
Minimizing CPU Energy in Real-Time Systems

with Discrete Speed Management

Enrico Bini, Giorgio Buttazzo, Giuseppe Lipari

Scuola Superiore Sant’Anna, Pisa, Italy

{e.bini,giorgio,lipari}@sssup.it

This paper presents a general framework to analyze and design embedded systems minimizing
the energy consumption without violating timing requirements. A set of realistic assumptions
is considered in the model in order to apply the results in practical real-time applications. The

processor is assumed to have as a set of discrete operating modes, each characterized by speed and
power consumption. The energy overhead and the transition delay incurred during mode switches
are considered. Task computation times are modeled with a part that scales with the speed and
a part having a fixed duration, to take I/O operations into account.

The proposed method allows to compute the optimal sequence of voltage/speed changes that
approximates the minimum continuous speed which guarantees the feasibility of a given set of
real-time tasks, without violating the deadline constraints. The analysis is performed both under
fixed and dynamic priority assignments.

Categories and Subject Descriptors: category1 [category2]: category3

General Terms:

Additional Key Words and Phrases: Real-Time Systems, CPU energy reduction, speed modulation

1. INTRODUCTION

The number of embedded systems operated by batteries is constantly increasing
in different application domains, from portable devices to mobile communication
systems, autonomous robots, and distributed networks of mobile sensors. In these
systems, reducing the energy consumption is of primary importance to prolong
their lifetime. For this reason, a new generation of processors (such as Intel XScale,
Motorola MPC5200, Transmeta Crusoe, Intel Centrino) has been built to provide
different operating modes. These processors can dynamically vary the voltage and
the operating frequency to balance computational speed versus energy consumption.

When the application has to satisfy real-time requirements, any energy-aware
policy acting on the processor speed should also take timing constraints into ac-
count, to guarantee the timely execution of those computational activities that have
to meet predefined deadlines. At the operating system level, suitable scheduling
policies have been proposed in the literature to exploit voltage variable processors.
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Such policies are referred to as Dynamic Voltage/Frequency Scaling (DVFS). In
these techniques the scheduler, in addition to selecting the executing task, has also
to select the operating voltage and frequency.

We distinguish between static and dynamic DVFS. Static techniques use off-
line parameters, such as periods (or minimum interarrival times) and worst-case
execution cycles (WCECs), to select the appropriate voltage/speed operating mode
to be used. Dynamic techniques (based on slack reclamation) take advantage of
early completions of tasks to further reduce the speed and save more energy. These
methods typically try to foresee the future load requirements and then reduce the
speed based on these predicted values [Qadi et al. 2003; Aydin et al. 2004; Scordino
and Lipari 2006]. The energy saving achieved by this class of methods is higher
than that achievable by static ones. However, since dynamic techniques are typically
developed by enhancing static approaches, the interest in static techniques is still
high.

Static DVFS can be further divided in two classes. In the first class, a single op-
timal speed is computed off-line and never changed. Pillai and Shin [Pillai and Shin
2001] derived the minimal speed that can make a task set schedulable under EDF,
and proposed a near-optimal method under RM. Saewong and Rajkumar provided
an algorithm to find the optimal speed value for fixed priority assignments [Saewong
and Rajkumar 2003], assuming that the speed of the processor can be varied con-
tinuously in a given range. In practice, however, processors provide a finite number
of discrete speeds. If the optimal speed is not available on a processor, it has to be
approximated with the closest available discrete level higher than the optimal one.
This solution, however, may cause a waste of computational capacity and, conse-
quently, of energy, especially when the number of available speeds is small. For
this reason, Ishihara and Yasuura [Ishihara and Yasuura 1998] modeled processors
with a limited number of operating frequencies and proved that the most energy
efficient technique to approximate a speed level not provided by the processor is to
switch between the two closest ones. However they did not consider speed switching
overhead and task preemptions. Irani et al [Irani et al. 2003] did account for the
overhead to enter in sleep mode. They showed that a consequence of a non-zero
overhead is that it exists a critical speed below which it is not convenient to switch
into sleep mode.

In a second class of static DVFS methods, the processor speed is not fixed but
statically decided before system execution based on the task parameters. In other
words, given a set of periodic tasks, the sequence of frequency changes that have
to be performed on the processor during execution can be computed off line. Since
the task schedule is periodic, the voltage schedule obtained by this method is also
periodic and can be stored in a table. Some of these methods propose to assign a
different speed to each task [Aydin et al. 2004; Saewong and Rajkumar 2003]. Some
others adopt a more general scheme, where the speed switching instants are more
freely chosen and, typically, occur at the activation/deadline of some job [Yao et al.
1995; Liu and Mok 2003]. The energy saved by these methods is higher because the
processor speed can be tightly shaped in order to provide the minimum number of
cycles needed in every interval.

A drawback of this approach derives from the tight relationship established be-
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tween the schedule of the tasks and the power management scheme. If, for some
reason, some task activation is lost or delayed, the entire speed assignment is af-
fected, resulting in a potential domino effect on the other tasks in the system, which
could miss their deadlines. Running always at a fixed speed is a more robust design
practice, and it is simpler to be implemented.

Another weakness of many energy-aware algorithms proposed in the literature
is due to the set of assumptions, often not realistic, which are made to simplify
the solution. Besides considering continuous voltage scaling, most methods neglect
the delay due to a voltage transition. In some approaches [Lee and Sakurai 2000;
Mochocki et al. 2002] such a delay is considered in the processor model, but the
methods have been developed only for dynamic techniques aimed at reducing the
slack time.

