Proceedings of the 22nd Real-Time Systems Symposium, London, England, Dec. 2001. 1

Minimizing Memory Utilization of Real-Time Task Sets in Single and
Multi-Processor Systems-on-a-chip

Paolo Gai, Giuseppe Lipari, Marco Di Natale
ReTiS Lab, Scuola Superiore di Studi e Perfezionamento S. Anna — Pisa,
{pj,lipari,marco} @sssup.it

Abstract

The research on real-time software systems has pro-
duced algorithms that allow to effectively schedule sys-
tem resources while guaranteeing the deadlines of the
application and to group tasks in a very short number
of non-preemptive sets which require much less RAM
memory for stack. Unfortunately, up to now the re-
search focus has been on time guarantees rather than
the optimization of RAM usage. Furthermore, these
techniques do not apply to multiprocessor architectures
which are likely to be widely used in future microcon-
trollers.

This paper presents a fast and simple algorithm for
sharing resources in multiprocessor systems, together
with an innovative procedure for assigning preemp-
tion thresholds to tasks. This allows to guarantee the
schedulability of hard real-time task sets while minimiz-
ing RAM usage. The experimental part shows the effec-
tiveness of a simulated annealing-based tool that allows
to find a near-optimal task allocation. When used in
conjunction with our preemption threshold assignment
algorithm, our tool further reduces the RAM usage in
multiprocessor systems.

1. Introduction

Many embedded systems are becoming increasingly
complex in terms of functionality to be supported.
From an analysis of future applications in the context
of automotive systems [9] it is clear that a standard
uniprocessor microcontroller architecture will not be
able to support the needed computing power even tak-
ing into account the IC technology advances.

To increase computational power in real-time sys-
tems there are two possible ways: increase the pro-
cessor speed or increase the parallelism of the archi-
tecture. The first option requires the use of caching
or deep pipelining which suffer from serious drawbacks
in the context of real-time embedded systems. There-

IRC Interrupt Based Peripherals
-
CPU, I I I
Perpheral Bus
————|xBAR
CPUg I I

Figure 1. The Janus Dual Processor system

Figh Speed Peripheral Bus

LI g
|
DMA Based Peripherals

I

5]5ASNS O Y,

w

fore, the best option and the future of many embedded
applications seems to rely on the adoption of multiple-
processor-on-a-chip architectures.

The Janus system, (see the scheme of Figure 1) de-
veloped by ST Microelectronics in cooperation with Pa-
rades [9], is an example of a dual-processor platform
for power train applications featuring two 32-bit ARM
processors connected by a crossbar switch to 4 mem-
ory banks and two peripheral buses for I/O processing.
The system has been developed in the context of the
MADESS! project. The applications must satisfy a
very demanding requirement: in addition to real-time
predictability, the OS and the application must use the
smallest possible amount of RAM memory. RAM is ex-
tremely expensive in terms of chip space and impacts
heavily on the final cost.

In the design of the kernel mechanisms for the
ERIKA kernel [10], it had been clear from the be-
ginning that the choice of the real-time scheduling
discipline influences both the memory utilization and
the system overhead: for example, selecting a non-
preemptive scheduling algorithm can greatly reduce the
overall requirement of stack memory whereas using a
preemptive algorithm could increase the processor uti-
lization.

The idea behind this work is based on the concept of
non-interleaved execution. As explained in Section 4,
using a protocol called Stack Resource Policy (SRP) [1],

'http://www.madess.cnr.it/Summary.htm

Proceedings of the 22nd Real-Time Systems Symposium, London, England, Dec. 2001. 2

task executions are perfectly nested: if task A preempts
task B, it cannot happen that B executes again before
the end of A. In this way, it is possible to use a single
stack for all the execution frames of the tasks.

Next, comes the following observation: if task pre-
emption is limited to occur only between selected task
groups, it is possible to bound the maximum number of
task frames concurrently active in the stack, therefore
reducing the maximum requirement of RAM space for
stack (which is the only way the OS can limit RAM
requirements).

Although this idea is not new (see [18]), we extended
it along many directions. More specifically, a complete
methodology for minimizing the memory utilization
of real-time task sets, communicating through shared
memory, in uniprocessor and multiprocessor systems
is presented in this paper. First, the uniprocessor
case is considered, and the following results are pre-
sented: a novel scheduling algorithm, called SRPT,
that allows the use of one single stack for all the real-
time tasks under dynamic priority scheduling (Earliest
Deadline) schemes; an optimization procedure for as-
signing the scheduling parameters (preemption thresh-
olds and grouping of tasks in non-preemptive sets) so to
minimize the maximum stack size without jeopardizing
the schedulability of the task set.

Then, the previous results are extended to multipro-
cessor systems. In particular, we developed: a novel
scheduling algorithm called MSRP, that allows real-
time tasks, allocated on different processor, to commu-
nicate/interact through shared memory; each task is
statically allocated to one processor, and all tasks on
one processor share the same stack; an optimization
procedure for assigning tasks to processors and for as-
signing the scheduling parameters, so to minimize the
overall stack size.

The remaining sections are organized as follows.
Section 2 presents some previous related work. Section
3 contains the definitions and the assumptions. Sec-
tion 4 introduces the SRP and Preemption Thresholds
mechanisms on which our work is based. Section 5 dis-
cusses our integration of SRP and Preemption thresh-
olds on top of an EDF scheduler. Section 6 contains
the discussion on how to optimize memory and CPU
resources in uniprocessor systems. Section 7 discusses
the MSRP Scheduling Algorithm. Section 8 contains
the description of our Simulated Annealing approach
to the task allocation problem. Section 9 ends the pa-
per with the discussion on the experimental results for
single and multiprocessor systems.

2. Related work

The idea of assigning each task a preemption thresh-
old and to group tasks in non-preemptive sets has been

formulated by Saksena and Wang [18]. The mecha-
nism has been implemented (in a proprietary form) in
the SSX kernel from REALOGY [6] and the ThreadX
kernel from Express Logic [8].

