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Abstract—Real-time applications that process streams of data
can be modelled by a pipeline of tasks, to be executed on a| { 71
multi-processor system. The pipeline is periodically actiated, and
each instance must be completed before an end-to-end deaui
Three important problems must be solved by real-time desigers: .
how to allocate tasks to processors, how to assign schedin ;
parameters to tasks, and how to guarantee than every pipels
will always complete within its deadline. In the literature, often
these three interrelated problems have been tackled sepaely.

In this paper, we use a component-based approach to the
overall problem, and propose to analyse each pipeline in iation.
Starting from an algorithm for assigning intermediate deadines
to tasks called ORDER, we derive a simple expression that
bounds the total amount of bandwidth to be allocated to the A. Related work
pipeline, and use such expression as a basis allocating the The holistic analysisis a method for determining the
pipeline’s tasks onto the available processors. feasibility of the problem wherthe tasks of all pipeline@n

the system are scheduled by FP [1]-[4] or EDF [5]—[8]. The
holistic approach consists in reducing the overall disteldl

I. INTRODUCTION schedulability problem inten single-node problems that can
be solved using classical schedulability analysis. Task pa

In this paper we consider real-time systems consistifigmeters like offsets, jitters, response times are catietilao
of a set of task pipelines to be executed on a multi-cofdat the precedence constraints are automatically guesednt
system. To avoid interferences between pipelines and latéso Since the schedulability of all pipelines depend on onefzerot
potential misbehaviour, each pipeline is assigned an atafun(i-€. the activation of an intermediate task, and hence its
dedicated resources on each core. This approach enableditf§ depends on the response time of the preceding task,
composition of pipelines which are then analysed in isotati Which depends on the experienced interference), the asadys
Isolating the pipelines has also the advantage of allowlieg titerated until either a fixed-point solution is found or tle¢ &5

selection of possibly different scheduling policies foe tasks deéemed not schedulable. The literature on holistic arsafgsi
of the same pipeline. distributed systems is very rich. In classic holistic asaythe

A pipeline is a chain of task§” = {r1,7,..., 7.} with best-case response time is needed to estimate either the tas
precedence constraints. A pipeline is associated with iagheriitt€r [1], [2] or the task offset [7]. Several techniquesvea
T and an end-to-end deadlifi2. The first taskr; is activated P&€N proposed for the best-case response time by Redell and
every periodl’, whereas any other task is activated by the Sanfridson [9] and Bril et al. [10]. Pellizzoni and Lipari][7
completion of the preceding ong_; . The end-to-end dead"nep_roposed to transform the d|str|bu_ted p|peI!ne problem mnt
represents the interval of time, starting from the actoti SiNgle-node problems, after the intermediate deadline® ha
of 71, within which all task instances must complete the€€n assigned. _
execution. The system consists of processors, and each While the holistic analysis was also extended to account
task is bound to execute on a given processor. An exam{ﬁé the execution over virtual resources [11], the problem o
of such a system is depicted in Figure 1. In the figure vietermining the parameters of the virtual resources was not
graphically represent the four cores by a dashed rectangiddressed. _
while the amount of resource dedicated to the pipeline isAn alternative method was proposed by Rahni et al. [8].
denoted by a grey share of the rectangle. The method consists in splitting the overall analysis in two
In this paper, we consider the problem of scheduling steps: in the first step the aggregate demand bound function

pipeline such that the end-to-end deadline is met and e PiPeline is computed; in the second step, all the aggeega
amount of required resource is minimal demand bound functions are added to test the overall schedu-

lability.
_ _ _ If the tasks of the pipeline are scheduled by EDF, as we
The research leading to these results has received funcbng the Euro-

pean Communitys Seventh Framework Programme FP7 underagaeement assume in this paper, it is necessaryagsign intermediate
n.248465 “S(0)0S Service-oriented Operating Systems.” deadlinego the tasks. In [12], [13], the authors propose to use

Fig. 1: Resource reservation on multicore.



