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Abstract— In the last years, there has been a considerable
interest in using the Linux operating system in real-time systems,
especially in control systems. The simple and elegant design of
Linux guarantees robustness and very good performance, while
its Open Source license allows to modify and change the source
code according to the user needs.

However, Linux has been designed to be a general-purpose
operating system. Therefore, it presents some issues, likeunpre-
dictable latencies, limited support for real-time scheduling, and
coarse-grain timing resolution that might be a problem for real-
time applications.

For these reasons, several modifications have been proposed
to add “real-time” features to the kernel. In this paper, we give
a brief description of the many existing approaches to support
real-time applications in Linux. Moreover, we take a look at the
expected trends, presenting what we believe will be the future of
Linux for what concerns real-time support.

I. I NTRODUCTION

Linux is a full-featured operating system, originally de-
signed to be used in server or desktop environments. Since
then, Linux has evolved and grown to be used in almost
all computer areas — among others, embedded systems and
parallel clusters1.

In the last years, there has been a considerable interest in
using Linux for real-time control systems, from both academic
institutions, independent developers and industries. There are
several reasons for this raising interest. First of all, Linux
is an open source project, meaning that the source code of
the operating system is freely available to everybody, and
can be customized according to the user needs, provided
that the modified version is still licensed under the GNU
General Public License (GPL). This license allows anybody to
redistribute, and even sell, a product as long as the recipient
is able to exercise the same rights (access to the source code
included). This way, a user (for example, a company) is not
tied to the OS provider anymore, and is free of modifying
the OS at will. The GPL open source license helped the
growth of a large community of researchers and developers
who added new features to the kernel and ported Linux to new
architectures. Nowadays, there is a huge amount of programs,
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libraries and tools available as open source code that can be
used to build a customized version of the Linux OS.

Another reason for the usage of Linux in real-time systems
is its wide popularity and success. It has the simple and
elegant design of the UNIX OSs, which guarantees a very
stable, robust and secure system. Moreover, it has excellent
performance and a good protocol stack implementation. The
portability of code from different UNIX operating systems
is ensured by the well-known“Portable Operating System
Interface” (POSIX) API. This is an IEEE standard defining
the basic environment and set of functions offered by the
operating system to the application programs. Finally, thehuge
community of engineers and developers working on Linux
makes finding expert kernel programmers very easy.

Thus, when compared to commercial real-time operating
systems (RTOSs) in terms of cost of development, Linux has
good chances to be the winner. Unfortunately, the standard
mainline kernel (as provided by Linus Torvalds) is not ade-
quate to be used as RTOS. Linux has been designed to be a
general-purpose operating system (GPOS), and thus not much
attention has been dedicated to the problem of reducing the
latency of critical operations. Instead, the main design goal of
the Linux kernel has been (and still remains) to optimize the
average throughput (i.e., the amount of “useful work” done by
the system in the unit of time). As we will show in Section III,
a Linux program may suffer high latencies in response to
critical events.

To overcome these problems, many approaches have been
proposed in the last years to modify Linux, in order to
make it more “real-time”. Kernel developers have worked in
parallel toward the goal of reducing the worst-case latency
of the standard Linux kernel, and proposed some possible
solutions. At the same time, a new approach (calledResource
Reservation) is slowly making its way to real-time system
programming, and many Linux-based implementations of this
approach are already available.

In this paper, we discuss the state-of-the-art of the different
approaches to a Linux-based RTOS, and we take a look
at the future trends. The paper is organized as follows. In
Section II, we describe the problems in supporting real-time
activities using the standard Linux kernel. Then, we present
the possible approaches to create a real-time version of Linux.
In particular, in Section III we describe the approach called
Interrupt Abstraction, and we present some implementations
of this mechanism. In Section IV, instead, we present some
techniques to add real-time capabilities to the standard Linux
kernel. Finally, in Section V we state our conclusions and



try to predict the next steps of Linux development for what
concerns real-time support.

