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Abstract—In the last years, there has been a considerable libraries and tools available as open source code that can be
interest in using the Linux operating system in real-time sgtems, ysed to build a customized version of the Linux OS.

especially in control systems. The simple and elegant desi®f — apother reason for the usage of Linux in real-time systems
Linux guarantees robustness and very good performance, whd . it id larit d It has the simpl d
its Open Source license allows to modify and change the soerc 'S 'S WIG€ popularity and success. It has hé Ssimpie an

code according to the user needs. elegant design of the UNIX OSs, which guarantees a very

However, Linux has been designed to be a general-purpose stable, robust and secure system. Moreover, it has extellen
operating system. Therefore, it presents some issues, likmpre-  performance and a good protocol stack implementation. The
dictable latencies, limited support for real-time scheduhg, and portability of code from different UNIX operating systems

coarse-grain timing resolution that might be a problem for real- . .
time applications. is ensured by the well-knowfiPortable Operating System

For these reasons, several modifications have been proposednterface” (POSIX) API. This is an IEEE standard defining
to add “real-time” features to the kernel. In this paper, we gve the basic environment and set of functions offered by the
a brief description of the many existing approaches to supp  operating system to the application programs. Finallyhtixge
real-time applications in Linux. Moreover, we take a look atthe community of engineers and developers working on Linux
E;(npuethf?)(rj mgfibﬁzsrﬁgt'rne%ﬂrn?teV;ﬁpb;(l'ﬁ_ve will be the fute of o\ 65 finding expert kernel programmers very easy. _

Thus, when compared to commercial real-time operating

systems (RTOSSs) in terms of cost of development, Linux has

|. INTRODUCTION goqd_chances to be the_ winner. pnfortunately, the standard
mainline kernel (as provided by Linus Torvalds) is not ade-

Linux is a full-featured operating system, originally deqguate to be used as RTOS. Linux has been designed to be a
signed to be used in server or desktop environments. Sinfgheral-purpose operating system (GPOS), and thus not much
then, Linux has evolved and grown to be used in almogftention has been dedicated to the problem of reducing the
all computer areas — among others, embedded systems pfiéncy of critical operations. Instead, the main desigal @b
parallel clusters. the Linux kernel has been (and still remains) to optimize the

In the last years, there has been a considerable intereshirage throughput (i.e., the amount of “useful work” dogie b
using Linux for real-time control systems, from both acasemthe system in the unit of time). As we will show in Section lIl,
institutions, independent developers and industriesréfhee a Linux program may suffer high latencies in response to
several reasons for this raising interest. First of all,uxin critical events.
is an open source project, meaning that the source code ofo overcome these problems, many approaches have been
the operating system is freely available to everybody, apfoposed in the last years to modify Linux, in order to
can be customized according to the user needs, providaglke it more “real-time”. Kernel developers have worked in
that the modified version is still licensed under the Gngara||e| toward the goal of reducing the worst-case latency
General Public License (GPL). This license allows anybady bf the standard Linux kernel, and proposed some possible
redistribute, and even sell, a product as long as the retipigolutions. At the same time, a new approach (caRedource
is able to exercise the same rights (access to the source créeervatioh is slowly making its way to real-time system
included). This way, a user (for example, a company) is nptogramming, and many Linux-based implementations of this
tied to the OS provider anymore, and is free of modifyingpproach are already available.
the OS at will. The GPL open source license helped the|n this paper, we discuss the state-of-the-art of the differ
growth of a large community of researchers and developefsproaches to a Linux-based RTOS, and we take a look
who added new features to the kernel and ported Linux to nei the future trends. The paper is organized as follows. In
architectures. Nowadays, there is a huge amount of progra®éction Il, we describe the problems in supporting reaktim

activities using the standard Linux kernel. Then, we presen
56(13é7|_i|g?sr;islt\,a\llith l?‘;‘iiogsigferiitore S.Anna, piazza Martirildéiberta 33, the nossible approaches to create a real-time version ofiLin

