, London, England, De
. 2001. 6with the largest sta
k requirement is removed). Next,the pointer i is set to the position of the task follow-ing the last task extra
ted from Gg (line 21) to allowtask �i to be skipped at the next iteration, and to be-
ome a representative task in the following re
ursive
all. If all tasks have been assigned to a group then anew
andidate solution has been
omputed and mustbe evaluated as a
andidate optimum (lines 24-26). Ifthe
urrent group is the last group, it is emptied (line28), sin
e it is pointless to split it.1:
reategroup(int g, int *min sta
k, int sum)2: f3: task index i;4: int m, newsum;5: bool notYetDone = true;6:7: initialize(Gg);8: i = firstelement(Mg);9: do f10: forea
h j in fk : k � i in listMgg11: if (�j not already allo
ated)12: insertlast(Gg,�j);13: m = findMaximumSta
kUsage(Gg);14: newsum = sum + m;15: if (there are task to be allo
ated) f16: f = findFirstFreeTask(g);17:
reategroup(f, min sta
k, newsum);18: if (Gg != f�gg) f19: i = lastelement(Gg);20: removeFromTail(Gg);21: i = nextelement(Mg,i);22: g else notYetDone = false;23: g else24: if (newsum < *min sta
k) f25: NewOptimumFound();26: *min sta
k = newsum;27: g28: Remove all tasks (Gg);29: notYetDone = false;30: g31: g while (notYetDone);32: remove (Gg);33: g
Figure 3. The create group() recursive func-
tion.The implementation of the algorithm is slightlymore
omplex, sin
e a lot of e�ort is spent in orderto optimize the sear
h by pruning the sear
h tree andba
k-tra
king before rea
hing a higher
ost solution.In the worst
ase, the
omplexity of the algorithm isexponential in the number of tasks. However, sin
e thenumber of groups in the optimal solution is small, thenumber of
ombinations to evaluate is limited. Thanksto the eÆ
ien
y of the pruning, the number of solu-tions is further redu
ed. In our experiments, the av-erage number of explored solutions (leafs) is quite loweven for large task sets (<160). For typi
al embeddedsystems, where the number of tasks rarely ex
eeds 20,

the problem is tra
table with modern
omputers.7. Sharing Resour
es in Multipro
essorsWhen
onsidering multipro
essor symmetri
 ar-
hite
tures, we wish to keep the ni
e properties of EDFand SRP, that is high pro
essor utilization, predi
tabil-ity and perfe
tly nested task exe
utions on lo
al pro-
essors. Unfortunately, the SRP
annot be dire
tly ap-plied to multipro
essor systems.In this se
tion, we �rst propose an extension of theSRP proto
ol to multi-pro
essor systems and a s
hedu-lability analysis for the new poli
y. In the next se
tion,we propose a simulated annealing based algorithm forallo
ating tasks to pro
essors that minimizes the over-all memory requirements.
7.1. Multiprocessor Stack Resource PolicySuppose that tasks have already been allo
ated topro
essors. Depending on this allo
ation, resour
es
anbe divided in lo
al and global resour
es. A lo
al re-sour
e is used only by tasks belonging to the samepro
essor, whereas a global resour
e is used by taskbelonging to di�erent pro
essors.We
on
entrate our e�orts on the poli
y for a

ess-ing global resour
es. If a task tries to a

ess a globalresour
e and the resour
e is already lo
ked by someother task on another pro
essor, there are two possi-bilities: the task is suspended (as in the MPCP algo-rithm), or the task performs a busy wait (also
alledspin lo
k). We want to maintain the properties of theSRP: in parti
ular, we want to let all tasks belonging toa pro
essor to share the same sta
k. Hen
e, we
hoosethe se
ond solution. However, the spin lo
k time iswasted time and should be redu
ed as mu
h as possi-ble (the resour
e should be freed as soon as possible).For this reason, when a task exe
utes a
riti
al se
tionon a global resour
e, its priority is raised to the maxi-mum priority on that pro
essor and the
riti
al se
tionbe
omes non-preemptable.In order to simplify the implementation of the al-gorithm, the amount of information shared betweenpro
essors is minimal. For this reason, the priorityassigned to a task when a