II. TOWARDS A REAL-TIME L INUX KERNEL

A. Problems Using Standard Linux

There are several issues that must be analyzed in supporting
real-time activities in a general-purpose operating system like
Linux. All these issues are related to non-deterministic behav-
iours of the system, that make real-time processes experience
latencies of unpredictable length during execution [1], [2]. All
real-time applications, however, are time-sensitive activities
having strict timing constraints (like deadlines) that must be
satisfied, otherwise the system does not work properly.

The “latency” of a OS can be defined in many different
ways. In general, latency is the time it takes between the
occurrence of an event and the beginning of the action that
will respond to the event. In the case of real-time control
applications, it is often defined as the time between when
the interrupt signal arrives to the processor (signaling that an
external event like a sensor reading has occurred) and when
the handling routine starts to execute (for example the real-
time task that will respond to the event). In the developmentof
critical real-time control systems, it is necessary to account for
the worst-case scenario; Hence we are particularly interested
in the maximum latency values.

In the 2.4.x versions of Linux, the maximum latency can
be very high: for example, it can go up to 230 msec on a
native standard kernel running on a Desktop computer [3].
Such a large interval of time is considered inadequate even
for soft real-time applications. A control application requiring
a sampling rate of 10 Hz (and hence a sampling period of
100 msec) cannot be safely executed in real-time on Linux
2.4.17, as in the worst-case up to two invocations can be
delayed or even skipped.

The two main sources of latency in general-purpose op-
erating systems aretask latencyand timer resolution. Task
latency is experienced by a process when it cannot preempt
a lower priority process because this is executing in kernel
context (i.e., the kernel is executing on behalf of the process).
Typically, monolithic operating systems do not allow more
than one stream of execution in kernel context, so that the high
priority task cannot execute until the kernel code either returns
to user-space or explicitly blocks. This is equivalent to having
a lock for all the kernel code: Whenever a task invokes a
kernel routine, the kernel islocked, and no other kernel activity
(except very low-level interrupt handling, commonly referred
as top-half in Linux) can be executed. In case of Linux
2.4.x, many portions of the kernel code require a considerable
execution time. If a high priority task is activated in response
to an interrupt while the kernel is locked, it must wait for the
kernel lock to be released before starting execution.

Another source of latency is related to timing resolution.
Every operating system needs to keep track of the flow of
time, because a large number of kernel functions (e.g., process
scheduling) are time-driven. Operating systems keep track
of the time through an electronic timer circuit that issues a
hardware interrupt after a pre-programmed amount of time.

When the timer issues the interrupt, the kernel knows that the
specified interval of time is elapsed. Typically, general-purpose
operating systems like Linux set the system timer in order to
have periodic interrupts at a certain frequency. The value of
the period is calledtick and it is often a configurable option
which depends on the processor speed. For example, in Linux
2.6 the tick value can vary between 1 msec (on fast processors)
up to 40 msec (on slow machines). The periodic tick rate
directly affects the granularity of all timing activities and it
is one of the major causes of latency in operating systems.
The kernel, in fact, is not able of measuring (or deferring
activities for) intervals of time below a certain threshold.
This represents a problem in real-time systems which need
an accurate estimation of the current time and the execution
of tasks at precise instants.

Finally, another problem in supporting real-time processes
in general-purpose operating systems is the limited support
for proper real-time scheduling policies. Linux provides the
POSIX-compliantSCHED FIFO and SCHED RR policies,
that are simple fixed priority schedulers. Although fixed
priority is an adequate solution for real-time scheduling in
embedded systems, it is not suitable for supporting real-
time activities in general-purpose operating systems. Notable
drawbacks of fixed priority schedulers are the fairness and
the security among processes [4]. In fact, if a regular non-
privileged user is enabled to access the real-time scheduling
facilities, then she can rise her processes to the highest priority,
starving the rest of the system. On the other hand, it is very
difficult to provide real-time guarantees if only privileged users
are allowed to access the scheduling facilities. Moreover,even
trusted users may crash the system due to some mistake during
development and debugging.