C. Scordino {c, veith Comerj)t'er Science Department, Universit Pisa, IN particular, in Section Ill we describe the approach chlle
Largo B. Pontecorvo 3, 56127 Pisa, Italy, scordino@diiinip Interrupt Abstraction, and we present some implementation

Linux currently supports almost every hardware procesasoluding x86 of this mechanism. In Section IV, instead, we present some
érpzrﬁéeﬁeé ,PAASQ/:,S((::’ oﬁ%ﬁ%ﬁgg?]ﬁ;'i_gﬁ CMY'Sé: ﬂiﬁ?ﬁ@'&%f“ technigues to add real-time capabilities to the standandiLi
PowerPC, SPARC and UltraSPARC. kernel. Finally, in Section V we state our conclusions and



try to predict the next steps of Linux development for what/hen the timer issues the interrupt, the kernel knows thet th

concerns real-time support. specified interval of time is elapsed. Typically, generatgmse
operating systems like Linux set the system timer in order to
1. TOWARDS A REAL-TIME LINUX KERNEL have periodic interrupts at a certain frequency. The value o

the period is calledick and it is often a configurable option
which depends on the processor speed. For example, in Linux
There are several issues that must be analyzed in supportingthe tick value can vary between 1 msec (on fast procéssors
real-time activities in a general-purpose operating sydtke  up to 40 msec (on slow machines). The periodic tick rate
Linux. All these issues are related to non-deterministiteye directly affects the granularity of all timing activitiesha it
iours of the system, that make real-time processes experieis one of the major causes of latency in operating systems.
latencies of unpredictable length during execution [1], /I  The kernel, in fact, is not able of measuring (or deferring
real-time applications, however, are time-sensitivevéts activities for) intervals of time below a certain threshold
having strict timing constraints (like deadlines) that e This represents a problem in real-time systems which need
satisfied, otherwise the system does not work properly.  an accurate estimation of the current time and the execution
The “latency” of a OS can be defined in many differentf tasks at precise instants.
ways. In general, latency is the time it takes between theFinally, another problem in supporting real-time processe
occurrence of an event and the beginning of the action thatgeneral-purpose operating systems is the limited suppor
will respond to the event. In the case of real-time contrébr proper real-time scheduling policies. Linux providée t
applications, it is often defined as the time between wh@OSIX-compliantSCHED_FIFO and SCHED_RR policies,
the interrupt signal arrives to the processor (signalireg #n that are simple fixed priority schedulers. Although fixed
external event like a sensor reading has occurred) and whgiority is an adequate solution for real-time scheduling i
the handling routine starts to execute (for example the- reainbedded systems, it is not suitable for supporting real-
time task that will respond to the event). In the developneént time activities in general-purpose operating systemsablet
critical real-time control systems, it is necessary to aotdor drawbacks of fixed priority schedulers are the fairness and
the worst-case scenario; Hence we are particularly ineslesthe security among processes [4]. In fact, if a regular non-
in the maximum latency values. privileged user is enabled to access the real-time schegluli
In the 2.4.x versions of Linux, the maximum latency cafacilities, then she can rise her processes to the highiesitpr
be very high: for example, it can go up to 230 msec on starving the rest of the system. On the other hand, it is very
native standard kernel running on a Desktop computer [3lifficult to provide real-time guarantees if only priviletjasers
Such a large interval of time is considered inadequate evare allowed to access the scheduling facilities. Moreaaesn
for soft real-time applications. A control application v#ing trusted users may crash the system due to some mistake during
a sampling rate of 10 Hz (and hence a sampling period @évelopment and debugging.
100 msec) cannot be safely executed in real-time on Linux
2.4.17, as in the worst-case up to two invocations can be L ,
delayed or even skipped. B. Classification of Linux-based RTOSs
The two main sources of latency in general-purpose op-For alle the above reasons, the standard Linux kernel is not
erating systems aréask latencyand timer resolution Task suitable for supporting real-time control application$ius,
latency is experienced by a process when it cannot preempting the last years, several approaches have been prbpose
a lower priority process because this is executing in kerriel add real-time features to the kernel. These techniques ca
context (i.e., the kernel is executing on behalf of the pssge be grouped in the following two classes of approaches:

Typically, monolithic operating systems do not allow more 1) |nterrupt Abstraction which adds a new abstraction

A. Problems Using Standard Linux

than one stream of execution in kernel context, so that thle hi layer beneath the kernel to take full control of interrupts
prlorlty task cannot execute until the kernel code eithaurres and System timers. This approach creates a hard RTOS
to user-space or explicitly blocks. This is equivalent twihg that executes Linux as a background task. We describe

a lock for all the kernel code: Whenever a task invokes a  the approach in Section III;

kernel routine, the kernel iscked and no other kernel activity 2) Kernel Preemptiorapproaches, that make the behaviour
(except very low-level interrupt handling, commonly reéet of the systemmore deterministicby improving kernel

as top-half in Linux) can be executed. In case of Linux preemption, response times and timing resolution. These
2.4.x, many portions of the kernel code require a considerab techniques are described in Section IV.

execution time. If a high priority task is activated in reape
to an interrupt while the kernel is locked, it must wait foeth
kernel lock to be released before starting execution.
Another source of latency is related to timing resolution. The approach based on Interrupt Abstraction consists of
Every operating system needs to keep track of the flow ofeating a layer of virtual hardware between the standard
time, because a large number of kernel functions (e.g.gsocLinux kernel and the computer hardware, as shown in Figure
scheduling) are time-driven. Operating systems keep tratkThis layer is also calleReal-Time Hardware Abstraction
of the time through an electronic timer circuit that issues laayer (RTHAL) [5], although it only virtualizes interrupts.
hardware interrupt after a pre-programmed amount of tim€hen, a separate completal-time subsysteithat consists of

IIl. INTERRUPTABSTRACTION



a RTOS and a set of real-time tasks and device drivers, runs Linux by replacing all thecl i andsti function calls
together with the Linux OS. (disable and enable interrupt flag, respectively) from

The mechanism is the following. Every interrupt source is  the kernel code so that Linux cannot disable hardware
marked as real-time or non real-time. Real-Time interrupts interrupts (but only their virtual counterparts).
are served by the real-time subsystem, whereas non-neal-ti The Interrupt Abstraction approach has been successfully
interrupts are managed by the Linux kernel. To avoid lagsiciimplemented in some existing RTOSs, the most famous being
when executing real-time code, every time an interrupvasri RTLinux and RTAI. RTLinux is a patch developed &inite
(the arrow marked with{a) in Figure 1), the RTHAL checks State Machine Lab@~SMLabs) to add hard real-time features
if it is a real-time interrupt. If so, the interrupt is immeditly to the standard Linux kernel [6]. The project started in 1995
served by the real-time subsystem. A non-real-time inf#yruand it is released in two different versions: an Open Source
instead, is not forwarded to the Linux kernel immediatelyunder GPL license) version, and a more featured commercial
but it is stored in a “pending interrupts” vector. The pemdinversion. The RTLinux patch implements a small and fast
interrupts (and all other Linux activities) can be servedyonRTOS, compliant with the POSIX 1003.13 “minimal real-
when no other real-time activity is running (arrow markedme system” profile. This means that it has basic thread
with (b) in Figure 1). In practice, the resulting system is anagement, IPC primitives, semaphores, signals, spisiloc
multithreaded RTOS, in which thstandard Linux kernel is FIFOs, etc. Some function calls, however, do not follow the
the lowest-priority taskThe Linux kernel, and all the normal POSIX standard. RTLinux is covered by US Patent 5885745
Linux processes are managed by the abstraction layer as iis&ied on November 30th, 1999. The patent is not valid ocaitsid
lowest priority task — the Linux kernel only executes whenf the USA, but FSMLabs has expressed its intention to
there are no real-time tasks to run and the real-time kemelenforce the patent. This has generated a massive transition
inactive. of community developers efforts towards RTAI.