The algorithms presented in this paper are based on
the Stack Resource Policy (SRP), a synchronization
protocol presented by Baker in [1]. The SRP is similar
to the Priority Ceiling Protocol of Sha, Lehoczky and
Rajkumar (see [19]), but has the additional property
that a task is never blocked once it starts executing.

The problem of scheduling a set of real-time tasks
with shared resources on a multiprocessor system is
quite complex. One of the most common approaches
is to statically allocate tasks to processors and to de-
fine an algorithm for inter-processor communication.
Following this approach, the problem can be divided
into two sub-problems: define a scheduling algorithm
plus a synchronization protocol for global resources;
and provide an off-line algorithm for allocating tasks
to processors.

Solutions have been proposed in the literature for
both sub-problems. The Multiprocessor Priority Ceil-
ing Protocol (MPCP) has been proposed by Rajku-
mar in [17] for scheduling a set of real-time tasks
with shared resource on a multi-processor. Tt extends
the Priority Ceiling Protocol [19] for global resources.
However, it is rather complex and does not guaran-
tee that the execution of tasks will not be interleaved
(tasks cannot share the same stack). Moreover, no al-
location algorithm is proposed.

The problem of allocating a set of real-time tasks to
m processors has been proved NP-hard in [12] and [7],
even when tasks are considered independent. Several
heuristic algorithms have been proposed in the litera-
ture [4, 16], but none of them explicitly considers tasks
that interact through mutually exclusive resources.

In this paper, we bring contributions to both sub-
problems. In Section 7, we propose an extension of the
SRP protocol to multiprocessor systems. In Section 8
we propose a simulated annealing based algorithm for
allocating tasks to processors.

3. Basic assumptions and terminology

Our system consists of a set T = {7m,7,..., 7}
of real time tasks to be executed on a set P =
{P1,..., Py} of processors. First, we consider the case
of a uniprocessor, and then extend the results to the
case of multi-processor systems. The subset of tasks
assigned to processor Pj will be denoted by Tp, C T.
A real time task 7; is a infinite sequence of jobs (or
instances) J; ;. Every job is characterized by a release
time r; ;, an execution time ¢; ; and a deadline d; ;.

A task can be periodic or sporadic. A task is pe-
riodic if the release times of two consecutive jobs are

Proceedings of the 22nd Real-Time Systems Symposium, London, England, Dec. 2001. 3

separated by a constant period; a task is sporadic when
the release times of two consecutive job are separated
by a variable time interval, with a lower bound, also
called minimum interarrival time.

Without loss of generality, we use the same symbol
0; to indicate the period of a periodic task and the
minimum interarrival time of a sporadic task 7;. In the
following a task will be characterized by a worst case
execution time C; = max{c¢; ;} and a period 6;. We
assume that the relative deadline of a task is equal to
01': thllS, di,j =Ti,j + 9,

Tasks can access mutually exclusive resources
through critical sections. Let R = {p!,...,p"} be the
set of shared resources. The k th critical section of task
7; on resource p’ is denoted by ¢!, and its maximum

duration is denoted by w, .

4. Background

4.1. Stack Resource Policy (SRP)

The Stack Resource Policy was proposed by Baker
in [1] for scheduling a set of real-time tasks on a sin-
gle processor. It can be used togheter with the Rate
Monotonic (RM) scheduler or with the Earliest Dead-
line First (EDF) scheduler. According to the SRP, ev-
ery real-time (periodic and sporadic) task 7; is assigned
a priority p; and a static preemption level);, such that
the following essential property holds:

7; 45 not allowed to preempt 7;, unless A\; > A;.

Under EDF and RM, the previous property is verified
if preemption levels are inversely proportional to the
periods of tasks.

Every resource p* is assigned a static? ceiling defined as:
ceil(pf) = max;{\; | 7 uses p*}. Finally, a dynamic
system ceiling is defined as

I, (t) = max[{ceil(p*) | p* is currently locked} U {0}].

Then, the SRP scheduling rule states that: “a job is
not allowed to start executing until its priority is the
highest among the active jobs and its preemption level
is greater than the system ceiling”. The SRP ensures
that once a job is started, it cannot be blocked until
completion; it can only be preempted by higher prior-
ity jobs. However, the execution of a job .J; ; with the
highest priority in the system could be delayed by a
lower priority job, which is locking some resource, and
has raised the system ceiling to a value greater than or
equal to the preemption level A;. This delay is called
blocking time and denoted by B;. Given the maximum
blocking time for each task, it is possible to perform a

2In the case of multi-units resources, the ceiling of each re-
source is dynamic as it depends on the current number of free
units.

schedulability test, depending on the scheduling algo-
rithm.

In [1] Baker proposed the following schedulability
condition for the EDF scheduler:

Z@+&§1 (1)
= 0 b

The maximum local blocking time for each task 7;
can be calculated as the longest critical section f;‘h ac-
cessed by tasks with longer periods and with a ceiling
greater than or equal to the preemption level of ;.

2

B; = B} %ﬁh{w_;ch | A > /_7‘ AN < ceil(p’“)}. (2)

The Stack Resource Policy has several interesting
properties. It prevents deadlock, bounds the maximum
blocking times of tasks, reduces the number of context
switches and can be easily extended to multi-unit re-
sources. From an implementation viewpoint, it allows
tasks to share a unique stack. In fact, a task never
blocks its execution: it simply cannot start executing
if its preemption level is not high enough. Moreover,
the implementation of the SRP is straightforward as
there is no need to implement waiting queues.

However, SRP does not scale to multiprocessor sys-
tems. In section 7 we will propose a possible extension
of the SRP to be used in multi-processor systems.

4.2. Preemption Thresholds

Given a non-interleaved execution of the application
tasks, the use of a preemptive scheduling algorithm
makes the maximum number of task frames on the
stack equal to the number of priority levels, whereas
using a non-preemptive algorithm there can be only
one frame on the stack. However, a non-preemptive al-
gorithm in general is less responsive and could produce
an infeasible schedule. Hence, the goal is to find an
algorithm that selectively disables preemption in order
to minimize the maximum stack size requirement while
respecting the schedulability of the task set.