essing resour
es does notdepend on the status of the tasks on other pro
essorsor on their priority. The only global information is thestatus of the global resour
es.The MSRP algorithm works as follows:Rule 1: For lo
al resour
es, the algorithm is the sameas the SRP algorithm. In parti
ular, we de�ne a pre-emption level for every task, a
eiling for every lo
alresour
e, and a system
eiling �k for every pro
essorPk.Rule 2: Tasks are allowed to a

ess lo
al resour
ethrough nested
riti
al se
tions. It is possible to nest

Pro
eedings of the 22nd Real-Time Systems Symposium, London, England, De
. 2001. 7Ci �i !1ij !2ij tsi C 0i Bli Bgi�1 2 3 0 0 0 2 0 7�2 6 2 2 0 0 6 9 7�3 11 1 9 4 3 14 0 0�4 7 1 0 3 4 11 0 0�5 2 2 0 0 0 2 0 7
Table 1. The example task set.lo
al and global resour
es. However, it is not possibleto nest global
riti
al se
tions, otherwise a deadlo
k
an o

ur.Rule 3: For ea
h global resour
e, every pro
essor Pkde�nes a
eiling greater than or equal to the maximumpreemption level of the tasks on Pk.Rule 4: When a task �i, allo
ated to pro
essor Pka

esses a global resour
e �j , the system
eiling �k israised to
eil(�j) making the task non{preemptable.Then, the task
he
ks if the resour
e is free: in this
ase, it lo
ks the resour
e and exe
utes the
riti
al se
-tion. Otherwise, the task is inserted in a FCFS queueon the global resour
e, and then performs a busy wait.Rule 5: When a task �i, allo
ated to pro
essor Pk,releases a global resour
e �j , the algorithm
he
ks the
orresponding FCFS queue, and, in
ase some othertask �j is waiting, it grants a

ess to the resour
e, oth-erwise the resour
e is unlo
ked. Then, the system
eil-ing �k is restored to the previous value.Example. Consider a system
onsisting of two pro
es-sors and �ve tasks as shown in Figure 4. Tasks �1, �2and �3 are allo
ated to pro
essor P1: task �3 uses lo
alresour
e �1, task �2 uses resour
es �1 and �2 throughnested
riti
al se
tions, and �1 does not use any re-sour
e. Tasks �4 and �5 are allo
ated to pro
essor P2:task �4 uses the global resour
e �1 and �5 does not usesresour
es. The parameters of the tasks are reported inTable 1. The
eiling for resour
e �1 is 2. The
eilingfor resour
e �2 on pro
essor P1 is 3, and on pro
es-sor P2 is 2. A possible s
hedule is shown in Figure 5.At time t = 3, task �2 is blo
ked be
ause its preemp-tion level �2 = 2 is equal to the
urrent system
eiling�1 = 2 on pro
essor P1. At time t = 5, task �3 lo
ksresour
e �2 and raises the system
eiling �1 to 3. Attime t = 6, task �4 tries to a

ess the global resour
e�2 whi
h is
urrently lo
ked by �2. Thus, it raises thesystem
eiling of pro
essor P2 to 2 and performs a busywait. At time t = 7, both �1 and �5 are blo
ked, be-
ause the system
eilings of the two pro
essors are setto the maximum. At time t = 8, task �3 releases theglobal resour
e �2 and task �4
an enter the
riti
alse
tion on �2. At the same time, the system
eilingof pro
essor P1 is set ba
k to 2, and task �1
an makepreemption.

τ 2

τ 1 τ 3

1P P 2

τ 5τ 4ρ 1 ρ 2

Figure 4. Structure of the example.

τ

2

1τ

4τ

5τ

2 4 6 8 10 12 14 16 18 20 22

1ρ 1ρ

1ρ

2ρ

2ρ

2ρ

3

τ

0

����
����
����
����

����
����
����
����

���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

Figure 5. Example of schedule produced by
the MSRP on two processors.