Another simplifying hypothesis usually made for reducing the complexity of the
schedulability analysis is to consider tasks with relative deadlines equal to peri-
ods [Pillai and Shin 2001], so that task set feasibility can be checked using the
simple Liu and Layland utilization bound [Liu and Layland 1973], both under RM
and EDF scheduling. Notice that, under fixed priority scheduling, the use of the
utilization bound is even more restrictive, because the Liu and Layland schedula-
bility test is only sufficient, leaving many feasible task sets out of consideration,
thus preventing optimal solutions.

Finally, it is worth mentioning that recent works have not limited their focus to
minimizing the energy consumed by the CPU, but they addressed also the con-
sumption of other devices [Jejurikar and Gupta 2004; Zhuo and Chakrabarti 2005;
Aydin et al. 2006].

1.1 Contributions of the paper

In this work, we present a general framework for analyzing and designing embed-
ded systems with energy and timing requirements. This paper extends a previ-
ous work [Bini et al. 2005] by the same authors that allows minimizing energy
consumption while guaranteeing task deadlines, under discrete voltage/frequency
modes. Our method can be classified as a static DFS (Dynamic Frequency Scal-
ing) algorithm, since it is able to compute off line the optimal sequence of volt-
age/frequency changes that minimize energy consumption while guaranteeing the
absence of deadline misses. In addition, a major contribution of this work is to
consider more realistic assumptions in the model, which allow the method to be
used in practical applications. In particular, the proposed method presents the
following characteristics:

—The algorithm applies to a set of tasks, where deadlines are allowed to be less
than or equal to periods (or minimum interarrival times).

—Any possible task activation pattern (periodic, sporadic, jitter, bursty,. . . ) can
be taken into account.

—The algorithm is independent of the task schedule, so it is robust against potential
domino effects due to the misbehavior of one or more tasks.

—It does not assume a continuous range of available speeds in the processor, but
a set of discrete operating modes, each characterized by speed and power con-
sumption. The transition delay and energy overhead between any two modes is
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taken into account.

—A more accurate task model, introduced by Seth et al. [Seth et al. 2003], is
considered in the analysis to take into account the effects of modern processors
with variable speed. According to this model, task computation times consist of
a part that scales with the speed and a part having a fixed duration (typically
due to the instructions accessing the external bus).

—The analysis is presented both for fixed and dynamic priority systems, and it is
easily extensible to any other scheduling policy.

—The minimal energy solution within the proposed scheme is found, since the
algorithm is based on exact schedulability analysis.

—The proposed method provides a general framework to describe the schedulability
domain, thus enabling the user to select the appropriate design parameters based
on a given cost function.

The rest of the paper is organized as follows. Section 2 introduces the system
model used throughout the paper. Section 3 presents a model for expressing the
computational demand of the application to the processor, considering both EDF
and FP scheduling. Section 4 presents the power management policy and describes
the method for selecting the operating modes that minimize the energy consump-
tion. In Section 5 and 6 we explain the design methodology also by using two
clarifying examples. Finally, Section 7 states our conclusions and future work.

2. SYSTEM MODEL

2.1 Task model

We consider a set T = {τ1, . . . , τn} of n tasks that have to be scheduled on a single
processor with voltage control capabilities. A task τi is a sequence of jobs τi,k

(k = 1, 2, . . .), each characterized by a number Ci of worst-case execution cycles
(WCECs), and a relative deadline Di. The activations of τi are modeled by the
function acti (t), which denotes the maximum number of activations in any interval
long t. This task model is borrowed from the event stream task model [Gresser
1993; Richter and Ernst 2002]. We also assume that the deadline Di is not greater
than the minimum separation between two consecutive activations. To analyze the
schedulability under EDF, we use jobsi (t) to denote the number of τi jobs whose
arrival time and deadline are in the interval [0, t]. If τi is a periodic task with period

Ti, we have acti (t) =
⌈

t
Ti

⌉

and jobsi (t) = max
{

0,
⌊

t−Di+Ti

Ti

⌋}

.

Tasks are fully preemptive and do not perform blocking operations. Note that
intertask communication can still be performed using non-blocking mechanisms,
such as Cyclic Asynchronous Buffers [Buttazzo 2004].

As observed by Seth et al. [Seth et al. 2003], not all execution cycles scale with the
processor speed, because some operations deal with memory or other I/O devices,
whose access time is fixed. The typical example is provided by a memory read: if
the data to be read is present in the cache, then the instruction runs at the speed
of the processor and so it scales with it. On the other hand, if a cache miss occurs
the data is read from the bus. In this case, the duration of the operation is imposed
by the bus clock that does not scale with the processor speed.
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To take this into account, the number Ci of worst-case execution cycles required
by a task is split in two portions: ci (processor cycles) scales with the clock frequency
and mi (seconds) does not. Thus we have [Seth et al. 2003]:

Ci = ci + α mi (1)

where α is the processor speed in cycles per second (cyc/sec).

2.2 Energy model

In CMOS circuits, the power consumption due to dynamic switching dominates
the power lost by leakage currents, and the dynamic portion of power consumption
is modeled by well known polynomial relationships [Chandrakasan and Brodersen
1995; Hong et al. 1998]. However, as the integration technology advances, it is
expected that the leakage will significantly affect, if not dominate, the overall energy
consumption in integrated circuits (ICs) [Rabaey et al. 2002]. Recently, some work
addressed the issue of scheduling a real-time application while reducing the leakage
power as well [Quan et al. 2004].

These remarks suggest that the classical polynomial relationship [Rabaey et al.
2002] should be reconsidered. Throughout the paper we assume that a power-aware
processor is characterized by a set M = {Λ1, Λ2, . . . , Λp} of p operating modes,
where each mode Λk = (αk, pk) is described by two parameters: αk is the processor
speed in mode k and it is measured as number of cycles per second (cyc/sec); pk is
the power consumed in mode k, measured in Watts.