Based on this idea, Wang and Saksena, [18] devel-
oped the concept of Preemption Threshold: each task
T; is assigned a nominal priority 7; and a preemption
threshold ~; with m; <~;. When the task is activated,
it is inserted in the ready queue using the nominal pri-
ority; when the task begins execution, its priority is
raised to its preemption threshold; in this way, all the
tasks with priority less than or equal to the preemp-
tion threshold of the executing task cannot make pre-
emption. According to [18], we introduce the following
definitions:

Definition 1 Two tasks 1; and 7; are mutually non-
preemptive if (m; < ;) A (75 <).

Proceedings of the 22nd Real-Time Systems Symposium, London, England, Dec. 2001. 4

Definition 2 A set of tasks G = {r1,72,...,Tm} is a
non-preemptive group if, for every pair of tasks t; €
G and 7y € G, 7; and T, are mutually non preemptive.

By assigning each task the appropriate preemption
threshold, we can reduce the number of preemptions
in the system without jeopardizing the schedulabil-
ity of the tasks set. Given an assignment of preemp-
tion thresholds, the task set can be partitioned into
non preemptive groups. Obviously, a small number of
groups results in a lower requirement for the stack size.

In the following, we will show how it is possible to
efficiently implement the Preemption Threshold mech-
anism using the SRP, and extend it to be used under
EDF.

5. Integrating Preemption Threshold
with the SRP

Our approach is based on the observation that the
threshold values used in the Preemption Threshold
mechanism are very similar to the resource ceilings of
the SRP. In the SRP, when a task accesses a critical
section, the system ceiling is raised to the maximum
between the current system ceiling and the resource
ceiling. In this way, an arriving task cannot preempt
the executing task unless its preemption level is greater
than the current system ceiling. This mechanism can
be thought as another way of limiting preemptability.

Thus, if we want to make task 7; and task 7; mutu-
ally non-preemptive, we can let them share a pseudo-
resource p*: the ceiling of resource p* is the maximum
between the preemption levels of 7; and 7;. At run
time, instances of 7; or 7; will lock p* when they start
executing and hold the lock until they finish.

Suppose task 7; needs a set of pseudo-resources
pt,...,p". When 7; starts execution, it locks all of
them: in the SRP, this corresponds to raising the sys-
tem ceiling to maxy, ceil(p*). We define this value as the
preemption threshold ~y; of task ;. Now, the problem
of finding an optimal assignment of thresholds to tasks
is equivalent to finding the set of pseudo-resources for
each task. In the remaining of this paper, we will indi-
cate this modification of the SRP as SRPT (SRP with
Thresholds).

Since SRPT can be thought as an extension of the
SRP that add pseudo-resources compatibles with the
traditional SRP resources, it can be easily shown that
SRPT retains all the properties of SRP.

The feasibility test for SRPT is given by Equation
(1), except for the computation of the blocking time,
that is: B; = maxz(Blc BP**"") where Bl and

BP*"% are respectively the blocking time due to lo-

cal resources and the blocking time due to pseudo-
resources.

Blocking due to local resources. Assuming relative
deadlines equal to periods, the maximum local blocking
time for each task 7; can be calculated using Equation
(2). This can be easily proved: supposing the absence
of pseudo-resources, the SRPT reduces to the SRP, and
the blocking times can be calculated using equation 2.
Blocking due to pseudo-resources. A task 7; may
experience an additional blocking time due to the non-
preemptability of lower priority tasks. This blocking
time can be computed as follows:

Bpseudo

2

= ma;ﬂx {07 ‘ Ai > /_7‘ AN < ’Y]'}
T;€1lP;

The non-preemptability of lower task is due to the
use of pseudo-resources. The formula of ste"d" is
another way of writing formula 2, because: -; is
maxy, ceil(p*) = ceil(p¥) where k' € {k : v =
ceil(p¥)} and C; is the critical section duration for re-
source k' (remember that pseudo-resources are locked
when an instance starts and is unlocked when an in-
stance finish; moreover, we can consider only the &'
critical section for each task since they all have length
equal to C; and V k, ceil (p*) < ceil (p*') = ;.

The SRPT presents two main advantages: it seam-
lessly integrates access to mutually exclusive resources
and preemption threshold with a very little implemen-
tation effort and with no additional overhead, and it
permits to implement the preemption threshold mech-
anism on top of EDF. The last issue can lead to fur-
ther optimizations: the EDF scheduling algorithm has
been proven optimal both in the preemptive [14, 2, 3]
and in the non-preemptive® version [11]; furthermore,
in [13] the authors claim that EDF+SRP is an opti-
mal algorithm for scheduling sporadic task sets with
shared resources. Since EDF is optimal, it is more
likely that a given assignment of preemption thresholds
produces a feasible schedule. Therefore, we expect a
better chance to trade processor utilization with a re-
duction in the maximum stack space requirement by
reducing preemption.

6. Optimizing stack usage in Uniproces-
sors

In this section we present an algorithm that allows
the optimization of the total stack space requirement
of a set of tasks using the SRPT protocol on uniproces-
sor systems. To simplify the presentation, we do not
consider here the use of shared resources. The com-
plete algorithm for multiprocessors will be presented
in Section 8.

3The non-preemptive version of the EDF algorithm is optimal
for sporadic task sets among all the non-idle (work conserving)
non-preemptive scheduling algorithms.

Proceedings of the 22nd Real-Time Systems Symposium, London, England, Dec. 2001.)

The algorithm requires each task to be character-
ized by its worst case execution time Cj, its period 6;,
its maximum stack requirement (in bytes) s;, its pri-
ority m; and its preemption level \;. At the end of the
optimization algorithm, each task 7; will be assigned a
preemption threshold 7; and will be inserted in a non-
preemptive group (. The goal of the optimization
algorithm is:
step 1 to find an optimal assignment of preemption
thresholds to tasks, and step 2 to find an optimal set of
non-preemptive groups that minimizes the total stack
size, maintaining the feasibility of the schedule.