7.2. Schedulability analysis of the MSRPFirst, we give an upper bound on the time that task�i, allo
ated to pro
essor Pk,
an spend waiting for aglobal resour
e �j . In the following, we refer to thistime as spin lo
k time and denote it as spin(�j ; Pk).Lemma 1 The spin lo
k time that every task allo
atedto pro
essor Pk needs to spend for a

essing a globalresour
e �j 2 R is bounded from above by:spin(�j ; Pk) = Xp2fP�Pkg max�i2Tp;8h!jih:Basi
ally, the spin lo
k time in
rements the dura-tion !jih of every global
riti
al se
tion �jih, and,
onse-quently, the worst
ase exe
ution time Ci of �i. More-over, it also in
rements the blo
king time of the tasksallo
ated to the same pro
essor with a preemption levelgreater than �i.We de�ne totalspini as the maximum total spin lo
ktime experien
ed by task �i. From the previous lemma,totalspini =X�jih spin(�j ; Pi)We also de�ne the a
tual worst
ase
omputationtime C 0i for task �i as the worst
ase
omputation timeplus the total spin lo
k time:C 0i = Ci + totalspini

Pro
eedings of the 22nd Real-Time Systems Symposium, London, England, De
. 2001. 8Now, we demonstrate that the MSRP maintains thesame basi
 properties of the SRP, as shown by the fol-lowing theorems.Theorem 1 On
e a job starts exe
uting it
annot beblo
ked, but only preempted by higher priority jobs.Note that a job
an be delayed before starting ex-e
ution by the fa
t that the system
eiling is greaterthan or equal to its preemption level. This delay is
alled blo
king time. The following theorem gives anupper bound to the blo
king time of a task.Theorem 2 A job
an experien
e a blo
king time atmost equal to the duration of one
riti
al se
tion (plusthe spin lo
k time, if the resour
e is global) of a taskwith lower preemption level.It is noteworthy that the exe
ution of all the tasks al-lo
ated on a pro
essor is perfe
tly nested (be
ause on
ea task starts exe
uting it
annot be blo
ked), thereforeall tasks
an share the same sta
k.For simpli
ity, the blo
king time for a task
an bedivided into blo
king time due to lo
al and global re-sour
es. In addition, if we
onsider also the preemptionthreshold me
hanism, we have to take into a

ount alsothe blo
king time due to the pseudo-resour
es:Bi = max(Blo
ali ; Bglobali ; Bpseudoi)where Blo
ali , Bglobali and Bpseudoi are:Blo
king time due to lo
al resour
es: This blo
k-ing time is equal to the longest
riti
al se
tion �kjhamong those (of a task �j) with a
eiling greater thanor equal to the preemption level of �i:Blo
ali = maxj;h;kf!kjh j (�j 2 TPi) ^ (�k lo
al to Pi)^ (�i > �j) ^ (�i �
eil(�k))gBlo
king time due to global resour
es: Assumethe task �i, assigned to pro
essor Pi, is blo
ked by atask �j (�j < �i) whi
h is assigned to the same pro-
essor Pi, and whi
h is waiting for, or it is inside to,a global
riti
al se
tion �kjh. In this
ase, the blo
kingtime for task �i is,Bglobali = maxj;h;kf!kjh + spin(�k; Pi) j (�j 2 TPi)^ (�k global) ^ (�i > �j)gBlo
king time due to pseudo resour
es: As ex-plained in the previous se
tions, this blo
king time isdue to the fa
t that a task �i
an be mutually non{preemptive with other tasks on the same pro
essor:here, the only di�eren
e with the SRPT is that wehave to
onsider the a
tual worst
ase exe
ution timeinstead of the worst
ase exe
ution time.Bpseudoi = max�j2TPifC 0j j �i > �j ^ �i �
jg

Theorem 3 Suppose that tasks on pro
essor Pk areordered by de
reasing preemption level. The s
hedula-bility test is as follows:8 Pk 2 P TPk = f�1; : : : ; �nkg 8i = 1; : : : ; nkiXl=1 C 0l�l + Bi�i � 1Please note that the blo
king fa
tor in
uen
es onlyone element of the guarantee formula, whereas the spinlo
k time in
uen
es both the blo
king time and theworst
ase exe
ution time. This implies that, when de-signing an allo
ation algorithm, one of the goals is toredu
e the spin lo
k time as mu
h as possible. Anothernoteworthy observation is that, using the MSRP, ea
hpro
essor works almost independently from the oth-ers. In parti
ular, it is possible to easily apply this al-gorithm to non{homogeneous multipro
essor systems.For the task set of the previous example, the total spinlo
k time tsi, the a
tual worst
ase exe
ution time C 0i ,the lo
al and global blo
king times are reported inTable 1. The MSRP has many advantages over theMPCP. Unlike MPCP, with the MSRP it is possible touse one single sta
k for all the tasks allo
ated to thesame pro
essor. Moreover, the MPCP is more
omplexand diÆ
ult to implement than the MSRP. In fa
t, theMSRP does not need semaphores or blo
king queuesfor lo
al resour
es, whereas global resour
es need only aFIFO queue (an eÆ
ient implementation
an be foundin [5℄. Finally, the MSRP, like the SRP, tends to redu
ethe number of preemptions in the systems, hen
e thereis less overhead. However, this
omes at the
ost of apotentially dangerous spin lo
k time.8. Optimizing sta
k usage in Multipro-
essorsGiven a task allo
ation, the poli
ies and algorithmspresented in this paper allow to sear
h for the optimalassignment of preemption thresholds to tasks and tosele
tively group tasks in order to redu
e RAM
on-sumption. However, the �nal out
ome depends on thequality of the de
isions taken in the task allo
ationphase. Moving one task from one pro
essor to another
an
hange the pla
ement of (some of) the shared re-sour
es a