In a recent work, AbouGhazaleh et al. [AbouGhazaleh et al. 2002] took into
account in great detail the speed switching overhead, besides a more general policy
for placing power management procedure calls in the application code. In their
model, the speed switching overhead may be software, due to the computation of
the new speed, and hardware, due to power management circuits.

Following their scheme, in this paper, the overhead is taken into account through
a matrix of time overheads O, where each element oij , i 6= j, is the time overhead
required to switch from the operating mode Λi to Λj. Similarly we account for
energy spent during mode transitions by introducing the matrix of energy overheads
E , where each element eij , i 6= j denotes the energy spent when switching from mode
Λi to mode Λj . Both matrices may be non-symmetric.

3. COMPUTING THE OPTIMAL SPEED

In this section we show the method to compute the minimum constant speed which
allows all the deadlines of tasks in T to be met. We consider two major scheduling
strategies: Earliest Deadline First (EDF) and Fixed Priority (FP) scheduling. The
procedure explained in this section can be viewed as a function findOptSpeed, which
takes the task set T and the scheduling algorithm as inputs and it returns the
optimal speed αopt as output.

3.1 EDF analysis

The feasibility of a periodic task set under EDF can be analyzed through the
Processor Demand Criterion, proposed by Baruah, Howell and Rosier [Baruah et al.
1990], according to which a set of periodic tasks simultaneously activated at time
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zero can be feasibly scheduled by EDF if and only if:

∀t ∈ dSet

n
∑

i=1

jobsi(t)Ci ≤ t (2)

where dSet is the set of all time instants where the test has to be performed.
It has been proved that the set dSet is the set of all the deadlines within the

first busy period [Baruah et al. 1990; Ripoll et al. 1996]. Unfortunately, the length
of the busy period depends on the speed. Hence we assume dSet to be equal to
the entire set of all deadlines before the least common multiple of all the periods
Ti (called hyperperiod in the literature). It is still under investigation whether the
set of points in dSet can be tightly reduced. However the validity of the presented
results is not affected by this improvement.

If the processor runs at frequency α, only αt cycles are available in [0, t] and,
considering the execution model given in equation (1), the schedulability condition
becomes:

∀t ∈ dSet

n
∑

i=1

jobsi(t) (ci + α mi) ≤ α t. (3)

We can derive the condition that α has to satisfy in order to guarantee the
schedulability of the task set:

∀t ∈ dSet α ≥

∑n

i=1 jobsi(t) ci

t−
∑n

i=1 jobsi(t)mi

. (4)

Then, the minimum speed αopt that ensures feasibility is

αopt = max
t∈dSet

∑n

i=1 jobsi(t) ci

t−
∑n

i=1 jobsi(t)mi

. (5)

When relative deadlines are equal to periods, it is known that the maximum
occurs when t is equal to the hyperperiod H = lcm(T1 T2, . . . , Tn), thus we have
that:

αopt =

∑n

i=1 ci/Ti

1−
∑n

i=1 mi/Ti

(6)

which is equivalent to the result provided in [Seth et al. 2003].

3.2 FP analysis

When using a fixed priority assignment, the necessary and sufficient feasibility
condition is:

∀i = 1, . . . , n ∃t ∈ tSeti Ci +

i−1
∑

j=1

actj (t) Cj ≤ t

where tSeti is the set of scheduling points [Lehoczky et al. 1989; Bini 2004] relative
to task τi, where the test has to be performed.

Considering a processor running at speed α and using the more complete model
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for the task computation times [Seth et al. 2003], we have

∀i = 1, . . . , n ∃t ∈ tSeti ci + α mi +
i−1
∑

j=1

actj (t) (cj + α mj) ≤ α t.

Hence, following the same steps which allowed us to derive Eq. (5) from Eq. (2) for
an EDF scheduler, the optimal speed αopt for the task set scheduled by FP is given
by:

αopt = max
i=1,...,n

min
t∈tSeti

ci +
∑i−1

j=1 acti (t) cj

t−mi −
∑i−1

j=1 acti (t) mj

, (7)

which provides the minimum speed the processor can run to feasibly schedule the
task set with fixed priorities.

Equation (7) generalizes a previous result [Pillai and Shin 2001]. By setting
tSeti = {Di} for all i = 1, . . . , n we can find the same speed computed by Pillai and
Shin [Pillai and Shin 2001]. However tSeti can be strictly larger than {Di}, hence
their result provides only a suboptimal solution.

Also the algorithm Sys-Clock, proposed by Saewong et al. [Saewong and Rajku-
mar 2003], produces exactly the same result of Equation (7), but it considers the
larger set of schedulability points initially proposed by Lehoczky et al. [Lehoczky
et al. 1989].

4. POWER MANAGEMENT

Once the ideal speed αopt is computed, different techniques can be adopted to
minimize the power consumption. In the unlikely case of availability of an operating
mode Λk running exactly at the desired speed αk = αopt, we simply select it.
Otherwise we have to properly manage the available processor operating modes to
approximate the optimal speed.

4.1 The PWM scheme

The simplest solution is to select the least consuming speed higher than the optimal
one αopt among the available operating modes. This solution can consume a large
amount of energy, although very simple to implement. Saewong et al. [Saewong
and Rajkumar 2003] evaluated the cost of “rounding up” the processor speed.

