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Abstract—Real-time applications that process streams of data
can be modelled by a pipeline of tasks, to be executed on a
multi-processor system. The pipeline is periodically activated, and
each instance must be completed before an end-to-end deadline.
Three important problems must be solved by real-time designers:
how to allocate tasks to processors, how to assign scheduling
parameters to tasks, and how to guarantee than every pipeline
will always complete within its deadline. In the literature, often
these three interrelated problems have been tackled separately.

In this paper, we use a component-based approach to the
overall problem, and propose to analyse each pipeline in isolation.
Starting from an algorithm for assigning intermediate deadlines
to tasks called ORDER, we derive a simple expression that
bounds the total amount of bandwidth to be allocated to the
pipeline, and use such expression as a basis allocating the
pipeline’s tasks onto the available processors.

I. I NTRODUCTION

In this paper we consider real-time systems consisting
of a set of task pipelines to be executed on a multi-core
system. To avoid interferences between pipelines and to isolate
potential misbehaviour, each pipeline is assigned an amount of
dedicated resources on each core. This approach enables the
composition of pipelines which are then analysed in isolation.
Isolating the pipelines has also the advantage of allowing the
selection of possibly different scheduling policies for the tasks
of the same pipeline.

A pipeline is a chain of tasksT = {τ1, τ2, . . . , τn} with
precedence constraints. A pipeline is associated with a period
T and an end-to-end deadlineD. The first taskτ1 is activated
every periodT , whereas any other taskτj is activated by the
completion of the preceding oneτj−1. The end-to-end deadline
represents the interval of time, starting from the activation
of τ1, within which all task instances must complete their
execution. The system consists ofm processors, and each
task is bound to execute on a given processor. An example
of such a system is depicted in Figure 1. In the figure, we
graphically represent the four cores by a dashed rectangle,
while the amount of resource dedicated to the pipeline is
denoted by a grey share of the rectangle.

In this paper, we consider the problem of scheduling a
pipeline such that the end-to-end deadline is met and the
amount of required resource is minimal.
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Fig. 1: Resource reservation on multicore.

A. Related work

The holistic analysis is a method for determining the
feasibility of the problem whenthe tasks of all pipelinesin
the system are scheduled by FP [1]–[4] or EDF [5]–[8]. The
holistic approach consists in reducing the overall distributed
schedulability problem intom single-node problems that can
be solved using classical schedulability analysis. Task pa-
rameters like offsets, jitters, response times are calculated so
that the precedence constraints are automatically guaranteed.
Since the schedulability of all pipelines depend on one another
(i.e. the activation of an intermediate task, and hence its
jitter, depends on the response time of the preceding task,
which depends on the experienced interference), the analysis is
iterated until either a fixed-point solution is found or the set is
deemed not schedulable. The literature on holistic analysis for
distributed systems is very rich. In classic holistic analysis, the
best-case response time is needed to estimate either the task
jitter [1], [2] or the task offset [7]. Several techniques have
been proposed for the best-case response time by Redell and
Sanfridson [9] and Bril et al. [10]. Pellizzoni and Lipari [7]
proposed to transform the distributed pipeline problem into m
single-node problems, after the intermediate deadlines have
been assigned.

While the holistic analysis was also extended to account
for the execution over virtual resources [11], the problem of
determining the parameters of the virtual resources was not
addressed.

An alternative method was proposed by Rahni et al. [8].
The method consists in splitting the overall analysis in two
steps: in the first step the aggregate demand bound function
of a pipeline is computed; in the second step, all the aggregate
demand bound functions are added to test the overall schedu-
lability.

If the tasks of the pipeline are scheduled by EDF, as we
assume in this paper, it is necessary toassign intermediate
deadlinesto the tasks. In [12], [13], the authors propose to use
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separate windows of execution for the tasks in a pipeline. Each
task is assigned a release time coincident with the deadlineof
the previous task in the pipeline, and all tasks are required
to complete before their absolute deadline. By using this
technique (also calledslicing) the problem is over-constrained
with respect to the original model used in holistic analysis,
since the task activation could be set at the finishing time ofthe
preceding one (and not at its deadline). However, as reported in
[13], the slicing technique eliminates release jitter and allows
independent analysis of different pipelines. Therefore, we will
follow this approach in our paper.