essed by it (some global resour
es be
omelo
al and vi
e versa) and the �nal
omposition of thenon{preemptive groups on ea
h pro
essor. Unfortu-nately, the task allo
ation problem has exponential
omplexity even if we limit ourselves to the simple
aseof deadline-
onstrained s
heduling.A simulated annealing algorithm is a well-known so-lution approa
h to this
lass of problems. Simulatedannealing te
hniques (SA for short) have been used in

Pro
eedings of the 22nd Real-Time Systems Symposium, London, England, De
. 2001. 9[20, 18℄ to �nd the optimal pro
essor binding for real-time tasks to be s
heduled a

ording to �xed-prioritypoli
ies, in [15℄ to solve the problem of s
heduling withminimum jitter in
omplex distributed systems and in[18℄ to assign preemption thresholds when s
hedulingreal-time tasks with �xed priorities on a unipro
essor.In the following we show how to transform the allo-
ation and s
heduling problem whi
h is the subje
t ofthis paper into a form that is amenable to the appli-
ation of simulated annealing. Our solution spa
e S
onsists of all possible assignments of tasks to pro
es-sors. We are interested in those task assignments thatprodu
e a feasible s
hedule and, among those, we seekthe assignment that has minimum RAM requirements.Therefore we need to de�ne an obje
tive fun
tion tobe minimized and the spa
e over whi
h the fun
tion isde�ned.The SA algorithm sear
hes the solution spa
e for theoptimal solution as follows: a transition fun
tion TRis de�ned between any pair of task allo
ation solutions(Ai; Aj) 2 S and a neighborhood stru
ture Si is de-�ned for ea
h solution Ai
ontaining all the solutionsthat are rea
hable from Ai by means of TR. A startingsolution A0 is de�ned and its
ost (the value of the ob-je
tive fun
tion) is evaluated. The algorithm randomlysele
ts a neighbor solution and evaluates its
ost. Ifthe new solution has lower
ost, then it is a

epted asthe
urrent solution. If it has higher
ost, then it isa

epted with a probability exponentially de
reasingwith the
ost di�eren
e and slowly lowered with timea

ording to a parameter whi
h is
alled temperature.Our transition fun
tion
onsists in the random sele
-tion of a number of tasks and in
hanging the bindingof the sele
ted tasks to randomly sele
ted pro
essors.This simple fun
tion allows to generate new solutions(bindings) at ea
h round starting from a sele
ted so-lution. Some of the solutions generated in this waymay be non s
hedulable, and therefore should be even-tually reje
ted. Unfortunately, if non{s
hedulable so-lutions are reje
ted before the optimization pro
edureis �nished, there is no guarantee that our transitionfun
tion
an approa
h a global optimum. In fa
t, itis possible that every possible path from the startingsolution to the optimal solution requires going throughintermediate non-s
hedulable solutions.If non-s
hedulable solutions are a

eptable as in-termediate steps, then they should be evaluated verypoorly. Therefore, we de�ne a
ost fun
tion with thefollowing properties:1) s
hedulable solutions must always have energy lowerthan non{s
hedulable solutions;2) the energy of non s
hedulable solutions must be pro-portional to the maximum ex
ess utilization resultingfrom the evaluation of formula (3) for non{s
hedulabletasks;3) the energy of s
hedulable solution must be propor-