The algorithm selects a possible assignment of pre-
emption thresholds and tests the feasibility of the
scheduling using Equation (1). Our optimization algo-
rithm works as follows: tasks are ordered by decreasing
preemption level A\; we use the algorithm described in
[18] to explore the space of possible threshold assign-
ments?: starting with the task having the highest pre-
emption level, we try to raise the preemption threshold
v of each task, until the task set remains schedulable
according to Equation (1). Then, given a feasible as-
signment of preemption thresholds, we partition the
task set into non-preemptive groups and compute the
maximum stack size. Our algorithm differs from the
one in [18] in the final optimization objective: while
the algorithm in [18] tries to minimize the number of
non-preemptive groups, our algorithm accounts for the
stack usage of each task and tries to minimize the to-
tal amount of required stack. In fact, there are cases
in which the minimum overall stack requirement does
not correspond to the minimum number of groups.

The algorithm that is used to partition the task set
into preemption groups is more complex and can be
only outlined as follows:

Step 1: Tasks are ordered by increasing preemption
thresholds; ties are broken in order of decreasing stack
requirements.

Step 2: The algorithm starts by finding the mazimal
group for each task. A maximal group for task 7; is the
biggest non-preemptive group that can be created us-
ing 7; as a representative task. A representative task for
a non-preemptive group is the task having the small-
est threshold among all tasks in the group. Maximal
groups are computed with the algorithm shown in Fig-
ure 2.

Step 3: Then, the algorithm calls a recursive function
that allocates all tasks to non-preemptive groups using
the information computed in the previous step. The
function, called create_group(), recursively computes
all solutions consisting in the partitioning of tasks into
a set of non-preemptive groups G;.

The function create_group(g, min_stack, sum)
is the core of the procedure. Its pseudo code descrip-

4Since EDF is optimal, there is no need to find an initial
priority assignment for the task set.

foreach 7; in T {
M; = emptylist;
foreach 7; in {7 : 7 € T and k > i}
if (A\j <) insert(M;,5);

Figure 2. Finding the maximal groups.

tion is outlined in Figure 3. At this point each task is
assigned a new index which corresponds to its position
in the order of preemption thresholds (starting from
0).

When called, the function computes a set of new
groups starting from G, where g is the index of the
group’s representative task; min_stack points to the
current minimum for the overall stack requirements
and sum to the (partial) stack requirement for the so-
lution being computed.

The first time the function is called, g has the value
0 (the algorithm starts from the task with the lowest
threshold), min_stack refers a variable containing the
sum ¥;s; of all stack requirements (the worst case stack
requirement), and sum equals 0 (no task allocated to
any group yet). No group G; has been computed yet.

Lines 9-31 are used to selectively extract a subset
of M, that will be inserted into G, for testing the op-
timality of a solution. The subsets that are tried as
candidate for GG, are all the possible subset of Mg,
plus the representative task 7,.

Please also note that in the function creategroup()
the index i always refers to the position in list M,
rather than G,.

At line 7 the group G, is initialized (the represen-
tative task 7, is inserted in its group). The i variable
(initialized at the index of the first element in M, line
8) is used to mark the next index of the candidate rep-
resentative for a new group.

Lines 10-12 insert all the unallocated tasks belong-
ing to M, and following 7; into the group G,. Line
13 computes the maximum stack requirement of the
non-preemptive group Gy, and line 14 adds it to the
temporary accumulator new_sum.

If there remains a task to be allocated, line 16 finds a
task that will be the representative for the next group,
and line 17 calls recursively the creategroup() func-
tion with g set to that task index, and sum set to the
current stack usage.

The rest of the function implements the cleanup be-
fore a new iteration or backtracking for searching a
new solution. This means removing some tasks from
the current group and setting up new representative
tasks for a different group partitioning. If the current
group G, is not composed by its representative task
only, line 19 removes all tasks from the tail of G, until
the stack requirement of the group decreases (the task

Proceedings of the 22nd Real-Time Systems Symposium, London, England, Dec. 2001. 6

with the largest stack requirement is removed). Next,
the pointer i is set to the position of the task follow-
ing the last task extracted from G (line 21) to allow
task 7; to be skipped at the next iteration, and to be-
come a representative task in the following recursive
call. If all tasks have been assigned to a group then a
new candidate solution has been computed and must
be evaluated as a candidate optimum (lines 24-26). If
the current group is the last group, it is emptied (line
28), since it is pointless to split it.

1: creategroup(int g, int *min_stack, int sum)
2

3 task_index ij;

4: int m, newsum;

5: bool notYetDone = true;

6

7 initialize (Gy);

8: i = firstelement (My);

9: do {

10: foreach j in {k:k > iinlist My}
11: if (7 not already allocated)
12: insertlast (Gg,7;j);

13: m = findMazimumStackUsage (Gg);
14: newsum = sum + m;

15: if (there are task to be allocated) {
16: f = findFirstFreeTask(g);

17: creategroup(f, min_stack, newsum);
18: if (Gg '= {mg}) {

19: i = lastelement (Gg);

20: removeFromTail (Ggy);

21: i = nextelement (My,1i);

22: } else notYetDone = false;
23: } else

24: if (newsum < *min_stack) {
25: NewOpt imumFound () ;

26: *min_stack = newsum;

27: }

28: Remove_all_tasks (Gg);

29: notYetDone = false;

30:

31: } while (notYetDone);

32: remove (Gg);

33: }

Figure 3. The create _group() recursive func-
tion.

The implementation of the algorithm is slightly
more complex, since a lot of effort is spent in order
to optimize the search by pruning the search tree and
back-tracking before reaching a higher cost solution.

In the worst case, the complexity of the algorithm is
exponential in the number of tasks. However, since the
number of groups in the optimal solution is small, the
number of combinations to evaluate is limited. Thanks
to the efficiency of the pruning, the number of solu-
tions is further reduced. In our experiments, the av-
erage number of explored solutions (leafs) is quite low
even for large task sets (<160). For typical embedded
systems, where the number of tasks rarely exceeds 20,

the problem is tractable with modern computers.