separate windows of execution for the tasks in a pipelinehEamore complete reservation models [16] is possible and will b
task is assigned a release time coincident with the deadfineinvestigate in the future.
the previous task in the pipeline, and all tasks are requiredEach task is assigned amtermediate deadlind;, that is
to complete before their absolute deadline. By using thike interval of time between the activation of the pipeline
technique (also calleglicing) the problem is over-constrainedand the absolute deadline of the task. Following the slicing
with respect to the original model used in holistic analysisechnique [12], the precedence relationship between tissks
since the task activation could be set at the finishing timtb@f enforced by setting thactivation offsetp; of each task equal
preceding one (and not at its deadline). However, as reghorte to the intermediate deadline of the preceding one, as fatlow
[13], the slicing technique eliminates release jitter alioles —0 P o9 1
independent analysis of different pipelines. Therefore will $1=0, ¢i=Dix i=2,...,n (1)
follow this approach in our paper. Moreover, we define the tagklative deadlineD; as

The assignment of intermediate deadlines does clearly in- D, ™D, —
fluence the schedulability of the entire system: if a task is ! v
assigned a large intermediate deadline, it may finish to® lat
leaving too little time for the subsequent tasks to complete
before the end-to-end deadline. On the other hand, a too
short deadline may be restrictive for the task itself. Two D, D, D,
papers [12], [14] independently proposed similar assignime 4 o) Co c, A
strategies. The first natural idea is divide the end-to-end | mmmm m e e I
deadline proportionally to the computation time of all sk b2 o
A slightly different method is based on the even distributio $3=D> =D 1
of the laxity among all tasks. Recently it was proposed a —
deadline assignment methagdRDER) which is better capable , T
to minimise the bandwidth allocated on each node [15]. All Fig. 2: Notation for tasks.
these three methods will be recalled in Section IlI-A.

The relationship between activation offsets and relative
deadlines is depicted in Figure 2. The assignmenDgfis

B. Contributions of this paper being investigated in this paper. Clearly,

In this paper we review thO@RDER algorithm, and propose n
a simple upper bound on the required amount of resources. ZDi =D (2)
Our upper bound simply depends on the number of tasks in i=1

the pipelinen, on the number of processor and on the rate  The slicing assumption (Equation (1)) allows us to decouple
between end-to-end deadlife and periodl’. The simplicity the design and analysis of each different pipeline, sinee th
of our bound can be used to build a simple heuristic for tagictivations depend only on parameters of the same pipeline
allocation. (deadlines), and not on the completion times, which in turn
depend on the interference from other pipelines.
Il SYSTEM MODEL AND NOTATION Finally, we use the notatioft), = max{0, -}.

The pipelineT is composed by a set eftasks{7i,...,7.}. A The demand bound function
Task 7; has a computation timé’;, while C = >~"" | C; is h . | . fth K . 4-
the overall computation time of the pipeline. The first tagk o The cgmputatlona requwemept of the tasks7inis mo
the pipeline is activated periodically every while any other elled by |tsdemanc_i bOl_md funct|orWe_ denote bylfy.(to, t1) .
taskr; is activated upon the completion of the preceding o € tota_l compgtat_mn t!me of all the ”_“Sta”‘.:es of the ta_sks !
7;,—1. Theutilisation of the pipeline is defined ag = % The dz’fi::(\jngg %Tﬁ';ﬁ:orb“.me and deadline withjty, t,]. It is
pipeline7 has arend-to-end deadlin® that is the maximum [17]: .
tolerable time from the activation of the first task to the def ty —D; to — ¢
completion of the last task,. df(fo, 1) :Z<{ T J B { T -‘+ 1)

We assume that the tasks of the pipelineare scheduled €T ) )
by EDF overm resource reservations, each one allocated on a! he overall demand bound function can be defined as:
core. Taskr; is statically bound to the core; € {1,...,m}. dbfr(t) & max df(to, to + t) 4)

We observe that, if two consecutive tasksand 7, are to

assigned the same core, then they can be glued together itaecessary and sufficient schedulability test for EDF over
a new taskr! with computation timeC} = C; + C;11. Hence a virtual resource consists in checking whether the demand
we assume that; # x;;1. We also definel, = {r; € T : exceeds the amount of available computational resource:

x; = k} as the subset of tasks 1A mapped onto nodé

and we label by, = > ..  the fraction of utilisation Vk=1,...,m Vt>0 dbfi(t) < axt. ©)

on processolk. For simplicity, each resource reservation is Since the demand bound functiodbfy(¢t) is right-
modelled by the bandwidth;, it provides. The adoption of continuous, piecewise constant, and increasing, it can be