Instead, we propose to switch between two operating modes, ΛL and ΛH , such
that αL < αopt < αH , as suggested by Ishihara et al. [Ishihara and Yasuura 1998].
Such a switching scheme will be referred to as the PWM-mode, for the similarity
with the pulse width modulation technique used to drive DC servomotors [Tal and
Person 1978]. When using a PWM-mode, however, the speed switching overhead
has to be considered. An example of the speed alternation scheme is illustrated in
Figure 1. As it can be noticed in the figure, in the proposed scheme the processor
runs for QH time units in the ΛH mode and for QL in the ΛL mode. The overheads
oHL, oLH are included within the length of QL, QH respectively, so that the period
of the scheme is P = QL + QH . Sometimes we will also use the frequency of the
scheme f = 1

P
. In the figure we also highlight in gray the areas corresponding to

the amount of cycles that are wasted due to the time overhead. We denote this
amount by ∆LH and it is equal to αHoLH + αLoHL. Finally λL = QL

P
denotes the
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oLHoHL
QH QL

αH

αL

αopt

α(t)

t

Fig. 1. An example of PWM-mode.

fraction of time during which the processor runs in ΛL mode, and QH

P
= 1−λL the

fraction of time in the mode ΛH .

4.2 Selecting ΛL and ΛH

Given the switching scheme, the first goal is to properly select the two operating
modes ΛL and ΛH . For convex power-speed relationships, the speed pair (αL, αH)
that minimizes the power consumption in the PWM-mode is given by the two
speeds closest to αopt [Ishihara and Yasuura 1998]. However the power-speed rela-
tionship may be different than the ideal polynomial function [Rabaey et al. 2002]
and there may be modes with the same speed, but different power consumption
(due to different voltage). For example, the Transmeta Crusoe processor has four
different idle modes (Auto Halt, Quick Start, Deep Sleep, Extended Deep Sleep)
which have decreasing power consumption although increasing overhead.

The effective speed αeff achieved by the processor staying for QL in mode ΛL

and QH in mode ΛH can be computed as follows:

αeff =
αH (QH − oLH) + αL (QL − oHL)

QH + QL

= λLαL + (1− λL)αH −∆LHf. (8)

Equation (8) is quite insightful, since it highlights the active contribution to the
effective speed due to the two speeds αL and αH and the loss due to the presence
of time overhead. As expected, the speed loss due the mode switching grows with
the frequency of the scheme f and it becomes negligible for f approaching zero.

Following a similar approach it is also possible to express the average power
consumption by the following simple expression:

peff =
pH (QH − oLH) + pL (QL − oHL)

P
+

eLH + eHL

P
= λLpL + (1− λL)pH + Eswf (9)

where Esw denotes the energy wasted during the two mode switches in one period
P :

Esw = eLH − pHoLH + eHL − pLoHL. (10)

A convenient way to illustrate the method to select the mode pair (ΛL, ΛH)
which minimizes the power consumption is to represent the operating modes of
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the processor in a power/speed graph. Let us assume the operating modes of a
sample processor reported in Table I. For simplicity, in this example both time and
energy overhead oik and eik do not depend on the previous mode Λi but only on
the entered mode Λk.

k 1 (idle) 2 3 4 5 6

αk [MHz] 0 5 30 40 50 80
pk [mW] 0 20 50 50 200 500

oik = ojk [µsec] 1000 10 50 200 40 20
eik = ejk [µJ] 50 1 5 10 10 60

Table I. An example of processor operating modes.

These modes are represented in Figure 2 by black dots. For all the possible pairs
(ΛL, ΛH) the dashed lines contain all the values (αeff , peff) achievable by varying
λL ∈ [0, 1].

100 20 30 40 50 60 70 80
0

50

100

150

200

250

300

350

400

450

500

pk [mW]

αk [MHz]Λ1

Λ2

Λ3

Λ4

Λ5

Λ6

αopt

peff

Fig. 2. The operating modes in the power/speed space.

Basically, the PWM scheme introduces additional “virtual” operating modes
which are given by the convex combination of any two real modes. Clearly there
may be more than one mode pair for reproducing a desired speed value αopt. In
the example depicted in the figure the speed of αopt = 45MHz can be reproduced
in 8 different ways by selecting ΛL ∈ {Λ1, Λ2, Λ3, Λ4} and ΛH ∈ {Λ5, Λ6}. Among
the possible pairs, the one that consumes least power is (Λ4, Λ6).
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The selection procedure described until now neglects the delay and the energy
overhead incurred at mode switches. As the period P decreases, the impact of the
overheads becomes significant. Below some threshold period value we expect that
it is more convenient to run continuously in the same mode rather than switching
frequently between two modes. Let us evaluate the impact of the overhead in detail.

Suppose we want to emulate a given speed value αopt. Then we can find the
fraction of time λL to stay in the mode ΛL by setting αeff = αopt, as follows

αopt = αeff

αopt = λLαL + (1− λL)αH −∆LHf

λL =
αH − αopt −∆LHf

αH − αL

. (11)

Hence the power consumed can be obtained by replacing this value of λL, which
guarantees a speed equal to αopt, in Eq. (9). We find

peff =
αH − αopt

αH − αL

pL +
αopt − αL

αH − αL

pH + f

(

pH − pL

αH − αL

∆LH + Esw

)

. (12)

Equation (12) shows that the power peff consumed when guaranteeing the speed
αopt increases proportionally with the frequency f of the PWM scheme. The pro-
portionality coefficient increases for large overheads. This confirms the intuition
that the impact of the overhead is greater for small periods P . Moreover, it follows
that the least consuming pair (ΛL, ΛH) may vary with the frequency f depending
on the energy overheads and the energy spent in the mode switch.