tional to the worst
ase overall RAM requirements forsta
k usage.If TS is the overall sta
k requirement, obtained byadding up the sta
k requirements of all tasks, and OSis the overall sta
k requirement, evaluated for s
hedu-lable sets after the
omputation of optimal preemptionthresholds and task groups (see Se
tion 6), then our
ost fun
tion is the following:(max8�i �Pnk=i C0kTk + BiTi � � TS non s
hed. assign.TS +� � (OS � TS) s
hed. assign.When the assignment is non s
hedulable, we use theresult of the guarantee test (Equation 1) as an indexof s
hedulability. In fa
t, as the system load, blo
kingtime or spin-lo
k time in
rease, the system be
omesless s
hedulable. When the assignment is s
hedulable,the
ost fun
tion does not depend on pro
essor load butreturns a value that is proportional to the redu
tion ofsta
k with respe
t to the total sta
k requirement.The � fa
tor estimates the average ratio betweenthe sta
k requirements before task grouping and thesta
k requirements after optimization and is de�nedas: � = n
pu �meansta
k �meangroupsntask �meansta
kwhere n
pu is the number of CPU in the system,meansta
k is the mean sta
k value of all tasks, mean-groups estimates the typi
al number of preemptiongroups on a unipro
essor. The � fa
tor has been in-trodu
ed to smooth the steep in
rease in the
ost fun
-tion when going from s
hedulable solutions to non{s
hedulable assignments. This improves the
han
esfor the simulated annealing algorithm to es
ape fromlo
al minima (whi
h might require a

epting a non{s
hedulable solution).The experimental results (next se
tion) show the ef-fe
tiveness of our SA-based binding algorithm whensimulating task sets s
heduled on 4-pro
essor system-on-a-
hip ar
hite
tures.9. Experimental evaluationWe extensively evaluated the performan
e of our op-timization algorithms on a wide range of task set
on-�gurations.Unipro
essor experiments In every experiment,tasks' periods are randomly
hosen between 2 and 100.The total system load U ranges from 0.5 to 0.99, witha step of 0.01: the worst
ase exe
ution time of everytask is randomly
hosen su
h that the utilization fa
-tors sums up to U. The number of tasks in the taskset ranges from 1 to 100, and the sta
k frame size isa random variable
hosen between 10 and 100 bytesex
epts for the experiments of Figure 7 in whi
h the

Pro
eedings of the 22nd Real-Time Systems Symposium, London, England, De
. 2001. 10
1.4

1.5

1.6

1.7

1.8

1.9

2

2.1

2.2

2.3

0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1

M
ea

n
nu

m
be

r
of

 p
re

em
pt

io
n

gr
ou

ps

Task set total utilization factor

Ntask=4
Ntask=8

Ntask=16
Ntask=30
Ntask=60
Ntask=99

Figure 6. Average number of preemption
groups for different task set sizes.

0.64

0.66

0.68

0.7

0.72

0.74

0.76

0.78

0.8

0.82

0.84

0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1

%
 o

f t
as

k
se

ts
 w

he
re

 a
 fi

rs
t o

pt
. i

s
op

tim
al

Task set total utilization factor

Stack size from 10 to 20
Stack size from 10 to 50

Stack size from 10 to 100
Stack size from 10 to 200
Stack size from 10 to 400

Figure 7. Ratio of improvement given by our
optimization algorithm.sta
k size ranges between 10 and 400 bytes. In Figure6 the average number of preemption groups is shown.Note that the �gure has a maximum for NTASK= 4 and U=0.99. As the number of tasks in
reases,the number of preemption groups tends to 2; this
anbe explained with the fa
t that, when the number oftasks grows, ea
h task has a smaller worst
ase exe-
ution time; hen
e, the s
hedule produ
ed by a non-preemptive s
heduler does not di�er signi�
antly fromthe s
hedule produ
ed by a preemptive s
heduler. Onthe
ontrary, with a small number of tasks, the worst
ase exe
ution time of ea
h task is
omparable withthe period; hen
e it is more diÆ
ult to �nd a feasiblenon-preemptive s
hedule.Figure 6 shows how the average number of preemp-tion groups is almost independent of the utilizationfa
tor and of the number of tasks, ex
ept for a verylimited number of tasks (< 10) and a high utilizationfa
tor (> 0:8).The average number of groups is not only
onstantbut also very
lose to 2. This means that the appli-
ation of Preemption Threshold te
hniques, together