Ci (3)
0



represented by the values at each step. For this purposeAveDeadline assignment rules

introduce the set ofcheduling points follows: The assignment of intermediate deadlines clearly influgnce

et ) the schedulability of the entire system: if a task is asgigne
Pr = A{(t;w) : dbfi(t) = w, Iligl,dbfk(x) <w} (6) 4 large intermediate deadline, it may finish too late leaving
too little time for the subsequent tasks to complete befoee t
Notice that the seP;, contains infinite scheduling points.end-to-end deadline. On the other hand, a too short deadline
However, it has been proved [17] that after some initiahay be restrictive for the task itself. Two papers [12], [14]
transient points, the function repeats every pefiadHence independently proposed similar assignment strategiesfitgt
the setP, can be finitely represented by its finite transiematural idea is divide the end-to-end deadline proportlgna

part P}, and its finite periodic parP! as follows: to the computation time of all tasks, as follows
C.
PrL=P,U{(t;w):t =t +qT,w =w' + qC, DjZD?J- (10)

(tsw') € PL.g €N} (7)  This method is calleBiORM in [12] and it is the most widely
used in the literature.

The set ofdbf), on each core represents the amount of A different method is based on the distribution of the laxity
computation required by the pipeline. However the preceelenequally among all tasks:

constraint prevents a simple understanding of how the dead|

assignment influences thibdf. D; =C; + p-¢

(11)

This method is calledPURE in [12].
I1l. THE MINIMAL BANDWIDTH TARGET Recently [15], a new deadline assignment method has
been proposed, calleRDER, specifically targeted at the
Ideally, the deadlines should be assigned in a way that thfnimisation of the bandwidth required by the transactions

dbf, over any core (the LHS of Eq. (5)) a&s low as possible since we are going to exploit this method in depth, we recall
The minimal bandwidthy, that guarantees the tasks over thg in the next section.

corek is [18]:

w
ap = sup — (8) IV. THE ORDER ALGORITHM

(w)ePy U . . . .
The ORDER deadline assignment rule requires first to

Hence it is quite straightforward to set our primary target @rder all tasks mapped on the same core, by non-decreasing

finding the deadline assignment that minimises However computation time. This operation is enabled by defining the

there is a (trivial) lower bound to this minimisation, sinte mappingss : {1,...,nx} — {1,...,n} such that

must beay, > Uy. .
The sum of all tasks deadlines must be equal to the pipeline Vhi=1o Ton(£)) Tor () €T .

end-to-end deadline. As a consequence, if we minimise the t=je Cow =0y

bandwidth on nodé, the required bandwidth on another corgve also define: : {1,...,n} — {1,...,ns} as the inverse

may increase. In other words, it is not possible to minimis@apping of the different;:

every dbf, independently of the others. Therefore the

bandwidths over the cores need to be properly weighted. We ~ Vk,j =1,....nk, sk(j) =1 = 2(i) =],

choose then to formulate the problem as

(12)

which enables the definition of

L Qe 2(7)
MInImISe 1 7, Vi=1,...,n &= C. (13)
. " 9 =
subjectto» D; =D _ _
= Basically, z(i) — 1 is the number of tasks that have shorter
computation time tham; on the same core;. Therefore;
with the interpretation that the target represents theitraof is the sum of all computation times of the tasks7in that
extra bandwidth required to schedule the pipelines. Theevalprecede (and include); in the mappings..,, with x; being,
of the optimisation function is calleenergyof the solution. we remind, the index of the core whergis mapped.

This target function is relevant for our goals of component- To clarify this notation, we propose a simple example of
based analysis: in fact, we would like to set the intermediapipeline withn = 6 tasks, running overn = 3 cores. The
deadlines so that the assigned bandwidthto each pipeline data is reported in Table I.
on processork be as close as possible to the minimum

utilisation U,. The optimal solution tells the designer how i | i g i’ g i’ (25
much utilisation must be allocated on each processor; theis t als 5 1 3 4 =

designer can perform an early allocation of the bandwidth of _
the processors to each pipeline in the system. TABLE I: Data of the example.