To clarify the effect of the overheads we propose the same example whose data
is reported in Table I. In Figure 3 we plot the power consumption peff with respect
to the scheme frequency f . When f approaches to 0 then the least consuming pair
is (Λ4, Λ6), as we showed in Figure 2 as well. However, the overheads of the modes

25002000150010005000
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0.16

0.14

0.12
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0.24

mode
optimal (Λ4, Λ6) (Λ3, Λ5) (Λ2, Λ5) Λ5 only

f [Hz]

p
e
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w
h
en

α
e
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=
α

o
p
t

[W
]

Fig. 3. The least consuming pair as a function of f .
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Λ4 and Λ6 are relevant. Hence, it follows that the rate of increase of peff with
respect to f is high (see Eq. (12)). At frequency f = 442Hz it happens that the
mode pair (Λ3, Λ5), which has smaller overheads, becomes more convenient than
(Λ4, Λ6). Then at frequency f = 886Hz the pair (Λ2, Λ5) becomes more efficient.
Finally, when f ≥ 1818Hz then the PWM scheme is no longer convenient since any
mode pair will consume more than simply running constantly in mode Λ5, which
can indeed guarantee the task deadlines since α5 = 50 ≥ 45 = αopt. The presence
of a critical frequency f (1818Hz in the example) above which the PWM scheme is
no longer convenient is a consequence of the non-zero overhead. This phenomenon
also appears when assigning a speed to the tasks [Irani et al. 2003; Aydin et al.
2006].

The procedure described above is implemented by the algorithm findPairs that
returns the set of candidate pairs, given the desired speed αopt and the power
consumption pmax of the least consuming mode which can feasibly schedule the
task set. When the algorithm is invoked by candidatePairs = findPairs(αopt, pmax)
it returns a vectors of records candidatePairs[i] whose fields are:

(1) modeL, the mode ΛL of the pair;

(2) modeH, the mode ΛH of the pair;

(3) lowFreq, the lower bound of the frequency interval where the pair is convenient;

(4) uppFreq, the upper bound of the frequency interval where the pair is convenient;

(5) minPow the minimum possible power consumption by the pair (i.e. when f =
lowFreq).

In Table II we report the result of the invocation candidatePairs(45 · 106, 0.2),
showed in the previous example (see also Fig. 3). This procedure will be used in

i modeL modeH lowFreq[Hz] uppFreq[Hz] minPow[mW]

1 4 6 0 442 106
2 3 5 442 886 176
3 2 5 886 1818 190

Table II. Results returned by findPairs.

the algorithm for the complete design presented in Section 6.
From the discussion developed until now it seems that the solution that saves

more energy is f = 0, which means to have an arbitrarily large period P . However,
if we adopt this solution the scheme will also experience arbitrary large intervals
where the processor is running continuously in mode ΛL. During this period we
are going to miss some deadlines since αL < αopt. This problem is caused by a
subtle implicit assumption we made: we assumed that the PWM scheme provides a
constant speed αeff , whereas the speed αeff is only approximated by the switching
between two speeds αL and αH .

In the next section we will overcome this assumption by finely modeling the
amount of cycles provided by the PWM scheme.

ACM Transactions on Computational Logic, Vol. V, No. N, December 2008.
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4.3 Processor supply function

To exactly model the cycles provided by the management scheme, we will follow
the demand/supply approach [Almeida et al. 2002; Feng and Mok 2002; Lipari and
Bini 2003; Shin and Lee 2003], which has been successfully proposed to model a
hierarchical scheduler. The key idea is that the time demanded by the application
must never exceed the time supplied to it, otherwise some deadlines may be missed.

Following this approach the number of cycles supplied by the processor is modeled
using a function Z(t), defined as the minimum number of cycles the processor can
provide in every interval of length t. More formally, if α(t) denotes the processor
speed at time t, Z(t) can be defined as follows:

Z(t) = min
t0

∫ t0+t

t0

α(x) dx. (13)

We now consider the problem of expressing the proper supply function Z(t) when
a specific speed handling policy is adopted for the processor.

Since α(t) has periodicity P = QL +QH , we can restrict the study of Z(t) in the
interval [0, P ). In fact the property that:

Z(t + kP ) = Z(t) + k αeffP (14)

allows the definition of Z(t) for all t.
From Eq. (13), it follows that Z(t) = 0 for all t that are smaller than of equal

to the longest interval during which no cycle is provided [Almeida et al. 2002;
Feng and Mok 2002; Lipari and Bini 2003; Shin and Lee 2003]. Due to the speed
switching overhead, the longest time where no processor cycle is available is omax =
max{oLH , oHL}. For this reason Z(t) = 0 for t ∈ [0, omax). Then, for t > omax

some cycles are available. In the worst case, the available cycles increase with the
rate αL. This amount of processor cycles is provided for QL − oHL. Then the
second (shorter) switching overhead occurs omin = min{oLH , oHL}. Finally, in the
last part of the period P , the cycles are provided at the maximum speed αH . The
resulting profile of Z(t) in the interval [0, P ) is the following:

Z(t) =















0 t ∈ [0, omax)
αL(t− omax) t ∈ [omax, omax + QL − oHL)
αL(QL − oHL) t ∈ [omax + QL − oHL, QL + oLH)
αH(t− P ) + αeffP t ∈ [QL + oLH , P )

(15)

The supply function Z(t) for the PWM-mode is also illustrated in Figure 4. We
remark that the supply function depends also on the parameters αL, QL, oHL, αH ,
QH , and oLH , although not explicitly stated in the notation Z(t) for simplicity.

5. COMPUTING QL AND QH

Given the pair (ΛL, ΛH), in this section we compute the exact lengths QL and QH ,
starting from the exact expression of the processor supply function Z(t). Unfor-
tunately, in the previous section we showed that the least consuming mode pair
depends on the period of the scheme P = QL + QH . This circular dependency be-
tween “the selection of the mode pair (ΛL, ΛH)” and “the computation of (QL, QH)”
will be solved by a branch-and-bound algorithm later in Section 6.
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Z(t)− k αeffP

t− kP

ominomax QL − oHL QH − oLH

αL(QL − oHL)

αeffP

Fig. 4. The supply function Z(t).