RTAI is the acronym of‘Real-Time Application Inter-

face” [7], [5]. The project started as a variant of RTLinux in

1997 at Dipartimento di Ingegneria Aerospaziale of Politec

nico di Milano (DIAPM), Italy. The project is under LGPL
User Space

license, and it is supported by a large community of devetope
RT-Kernel @

based upon the open source model. Although the RTAI project
started from the original RTLinux code, the API of the pragec

evolved in opposite directions. In fact, the main developer

Linux Kermel (prof. Paolo Mantegazza) has rewritten the code adding new

Kernel Space

features and creating a more complete and robust systefm. Wit
respect to the open source version of RTLinux, RTAI has a
greater amount of supported architectures and a larger @umb
() of mechanisms for the communication between processes.
An in-depth comparison of the latency between the standard
1] o] 1 of d d Linux kernel 2.4 and RTAI on a platform with an Axis
No Pending Linux ETRAX processor has been QOne in [8]. The main results of
HA(a) Interrupts the experiments are summarized in Tables I.The values are

Interrupt
?

measured without system load and when a load is applied,
respectively. The upper part of Table | shows the values®f th
interrupt latency (i.e., the time between the interrupivatr
and the execution of the interrupt handler). Notice that, on
‘ average, the RTHAL imposes a slight increase in latency,
due to the additional overhead of intercepting every infgrr
with the RTHAL. However, the maximum latency values using
Fig. 1. Interrupt Abstraction. RTAI are much smaller than using a standard kernel (esphgcial
for a loaded system), meaning that the determinism and the
Three main modifications must be done to the Linux kernﬁsponsiveness of the System have been actua”y improved_
in order to virtualize the hardware and take full controllvét  The bottom part of Table | shows the values of the task la-
machine. The abstraction layer must: tency (i.e., the time between the interrupt arrival and witien
1) take direct control of all the hardware interrupts. Th&ask starts processing). Task latency is essentially cesgpo
new interrupt handler intercepts all hardware interruptby two components: the interrupt and the scheduling lagsnci
and checks whether the interrupt is related to a real-tinie this case, the behaviour of the two systems differs even in
activity or not, according to the mechanism described those situations where the interrupt latency values wenest
Figure 1; close. This difference is due to how the Linux scheduler work
2) take the control of the hardware timer (8254 and API@hile on RTAI a real-time process is scheduled maintaining
when available) and implement a virtual timer for Linuxjnterrupts disabled, on Linux the interrupts are re-ernéhfeer
3) remove the basic control of the hardware interrupts frothe interrupt handler finishes, leading to much more non-

[ Real-Time Hardware Abstraction Layer }




| | | [ Linux 2.4 | RTAI |

Such situation is frequent during debugging and developmen

Idle system AvVg. 431 58 and it is a very common experience for programmers of
Interrupt Max. 325| 259 :
latency | Loaded system Avg. 143| 17.9 fsuch.systems to reboot the compute_r seve_ral times _before
Max. 162.9| 64.9 identifying the error. Both the commercial version of RTlin
idle system AVQ. 297 33.2 and the most recent versions of RTAI partially solved this
Task Max. 332.3| 68.0 problem. In particular, RTAI supports the LXRT interfacath
latency | Loaded system Avg. 3147.5| 63.0 lets developers try out real-time tasks in user space, where
Max. 84585.0| 142.0 memory protection is enabled, at the cost of some more
TABLE | latency. Once the task has been properly debugged, it can be
INTERRUPT AND TASK LATENCY IN THE STANDARDLINUX 2.4AND RTAI.  executed on RTAI without changing the task code. The LXRT
ALL NUMBERS ARE IN MICROSECONDS mechanism has evolved in the Xenomai system that we descibe

in the next section.