81](].) Ié f g SQJ(J) I é g 83](].) H Therefore, by assigning the deadlines as indicated in
i |1 2 3 4 5 6 Eqg. (18), the end-to-end deadlide must be at least: times
20 | 5 1 1 3 1 the pipeline period’. Moreover if we define
) . . m ng
TABLE II: The permutation functions. pmax _ Z 1 Z‘S% _ (19)
For this example, the mappings, sz, and s; and the we can say that ifD > D™ the assignment of deadline
inverse mapping are described in Table II. according to (18) is capable of guaranteeing a bandwigtk-
Thanks to this notation we can then define hBDER U} on all processors.
deadline assignment rule. In the general case (oD € (D™n D™>)) the best
Definition 1: We define theORDER deadline assignment bandwidth assignment is subject to a deeper investigaiipn.
as: changing variablg; = ak , the problem of (9) can be rewritten
Vi=1,....,n D;=40;. (14) as:

minimisemax &
The following theorem [15] relates th@RDER deadline k
assignment with the amount of consumed bandwidth. (The subiect t > T % <D
interested reader is invited to read [15] for the proof) )
Theorem 1 (Theorem 2 in [15])tf the intermediate dead- _ _ i i
lines are assigned according to thBDER rule andvk Uy, < where z; is the index of the processor on which taskis

1, we have allocated.
’ VE,Vt >0 dbfi(t) <t (15) The first constraint represents the fact that the sum of all

intermediate deadlines cannot exceed the end-to-endidead|
while the second constraint tells us that we cannot overload
Basically the theorem asserts that ®RDER deadline assign- processor:, neither we can allocate less bandwidth than the
ment guarantees the feasibility on all core of the pipeline. minimum ;..
From Theorem 1, it is possible to compute the minimal end- | ye ignore for the moment the last constraint, this problem
to-end deadline that guarantee at least feasibility ategrd  h55 solution when alf;, are equal to the same constanBy

the ORDER assignment, which is: substituting in the first constraint, we obtain:
m ng m ng J n
min 1 61'
D *ZZDW—ZZZCM)—Z(S (16) E=52 7 (20)
k=1j=1 k=1j=1/¢=1 i=1 ~%i
and

A. Bandwidth requirements of the deadline assignments

The proposed deadline assignment (Eqg. (14)) is built such
that the bandwidthe;; on each node are all equal tolf the If for somek a; > 1, then we can set; = 1, and iterate
actual deadline i) < D™n, then theORDER deadline as- the previous solution to find the other,. The number of
signment cannot guarantee feasibility. HoweveDit> D™ iterations, in the worst case, i8; to computes;, we need to
we can take advantage of the slack betwdP" and D to Sumn;, variables; thus the complexity i9(m? max ny).
reduce the required bandwidths.

For this purpose we recall the following Corollary of8. Examples
Theorem 1.

Corollary 1 (Corollary 2 in [15]): If the intermediate
deadlines are assigned as follows:

Vk, i = EUL, (21)

We first consider the simple situation in which each task of
a given pipeline is allocated on a different node. Consider a
pipeline consisting of 2 tasks with computation tig = 1

VENG =1,....n5, Dy (y = i(g . (17) and C, = 2, allocated on 2 processors. The pipeline period
’ TR Hak() T Pek) and end-to-end deadline afe= 20 and D = 20, respectively.
with Uy, < oy, < 1, then: We first compute the energy
Vk,Vt,  dbfi(t) < axt _Llfa %y _1/G G _ 2T
5_D U+U D U+U _D_2'
If we set all bandwidthsy, equal to the minimal valué/y, ! 2 ! 2
then the deadlines becomes Then,a1 = §U1 = 0.1 and g = §U2 = 0.2. Fina”y, the
Vi1 5 1 5 18) deadlines are:
=L1,..., Nk, sk(d) = 77 9s1(4
J k x(7) U, k(7) Dlzﬁzzzgzm Dg:gzlo.
Notice that, after the multiplication by, the largest deadline o &2 2
on any processor is always equal to the period: Notice that, in this case, the value of the eneéggloes not
depend on the values of the execution times. In fact, if we
Z Cor(j) = —UkT T. multiply all computation times by a constagtand D, do not

change.