B. Classification of Linux-based RTOSs

For alle the above reasons, the standard Linux kernel is not
suitable for supporting real-time control applications. Thus,
during the last years, several approaches have been proposed
to add real-time features to the kernel. These techniques can
be grouped in the following two classes of approaches:

1) Interrupt Abstraction, which adds a new abstraction
layer beneath the kernel to take full control of interrupts
and system timers. This approach creates a hard RTOS
that executes Linux as a background task. We describe
the approach in Section III;

2) Kernel Preemptionapproaches, that make the behaviour
of the systemmore deterministic, by improving kernel
preemption, response times and timing resolution. These
techniques are described in Section IV.

III. I NTERRUPTABSTRACTION

The approach based on Interrupt Abstraction consists of
creating a layer of virtual hardware between the standard
Linux kernel and the computer hardware, as shown in Figure
1. This layer is also calledReal-Time Hardware Abstraction
Layer (RTHAL) [5], although it only virtualizes interrupts.
Then, a separate completereal-time subsystemthat consists of



a RTOS and a set of real-time tasks and device drivers, runs
together with the Linux OS.

The mechanism is the following. Every interrupt source is
marked as real-time or non real-time. Real-Time interrupts
are served by the real-time subsystem, whereas non-real-time
interrupts are managed by the Linux kernel. To avoid latencies
when executing real-time code, every time an interrupt arrives
(the arrow marked with(a) in Figure 1), the RTHAL checks
if it is a real-time interrupt. If so, the interrupt is immediately
served by the real-time subsystem. A non-real-time interrupt,
instead, is not forwarded to the Linux kernel immediately,
but it is stored in a “pending interrupts” vector. The pending
interrupts (and all other Linux activities) can be served only
when no other real-time activity is running (arrow marked
with (b) in Figure 1). In practice, the resulting system is a
multithreaded RTOS, in which thestandard Linux kernel is
the lowest-priority task. The Linux kernel, and all the normal
Linux processes are managed by the abstraction layer as the
lowest priority task — the Linux kernel only executes when
there are no real-time tasks to run and the real-time kernel is
inactive.

(b)
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Fig. 1. Interrupt Abstraction.

Three main modifications must be done to the Linux kernel
in order to virtualize the hardware and take full control of the
machine. The abstraction layer must:

1) take direct control of all the hardware interrupts. The
new interrupt handler intercepts all hardware interrupts,
and checks whether the interrupt is related to a real-time
activity or not, according to the mechanism described in
Figure 1;

2) take the control of the hardware timer (8254 and APIC
when available) and implement a virtual timer for Linux;

3) remove the basic control of the hardware interrupts from

Linux by replacing all thecli andsti function calls
(disable and enable interrupt flag, respectively) from
the kernel code so that Linux cannot disable hardware
interrupts (but only their virtual counterparts).

The Interrupt Abstraction approach has been successfully
implemented in some existing RTOSs, the most famous being
RTLinux and RTAI.RTLinux is a patch developed atFinite
State Machine Labs(FSMLabs) to add hard real-time features
to the standard Linux kernel [6]. The project started in 1995
and it is released in two different versions: an Open Source
(under GPL license) version, and a more featured commercial
version. The RTLinux patch implements a small and fast
RTOS, compliant with the POSIX 1003.13 “minimal real-
time system” profile. This means that it has basic thread
management, IPC primitives, semaphores, signals, spinlocks,
FIFOs, etc. Some function calls, however, do not follow the
POSIX standard. RTLinux is covered by US Patent 5885745
issued on November 30th, 1999. The patent is not valid outside
of the USA, but FSMLabs has expressed its intention to
enforce the patent. This has generated a massive transition
of community developers efforts towards RTAI.

RTAI is the acronym of“Real-Time Application Inter-
face” [7], [5]. The project started as a variant of RTLinux in
1997 at Dipartimento di Ingegneria Aerospaziale of Politec-
nico di Milano (DIAPM), Italy. The project is under LGPL
license, and it is supported by a large community of developers
based upon the open source model. Although the RTAI project
started from the original RTLinux code, the API of the projects
evolved in opposite directions. In fact, the main developer
(prof. Paolo Mantegazza) has rewritten the code adding new
features and creating a more complete and robust system. With
respect to the open source version of RTLinux, RTAI has a
greater amount of supported architectures and a larger number
of mechanisms for the communication between processes.