7. Sharing Resources in Multiprocessors

When considering multiprocessor symmetric ar-
chitectures, we wish to keep the nice properties of EDF
and SRP, that is high processor utilization, predictabil-
ity and perfectly nested task executions on local pro-
cessors. Unfortunately, the SRP cannot be directly ap-
plied to multiprocessor systems.

In this section, we first propose an extension of the
SRP protocol to multi-processor systems and a schedu-
lability analysis for the new policy. In the next section,
we propose a simulated annealing based algorithm for
allocating tasks to processors that minimizes the over-
all memory requirements.

7.1. Multiprocessor Stack Resource Palicy

Suppose that tasks have already been allocated to
processors. Depending on this allocation, resources can
be divided in local and global resources. A local re-
source is used only by tasks belonging to the same
processor, whereas a global resource is used by task
belonging to different processors.

We concentrate our efforts on the policy for access-
ing global resources. If a task tries to access a global
resource and the resource is already locked by some
other task on another processor, there are two possi-
bilities: the task is suspended (as in the MPCP algo-
rithm), or the task performs a busy wait (also called
spin lock). We want to maintain the properties of the
SRP: in particular, we want to let all tasks belonging to
a processor to share the same stack. Hence, we choose
the second solution. However, the spin lock time is
wasted time and should be reduced as much as possi-
ble (the resource should be freed as soon as possible).
For this reason, when a task executes a critical section
on a global resource, its priority is raised to the maxi-
mum priority on that processor and the critical section
becomes non-preemptable.

In order to simplify the implementation of the al-
gorithm, the amount of information shared between
processors is minimal. For this reason, the priority
assigned to a task when accessing resources does not
depend on the status of the tasks on other processors
or on their priority. The only global information is the
status of the global resources.

The MSRP algorithm works as follows:

Rule 1: For local resources, the algorithm is the same
as the SRP algorithm. In particular, we define a pre-
emption level for every task, a ceiling for every local
resource, and a system ceiling II;, for every processor
Py.

Rule 2: Tasks are allowed to access local resource
through nested critical sections. It is possible to nest

Proceedings of the 22nd Real-Time Systems Symposium, London, England, Dec. 2001. 7

L [CilAJwh|whtss [CI]B]B]
7230 0J0[2]0]7
n (62200697
5 [11] 1] 9 [43 [14][0]0
w7103 4]11][0]0
=220 0 0]2]0]7

Table 1. The example task set.

local and global resources. However, it is not possible
to nest global critical sections, otherwise a deadlock
can occur.

Rule 3: For each global resource, every processor Py
defines a ceiling greater than or equal to the maximum
preemption level of the tasks on Pj.

Rule 4: When a task 7;, allocated to processor Py
accesses a global resource p?, the system ceiling II}, is
raised to ceil(p’) making the task non—preemptable.
Then, the task checks if the resource is free: in this
case, it locks the resource and executes the critical sec-
tion. Otherwise, the task is inserted in a FCFS queue
on the global resource, and then performs a busy wait.

Rule 5: When a task 7;, allocated to processor Py,
releases a global resource p?, the algorithm checks the
corresponding FCFS queue, and, in case some other
task 7; is waiting, it grants access to the resource, oth-
erwise the resource is unlocked. Then, the system ceil-
ing Iy is restored to the previous value.

Example. Consider a system consisting of two proces-
sors and five tasks as shown in Figure 4. Tasks 7, ™
and 73 are allocated to processor P;: task 73 uses local
resource p', task 7y uses resources p' and p? through
nested critical sections, and 7; does not use any re-
source. Tasks 74 and 75 are allocated to processor Ps:
task 74 uses the global resource p' and 75 does not uses
resources. The parameters of the tasks are reported in
Table 1. The ceiling for resource p'! is 2. The ceiling
for resource p? on processor P; is 3, and on proces-
sor Py is 2. A possible schedule is shown in Figure 5.
At time t = 3, task 7» is blocked because its preemp-
tion level Ay = 2 is equal to the current system ceiling
II; = 2 on processor P;. At time ¢t = 5, task 73 locks
resource po and raises the system ceiling ITy to 3. At
time ¢ = 6, task 74 tries to access the global resource
p? which is currently locked by 7. Thus, it raises the
system ceiling of processor P, to 2 and performs a busy
wait. At time t = 7, both 71 and 75 are blocked, be-
cause the system ceilings of the two processors are set
to the maximum. At time ¢ = 8, task 73 releases the
global resource p? and task 74 can enter the critical
section on p2?. At the same time, the system ceiling
of processor P; is set back to 2, and task 7, can make
preemption.

Ty p

° | . |

Figure 5. Example of schedule produced by
the MSRP on two processors.

7.2. Schedulability analysis of the M SRP

First, we give an upper bound on the time that task
7;, allocated to processor P, can spend waiting for a
global resource p/. In the following, we refer to this
time as spin lock time and denote it as spin(p’, Py).

Lemma 1 The spin lock time that every task allocated
to processor Py meeds to spend for accessing a global
resource p? € R is bounded from above by:

max wzh
€T, Vh

spin(p), Pi) = Y

pe{P—Pi}

Basically, the spin lock time increments the dura-
tion w}, of every global critical section &, , and, conse-
quently, the worst case execution time C; of ;. More-
over, it also increments the blocking time of the tasks
allocated to the same processor with a preemption level
greater than J;.

We define totalspin; as the maximum total spin lock
time experienced by task 7;. From the previous lemma,

totalspin; = Z spin(p?, P;)
A

We also define the actual worst case computation
time C| for task 7; as the worst case computation time
plus the total spin lock time:

C! = C; + totalspin;

Proceedings of the 22nd Real-Time Systems Symposium, London, England, Dec. 2001. 8

Now, we demonstrate that the MSRP maintains the
same basic properties of the SRP, as shown by the fol-
lowing theorems.

Theorem 1 Once a job starts executing it cannot be
blocked, but only preempted by higher priority jobs.