Since we do not know when the non-scalable computation time will occur during
task execution (that is, when running at αL or at αH), we must safely assume
that all the non-scalable portions of tasks are executed at speed αH , so that the
worst-case execution cycles are maximized. Hence we set

∀i = 1, . . . , n ci ← ci + miαH , mi ← 0 (16)

However we remind that, as shown in [Seth et al. 2003], the impact of mi vs. ci is
minor, meaning that this overestimation is reasonably tight.

When adopting the EDF scheduling algorithm, the exact schedulability condition
of the task set T on the PWM scheme becomes

∀t ∈ dSet

n
∑

i=1

jobsi(t)Ci ≤ Z(t) (17)

meaning that the demanded cycles must not exceed the provided cycles, which are
modeled by the function Z(t) of Equation (15).

In a similar fashion, when tasks are scheduled by fixed priorities, the exact schedu-
lability condition is:

∀i = 1, . . . , n ∃t ∈ tSeti Ci +

i−1
∑

j=1

acti (t) Cj ≤ Z(t).

Notice that in both scheduling algorithms the basic condition that needs to be
checked can be expressed in the form:

W (t) ≤ Z(t) (18)

where the scheduling algorithm only affects the way in which W is defined and the
instants t where the inequality has to be verified to ensure schedulability. Table III
summarizes the t and W for the two scheduling algorithms.

We now proceed by computing the optimal pair (Qopt
L , Qopt

H ) that minimizes
energy consumption. We first introduce the notion of basic Q-domain:

Definition 1. The basic Q-domain Q(t, W ) is the set of pairs (QL, QH) such
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Alg. Instants t Demand W

EDF ∀t ∈ dSet
Pn

i=1 jobsi(t)Ci

FP ∀i = 1, . . . , n ∃t ∈ tSeti Ci +
Pi−1

j=1 actj (t) Cj

Table III. The demand/supply scheme.

that

W (t) ≤ Z(t), (19)

where Z(t) is the cycle supply function defined in Eq. (15), which depends on
(QL, QH). Formally:

Q(t, W ) = {(QL, QH) : W ≤ Z(t)}. (20)

The advantage of defining Q(t, W ) is that the feasible pairs (QL, QH) are easily
expressed as a combination of basic Q-domains. In fact, from the equivalence

W ≤ Z(t) ⇔ (QL, QH) ∈ Q(t, W )

Equation (17) allows to prove that a task set scheduled by EDF will never miss a
deadline in the PWM scheme if and only if :

∀t ∈ dSet (QL, QH) ∈ Q

(

t,

n
∑

i=1

jobsi(t)Ci

)

(QL, QH) ∈
⋂

t∈dSet

Q

(

t,

n
∑

i=1

jobsi(t)Ci

)

. (21)

For the same reason, when fixed priorities are used, the set of admissible (QL, QH)
is:

(QL, QH) ∈
⋂

i=1,...,n

⋃

t∈tSeti

Q



t, Ci +

i−1
∑

j=1

actj (t) Cj



 . (22)

Now we focus on finding the basic Q-domain Q(t, W ) for generic t and W .
The analytical expression of Q(t, W ) can be found by inverting Equation (18),

assuming Z(t) as in Equation (15), thus expressing (QL, QH) as a function of W , t,
αL, oHL, αH and oLH . First we set k =

⌊

t
P

⌋

. Using the property in Equation (14),
the condition W ≤ Z(t) becomes:

Z(t− kP ) + k αeffP ≥W (23)

As we can see from the definition of Z(t) of Equation (15), four cases need to be
considered:

(1) when t− kP ∈ [0, omax):

k αeff P ≥W ⇔

αLQL + αHQH ≥
W

k
+ ∆LH . (24)
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(2) when t− kP ∈ [omax, omax + QL − oHL):

αL(t− kP − omax) + k αeffP ≥W ⇔

QH ≥
W + k∆LH − αL(t− omax)

k(αH − αL)
. (25)

(3) when t− kP ∈ [omax + QL − oHL, QL + oLH):

αL(QL − oHL) + k αeffP ≥W ⇔

(k + 1)αLQL + kαHQH ≥W + αLoHL + k∆LH . (26)

(4) when t− kP ∈ [QL + oLH , P ):

αH(t− (k + 1)P ) + (k + 1)αeffP ≥W ⇔

QL ≤
αHt− (k + 1)∆LH −W

(k + 1)(αH − αL)
. (27)

Equations (24), (25), (26) and (27) allow to construct the region Q(t, W ) for any
value of t and W . Then, by combining these regions as described in Equations (21)
and (22) we can finally find the feasible pairs (QL, QH), which allows to construct
a PWM-scheme that guarantees all the deadlines.

The construction of the region of the feasible time quanta (QL, QH) is imple-
mented by the procedure buildQDomain that takes as inputs the modes ΛL and
ΛH , the task set T , and the scheduling algorithm, and it returns the region of the
feasible (QL, QH). This procedure is used in Section 6 to implement the complete
algorithm for the selection of the modes ΛL, ΛH , and the QL, QH which minimize
the energy consumption.