An in-depth comparison of the latency between the standard
Linux kernel 2.4 and RTAI on a platform with an Axis
ETRAX processor has been done in [8]. The main results of
the experiments are summarized in Tables I.The values are
measured without system load and when a load is applied,
respectively. The upper part of Table I shows the values of the
interrupt latency (i.e., the time between the interrupt arrival
and the execution of the interrupt handler). Notice that, on
average, the RTHAL imposes a slight increase in latency,
due to the additional overhead of intercepting every interrupt
with the RTHAL. However, the maximum latency values using
RTAI are much smaller than using a standard kernel (especially
for a loaded system), meaning that the determinism and the
responsiveness of the system have been actually improved.

The bottom part of Table I shows the values of the task la-
tency (i.e., the time between the interrupt arrival and whenthe
task starts processing). Task latency is essentially composed
by two components: the interrupt and the scheduling latencies.
In this case, the behaviour of the two systems differs even in
those situations where the interrupt latency values were almost
close. This difference is due to how the Linux scheduler works:
while on RTAI a real-time process is scheduled maintaining
interrupts disabled, on Linux the interrupts are re-enabled after
the interrupt handler finishes, leading to much more non-



Linux 2.4 RTAI
Idle system Avg. 4.3 5.8

Interrupt Max. 32.5 25.9
latency Loaded system Avg. 14.3 17.9

Max. 162.9 64.9
Idle system Avg. 49.7 33.2

Task Max. 332.3 68.0
latency Loaded system Avg. 3147.5 63.0

Max. 84585.0 142.0

TABLE I

INTERRUPT AND TASK LATENCY IN THE STANDARDL INUX 2.4 AND RTAI.

ALL NUMBERS ARE IN MICROSECONDS.

determinism.
FSMLabs, the owner of RTLinux, did not clear up the

uncertainty around the legal repercussion of its patent on
RTAI. For this reason, the RTAI community has developed the
Adaptive Domain Environment for Operating Systems(Adeos)
nanokernel as alternative for RTAI’s core, to get rid of the old
kernel patch and exploit a more structured and flexible way
to add a real-time environment to Linux [5]. The purpose of
the Adeos nanokernel is not limited to be the new RTAI’s
core, but it is to provide a flexible environment for sharing
hardware resources among multiple operating systems (or
among multiple instances of the same OS).

A. Advantages

It is important to highlight the advantages of using the Inter-
rupt Abstraction approach. First of all, the latency reduction
is really effective: measurements show a maximum latency
below the microsecond [9] on a Intel Pentium M processor
at 1.60 GHz. This allows the implementation of very fast
control loops for applications like vibrational control. Also,
thanks to the interrupt virtualization, it is possible to use a
full-featured OS like Linux for the non-real-time activities.
As a matter of fact, even the most critical control application
includes non real-time activities, like logging and monitoring,
man-machine interface, remote access through Internet, and
so on. Using a system like Linux can reduce considerably
the effort in developing this part of the system, and the
programmer can concentrate on the most critical part. Finally,
a further advantage is the possibility of developing and then
executing the code on the same hardware platform, simplifying
considerably the complexity of the development environment.

B. Limitations of RTLinux and RTAI

Both RTLinux and RTAI in their basic versions suffer
from some software engineering and programming problems.
As shown in Figure 1, the real-time subsystem (RTOS and
tasks) executes in the same memory space and with the same
privileges as the Linux kernel code. This means that there
is no protection of memory between the real-time tasks and
the Linux kernel. The real-time tasks are typically executed
as modules dynamically loaded into the kernel. Therefore,
a real-time task with errors (like wrong memory references,
or unbounded execution time) may crash the entire system.

Such situation is frequent during debugging and development,
and it is a very common experience for programmers of
such systems to reboot the computer several times before
identifying the error. Both the commercial version of RTLinux
and the most recent versions of RTAI partially solved this
problem. In particular, RTAI supports the LXRT interface that
lets developers try out real-time tasks in user space, where
memory protection is enabled, at the cost of some more
latency. Once the task has been properly debugged, it can be
executed on RTAI without changing the task code. The LXRT
mechanism has evolved in the Xenomai system that we descibe
in the next section.