The assignment of intermediate deadlines does clearly in-
fluence the schedulability of the entire system: if a task is
assigned a large intermediate deadline, it may finish too late
leaving too little time for the subsequent tasks to complete
before the end-to-end deadline. On the other hand, a too
short deadline may be restrictive for the task itself. Two
papers [12], [14] independently proposed similar assignment
strategies. The first natural idea is divide the end-to-end
deadline proportionally to the computation time of all tasks.
A slightly different method is based on the even distribution
of the laxity among all tasks. Recently it was proposed a
deadline assignment method (ORDER) which is better capable
to minimise the bandwidth allocated on each node [15]. All
these three methods will be recalled in Section III-A.

B. Contributions of this paper

In this paper we review theORDER algorithm, and propose
a simple upper bound on the required amount of resources.
Our upper bound simply depends on the number of tasks in
the pipelinen, on the number of processorm and on the rate
between end-to-end deadlineD and periodT . The simplicity
of our bound can be used to build a simple heuristic for task
allocation.

II. SYSTEM MODEL AND NOTATION

The pipelineT is composed by a set ofn tasks{τ1, . . . , τn}.
Task τi has a computation timeCi, while C =

∑n
i=1 Ci is

the overall computation time of the pipeline. The first task of
the pipeline is activated periodically everyT , while any other
taskτi is activated upon the completion of the preceding one
τi−1. Theutilisation of the pipeline is defined asU = C

T
. The

pipelineT has anend-to-end deadlineD that is the maximum
tolerable time from the activation of the first taskτ1 to the
completion of the last taskτn.

We assume that the tasks of the pipelineτi are scheduled
by EDF overm resource reservations, each one allocated on a
core. Taskτi is statically bound to the corexi ∈ {1, . . . ,m}.
We observe that, if two consecutive tasksτi and τi+1 are
assigned the same core, then they can be glued together into
a new taskτ ′i with computation timeC′

i = Ci +Ci+1. Hence
we assume thatxi 6= xi+1. We also defineTk = {τi ∈ T :
xi = k} as the subset of tasks inT mapped onto nodek
and we label byUk =

∑

τi∈Tk

Ci

Ti

the fraction of utilisation
on processork. For simplicity, each resource reservation is
modelled by the bandwidthαk it provides. The adoption of

more complete reservation models [16] is possible and will be
investigate in the future.

Each task is assigned anintermediate deadlineDi, that is
the interval of time between the activation of the pipeline
and the absolute deadline of the task. Following the slicing
technique [12], the precedence relationship between tasksis
enforced by setting theactivation offsetφi of each task equal
to the intermediate deadline of the preceding one, as follows:

φ1 = 0, φi = Di−1 i = 2, . . . , n (1)

Moreover, we define the taskrelative deadlineDi as

Di
def
= Di − φi.

φ2

φ3=D2

φn=Dn−1

T

D1 D2 Dn

D = Dn

C1 C2 Cn

Fig. 2: Notation for tasks.

The relationship between activation offsets and relative
deadlines is depicted in Figure 2. The assignment ofDi is
being investigated in this paper. Clearly,

n
∑

i=1

Di = D (2)

The slicing assumption (Equation (1)) allows us to decouple
the design and analysis of each different pipeline, since the
activations depend only on parameters of the same pipeline
(deadlines), and not on the completion times, which in turn
depend on the interference from other pipelines.

Finally, we use the notation(·)0
def
= max{0, ·}.

A. The demand bound function

The computational requirement of the tasks inTk is mod-
elled by itsdemand bound function. We denote bydfk(t0, t1)
the total computation time of all the instances of the tasks in
Tk, having activation time and deadline within[t0, t1]. It is
defined as follows [17]:

dfk(t0, t1)
def
=
∑

τi∈Tk

(⌊

t1 −Di

T

⌋

−

⌈

t0 − φi

T

⌉

+ 1

)

0

Ci (3)

The overall demand bound function can be defined as:

dbfk(t)
def
= max

t0
dfk(t0, t0 + t) (4)

A necessary and sufficient schedulability test for EDF over
a virtual resource consists in checking whether the demand
exceeds the amount of available computational resource:

∀k = 1, . . . ,m ∀t > 0 dbfk(t) ≤ αkt. (5)

Since the demand bound functiondbfk(t) is right-
continuous, piecewise constant, and increasing, it can be
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represented by the values at each step. For this purpose we
introduce the set ofscheduling pointsas follows:

Pk
def
= {(t;w) : dbfk(t) = w, lim

x→t−
dbfk(x) < w} (6)

Notice that the setPk contains infinite scheduling points.
However, it has been proved [17] that after some initial
transient points, the function repeats every periodT . Hence
the setPk can be finitely represented by its finite transient
partPt

k and its finite periodic partPp
k as follows:

Pk = Pt
k ∪ {(t;w) : t = t′ + qT, w = w′ + qC,

(t′;w′) ∈ Pp
k , q ∈ N} (7)

The set ofdbfk on each core represents the amount of
computation required by the pipeline. However the precedence
constraint prevents a simple understanding of how the deadline
assignment influences thedbf.

III. T HE MINIMAL BANDWIDTH TARGET

Ideally, the deadlines should be assigned in a way that the
dbfk over any core (the LHS of Eq. (5)) areas low as possible.
The minimal bandwidthαk that guarantees the tasks over the
corek is [18]:

αk = sup
(t;w)∈Pk

w

t
(8)

Hence it is quite straightforward to set our primary target at
finding the deadline assignment that minimisesαk. However
there is a (trivial) lower bound to this minimisation, sinceit
must beαk ≥ Uk.

The sum of all tasks deadlines must be equal to the pipeline
end-to-end deadline. As a consequence, if we minimise the
bandwidth on nodek, the required bandwidth on another core
may increase. In other words, it is not possible to minimise
every dbfk independently of the others. Therefore them
bandwidths over the cores need to be properly weighted. We
choose then to formulate the problem as

minimise max
k

αk

Uk

subject to
n
∑

j=1

Dj = D
(9)

with the interpretation that the target represents the fraction of
extra bandwidth required to schedule the pipelines. The value
of the optimisation function is calledenergyof the solution.

This target function is relevant for our goals of component-
based analysis: in fact, we would like to set the intermediate
deadlines so that the assigned bandwidthαk to each pipeline
on processork be as close as possible to the minimum
utilisation Uk. The optimal solution tells the designer how
much utilisation must be allocated on each processor; thus the
designer can perform an early allocation of the bandwidth of
the processors to each pipeline in the system.

A. Deadline assignment rules

The assignment of intermediate deadlines clearly influences
the schedulability of the entire system: if a task is assigned
a large intermediate deadline, it may finish too late leaving
too little time for the subsequent tasks to complete before the
end-to-end deadline. On the other hand, a too short deadline
may be restrictive for the task itself. Two papers [12], [14]
independently proposed similar assignment strategies. The first
natural idea is divide the end-to-end deadline proportionally
to the computation time of all tasks, as follows

Dj = D
Cj

C
. (10)

This method is calledNORM in [12] and it is the most widely
used in the literature.

A different method is based on the distribution of the laxity
equally among all tasks:

Dj = Cj +
D − C

n
(11)

This method is calledPURE in [12].
Recently [15], a new deadline assignment method has

been proposed, calledORDER, specifically targeted at the
minimisation of the bandwidth required by the transactions.
Since we are going to exploit this method in depth, we recall
it in the next section.

IV. T HE ORDER ALGORITHM

The ORDER deadline assignment rule requires first to
order all tasks mapped on the same core, by non-decreasing
computation time. This operation is enabled by defining the
mappingsk : {1, . . . , nk} → {1, . . . , n} such that

∀ℓ, j = 1, . . . , nk τsk(ℓ), τsk(j) ∈ Tk

ℓ ≤ j ⇔ Csk(ℓ) ≤ Csk(j)

. (12)

We also definez : {1, . . . , n} → {1, . . . , nk} as the inverse
mapping of the differentsk:

∀k, j = 1, . . . , nk, sk(j) = i ⇒ z(i) = j,

which enables the definition of

∀i = 1, . . . , n, δi =

z(i)
∑

j=1

Csxi
(j) (13)

Basically, z(i) − 1 is the number of tasks that have shorter
computation time thanτi on the same corexi. Therefore,δi
is the sum of all computation times of the tasks inTk that
precede (and include)τi in the mappingsxi

, with xi being,
we remind, the index of the core whereτi is mapped.