5.1 Selecting the least consuming (QL, QH)

Once the region of the feasible values of (QL, QH) is described, we select the pair
(QL, QH) which minimizes the power consumption expressed in Eq. (9). It is
quite interesting to study how the power consumption peff varies as a function
of (QL, QH). From Eq. (9) we find

peff =
QL

QL + QH

pL +
QH

QL + QH

pH +
1

QL + QH

Esw

(QL + QH)peff = QLpL + QHpH + Esw

(peff − pL)QL − (pH − peff)QH = Esw (28)

meaning that the level curves of a constant peff are lines in the plane (QL, QH) with

a unique point of intersection at
(

Esw

pH−pL

,− Esw

pH−pL

)

. The algorithm for finding the

least consuming pair (QL, QH) is implemented by the procedure minNrgQ, which
will be used also in Section 6.

5.2 Example of applicability

To clarify the method adopted for building the space of the feasible (QL, QH) and
selecting the pairs which consumes the minimum amount of energy, we propose
a simple example with only one task. Later in Section 6.1 we show an example
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where the selection of the modes and the time quanta is performed in an integrated
framework.

Let us suppose that we have only one task whose data are:

—scalable execution cycles c1 = 240 · 103cyc;

—non-scalable computation time m1 = 400 µsec;

—period and deadline T1 = D1 = 9.6 msec.

From Equation (6) we find that:

αopt =
c1/T1

1−m1/T1

= 26.087MHz. (29)

We suppose this speed is not available and the two closest available operating
modes are ΛL = (20MHz, 200mW), ΛH = (40MHz, 800mW) and the overheads
oHL = 160µsec, oLH = 240µsec, eLH = eHL = 220µJ. Since we do not know when
the non-scalable computation time occurs during task execution (that is, when
running at αL or at αH), we must safely assume that the non-scalable portion of
task executes at speed αH , so that the worst-case execution cycles are maximized.
Hence the required cycles are

C1 = c1 + m1αH = 256 · 103cyc. (30)

as indicated in Eq. (16).
In order to schedule the task, the PWM-mode must supply at least C1 cycles in

every interval T1. So it must be:

Z(T1) ≥ C1.

Notice that this condition ensures the task schedulability both under FP and EDF,
because the two algorithms coincide when only one task is in the system. The
resulting set Q(T1, C1) is shown in Figure 5 in white.

For each value of k (remember that k =
⌊

t
P

⌋

=
⌊

T1

QL+QH

⌋

) the domain boundary

is composed by the four segments of Equations (24)–(27), since Z(t) is defined on
four different intervals.

In Figure 5 we also represent by dotted lines the level curves of a constant power
consumption peff , defined by Equation (28). For each line the power saving of peff

with respect to pH is reported. These lines all intersect at the point (0.36,−0.36)

since Esw

pH−pL

= 216·10−6

600·10−3 = 0.36msec. The admissible pair that achieves the greatest
power saving is at the vertex with QL = 5.76 msec and QH = 3.84 msec, where the
power consumed is peff = 462.5mW, which allows to save the 42.2% of energy with
respect to running continuously in mode ΛH .

6. THE COMPLETE DESIGN ALGORITHM

In Section 4.2 we showed the method to select the least consuming pair (ΛL, ΛH)
for a given period of the scheme P = QL + QH . Given the mode pair (ΛL, ΛH), in
Section 5 we described the region of all the feasible values of (QL, QH) which guar-
antee the deadline constraints of the tasks in T . We also described (in Section 5.1)
how to select the least consuming time quanta in the feasible region. Unfortunately
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Fig. 5. Schedulability region (white area) in the Q-Space.

the mode selection requires the knowledge of the scheme period QL + QH , whereas
the time quanta selection requires to know the modes ΛL and ΛH in advance.

Such a circular dependency between “the selection of the mode pair (ΛL, ΛH)”
and “the computation of (QL, QH)” is solved by the branch-and-bound algorithm
reported in Figure 6.

The algorithm takes as inputs the task set T and the scheduling algorithm alg

(currently we developed the solution only for EDF and FP as scheduling algo-
rithms). First we compute the optimal constant speed αopt, which can guarantee
the deadlines, and minimum power consumption of the available modes which can
run not slower than αopt (lines 2–3). The solution is initialized with the zero so-
lution that is running constantly in the same mode. At line 6 we store in modeP

all the possible mode pairs that can reproduce the speed αopt without exceeding a
power consumption pmax. Then we loop (line 7) on all the candidate pairs that can
possibly provide a better solution than the current (line 8).

For each candidate pair (ΛL, ΛH), first we modify the worst-case execution cycles
assuming that the non-scalable part occur when running at speed αH (lines 13–14).
Then we build the region of the feasible time quanta (line 15) and we intersect
it with the constraints deriving from the selection of current mode pair (ΛL, ΛH).
In fact, at this stage we must remember that the current mode pair is the least
consuming only within a given interval of P = QL + QH (see Section 4.2 and
Fig. 3). Finally, we compute the least consuming pair (QL, QH) and we compare
the power consumption with the last solution.
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1: procedure optimPWMscheme(T , alg) ⊲ task set, scheduling alg.
2: αopt ← findOptSpeed(T , alg) ⊲ computation of αopt in Sec. 3
3: pmax ← min{pk : αk ≥ αopt} ⊲ min power of a feasible speed
4: curPair← 0 ⊲ the “pair” 0 means that a constant mode is used
5: curPow ← pmax

6: modeP← findPairs(αopt, pmax) ⊲ see Sec. 4.2
7: for j = 1, . . . , length(modeP) do ⊲ loop on the pairs
8: if modeP[j].minPow ≥ curPow then

9: do nothing ⊲ no better solution is possible. Skip the pair
10: else

11: L← modeP[j].modeL ⊲ current low mode

12: H ← modeP[j].modeH ⊲ current high mode
13: ∀i T ′.ci ← T .ci + T .mi αH ⊲ see Eq. (16)
14: ∀i T ′.mi ← 0
15: domQ← buildQDomain(ΛL,ΛH ,T ′, alg) ⊲ see Eq. (21), (22)
16: ⊲ intersect with the period constraint
17: domQ← domQ ∩ {modeP[j].lowFreq ≤ 1/P ≤ modeP[j].uppFreq}
18: (QL, QH)← minNrgQ(domQ) ⊲ see Sec. 5.1
19: peff = QLpL+QH pH+Esw

QL+QH

⊲ from Eq. (9)

20: if peff < curPow then ⊲ the current pair is better
21: curPair← j
22: curPow = peff

23: store the values (QL, QH)
24: end if

25: end if

26: end for

27: end procedure

Fig. 6. Algorithm for computing the least consuming (QL, QH).