Another problem is the communication with the non-real-
time Linux activities. In particular, the real-time subsystem
cannot use the Linux device drivers. For example, both
RTLinux and RTAI have their own network protocol stacks
for communicating through Ethernet and with the serial driver,
because the real-time tasks cannot use the Linux protocol
stack. Therefore, in the same system, there is duplication
of code for both the real-time and the non-real-time parts.
Moreover, the effort of developing device drivers is alwaysa
consistent part of the development.

C. The Xenomai approach

A spin-off of the RTAI project2, Xenomai [10] brings the
concept of virtualization one step further. Like RTAI, it uses
the Adeos nanokernel to provide the interrupt virtualization,
but it allows a real-time task to execute in user space.
Xenomai uses extensively the concept of domain provided
by Adeos. In particular, Xenomai defines aprimary domain,
which is controlled by the RTOS (calledRT-Nucleus), and the
secondary domain, which is controlled by the Linux scheduler.
A real-time task can execute in user space or in kernel space.
Normally, it starts in theprimary domain, where it remains
as long as it invokes only the RTOS API. When the real-time
task invokes a function belonging to the Linux standard API or
libraries, it is automaticallymigratedto the secondary domain,
under the control of the Linux scheduler. However, it keeps
its real-time priority, being scheduled with theSCHED FIFO
or SCHED RR Linux policies. While the real-time task is in
the secondary mode, it can experience some delay and latency,
due to the fact that it is scheduled by Linux. However, at any
time after the function call has been completed, it can go back
to the primary mode by explicitly calling a function. In this
way, at the cost of some limited unpredictability, the real-time
programmer can use the full power of Linux also for real-
time applications. In fact, real-time tasks can run in theirown
memory space and are protected from the other tasks. This
isolation facilitates debugging and fault confinement, reducing
considerably the development time, and adding robustness to
software faults.

Regarding the latency, the tasks in primary domain expe-
rience latencies comparable with the execution on RTAI. In
secondary domain, instead, the maximum latency is higher, but

2Xenomai is the evolution of the Fusion project (in its turn a generalization
of the LXRT interface), which was an effort to execute real-time RTAI task
in user space.



it is still acceptable. As stated by Philippe Gerum, Xenomai
leader, improvements on the standard Linux latency can help
Xenomai too. For this reason, Xenomai developers put a con-
stant effort in ensuring the simplicity and minimal invasivity
of their approach with respect to the Linux code, thus that itis
possible to use Xenomai among with separate solutions (like
the PREEMPT RT presented in Section IV-C) proposed by
other developers.

IV. M AKING THE KERNEL MORE PREDICTABLE

An alternative to interrupt and hardware abstractions con-
sists on making the Linux kernel more deterministic, by
improving some parts that do not allow a predictable be-
haviour. As we have seen in Section II, the main sources of
unpredictable behaviour in Linux are the kernel latency, the
timing resolution and the process scheduling [1], [2]. We now
present all the solutions that have been proposed to address
these issues.

A. Reducing Kernel Latency

Two different approaches were proposed to reduce kernel
latency in the 2.4 version of the Linux kernel. These two
approaches were theLow Latency Patchand thePreemptible
Kernel Patch, respectively. The former patch was introduced
by Ingo Molnar and then maintained by Andrew Morton [11].
Rather than attempting a brute-force approach (i.e., preemp-
tion) in a kernel that is not designed for it, this patch focuses
on introducing explicit preemption points in blocks of code
that may execute for long intervals of time. The idea is to
find places that iterate over large data structures and figureout
how to safely introduce a call to the scheduler. Sometimes this
implies releasing a spinlock, scheduling and then reacquiring
the spinlock, which is also known as“lock breaking”.