To clarify this notation, we propose a simple example of
pipeline with n = 6 tasks, running overm = 3 cores. The
data is reported in Table I.

i 1 2 3 4 5 6
xi 1 2 1 3 1 2
Ci 3 8 1 3 4 5

TABLE I: Data of the example.
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j 1 2 3
s1(j) 3 1 5

j 1 2
s2(j) 6 2

j 1
s3(j) 4

i 1 2 3 4 5 6
z(i) 2 2 1 1 3 1

TABLE II: The permutation functions.

For this example, the mappingss1, s2, and s3 and the
inverse mappingz are described in Table II.

Thanks to this notation we can then define theORDER
deadline assignment rule.

Definition 1: We define theORDER deadline assignment
as:

∀i = 1, . . . , n Di = δi. (14)

The following theorem [15] relates theORDER deadline
assignment with the amount of consumed bandwidth. (The
interested reader is invited to read [15] for the proof)

Theorem 1 (Theorem 2 in [15]):If the intermediate dead-
lines are assigned according to theORDER rule and∀k Uk ≤
1, we have

∀k, ∀t ≥ 0 dbfk(t) ≤ t (15)

Basically the theorem asserts that theORDER deadline assign-
ment guarantees the feasibility on all core of the pipeline.

From Theorem 1, it is possible to compute the minimal end-
to-end deadline that guarantee at least feasibility according to
the ORDER assignment, which is:

Dmin =

m
∑

k=1

nk
∑

j=1

Dsk(j) =

m
∑

k=1

nk
∑

j=1

j
∑

ℓ=1

Csk(ℓ) =

n
∑

i=1

δi (16)

A. Bandwidth requirements of the deadline assignments

The proposed deadline assignment (Eq. (14)) is built such
that the bandwidthsαk on each node are all equal to1. If the
actual deadline isD < Dmin, then theORDER deadline as-
signment cannot guarantee feasibility. However, ifD ≥ Dmin

we can take advantage of the slack betweenDmin andD to
reduce the required bandwidths.

For this purpose we recall the following Corollary of
Theorem 1.

Corollary 1 (Corollary 2 in [15]): If the intermediate
deadlines are assigned as follows:

∀k, ∀j = 1, . . . , nk, Dsk(j) =
1

αk

δsk(j) (17)

with Uk ≤ αk ≤ 1, then:

∀k, ∀t, dbfk(t) ≤ αkt

If we set all bandwidthsαk equal to the minimal valueUk,
then the deadlines becomes

∀j = 1, . . . , nk, Dsk(j) =
1

Uk

δsk(j) (18)

Notice that, after the multiplication by1
Uk

, the largest deadline
on any processor is always equal to the period:

Dsk(nk) =
1

Uk

nk
∑

j=1

Csk(j) =
1

Uk

UkT = T.

Therefore, by assigning the deadlines as indicated in
Eq. (18), the end-to-end deadlineD must be at leastm times
the pipeline periodT . Moreover if we define

Dmax =
m
∑

k=1

1

Uk

nk
∑

j=1

δsk(j) (19)

we can say that ifD ≥ Dmax the assignment of deadline
according to (18) is capable of guaranteeing a bandwidthαk =
Uk on all processors.

In the general case (ofD ∈ (Dmin, Dmax)) the best
bandwidth assignment is subject to a deeper investigation.By
changing variableξk = αk

Uk

, the problem of (9) can be rewritten
as:

minimisemax
k

ξk

subject to

{

∑n
i=1

δi
Uxi

ξxi

≤ D

1 ≤ ξk ≤ 1
Uk

wherexi is the index of the processor on which taskτi is
allocated.

The first constraint represents the fact that the sum of all
intermediate deadlines cannot exceed the end-to-end deadline,
while the second constraint tells us that we cannot overload
processork, neither we can allocate less bandwidth than the
minimumUk.

If we ignore for the moment the last constraint, this problem
has solution when allξk are equal to the same constantξ. By
substituting in the first constraint, we obtain:

ξ =
1

D

n
∑

i=1

δi
Uxi

(20)

and
∀k, αk = ξUk (21)

If for some k αk > 1, then we can setαk = 1, and iterate
the previous solution to find the otherαk. The number of
iterations, in the worst case, ism; to computeδk we need to
sumnk variables; thus the complexity isO(m2 maxnk).