In the general case of tasks onn processors, it is easy to 4 ‘ ‘ "~ ORDER
see that the energy can be computed asmax{1, 2L}, and a5l PURE -
the relative deadlines are all equal iy = % R

In Table Ill, we compare the intermediate deadlines, the 3bi 3

assigned bandwidth and the energyof the three methods

ORDER, NORM, and PURE. The latter two algorithms are Nl
described by Equations (10) and (11), respectively. Ndkiag ol *:
| Dy Do [e3! [P 13 15 g*aj " .
NORM [ 6.66 1233 0.15 0.15 3
PURE 95 105 0105 0.19 2.1 1 L e e
ORDER | 10 10 01 02 2 1 2 3 4 5 6

Deadline-period ratio

TABLE IlI: Behaviour of ORDER, NORM and PURE on the Fig. 3: ORDER Vs PURE on 2 processors with 6 tasks

first example.

for both NORM and PURE, the actual values of_ the energyc. simulations

and of the deadlines depend on the computation times, and . .

the energy is higher than the energy obtained V@fRDER. In _[15]’ Algorithm ORDER has been compared against

This means that, with the same pipeline, the distribution g\dgor_lthm PURE. [12.]' We report here only one gr"?‘ph to

the utilisation among the two processors is more unbalanc thl'g_ht the main differences betW(_aen the two algorithms.
Now, let us consider a slightly more complex example of In Figure 3, we show the comparison betweBRDER and

3 tasks on two processors. The three tasks have computaﬁ(HBE for the case of 2 processors and 6 tasks. Since we
timesCy = 1, Cy = 2, Cs = 3, and are allocated on the first imposed that two consecutive tasks cannot be allocated on

second and first processor, respectively. The pericidis 20 the same processor, in this case the task mapping is unique:

and the end-to-end deadlinefs= 30. Hencel/; = €itCs — %1 = 23 = x5 = L anday = 24 = 26 = 2. In this case
02 andls = C2 — 01 T ORDER always perform better thaRURE. Also, notice that
. 2 = 757 = U.L

: PURE has a strange behaviour around valugs 3 and4.5 of
We start by computing the deadline-period ratio. This is due to the fact that algor
- 1 (01 +C1+C3 n @) 25420 15 PURE does not take into account the number of tasks allocated
D Uy U, 30 ' on the same processor. If the three tasks on one processor
Then,a, = ¢U; = 0.3 andas = £Us — 0.15. Finally, the do not interfere much (for example, when the deadline-plerio
ratio is around 2 their “slices” are not overlapping), thée t
deadline assignment made BYRE is a “good” assignment.

deadlines are:

D, = G =3.33 Dy= %] =13.33 Instead, when the slices overlap (as in the casd%of: 3),
a1 a2 then the demand increases. Algoritl@RDER has not such a
Ds = Gi+G —13.33 problem as it directly accounts for tasks on the same process
a1 The results are very similar for different number of proces-

Once again, note that the energy does not depend on the vakars and different number of tasks in the pipeline.

of the computation times: if we multiply all computations One important consideration can be made. The results of
times by a constani, also the utilisation is multiplied by the experiments show that the ratios betwegnand U}, that

the same constant. Rathérdepends on how the computatiorwe obtain with algorithm®RDER and PURE do not depend
times are distributed among the two processors. The compain-the actual values of the computation times, and verg littl

ison with the other algorithms is shown in Table IV. on their distribution.
Also all the experiments shows that the energy is inversely
| D1 Do Ds o o ¢ proportional to the ratidD /7. This property will actually be
NORM 5 10 15 027 02 2 f I din th t secti
PURE 9 10 1 036 02 2 ormally proved in the next section.
ORDER | 3.33 13.33 1333 03 015 15
TABLE IV: Behaviour of ORDER, NORM and PURE on the V. UPPER BOUND ON THE ENERGY
second example. The energy represents the amount of extra bandwidth that is

necessary on each core to guarantee the feasibility with end

Notice that once agail®RDER achieves a lower energy.to-end deadlineD. It is natural to quest for an upper bound
This means that, if we uS¢ORM or PURE to assign deadlines, Of it. This is provided by the following elegant theorem.
we have to allocate two times the minimum possible utilsati  Theorem 2:By assigning deadlines according to (17), the
on the second processorg instead of).1). If we useORDER, ~Minimal energy found as solution of the problem (9) is upper
instead, we only have to assign 50% more utilisation on bdg@unded by
processors. €<
Below, we provide some experiments with randomly gen-
erated pipelines. with d = 2.

m-+n

2d

(22)



Proof: Let us have a closer look at the expression for thef the 3 tasks areD; = D) = D, = 6. In this example, the

energy: original pipeline has been poorly allocated. Taskand 73
> U‘S—I have the largest computation times, and putting them tegeth
£= T on the same processor is probably the wrong choice.