A different strategy has been proposed by Robert Love with
MontaVista’s Preemptible Kernel Patch. This patch makes the
kernel preemptible, just like user-space: if a high priority task
becomes runnable, the patch allows a context switch even if
another process is running in kernel context. Hence, it becomes
possible to preempt a process at any point, as long as the kernel
is in a consistent state (i.e., no lock is held). Kernel preemption
is subject only to Symmetric Multi-Processing (SMP) locking
constraints (i.e., spinlocks are used as markers for regions of
preemptibility). With the advent of Linux 2.6, Robert Love’s
patch has been accepted in the mainline kernel, thus that the
Linux kernel has become a fully preemptive kernel [12], unlike
most existing operating systems (UNIX variants included).

A comparison of the two techniques has been performed
by Clark Williams [3] and is summarized in Table II. The
hardware used for the experiments is a 700 MHz AMD
Duron system with 360MB RAM and a 20GB Western Digital
IDE drive attached to a VIA Technologies VT82C686 IDE
controller. The experiments show that the maximum latency on
a native 2.4.17 standard kernel can be as high as 232.7 msec,
which is not a negligible value even on Desktop machines.
The Preemptible Kernel Patch can reduce this value, but it
is the Low Latency Patch that really makes the difference
in the latency behaviour of the kernel, allowing a maximum

Linux Preempt. Low Both
2.4.17 Kernel Latency Patches

Avg. 88 µsec 53.8 µsec 54.2 µsec 52 µsec

Max. 232.7 msec 45.3 msec 1.3 msec 1.2 msec

TABLE II

AVERAGE AND MAXIMUM LATENCY VALUES USING A STANDARD L INUX

2.4.17,THE PREEMPTIBLEKERNEL AND THE LOW LATENCY PATCHES.

latency of 1.3 msec. Obviously, the two techniques can also be
combined together. In this case, the result is quite unexpected:
the maximum latency measured is 1.2 msec, which is a small
improvement with respect to the gain obtained using only the
Low Latency Patch.

B. Improving Timing Resolution

The fact that periodic timer interrupts are not suitable for
real-time kernels is well known in the literature [1]. For this
reason, most of the existing real-time kernels provide a“High
Resolution Timers” (HRT) API, that issues the interrupts
aperiodically — i.e., the system timer is programmed to
generate the interrupt after an interval of time that is not
constant, but that depends on the next event scheduled by the
operating system. Often, these implementations exploit also
processor-specific hardware (like the APIC on modern x86
processors) to obtain a better timing resolution (typically, in
the order of microseconds, or even fraction of microseconds).

There are two different projects to provide HRT in the
Linux kernel. The first project, calledHigh-Resolution POSIX
Timers [13], started in 2001 as a separate patch and never
became part of the standard kernel.

Very recently, a newer API developed by Thomas Gleixner
has been accepted into the 2.6.16 version of the mainline
kernel [14]. Rather than using a “timer wheel” data structure,
this implementation uses a time-sorted linked list, with the
next timer to expire being at the head of the list. A separate
red/black tree is also used to enable the insertion and removal
of timer events without scanning through the list. A new type
(calledktime t) is used to store a time value in nanoseconds
and it is meant to be used as an opaque structure. Interestingly,
its definition changes depending on the underlying architec-
ture. On 64-bit systems, it is just a 64-bit integer value in
nanoseconds. On 32-bit machines, instead, it is a two-field
data structure: one 32-bit value holds the number of seconds
and the other holds nanoseconds. The order of the two fields
depends on whether the host architecture is big-endian or not
— they are always arranged so that the two values can, when
needed, be treated as a single 64-bit value. Doing things this
way complicates the header files, but provides efficient time
value manipulation on all architectures.