B. Examples

We first consider the simple situation in which each task of
a given pipeline is allocated on a different node. Consider a
pipeline consisting of 2 tasks with computation timeC1 = 1
andC2 = 2, allocated on 2 processors. The pipeline period
and end-to-end deadline areT = 20 andD = 20, respectively.

We first compute the energyξ

ξ =
1

D

(

δ1
U1

+
δ2
U2

)

=
1

D

(

C1

U1
+

C2

U2

)

=
2T

D
= 2.

Then,α1 = ξU1 = 0.1 and α2 = ξU2 = 0.2. Finally, the
deadlines are:

D1 =
C1

α1
=

T

ξ
=

D

2
= 10 D2 =

C2

α2
= 10.

Notice that, in this case, the value of the energyξ does not
depend on the values of the execution times. In fact, if we
multiply all computation times by a constant,ξ andDi do not
change.
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In the general case ofn tasks onn processors, it is easy to
see that the energy can be computed asξ = max{1, nT

D
}, and

the relative deadlines are all equal toDi =
D
n

.
In Table III, we compare the intermediate deadlines, the

assigned bandwidth and the energyξ of the three methods
ORDER, NORM, and PURE. The latter two algorithms are
described by Equations (10) and (11), respectively. Noticethat,

D1 D2 α1 α2 ξ

NORM 6.66 12.33 0.15 0.15 3
PURE 9.5 10.5 0.105 0.19 2.1
ORDER 10 10 0.1 0.2 2

TABLE III: Behaviour of ORDER, NORM and PURE on the
first example.

for both NORM and PURE, the actual values of the energy
and of the deadlines depend on the computation times, and
the energy is higher than the energy obtained withORDER.
This means that, with the same pipeline, the distribution of
the utilisation among the two processors is more unbalanced.

Now, let us consider a slightly more complex example of
3 tasks on two processors. The three tasks have computation
timesC1 = 1, C2 = 2, C3 = 3, and are allocated on the first,
second and first processor, respectively. The period isT = 20
and the end-to-end deadline isD = 30. HenceU1 = C1+C3

T
=

0.2 andU2 = C2

T
= 0.1.

We start by computing

ξ =
1

D

(

C1 + C1 + C3

U1
+

C2

U2

)

=
25 + 20

30
= 1.5

Then,α1 = ξU1 = 0.3 andα2 = ξU2 = 0.15. Finally, the
deadlines are:

D1 =
C1

α1
= 3.33 D2 =

C2

α2
= 13.33

D3 =
C1 + C3

α1
= 13.33

Once again, note that the energy does not depend on the values
of the computation times: if we multiply all computations
times by a constantK, also the utilisation is multiplied by
the same constant. Rather,ξ depends on how the computation
times are distributed among the two processors. The compar-
ison with the other algorithms is shown in Table IV.

D1 D2 D3 α1 α2 ξ

NORM 5 10 15 0.27 0.2 2
PURE 9 10 11 0.36 0.2 2
ORDER 3.33 13.33 13.33 0.3 0.15 1.5

TABLE IV: Behaviour of ORDER, NORM andPURE on the
second example.

Notice that once againORDER achieves a lower energy.
This means that, if we useNORM or PURE to assign deadlines,
we have to allocate two times the minimum possible utilisation
on the second processor (0.2 instead of0.1). If we useORDER,
instead, we only have to assign 50% more utilisation on both
processors.

Below, we provide some experiments with randomly gen-
erated pipelines.

 1
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 1  2  3  4  5  6
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Deadline-period ratio
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Fig. 3: ORDER vs PURE on 2 processors with 6 tasks

C. Simulations

In [15], Algorithm ORDER has been compared against
Algorithm PURE [12]. We report here only one graph to
highlight the main differences between the two algorithms.

In Figure 3, we show the comparison betweenORDER and
PURE for the case of 2 processors and 6 tasks. Since we
imposed that two consecutive tasks cannot be allocated on
the same processor, in this case the task mapping is unique:
x1 = x3 = x5 = 1 and x2 = x4 = x6 = 2. In this case
ORDER always perform better thanPURE. Also, notice that
PURE has a strange behaviour around values1.5, 3 and4.5 of
the deadline-period ratio. This is due to the fact that algorithm
PURE does not take into account the number of tasks allocated
on the same processor. If the three tasks on one processor
do not interfere much (for example, when the deadline-period
ratio is around 2 their “slices” are not overlapping), then the
deadline assignment made byPURE is a “good” assignment.
Instead, when the slices overlap (as in the case ofD

T
= 3),

then the demand increases. AlgorithmORDER has not such a
problem as it directly accounts for tasks on the same processor.