Note that a job can be delayed before starting ex-
ecution by the fact that the system ceiling is greater
than or equal to its preemption level. This delay is
called blocking time. The following theorem gives an
upper bound to the blocking time of a task.

Theorem 2 A job can experience a blocking time at
most equal to the duration of one critical section (plus
the spin lock time, if the resource is global) of a task
with lower preemption level.

It is noteworthy that the execution of all the tasks al-
located on a processor is perfectly nested (because once
a task starts executing it cannot be blocked), therefore
all tasks can share the same stack.

For simplicity, the blocking time for a task can be
divided into blocking time due to local and global re-
sources. In addition, if we consider also the preemption
threshold mechanism, we have to take into account also
the blocking time due to the pseudo-resources:

_ local global pseudo
B; = max(B;"", B, » Bi)

where Blocel | BIlobal and BPU0 are:
Blocking time due to local resources: This block-
ing time is equal to the longest critical section f_fh
among those (of a task 7;) with a ceiling greater than
or equal to the preemption level of 7;:

Blecal — m’?;c({wfh | (r; € Tp,) A (p* local to P;)
bk

A > N) A (N < ceil (p*)}

Blocking time due to global resources: Assume
the task 7;, assigned to processor P;, is blocked by a
task 7; (A; < A;) which is assigned to the same pro-
cessor P;, and which is waiting for, or it is inside to,
a global critical section fj’?h. In this case, the blocking
time for task ; is,

By = max{w}, + spin(p*, Py) | (7; € Tp))
‘], L, K

A(p* global) A (A; > A;)}

Blocking time due to pseudo resources: As ex-
plained in the previous sections, this blocking time is
due to the fact that a task 7; can be mutually non

preemptive with other tasks on the same processor:
here, the only difference with the SRPT is that we
have to consider the actual worst case execution time
instead of the worst case execution time.

max {C; | A > /_7‘ AN < ’y]'}

pseudo __
B; =
7;€Tp;

Theorem 3 Suppose that tasks on processor Py are
ordered by decreasing preemption level. The schedula-
bility test is as follows:

VPkGP TPk:{le---:Tnk} Vz:l,nk

Please note that the blocking factor influences only
one element of the guarantee formula, whereas the spin
lock time influences both the blocking time and the
worst case execution time. This implies that, when de-
signing an allocation algorithm, one of the goals is to
reduce the spin lock time as much as possible. Another
noteworthy observation is that, using the MSRP, each
processor works almost independently from the oth-
ers. In particular, it is possible to easily apply this al-
gorithm to non—-homogeneous multiprocessor systems.
For the task set of the previous example, the total spin
lock time ts;, the actual worst case execution time Cf,
the local and global blocking times are reported in
Table 1. The MSRP has many advantages over the
MPCP. Unlike MPCP, with the MSRP it is possible to
use one single stack for all the tasks allocated to the
same processor. Moreover, the MPCP is more complex
and difficult to implement than the MSRP. In fact, the
MSRP does not need semaphores or blocking queues
for local resources, whereas global resources need only a
FIFO queue (an efficient implementation can be found
in [5]. Finally, the MSRP, like the SRP, tends to reduce
the number of preemptions in the systems, hence there
is less overhead. However, this comes at the cost of a
potentially dangerous spin lock time.

8. Optimizing stack usage in Multipro-
cessors

Given a task allocation, the policies and algorithms
presented in this paper allow to search for the optimal
assignment, of preemption thresholds to tasks and to
selectively group tasks in order to reduce RAM con-
sumption. However, the final outcome depends on the
quality of the decisions taken in the task allocation
phase. Moving one task from one processor to another
can change the placement of (some of) the shared re-
sources accessed by it (some global resources become
local and vice versa) and the final composition of the
non—-preemptive groups on each processor. Unfortu-
nately, the task allocation problem has exponential
complexity even if we limit ourselves to the simple case
of deadline-constrained scheduling.

A simulated annealing algorithm is a well-known so-
lution approach to this class of problems. Simulated
annealing techniques (SA for short) have been used in

Proceedings of the 22nd Real-Time Systems Symposium, London, England, Dec. 2001. 9

[20, 18] to find the optimal processor binding for real-
time tasks to be scheduled according to fixed-priority
policies, in [15] to solve the problem of scheduling with
minimum jitter in complex distributed systems and in
[18] to assign preemption thresholds when scheduling
real-time tasks with fixed priorities on a uniprocessor.
In the following we show how to transform the allo-
cation and scheduling problem which is the subject of
this paper into a form that is amenable to the appli-
cation of simulated annealing. Our solution space S
consists of all possible assignments of tasks to proces-
sors. We are interested in those task assignments that
produce a feasible schedule and, among those, we seek
the assignment that has minimum RAM requirements.
Therefore we need to define an objective function to
be minimized and the space over which the function is
defined.

The SA algorithm searches the solution space for the
optimal solution as follows: a transition function T'R,
is defined between any pair of task allocation solutions
(A;,A;) € S and a neighborhood structure S; is de-
fined for each solution A; containing all the solutions
that are reachable from A; by means of TR. A starting
solution Ay is defined and its cost (the value of the ob-
jective function) is evaluated. The algorithm randomly
selects a neighbor solution and evaluates its cost. If
the new solution has lower cost, then it is accepted as
the current solution. If it has higher cost, then it is
accepted with a probability exponentially decreasing
with the cost difference and slowly lowered with time
according to a parameter which is called temperature.

Our transition function consists in the random selec-
tion of a number of tasks and in changing the binding
of the selected tasks to randomly selected processors.
This simple function allows to generate new solutions
(bindings) at each round starting from a selected so-
lution. Some of the solutions generated in this way
may be non schedulable, and therefore should be even-
tually rejected. Unfortunately, if non schedulable so-
lutions are rejected before the optimization procedure
is finished, there is no guarantee that our transition
function can approach a global optimum. In fact, it
is possible that every possible path from the starting
solution to the optimal solution requires going through
intermediate non-schedulable solutions.