We must say that the algorithm described in Figure 6 is indeed very complex. The
most complex activity is the invocation of buildQDomain that requires to compose
as many basic Q-domains as the number of points in dSet, if EDF is used, or
as many as in tSet, if FP is used. Unfortunately the cardinality of these set is
exponential in the number of tasks. This makes the routine impractical for on-line
usage. However the main purpose of the procedure is to design off-line a PWM
scheme that is capable to minimize the energy.

In the next section we propose a simple example to better show the applicability
of the algorithm.

6.1 Example of applicability

In this example we consider a set of three periodic tasks with periods T1 = 3msec,
T2 = 8msec, and T3 = 20msec. The worst-case execution cycles are c1 = c2 = 105

and c3 = 2 · 105, where the non-scalable parts mi are assumed equal to zero for
simplicity. Deadlines are set equal to periods. The available operating modes are
those reported in Table I.

We start assuming an EDF scheduler. Since deadlines are equal to periods then
the optimal speed αopt is equal to

∑

i
ci

Ti

= 55.83MHz. The only mode that can
provide this speed is Λ6, whose power consumption is pmax = p6 = 500mW.

The mode pairs that can reproduce the speed αopt are reported in Table IV.
For convenience, the table reports the maximum and minimum periods Pmax, Pmin
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Fig. 7. The feasible (QL, QH), when ΛL = Λ4 and ΛH = Λ6.

instead of their respective inverse lowFreq and uppFreq.

modeL modeH Pmax[msec] Pmin[msec] minPow[mW]

4 6 +∞ 2.317 228
5 6 2.317 0.364 296

Table IV. Results of findPairs, when αopt = 55.83MHz.

Now we start considering the first of the two possible solutions. The first candi-
date mode pair (Λ4, Λ6) is the least consuming only when QL+QH ≥ 2.317msec. In
Figure 7 we draw in black the boundary of the feasible (QL, QH) values, intersected
with the lower bound on the period P = QL + QH .

As explained in Section 5.1, the optimum occurs at the intersection between the
line with the minimum speed and the feasible values (QL, QH). In the EDF case,
we find QL = 3.412msec and QH = 2.302msec, achieving a power consumption
peff = 242.5mW.

If we consider the second candidate pair (Λ5, Λ6) (see Table IV) we realize that the
current solution allows consuming less than any possible solution running according
to the second pair. Hence the solution running for 3.412msec in mode Λ4 and for
2.302msec in Λ6 is the best solution for EDF.

It is quite insightful to find the optimal solution also when a FP scheduler is
adopted. From Eq. (7) it follows that the optimal speed is αopt = 60MHz. Then
the resulting candidate mode pairs are reported in Table V.

In Figure 7 we overlap in gray the feasible time quanta (QL, QH) when the
FP scheduler is adopted. The optimal solution found is QL = 3.294msec and
QH = 3.374msec, which consumes peff = 287.3mW. It is again not necessary to
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modeL modeH Pmax[msec] Pmin[msec] minPow[mW]

4 6 +∞ 2.800 275
5 6 2.800 0.440 331

Table V. Results of findPairs, when αopt = 60MHz.

evaluate any solution with the other mode (Λ5, Λ6), because the power consumed
by this solution is less than the minimum power consumption achievable in this
second pair.

7. CONCLUSIONS AND FUTURE WORK

In this paper we presented a method for minimizing the energy consumption in
periodic/sporadic task systems executing in processors with a discrete number of
operating modes, each characterized by speed, power consumption, transition delay,
and energy overhead. The proposed approach allows the user to compute the
optimal sequence of voltage/speed changes that minimizes the energy consumption
while guaranteeing the feasibility of the schedule.

The analysis has been carried out under a set of realistic assumptions and the in-
creased complexity has been handled through a hierarchical scheduling approach [Almeida
et al. 2002; Feng and Mok 2002; Lipari and Bini 2003; Shin and Lee 2003], which
considers the processor speed manager as a server providing processor cycles to the
requesting application. By means of this separation of concerns, the problem has
been divided into the analysis of the number of cycles demanded by the application
and the analysis of the number of cycles provided by the processor.

This approach has the benefit of proposing a general framework to describe the
schedulability domain, applicable under fixed as well as dynamic priority assign-
ments, thus enabling the user to select the appropriate design parameters based on
a given cost function.

α(t)

t

α1

α2

α3

α4

α5

P 2P 3P 4P 5P 6P 7P 8P 9P 10P

Fig. 8. Applying the PWM-mode to a dynamic scheme.

In the future we plan to combine our static analysis to dynamic algorithms, in
order to combine the advantages of our PWM-mode management with the greater

ACM Transactions on Computational Logic, Vol. V, No. N, December 2008.



markboth2 · 21

amount of power savings due to reclamation of unused processor cycles. As de-
picted in Figure 8, the idea is to modulate the time-variant speed α(t) by switching
periodically between the available operating modes.
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