The results are very similar for different number of proces-
sors and different number of tasks in the pipeline.

One important consideration can be made. The results of
the experiments show that the ratios betweenαk andUk that
we obtain with algorithmsORDER andPURE do not depend
on the actual values of the computation times, and very little
on their distribution.

Also all the experiments shows that the energy is inversely
proportional to the ratioD/T . This property will actually be
formally proved in the next section.

V. UPPER BOUND ON THE ENERGY

The energy represents the amount of extra bandwidth that is
necessary on each core to guarantee the feasibility with end-
to-end deadlineD. It is natural to quest for an upper bound
of it. This is provided by the following elegant theorem.

Theorem 2:By assigning deadlines according to (17), the
minimal energyξ found as solution of the problem (9) is upper
bounded by

ξ ≤
m+ n

2d
(22)

with d = D
T

.
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Proof: Let us have a closer look at the expression for the
energy:

ξ =

∑n

i=1
δi
Uxi

D

We start by expanding the numerator.

n
∑

i=1

δi
Uxi

= T
n
∑

i=1

∑z(i)
j=1 Csk(j)

∑nxi

j=1 Csk(j)

Notice that for z(i) = nxi
(i.e. τi is the task with the

largest execution time on processorxi), the fraction simplifies
to 1. There arem tasks like this in the system (one for each
processor), so we can rewrite the expression forξ as:

ξ =
mT

D
+

1

D

m
∑

k=1

∑nk−1
j=i δsk(j)

Uk

Now we need a way to bound the second term. Observe
that the maximum value for this term is when all computation
times on each processor are the same. In this case, let’s call
C(k) the computation time of all tasks on processork. Then:

ξ ≤
mT

D
+

1

D

m
∑

k=1

∑nk−1
j=i

∑j

h=1 C(k)
nkC(k)

T

=
mT

D
+

T

D

m
∑

k=1

∑nk−1
j=i jC(k)

nkC(k)

=
mT

D
+

T

D

m
∑

k=1

nk − 1

2

=
T

D

(

m+
1

2
(n−m)

)

which proves (22)

A. Analysis ofξ

Let us analyse this simple bound in more details. The bound
depends onm, which is the number of processors on which
the pipeline has been allocated; onn which is the number of
tasks in the pipeline; and on the ratioD/T . It does not depend
on the tasks’ computation times, and on their allocation.

Notice that we require that the two consecutive tasks
allocated on the same processor be treated as one single
task whose computation time is the sum of the computation
times of the original tasks. For example, consider a pipeline
consisting of4 tasksT = {τ1, . . . , τ4}, with computations
timesC1 = 1, C2 = 2, C3 = 3, C4 = 2, periodT = 12 and
end-to-end deadlineD = 18; suppose now that the tasks are
allocated, respectively, on processor 1, 2, 2, and 3; then, we
consider an equivalent pipeline of 3 tasksT ′ = {τ1, τ

′
2, τ4},

with C′
2 = C2 + C3 = 5; therefore, in this casem = 3 and

n = 3.
The energyξ represent the ratio between the total bandwidth

needed and the actual total utilisation of the pipeline. In the
previous example, we haveU =

∑
i
Ci

T
= 8/12 = 0.66, and

ξ = m+n
2d = 6 ·6/18 = 2, therefore we have to allocate a total

bandwidth of1.33 on 3 processors. Specifically,α1 = 1/6,
α2 = 5/6 andα3 = 1/3. Finally, the intermediate deadlines

of the 3 tasks are:D1 = D′
2 = D4 = 6. In this example, the

original pipeline has been poorly allocated. Taskτ2 and τ3
have the largest computation times, and putting them together
on the same processor is probably the wrong choice.

Now, let us analyse what happens in general.
We start by considering the limit case ofm = n = 1.

This corresponds to a single task running on one processor.
If D ≤ T , then ξ = T

D
andα = TC

DT
= C

D
which is exact.

If insteadD > T , the second constraint tells us thatξ ≥ 1,
therefore,ξ = 1 andα = U , and again this is what we expect.