with EDF, allows a great redu
tion in the number ofpreemption levels and great savings in the amount ofRAM needed for saving the task sta
k frames. RAMredu
tion in the order of 3 to 16 times less the originalrequirements
an easily be obtained.In Figure 7, we
ompare the optimization algorithmpresented in [18℄ (whi
h does not take into a

ount thesta
k frame size of the tasks) and our algorithm, toshow the improvement in the optimization results. The�gure shows the fra
tion of experiments where the opti-mal solution has been found by the original algorithm.The ratio appears as a fun
tion of the system load andfor di�erent sta
k sizes. In most
ases (from 60% to80%), the algorithm proposed in [18℄ �nds the optimalpartition of the task set in preemption groups. Thisratio de
reases as the load in
reases and as the rangeof the sta
k size requirements is widened.Multipro
essor experiments. In the �rst set of ex-periments, we
onsider 4 CPU, 40 resour
es, and 40tasks. Tasks' periods are randomly
hosen between 1and 1000. The total system load U ranges from 2.76to 3.96, with a step of 0.2. The sta
k frame size ofea
h task is a random variable
hosen between 10 and100 bytes. Ea
h task has 0 to 4
riti
al se
tions thatlo
k randomly sele
ted resour
es; the sum of the worst
ase exe
ution times of the
riti
al se
tion a

essed byea
h single task is in the range of 0-20%, 5-25%, 10-30%,15-35%, 20-40% of the task worst
ase exe
utiontime (depending on the simulation, see Figure 7).In Figure 8 we plot the sta
k gain ratio betweenthe overall sta
k requirement before optimization andthe sta
k memory requirement of the solution found byour SA algorithm. In all experimental runs the solutionfound by our SA routine saves a
onsiderable amountof RAM even when
ompared to the �rst s
hedulable(and optimized for RAM
onsumption) solution found.The average improvement in 58 runs is 34.6% (min18%, max 49%).Running times
an be a
on
ern when using a simu-lated annealing solution. Our algorithm
an be run ina few hours on modern
omputers The exe
ution of thesimulated annealing routine takes 6 to 30 hours on anIntel Pentium III 700Mhz to
omplete the
ooling. Forexample, a typi
al exe
ution (Total U = 2.76,
riti
alse
tion ratio 0.10 to 0.30) visited 15,900,000 assign-ments (one every 4 ms) and found 6,855,560 s
hedula-ble solutions. These results are quite a

eptable
on-sidered that task allo
ation is a typi
al design timea
tivity.10. Con
lusions and future worksIn this paper, we present a solution for s
hedulingreal-time tasks in single and multiple pro
essor sys-tems with minimal RAM requirements. In unipro
es-

Pro
eedings of the 22nd Real-Time Systems Symposium, London, England, De
. 2001. 11
8.7

8.8

8.9

9

9.1

9.2

9.3

9.4

9.5

9.6

9.7

9.8

0 0.5 1 1.5 2 2.5 3 3.5 4

S
av

e
R

at
io

Resource Utilization

Total Stack / Optimal Stack

Figure 8. Ratio of improvement given by our
multiprocessor optimization algorithm.sor systems, our solution seamlessly integrates Earli-est Deadline s
heduling te
hniques, the Sta
k Resour
ePoli
y for a

essing shared resour
es, plus an innova-tive algorithm for the assignment of preemption thresh-olds and the grouping of tasks in non-preemptive sets.Our methodology allows to evaluate the s
hedulabilityof task sets and to �nd the s
hedulable solution (thetask groups) that minimize the RAM requirements forsta
k. We also provide an extension of the SRP poli
yto multipro
essor systems and global shared resour
es(MSRP) and a task allo
ation algorithm based on sim-ulated annealing. The main
ontribution of our work
onsists in realizing that real-time s
hedulability andthe minimization of the required RAM spa
e are tightly
oupled problems and
an be eÆ
iently solved only bydevising innovative solutions. The obje
tive of RAMminimization guides the sele
tion of all s
heduling pa-rameters and is a fa
tor in all our algorithms. We planto implement the algorithms des
ribed in this paper ina new version of our ERIKA kernel5 for the JANUSar
hite
ture [9℄.Referen
es[1℄ T.P. Baker. Sta
k-based s
heduling of real-time pro-
esses. Journal of Real-Time Systems, 3, 1991.[2℄ S.K. Baruah, A.K. Mok, and L.E. Rosier. Preemp-tively s
heduling hard-real-time sporadi
 tasks on onepro
essor. In Pro
eedings of the 11th IEEE Real-TimeSystems Symposium, pages 182{190, De
ember 1990.[3℄ S.K. Baruah, L.E. Rosier, and R.R. Howell. Al-gorithms and
omplexity
on
erning the preemptives
heduling of periodi
 real-time tasks on one pro
es-sor. The Journal of Real-Time Systems, 2, 1990.[4℄ A. Bur
hard, J. Liebeherr, Y. Oh, and S.H. Son. Newstrategies for assigning real-time tasks to multipro
es-sor systems. IEEE Transa
tions on Computers, 1995.[5℄ T. S. Craig. Queuing spin lo
k algorithms to supporttiming predi
tability. In Pro
eedings of the IEEE Real-Time Systems Symposium, De
. 1993.5http://erika.sssup.it/