Another problem is the communication with the non-real-
time Linux activities. In particular, the real-time subw®m
) ) cannot use the Linux device driver§or example, both
FSMLabs, the owner of RTLinux, did not clear up thexr jnx and RTAI have their own network protocol stacks

uncertainty _around the legal repercussjon of its patent %}communicating through Ethernet and with the serial elriv
RTAI. For this reason, the RTAI community has developed thg, . se the real-time tasks cannot use the Linux protocol

Adaptive Domain Environment for Operating SystgA$eos) giack  Therefore, in the same system, there is duplication
nanokernel as alternative for RTAI's core, to get rid of the 0 of code for both the real-time and the non-real-time parts

kernel patch and exploit a more structured and flexible Woreover, the effort of developing device drivers is always
to add a real-time environment to Linux [5]. The purpose Qf,cistent part of the development

the Adeos nanokernel is not limited to be the new RTAI's
core, but it is to provide a flexible environment for sharing .
hardware resources among multiple operating systems for The Xenomai approach

determinism.

among multiple instances of the same OS). A spin-off of the RTAI project?, Xenomai [10] brings the
concept of virtualization one step further. Like RTAI, itass
A. Advantages the Adeos nanokernel to provide the interrupt virtualizati

but it allows a real-time task to execute in user space.
Xenomai uses extensively the concept of domain provided
by Adeos. In particular, Xenomai definespamary domain
ﬁ%ich is controlled by the RTOS (calleRIT-Nucleuy and the
condary domain, which is controlled by the Linux schedule
real-time task can execute in user space or in kernel space.
Normally, it starts in theprimary domain where it remains
as long as it invokes only the RTOS API. When the real-time
task invokes a function belonging to the Linux standard API o
libraries, it is automaticallynigratedto the secondary domain,
under the control of the Linux scheduler. However, it keeps
real-time priority, being scheduled with t&&HED_FIFO
SCHED_RR Linux policies. While the real-time task is in
e secondary mode, it can experience some delay and latency

It is important to highlight the advantages of using theinte
rupt Abstraction approach. First of all, the latency reéhrct
is really effective: measurements show a maximum laten
below the microsecond [9] on a Intel Pentium M processqr,
at 1.60 GHz. This allows the implementation of very fasA
control loops for applications like vibrational control.lsh,
thanks to the interrupt virtualization, it is possible toeus
full-featured OS like Linux for the non-real-time actiés.
As a matter of fact, even the most critical control applizati
includes non real-time activities, like logging and moniitg,
man-machine interface, remote access through Interndt,
so on. Using a system like Linux can reduce considerab
the effort in developing this part of the system, and th{ﬁ

programmer can conpentrate on th_e most critical_ part. Iyinaldue to the fact that it is scheduled by Linux. However, at any
a further advantage is the possibility of developing anchtheﬁme after the function call has been completed, it can g&bac

exec_uting the code on the_same hardware platform, s_imp@fyito the primary mode by explicitly calling a function. In this
considerably the complexity of the development enwronlr.neravay, at the cost of some limited unpredictability, the réie

programmer can use the full power of Linux also for real-
B. Limitations of RTLinux and RTAI time applications. In fact, real-time tasks can run in thosin

Both RTLinux and RTAI in their basic versions sufferMeémory space and are protected from the other tasks. This
from some software engineering and programming problentgolation facilitates debugging and fault confinementyieng
As shown in Figure 1, the real-time subsystem (RTOS af@nsiderably the development time, and adding robustress t
tasks) executes in the same memory space and with the s&pfévare faults. o _
privileges as the Linux kernel code. This means that thereRegarding the latency, the tasks in primary domain expe-
is no protection of memory between the real-time tasks afi§nce latencies comparable with the execution on RTAL In
the Linux kernel. The real-time tasks are typically exedutes€condary domain, instead, the maximum latency is higher, b
as modules dynamically loaded into the kernel. Therefore,, - , _ o o

Xenomai is the evolution of the Fusion project (in its turnemeralization

a real-time task with grror_s (I'ke wrong memory r_eference§f' the LXRT interface), which was an effort to execute réalet RTAI task
or unbounded execution time) may crash the entire systemuser space.