C. ThePREEMPT RT patch

The latest modification, still at the level of proposed patch,
is thePREEMPT RT patch by Ingo Molnar [15]. This work
brings the kernel preemption to an unprecedent level of
sophistication by introducing the Priority Inheritance Protocol



Kernel sys load Aver Max Min StdDev
None 5.8 51.9 5.6 0.3
Ping 5.8 49.1 5.6 0.8

Vanilla-2.6.12 lm. + ping 6.1 53.3 5.6 1.1
lmbench 6.1 77.9 5.6 0.8
lm. + hd 6.5 128.4 5.6 3.4
DoHell 6.8 555.6 5.6 7.2
None 5.7 48.9 5.6 0.2
Ping 7.0 62.0 5.6 1.5

RT-V0.7.51-02 lm. + ping 7.9 56.2 5.6 1.9
lmbench 7.3 56.1 5.6 1.4
lm. + hd 7.3 70.5 5.6 1.8
DoHell 7.4 54.6 5.6 1.4
None 7.2 47.6 5.7 1.9
Ping 7.3 48.9 5.7 0.4

Ipipe-0.7 lm.+ ping 7.6 50.5 5.7 0.8
lmbench 7.5 50.5 5.7 0.9
lm. + hd 7.5 50.5 5.7 1.1
DoHell 7.6 50.5 5.7 0.7

TABLE III

LATENCY COMPARISON BETWEENSTANDARD L INUX , L INUX WITH THE

PREEMPT RT PATCH, AND ADEOS. ALL NUMBERS ARE IN

MICROSECONDS.

in the kernel locks. The Priority Inheritance (PI) protocol, first
proposed by Sha et al. [16], solves the problem of unbounded
priority inversion. A priority inversion is when a high priority
task must wait for a low priority task to complete a critical
section of code and release the lock. If the low priority task
is preempted by a medium priority task while holding the
lock, the high priority task will have to wait for a long time.
The priority inheritance protocol dictates that in this case, the
low priority task inherits the priority of the high priority task
while holding the lock, preventing the preemption by medium
priority tasks.

In the general case (i.e., nested spinlocks, readers/writers
locks) the priority inheritance mechanism is a complex al-
gorithm to implement. Nevertheless, it can help reduce the
latency of Linux activities even further, reaching the level of
the Interrupt Abstractionmethods.

In Table III we report the results of a comparison between
a standard Linux (denoted as Vanilla-2.6.12), the same Linux
with the RT patch applied, and the Adeos microkernel, used
by both RTAI and Xenomai (denoted with Ipipe-0.7)3.

On each kernel configuration, a number of standard tests
have been run to stress the system and measure the worst-
case latency. The interrupt latency (i.e., the time it takes
from the raise of the interrupt signal to the execution of the
first instruction of the interrupt handler) has been measured
in all cases. As you can see from the table, the maximum
latencies are quite high in the Vanilla kernel (in the order
of half a millisecond), while the maximum latencies in the
PREEMPT RT kernel and with the Adeos microkernel are
comparable. However, other tests seems to show a slight
advantage to the Adeos approach. It is important to point
out that these numbers are referred tointerrupt latency, while

3The results are provided by Paolo Mantegazza and are taken from
https://mail.rtai.org/pipermail/rtai/2005-October/
013265.html. We are not aware of the original source of these numbers.

task latency can be much higher and depends also upon timer
resolution and scheduling latency.

D. Resource Reservations

As we have seen, the scheduling policies offered by Linux
are not suitable for supporting the execution of real-time
applications. A real-time general-purpose OS should support
scheduling policies providingtemporal protectionamong the
running processes. This means that the timely execution of a
process should not be affected by the behaviour of the other
processes executing on the system. This way, if a process
misbehaves, and tries to use all the resources of the system,it
cannot starve the other processes. The same problem is present
in the Interrupt Abstraction methods: if a real-time task enters
an infinite loop of code, the other low priority activities in
the system cannot execute anymore. It is important then to
provide temporal protectionamong different tasks, similarly
to the way the Linux kernel provides memory protection.

The Resource Reservation mechanism [17] is an effective
way for providing such temporal protection in GPOSs. The
basic idea behind the resource reservation technique is to
reservea fraction of the time to real-time applications. This
way, real-time priorities can be safely used even by non-
privileged users. The mechanism works as follows. Each real-
time process is assigned a “reservation”(Qi, Ti), meaning that
the process is reserved the processor for a time of lengthQi

every periodTi. During its execution, the task is executed at
an appropriate real-time priority. However, if the task tries to
execute for a longer time, then it is suspended and resumed
later. In this way, each task is constrained to not use more than
its reserved share — i.e., a maximum ofQi everyPi units of
time.