Now, let us analyse what happens in general.

We start by expanding the numerator. We start by considering the limit case of = n = 1.

ns, n ZZ-(—ZZ Cv (i) This corresponds to a single task running on one processor.
ZUZ :TZZ;*“ If D<T,then¢ = L anda = L& = < which is exact.
i=1 T i=1 Zj:l Csi(h) If instead D > T, the second constraint tells us that> 1,

Notice that forz(i) = n,, (i.e. 7; is the task with the therefore{ = 1 anda = U, and again this is what we expect.
largest execution time on processg), the fraction simplifies ~ NOW consider the case in which = m > 1. This case
to 1. There aren tasks like this in the system (one for eacfsorresponds to a pipeline eftasks allocated on processors.

processor), so we can rewrite the expression¢fas: In this case, the bound is ?xact, because there is oTnIy oke tas
. on each processor, and, =T Therefore{ = 5. The
- mT 1 - Z?ﬁi s, (5) intermediate deadlines are all equal and can be expressed by
§= D + D ; Us D, = W (see the example in the previous section).
=1

Now, let us consider the more general case in which m

Now we need a way to bound the second term. Obsergigis not possible to have < m, sincem is the number of
that the maximum value for this term is when all computatioprocessors on which the pipeline tasks have been allocated)
times on each processor are the same. In this case, let's g@lérefore, there must be at least one processor with two or
C(k) the computation time of all tasks on processoiThen: more non-consecutive pipeline tasks allocated to it. Ii$ thi

T 1 STl (k) case, the bound on the energynay be an overestimation of
£ < —4= Z J=t h=1 the real¢, depending on the relative values of the computation
D D~ %(k) times of the tasks that have been allocated on the same
mT T IS0 k) processor. If they are identical, then the bound is exact; if
= —+=) == they are different, the bound is pessimistic.
D D k=1 niC (k) These considerations may guide us in deriving an allocation
mT T <np—1 strategy for real-time pipelines of tasks on multi-coreqa®
= DD > 5 sors.
k=1
_ T <m N l(n 3 m)) VI. ALLOCATION
D 2 Let us consider the following allocation problem. We have a
which proves (22) m pipelineT of N stagesA stage, denoted by; represents the

functionality to be executed by a task. A stage is charasedri
by its worst-case computation tineg. A task; is a sequence
of one or more consecutive stages of a pipeline, and its
Let us analyse this simple bound in more details. The boug¢iCET is the sum of the WCETSs of its stages. For simplicity
depends onn, which is the number of processors on whickve assume that two consecutive tasks of the pipeline are
the pipeline has been allocated; arwhich is the number of always allocated on different processors. We also know the
tasks in the pipeline; and on the rafiyy7". It does not depend of each stage, the pipeline peri@ and the pipeline must be
on the tasks’ computation times, and on their allocation. allocated so that it will always complete before its endetmt
Notice that we require that the two consecutive taskfadlineD. The tasks must be allocated on a system\bf
allocated on the same processor be treated as one singéhtical processors which are already partially utilistat
task whose computation time is the sum of the computatie@ach processor, we know its current utilisation fagtgr
times of the original tasks. For example, consider a pigelin For example, consider a pipeline wifii = 4 stages,] =
consisting of4 tasks7 = {7,...,74}, with computations {01,09,03,04}. If we put stager; into 71, stagesr, andos
timesC, = 1,03 = 2,C3 = 3,Cy = 2, periodT = 12 and into one single task», ando, into 3, the pipeline becomes
end-to-end deadlin® = 18; suppose now that the tasks arg™ = {r,, 1, 73} and a possible allocation ig, = 1, x5 = 2,
allocated, respectively, on processor 1, 2, 2, and 3; then, w; = 1.