Linux Preempt. Low Both

it is still acceptable. As stated by Philippe Gerum, Xenomai 2417 Kernel Latency | Patches

leader, improvements on the standard Linux latency can hel

. . . Avg. 88 53.8 54.2 52
Xenomai too. For this reason, Xenomai developers put a con- Ma?(_ 232.7ﬁﬁ§gc 45 3 Lrﬁsegc 13 ﬁfggc 12 ﬁfsegc
stant effort in ensuring the simplicity and minimal invagiv TABLE I

of their approach with respect to the Linux code, thus that it
possible to use Xenomai among with separate solutions (lik
the PREEMPT_RT presented in Section I1V-C) proposed by 2.
other developers.

VERAGE AND MAXIMUM LATENCY VALUES USING A STANDARD LINUX
4.17 THE PREEMPTIBLEKERNEL AND THE LOW LATENCY PATCHES.

IV. M AKING THE KERNEL MORE PREDICTABLE latency of 1.3 msec. Obviously, the two techniques can aso b
An alternative to interrupt and hardware abstractions coeembined together. In this case, the result is quite ungrgec
sists on making the Linux kernel more deterministic, bthe maximum latency measured is 1.2 msec, which is a small
improving some parts that do not allow a predictable bénprovement with respect to the gain obtained using only the
haviour. As we have seen in Section Il, the main sources loéw Latency Patch.
unpredictable behaviour in Linux are the kernel latencg, th
timing resolution and the process scheduling [1], [2]. anoB_ Improving Timing Resolution

present all the solutions that have been proposed to address S ) _
these issues. The fact that periodic timer interrupts are not suitable for

real-time kernels is well known in the literature [1]. Foisth
reason, most of the existing real-time kernels provideligh
Resolution Timers”(HRT) API, that issues the interrupts
Two different approaches were proposed to reduce kergleriodically — i.e., the system timer is programmed to
latency in the 2.4 version of the Linux kernel. These twgenerate the interrupt after an interval of time that is not
approaches were theow Latency Patctand thePreemptible constant, but that depends on the next event scheduled by the
Kernel Patch respectively. The former patch was introducegperating system. Often, these implementations explsib al
by Ingo Molnar and then maintained by Andrew Morton [11]processor-specific hardware (like the APIC on modern x86
Rather than attempting a brute-force approach (i.e., ppeemprocessors) to obtain a better timing resolution (typjcah
tion) in a kernel that is not designed for it, this patch faesis the order of microseconds, or even fraction of microsecpnds
on introducing explicit preemption points in blocks of code There are two different projects to provide HRT in the
that may execute for long intervals of time. The idea is tRinux kernel. The first project, calledigh-Resolution POSIX
find places that iterate over large data structures and fiuire Timers [13], started in 2001 as a separate patch and never
how to safely introduce a call to the scheduler. Sometimies tlhecame part of the standard kernel.
implies releasing a spinlock, scheduling and then reaomyir  \ery recently, a newer API developed by Thomas Gleixner
the spinlock, which is also known dkck breaking”. has been accepted into the 2.6.16 version of the mainline
A different strategy has been proposed by Robert Love Wiliarnel [14]. Rather than using a “timer wheel” data struefur
MontaVista's Preemptible Kernel Patch. This patch makes tghis implementation uses a time-sorted linked list, wite th
kernel preemptible, just like user-space: if a high priotésk next timer to expire being at the head of the list. A separate
becomes runnable, the patch allows a context switch evend{y/plack tree is also used to enable the insertion and raimov
another process is running in kernel context. Hence, iti@s0 of timer events without scanning through the list. A new type
possible to preempt a process at any point, as long as thelke(galledkt i me_t ) is used to store a time value in nanoseconds
is in a consistent state (i.e., no lock is held). Kernel pre#on  and it is meant to be used as an opaque structure. Intergsting
is subject only to Symmetric Multi-Processing (SMP) lokinits definition changes depending on the underlying architec
constraints (i.e., spinlocks are used as markers for regdbn tyre. On 64-bit systems, it is just a 64-bit integer value in
preemptibility). With the advent of Linux 2.6, Robert Lose’ hanoseconds. On 32-bit machines, instead, it is a two-field
patch has been accepted in the mainline kernel, thus that giga structure: one 32-bit value holds the number of seconds
Linux kernel has become a fully preemptive kernel [12], kali and the other holds nanoseconds. The order of the two fields
most existing operating systems (UNIX variants included). depends on whether the host architecture is big-endiantor no
A comparison of the two techniques has been performed they are always arranged so that the two values can, when
by Clark Williams [3] and is summarized in Table Il. Theneeded, be treated as a single 64-bit value. Doing things thi