A real-time scheduler based on Resource Reservation has
been developed for Linux 2.4.18 within the OCERA (“Open
Components for Embedded Real-time Applications”) Euro-
pean project, and it is available as Open Source code [4],
[18], [19], [20]. To minimize the modifications to the standard
kernel code, the real-time scheduler has been developed as a
loadable kernel module [21]. A small patch (called“Generic
Scheduler Patch”) applied to the Linux kernel exports the
necessary symbols and the relevant events to the real-time
scheduler. Based on the information provided by the patch,
the real-time scheduler modifies the task priority, raisingthe
selected task to the maximum priority, and then calls the
Linux scheduler. In practice, the standard Linux scheduler
acts as a dispatcher for the external real-time scheduler. The
interface to the scheduler has been exported through the stan-
dardsched setscheduler() system call, adding a new
scheduling policy, and extending the structuresched param.
The scheduler implements the CBS [22], [4], the GRUB [23],
[24] and the GRUB-PA [19], [20] scheduling algorithms.
The last algorithm allows to reduce energy consumption of
embedded systems with Intel PXA250 [25] processors.

The real-time scheduler needs to know all the relevant
events regarding the processes in the system (i.e., process
creation, termination, blocking and unblocking). For thisrea-
son, the patch exports somehooksthat are used to intercept



Hook Idle 10 tasks 20 tasks 30 tasks
creation 119 117 107 105
termination 48 44 39 35
unblock 316 387 421 483
block 138 6431 8101 9164
budget exhaustion 202 252 276 312

TABLE IV

OVERHEAD INTRODUCED BY THE HOOKS. ALL NUMBERS ARE IN

NANOSECONDS.

the interesting scheduling events. The execution of the hooks
introduces an overhead which isat most 10 µsec (see Ta-
ble IV) on a AMD Athlon XP at 1.6 GHz running Linux
2.4.27 with High Resolution Timers and Linux Trace Toolkit
patches. Although not comparable with the values obtainable
using Interrupt Abstraction, this overhead is acceptable for
most soft real-time applications.

A Resource Reservation scheduling policy for Linux
has been developed also by Davide Libenzi with the
SCHED SOFTRR project [26]. Using this policy, a task can
run with real-time priority, but it is subject to a constraint
on the maximum processor time it can consume. Thus, non-
privileged users can have deterministic latencies when running
time-sensitive applications, while system stability and fairness
are enforced by the bound.

Another scheduling policy, calledSCHED ISO (that stands
for “Isochronous Scheduling”) has been implemented by Con
Kolivas [27]. Also this policy does not require superuser
privileges and is starvation-free. Tasks running under the
SCHED ISO policy actually execute asSCHED RR unless
the processor usage exceeds a specified limit (i.e., 70%).
The value of this limit can be configured through theproc
filesystem.

V. CONCLUSIONS

Linux has become very polular for supporting real-time
applications for many reasons, among the other the availability
of a huge amount of programs distributed with open source
license, the robustness and flexibility of the kernel, its standard
interface. Many projects have been proposed to make Linux
more real-time, both by using the Interrupt Abstraction ap-
proach, and by directly modifying the internals (preemption
patches, and resource reservations).

The choice of which Linux flavor to use for executing
a real-time application depends entirely on the requirements
of the application. For hard real-time applications with very
small constants of time (below the milliseconds), it is still
necessary to use RTLinux,RTAI or Xenomai, since they can
provide very low latencies. Also, RTAI and Xenomai provide
nice integration with control design tools, like Scilab/Scicos,
Matlab/Simulink, etc.

On the other hand, thanks to the constant attention to
reducing the latency of the standard Linux kernel, soft real-
time applications, or even hard real-time applications with
large constants of time, can be scheduled directly by the
Linux scheduler, maybe with the help of a resource reservation
scheduler likeGRUB or SCHED SOFTRR or SCHED ISO.

In the future, we believe that the two approaches will
merge into a single product, able to provide different levels of
services and latencies to different applications. In this sense,
Xenomai is pavig the way to such integration.
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