If non-schedulable solutions are acceptable as in-
termediate steps, then they should be evaluated very
poorly. Therefore, we define a cost function with the
following properties:

1) schedulable solutions must always have energy lower
than non schedulable solutions;

2) the energy of non schedulable solutions must be pro-
portional to the maximum excess utilization resulting
from the evaluation of formula (3) for non schedulable
tasks;

3) the energy of schedulable solution must be propor-

tional to the worst case overall RAM requirements for
stack usage.

If TS is the overall stack requirement, obtained by
adding up the stack requirements of all tasks, and OS
is the overall stack requirement, evaluated for schedu-
lable sets after the computation of optimal preemption
thresholds and task groups (see Section 6), then our
cost function is the following:

T

maxy., (ZZ:Z Cr 4 %) *TS non sched. assign.
TS+ Ax(0S —TS)

sched. assign.

When the assignment is non schedulable, we use the
result of the guarantee test (Equation 1) as an index
of schedulability. In fact, as the system load, blocking
time or spin-lock time increase, the system becomes
less schedulable. When the assignment is schedulable,
the cost function does not depend on processor load but
returns a value that is proportional to the reduction of
stack with respect to the total stack requirement.

The A factor estimates the average ratio between
the stack requirements before task grouping and the
stack requirements after optimization and is defined

as:

A ncpu * meanstack * meangroups

ntask * meanstack

where ncpu is the number of CPU in the system,
meanstack is the mean stack value of all tasks, mean-
groups estimates the typical number of preemption
groups on a uniprocessor. The A factor has been in-
troduced to smooth the steep increase in the cost func-
tion when going from schedulable solutions to non

schedulable assignments. This improves the chances
for the simulated annealing algorithm to escape from
local minima (which might require accepting a non

schedulable solution).

The experimental results (next section) show the ef-
fectiveness of our SA-based binding algorithm when
simulating task sets scheduled on 4-processor system-
on-a-chip architectures.

9. Experimental evaluation

We extensively evaluated the performance of our op-
timization algorithms on a wide range of task set con-
figurations.

Uniprocessor experiments In every experiment,
tasks’ periods are randomly chosen between 2 and 100.
The total system load U ranges from 0.5 to 0.99, with
a step of 0.01: the worst case execution time of every
task is randomly chosen such that the utilization fac-
tors sums up to U. The number of tasks in the task
set ranges from 1 to 100, and the stack frame size is
a random variable chosen between 10 and 100 bytes
excepts for the experiments of Figure 7 in which the

Proceedings of the 22nd Real-Time Systems Symposium, London, England, Dec. 2001. 10

Mean number of preemption groups

14
05 055 06 065 07 075 08 08 09 095 1
Task set total utilization factor

Figure 6. Average number of preemption
groups for different task set sizes.

0.84 : . : . .
_ Stack size from 10 to 20 ——
S 082 Stack size from 10 to 50 --------- i
£ Stack size from 10 to 100 -
S o8}t Stack size from 10 to 200 1
o RN Stack size from 10 to 400 ------
2 078 fu
o
B o076
S o074t
@
€ 072t
a2
2 07Ff
3
8 068
k)
< 066 f

0.64 L
05 055 06 065 07 075 08 085 09 095 1
Task set total utilization factor

Figure 7. Ratio of improvement given by our
optimization algorithm.

stack size ranges between 10 and 400 bytes. In Figure
6 the average number of preemption groups is shown.

Note that the figure has a maximum for NTASK
= 4 and U=0.99. As the number of tasks increases,
the number of preemption groups tends to 2; this can
be explained with the fact that, when the number of
tasks grows, each task has a smaller worst case exe-
cution time; hence, the schedule produced by a non-
preemptive scheduler does not differ significantly from
the schedule produced by a preemptive scheduler. On
the contrary, with a small number of tasks, the worst
case execution time of each task is comparable with
the period; hence it is more difficult to find a feasible
non-preemptive schedule.

Figure 6 shows how the average number of preemp-
tion groups is almost independent of the utilization
factor and of the number of tasks, except for a very
limited number of tasks (< 10) and a high utilization
factor (> 0.8).

The average number of groups is not only constant
but also very close to 2. This means that the appli-
cation of Preemption Threshold techniques, together

with EDF, allows a great reduction in the number of
preemption levels and great savings in the amount of
RAM needed for saving the task stack frames. RAM
reduction in the order of 3 to 16 times less the original
requirements can easily be obtained.

In Figure 7, we compare the optimization algorithm
presented in [18] (which does not take into account the
stack frame size of the tasks) and our algorithm, to
show the improvement in the optimization results. The
figure shows the fraction of experiments where the opti-
mal solution has been found by the original algorithm.
The ratio appears as a function of the system load and
for different stack sizes. In most cases (from 60% to
80%), the algorithm proposed in [18] finds the optimal
partition of the task set in preemption groups. This
ratio decreases as the load increases and as the range
of the stack size requirements is widened.
Multiprocessor experiments. In the first set of ex-
periments, we consider 4 CPU, 40 resources, and 40
tasks. Tasks’ periods are randomly chosen between 1
and 1000. The total system load U ranges from 2.76
to 3.96, with a step of 0.2. The stack frame size of
each task is a random variable chosen between 10 and
100 bytes. Each task has 0 to 4 critical sections that
lock randomly selected resources; the sum of the worst
case execution times of the critical section accessed by
each single task is in the range of 0-20%, 5-25%, 10-
30%,15-35%, 20-40% of the task worst case execution
time (depending on the simulation, see Figure 7).

In Figure 8 we plot the stack gain ratio between
the overall stack requirement before optimization and
the stack memory requirement of the solution found by
our SA algorithm. In all experimental runs the solution
found by our SA routine saves a considerable amount
of RAM even when compared to the first schedulable
(and optimized for RAM consumption) solution found.
The average improvement in 58 runs is 34.6% (min
18%, max 49%).