hardware used for the experiments is a 700 MHz AMRay complicates the header files, but provides efficient time
Duron SyStem with 360MB RAM and a 20GB Western D|g|ta;lla|ue manipu|ati0n on a” architectures'

IDE drive attached to a VIA Technologies VT82C686 IDE
controller. The experiments show that the maximum latemcy o

a native 2.4.17 standard kernel can be as high as 232.7 m&ec,TN"ePREEMPT.RT paich

which is not a negligible value even on Desktop machines.The latest modification, still at the level of proposed patch
The Preemptible Kernel Patch can reduce this value, butistthe PREEMPT_RT patch by Ingo Molnar [15]. This work

is the Low Latency Patch that really makes the differend®ings the kernel preemption to an unprecedent level of
in the latency behaviour of the kernel, allowing a maximursophistication by introducing the Priority Inheritanceticol

A. Reducing Kernel Latency



| Kernel | Sanfad | A‘éeé | |\5/|1a>; | Né":s | Std%e;” task latency can be much higher and depends also upon timer
Ping cs| 201! 5e 08 resolution and scheduling latency.
Vanilla-2.6.12 | Im. + ping 6.1| 53.3| 56 1.1
:mbinﬁg gé 1;;3 gg g:z D. Resource Reservations
DoHell 6.8 | 555.6 | 5.6 7.2 As we have seen, the scheduling policies offered by Linux
None 5.7 489 5.6 0.2\ are not suitable for supporting the execution of real-time
RT-V0.7.51-02 I':'{'% ping ;:8 gé:g g:g ig applicat?ons. A r.eal—time_ general-purpose OS should srtippo
Imbench 73| 561| 56 1.4 | scheduling policies providingemporal protectioramong the
Im. + hd 73| 705| 5.6 1.8 running processes. This means that the timely execution of a
DoHell 74| 546| 5.6 1.4 process should not be affected by the behaviour of the other
None 721 416] 5.7 19| processes executing on the system. This way, if a process
Ipipe-0.7 m]”f ping ;g gg:g g; 8:3 misbehaves, and tries to use all the resources of the s_y'ﬂ;tem,
Imbench 75| 505| 57 0.9 cannot starve the other processes. The same problem isprese
Im. + hd 75| 505| 5.7 1.1 in the Interrupt Abstraction methods: if a real-time taskees
DoHell 76| 505| 5.7 0.7 an infinite loop of code, the other low priority activities in
TABLE Il the system cannot execute anymore. It is important then to
L ATENCY COMPARISON BETWEENSTANDARD LINUX, LinuxwiTHTHE  Provide temporal protectioramong different tasks, similarly
PREEMPT_RT PATCH, AND ADEOS. ALL NUMBERS ARE IN to the way the Linux kernel provides memory protection.
MICROSECONDS The Resource Reservation mechanism [17] is an effective