A. Analysis of¢

consider an equivalent pipeline of 3 taské = {7, 74,74}, Given these definition, we can now mathematically state our
with C = C + C3 = 5; therefore, in this caser = 3 and allocation problem:
n = 3. Definition 2 (Allocation Problem)Given a pipeline as a

The energy represent the ratio between the total bandwidiequence of stages, a period and an end-to-end deadling; gro
needed and the actual total utilisation of the pipeline.ne tthe N stages inton < N tasks, and allocate the tasks on a

previous example, we havé = ZTC

L =8/12 = 0.66, and subset ofm < M processors such that no two consecutive
&= m;l;" =6-6/18 = 2, therefore we have to allocate a totatasks lie on the same processor, and the utilisajignof
bandwidth of1.33 on 3 processors. Specifically; = 1/6, each processok, plus the bandwidth requirement, of the

az = 5/6 andaz = 1/3. Finally, the intermediate deadlinespipeline, does not exceed




To solve this problem we need an algorithm that explores Unfortunately,as = 5% = % = 0.625, and it cannot be
the different combinations of tasks and allocations. We are allocated on any processor.
currently working at defining such algorithm, and it will be « Again, it is easy to see that any other combination of
the topic of a future paper. Nevertheless, to give a bettea id the stages intov = 3 tasks andm = 2 processors is
of the allocation problem, we now present a complete example unfeasible.
of a possible strategy that uses the upper bound @s its  Thus, we can only increase the number of processars
main driver to solve the problem. hoping that using more processors we can better distribete t
load. However, we pay a price becaysalso increases: when
m=3andn =3, £ = 2.

A. An example of allocation ] )
« Consider the following three tasks; = {o1,02}, 2 =

Suppose we have a pipeline of 4 stages, = {os}, 73 = {04}. Hence,Cy = Cy = C3 = 3. Then
{01,09,05,04} with T'= 12 and D = 18, and computation
timesec; = 1,¢0 = 2,¢3 = 3,¢4 = 3. We want to allocate Vk=1,2,3,U; = 1 a :1
such pipeline on a multicore system with 4 processors, @rea 4 2
partially utilised, with iy = 0.4, po = 04, pus = 0.4, Now it is possible to allocate the three tasks on the first
pg = 0.7. three processors.

The pipeline utilisation i/ = 9/12 = 0.75, therefore it It is worth to highlight one important property. Considee th
is not possible to collapse the pipeline into a single task tawo cases in whichn = n = 3, andm’ = 2, n’ = 4. The
be allocated on any of the processors. Observe that the tatpper bound for the energy in these two cases is the same and
amount of bandwidth to be reservedsisU = ”Zm, which is equal tog. However, in the first case the bound is exact, while
directly proportional ton + m, therefore we must try to keepin the second case the bound may be pessimistic, depending
bothm andn as small as it is possible. on the relative values of the computation times of the tasks

We start by selectingn = n = 2. In this case{ = 4/3, allocated on the same reservations. In other words:

and the total required bandwidth ison two processors. The , 3
pipeline can be split in two tasks in different ways. £ <&= d
« Consider the following two tasks; = {o1,02} andm =  This means that in certain cases it may be convenient to

{o3,04}. Hence,Cy = 3 and C; = 6. The first task allocate more than one non-consecutive tasks on the same
has utilizationU; = 1/4, and requires a bandwidth ofreservation, in order to reduce the overall amount of regir
ar = Uy = 1/3: hence it can be allocated on any obandwidth. Also, this result confirms the fact that using a
the first three processors. The second task has utiIizatimgher number of parallel processors often requires a farge
Uz = 1/2, and requires a bandwidth ef, = {Us = 2/3,  amount of reserved bandwidth.
which instead does not fit on any processor. Therefore,
this combination is not feasible. VIl. CONCLUSIONS

« Consider a second combination = {o1,02,03} and
79 = {o4}. Hence,C; = 6 and Cy = 3. This case is
symmetric to the previous one, so it is not schedulab

In this paper we analysed the performance of GRDER
gorithm [15], which is used to set intermediate deadlines
or pipelines of tasks. We derived a simple but tight bound

either. .
. Itis easy to see that any other combination with= 2 on the total amount of resources that the designer must
is unfeasible allocate in order to feasibly schedule the pipeline. We used

) , . L this simple result to reason on the problem of allocatinggas
The problem is that if we split the pipeline in two tasks, ong, processors in a multi-core real-time systems.

of them has a large c_omputation time and does not fit in a_”yCurrentIy, we are working at deriving an allocation al-
of the processors, while the other one has a low computatiggiihm that uses this simple bound to drive the allocation

time. So, maybe splitting the pipeline in three tasks we categy. Also, we plan to extend this work to task graphs.
make the pipeline feasible.

We now consider the case of = 2 andn = 3. In this case
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