[6℄ Robert Davis, Ni
k Merriam, and Nigel Tra
ey. Howembedded appli
ations using an rtos
an stay withinon-
hip memory limits. In Pro
eedings of the Work inProgress and Industrial Experien
e Session, Euromi
roConferen
e on Real-Time Systems, June 2000.[7℄ M. L. Dertouzos and Aloysius Ka-Lau Mok. Multipro-
essor on-line s
heduling of hard-real-time tasks. IEEETransa
tions on software engineering, 15(12), De
em-ber 1989.[8℄ In
. Express Logi
. http://www.threadx.
om. avail-able on Internet.[9℄ A. Ferrari, S. Garue, M Peri, S. Pezzini, L.Valse

hi,F. Andretta, and W. Nes
i. The design and imple-mentation of a dual-
ore platform for power-train sys-tems. In Convergen
e 2000, Detroit (MI), USA, O
to-ber 2000.[10℄ Paolo Gai, Giuseppe Lipari, Lu
a Abeni, Mar
o di Na-tale, and Enri
o Bini. Ar
hite
ture for a portable opensour
e real-time kernel environment. In Pro
eedings ofthe Se
ond Real-Time Linux Workshop and Hand's onReal-Time Linux Tutorial, November 2000.[11℄ K. Je�ay, D. F. Stanat, and C. U. Martel. On non-preemptive s
heduling of periodi
 and sporadi
 tasks.In Pro
eedings of the IEEE Real-Time Systems Sym-posium, pages 129{139, De
ember 1991.[12℄ J. Y. T. Leung and J. Whitehead. On the
omplexityof �xed-priority s
heduling of periodi
, real-time tasks.Performan
e Evaluation, 2:237{250, 1982.[13℄ Giuseppe Lipari and Giorgio Buttazzo. S
hedulabilityanalysis of periodi
 and aperiodi
 tasks with resour
e
onstraints. Journal of Systems Ar
hite
ture, 46:327{338, 2000.[14℄ C.L. Liu and J.W. Layland. S
heduling algorithms formultiprogramming in a hard-real-time environment.Journal of the Asso
iation for Computing Ma
hinery,20(1), 1973.[15℄ M. Di Natale and J. Stankovi
. S
heduling distributedreal-time tasks with minimum jitter. Transa
tion onComputer, 49(4), 2000.[16℄ Yingfeng Oh and Sang H. Son. Allo
ating �xed-priority periodi
 tasks on multipro
essor systems.Journal on Real Time Systems, 9, 1995.[17℄ R. Rajkumar. Syn
hronization in multiple pro
essorsystems. In Syn
hronization in Real-Time Systems: APriority Inheritan
e Approa
h. Kluwer A
ademi
 Pub-lishers, 1991.[18℄ Manas Saksena and Yun Wang. S
alable real-time sys-tem design using preemption thresholds. In Pro
eed-ings of the Real Time Systems Symposium, De
ember2000.[19℄ Lui Sha, Ragunathan Rajkumar, and John P.Leho
zky. Priority inheritan
e proto
ols: An approa
hto real-time syn
hronization. IEEE transa
tion on
omputers, 39(9), September 1990.[20℄ K. Tindell, A. Burns, and A. Wellings. Allo
ating real-time tasks (an np-hard problem made easy). Real-Time Systems Journal, 1992.