Running times can be a concern when using a simu-
lated annealing solution. OQur algorithm can be run in
a few hours on modern computers The execution of the
simulated annealing routine takes 6 to 30 hours on an
Intel Pentium ITT 700Mhz to complete the cooling. For
example, a typical execution (Total U = 2.76, critical
section ratio 0.10 to 0.30) visited 15,900,000 assign-
ments (one every 4 ms) and found 6,855,560 schedula-
ble solutions. These results are quite acceptable con-
sidered that task allocation is a typical design time
activity.

10. Conclusions and future works

In this paper, we present a solution for scheduling
real-time tasks in single and multiple processor sys-
tems with minimal RAM requirements. In uniproces-

Proceedings of the 22nd Real-Time Systems Symposium, London, England, Dec. 2001. 11

9.8
9.7
9.6
95 -
9.4
93
9.2 -
9.1

Total Stack / Optima\ Stack

Save Ratio

89 r
8.8
8.7

0.5 1 15 2 25 3 35 4
Resource Utilization

Figure 8. Ratio of improvement given by our
multiprocessor optimization algorithm.

sor systems, our solution seamlessly integrates Earli-
est Deadline scheduling techniques, the Stack Resource
Policy for accessing shared resources, plus an innova-
tive algorithm for the assignment of preemption thresh-
olds and the grouping of tasks in non-preemptive sets.
Our methodology allows to evaluate the schedulability
of task sets and to find the schedulable solution (the
task groups) that minimize the RAM requirements for
stack. We also provide an extension of the SRP policy
to multiprocessor systems and global shared resources
(MSRP) and a task allocation algorithm based on sim-
ulated annealing. The main contribution of our work
consists in realizing that real-time schedulability and
the minimization of the required RAM space are tightly
coupled problems and can be efficiently solved only by
devising innovative solutions. The objective of RAM
minimization guides the selection of all scheduling pa-
rameters and is a factor in all our algorithms. We plan
to implement the algorithms described in this paper in
a new version of our ERIKA kernel® for the JANUS
architecture [9].

References

[1] T.P. Baker. Stack-based scheduling of real-time pro-
cesses. Journal of Real-Time Systems, 3, 1991.

[2] S.K. Baruah, A.K. Mok, and L.E. Rosier. Preemp-
tively scheduling hard-real-time sporadic tasks on one
processor. In Proceedings of the 11th IEEE Real-Time
Systems Symposium, pages 182 190, December 1990.

[3] S.K. Baruah, L.E. Rosier, and R.R. Howell. Al-
gorithms and complexity concerning the preemptive
scheduling of periodic real-time tasks on one proces-
sor. The Journal of Real-Time Systems, 2, 1990.

[4] A. Burchard, J. Liebeherr, Y. Oh, and S.H. Son. New
strategies for assigning real-time tasks to multiproces-
sor systems. IEEE Transactions on Computers, 1995.

[6] T. S. Craig. Queuing spin lock algorithms to support
timing predictability. In Proceedings of the IEEE Real-
Time Systems Symposium, Dec. 1993.

Shttp://erika.sssup.it/

[6] Robert Davis, Nick Merriam, and Nigel Tracey. How
embedded applications using an rtos can stay within
on-chip memory limits. In Proceedings of the Work in
Progress and Industrial Ezperience Session, Euromicro
Conference on Real-Time Systems, June 2000.

[7] M. L. Dertouzos and Aloysius Ka-Lau Mok. Multipro-
cessor on-line scheduling of hard-real-time tasks. IEEE
Transactions on software engineering, 15(12), Decem-
ber 1989.

[8] Inc. Express Logic. http://www.threadx.com. avail-
able on Internet.

[9] A. Ferrari, S. Garue, M Peri, S. Pezzini, L.Valsecchi,
F. Andretta, and W. Nesci. The design and imple-
mentation of a dual-core platform for power-train sys-
tems. In Convergence 2000, Detroit (MI), USA, Octo-
ber 2000.

[10] Paolo Gai, Giuseppe Lipari, Luca Abeni, Marco di Na-
tale, and Enrico Bini. Architecture for a portable open
source real-time kernel environment. In Proceedings of
the Second Real-Time Linuz Workshop and Hand’s on
Real-Time Linuz Tutorial, November 2000.

[11] K. Jeffay, D. F. Stanat, and C. U. Martel. On non-
preemptive scheduling of periodic and sporadic tasks.
In Proceedings of the IEEE Real-Time Systems Sym-
posium, pages 129 139, December 1991.

[12] J. Y. T. Leung and J. Whitehead. On the complexity
of fixed-priority scheduling of periodic, real-time tasks.
Performance Evaluation, 2:237-250, 1982.

[13] Giuseppe Lipari and Giorgio Buttazzo. Schedulability
analysis of periodic and aperiodic tasks with resource
constraints. Journal of Systems Architecture, 46:327—
338, 2000.

[14] C.L. Liu and J.W. Layland. Scheduling algorithms for
multiprogramming in a hard-real-time environment.
Journal of the Association for Computing Machinery,
20(1), 1973.

[15] M. Di Natale and J. Stankovic. Scheduling distributed
real-time tasks with minimum jitter. Transaction on

Computer, 49(4), 2000.

[16] Yingfeng Oh and Sang H. Son. Allocating fixed-
priority periodic tasks on multiprocessor systems.
Journal on Real Time Systems, 9, 1995.

[17] R. Rajkumar. Synchronization in multiple processor
systems. In Synchronization in Real-Time Systems: A
Priority Inheritance Approach. Kluwer Academic Pub-
lishers, 1991.

[18] Manas Saksena and Yun Wang. Scalable real-time sys-
tem design using preemption thresholds. In Proceed-
ings of the Real Time Systems Symposium, December
2000.

[19] Lui Sha, Ragunathan Rajkumar, and John P.
Lehoczky. Priority inheritance protocols: An approach
to real-time synchronization. I[EEE transaction on
computers, 39(9), September 1990.

[20] K. Tindell, A. Burns, and A. Wellings. Allocating real-

time tasks (an np-hard problem made easy). Real-
Time Systems Journal, 1992.