way for providing such temporal protection in GPOSs. The
basic idea behind the resource reservation technique is to
reservea fraction of the time to real-time applications. This
in the kernel locks. The Priority Inheritance (PI) protadakt way, real-time priorities can be safely used even by non-
proposed by Sha et al. [16], solves the problem of unboundgdvileged users. The mechanism works as follows. Each real
priority inversion A priority inversion is when a high priority time process is assigned a “reservati¢@;, T;), meaning that
task must wait for a low priority task to complete a criticathe process is reserved the processor for a time of le€gth
section of code and release the lock. If the low priority taskvery period7;. During its execution, the task is executed at
is preempted by a medium priority task while holding than appropriate real-time priority. However, if the taslesrito
lock, the high priority task will have to wait for a long time.execute for a longer time, then it is suspended and resumed
The priority inheritance protocol dictates that in thiseahie |ater. In this way, each task is constrained to not use mane th
low priority taskinherits the priority of the high priority task its reserved share — i.e., a maximum@f every P; units of
while holding the lock, preventing the preemption by mediumme.
priority tasks. A real-time scheduler based on Resource Reservation has
In the general case (i.e., nested spinlocks, readersrfaritgeen developed for Linux 2.4.18 within the OCERpen
locks) the priority inheritance mechanism is a complex aEomponents for Embedded Real-time ApplicatignEuro-
gorithm to implement. Nevertheless, it can help reduce th@an project, and it is available as Open Source code [4],
latency of Linux activities even further, reaching the leve [18], [19], [20]. To minimize the modifications to the stamda
the Interrupt Abstractionmethods. kernel code, the real-time scheduler has been developed as a
In Table Il we report the results of a comparison betweggadable kernel module [21]. A small patch (call&@eneric
a standard Linux (denoted as Vanilla-2.6.12), the samexX.ingcheduler Patchy applied to the Linux kernel exports the
with the RT patch applied, and the Adeos microkernel, us@@cessary symbols and the relevant events to the real-time
by both RTAI and Xenomai (denoted with Ipipe-G.7) scheduler. Based on the information provided by the patch,
On each kernel configuration, a number of standard teg real-time scheduler modifies the task priority, raising
have been run to stress the system and measure the waisfected task to the maximum priority, and then calls the
case latency. The interrupt latency (i.e., the time it take@snux scheduler. In practice, the standard Linux scheduler
from the raise of the interrupt signal to the execution of thgcts as a dispatcher for the external real-time scheduker. T
first instruction of the interrupt handler) has been meaburgterface to the scheduler has been exported through the sta
in all cases. As you can see from the table, the maximufiardsched_set schedul er () system call, adding a new
latencies are quite high in the Vanilla kernel (in the ordescheduling policy, and extending the structsshed_par am
of half a millisecond), while the maximum latencies in thehe scheduler implements the CBS [22], [4], the GRUB [23],
PREEMPT_RT kernel and with the Adeos microkernel arg24] and the GRUB-PA [19], [20] scheduling algorithms.
comparable. However, other tests seems to show a sligiife last algorithm allows to reduce energy consumption of

advantage to the Adeos approach. It is important to poiginbedded systems with Intel PXA250 [25] processors.
out that these numbers are referredrti@rrupt latency while The real-time scheduler needs to know all the relevant

3 , events regarding the processes in the system (i.e., process
The results are provided by Paolo Mantegazza and are tal@n fr . . . . . .
https://mail.rtai.org/pi permail/rtail2005- Qctober/ creation, termination, blocking and unblocking). For thes-

013265. ht m . We are not aware of the original source of these numberson, the patch exports sonh@oksthat are used to intercept



Hook Idle | 10 tasks| 20 tasks| 30 tasks In the future, we believe that the two approaches will
creation 119 117 107 105 - . . .
termination 48 a4 39 35 merge into a single product, able to provide different Is\adl
unblock 316 387 421 483 services and latencies to different applications. In tleisse,
block 138 6431 8101 9164 Xenomai is pavig the way to such integration.
budget exhaustiony 202 252 276 312
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