Now consider the case in whichn = m > 1. This case
corresponds to a pipeline ofn tasks allocated onn processors.
In this case, the bound is exact, because there is only one task
on each processor, and∀i, δi

Ui
= T . Therefore,ξ = nT

D
. The

intermediate deadlines are all equal and can be expressed by
Di =

max(T,D)
n

(see the example in the previous section).
Now, let us consider the more general case in whichn > m

(it is not possible to haven < m, sincem is the number of
processors on which the pipeline tasks have been allocated).
Therefore, there must be at least one processor with two or
more non-consecutive pipeline tasks allocated to it. In this
case, the bound on the energyξ may be an overestimation of
the realξ, depending on the relative values of the computation
times of the tasks that have been allocated on the same
processor. If they are identical, then the bound is exact; if
they are different, the bound is pessimistic.

These considerations may guide us in deriving an allocation
strategy for real-time pipelines of tasks on multi-core proces-
sors.

VI. A LLOCATION

Let us consider the following allocation problem. We have a
pipelineT of N stages. A stage, denoted byσi represents the
functionality to be executed by a task. A stage is characterised
by its worst-case computation timeci. A taskτj is a sequence
of one or more consecutive stages of a pipeline, and its
WCET is the sum of the WCETs of its stages. For simplicity
we assume that two consecutive tasks of the pipeline are
always allocated on different processors. We also know the
of each stage, the pipeline periodT , and the pipeline must be
allocated so that it will always complete before its end-to-end
deadlineD. The tasks must be allocated on a system ofM
identical processors which are already partially utilised: for
each processor, we know its current utilisation factorµk.

For example, consider a pipeline withN = 4 stages,T =
{σ1, σ2, σ3, σ4}. If we put stageσ1 into τ1, stagesσ2 andσ3

into one single taskτ2, andσ4 into τ3, the pipeline becomes
T = {τ1, τ2, τ3} and a possible allocation isx1 = 1, x2 = 2,
x3 = 1.

Given these definition, we can now mathematically state our
allocation problem:

Definition 2 (Allocation Problem):Given a pipeline as a
sequence of stages, a period and an end-to-end deadline; group
the N stages inton ≤ N tasks, and allocate the tasks on a
subset ofm ≤ M processors such that no two consecutive
tasks lie on the same processor, and the utilisationµk of
each processork, plus the bandwidth requirementαk of the
pipeline, does not exceed1.



7

To solve this problem we need an algorithm that explores
the different combinations of tasks and allocations. We are
currently working at defining such algorithm, and it will be
the topic of a future paper. Nevertheless, to give a better idea
of the allocation problem, we now present a complete example
of a possible strategy that uses the upper bound onξ as its
main driver to solve the problem.

A. An example of allocation

Suppose we have a pipeline of 4 stages,T =
{σ1, σ2, σ3, σ4} with T = 12 andD = 18, and computation
times c1 = 1, c2 = 2, c3 = 3, c4 = 3. We want to allocate
such pipeline on a multicore system with 4 processors, already
partially utilised, with µ1 = 0.4, µ2 = 0.4, µ3 = 0.4,
µ4 = 0.7.

The pipeline utilisation isU = 9/12 = 0.75, therefore it
is not possible to collapse the pipeline into a single task to
be allocated on any of the processors. Observe that the total
amount of bandwidth to be reserved isξ ·U = n+m

4 , which is
directly proportional ton+m, therefore we must try to keep
bothm andn as small as it is possible.

We start by selectingm = n = 2. In this caseξ = 4/3,
and the total required bandwidth is1 on two processors. The
pipeline can be split in two tasks in different ways.

• Consider the following two tasks:τ1 = {σ1, σ2} andτ2 =
{σ3, σ4}. Hence,C1 = 3 and C2 = 6. The first task
has utilizationU1 = 1/4, and requires a bandwidth of
α1 = ξU1 = 1/3: hence it can be allocated on any of
the first three processors. The second task has utilization
U2 = 1/2, and requires a bandwidth ofα2 = ξU2 = 2/3,
which instead does not fit on any processor. Therefore,
this combination is not feasible.

• Consider a second combinationτ1 = {σ1, σ2, σ3} and
τ2 = {σ4}. Hence,C1 = 6 and C2 = 3. This case is
symmetric to the previous one, so it is not schedulable
either.

• It is easy to see that any other combination withn = 2
is unfeasible.

The problem is that if we split the pipeline in two tasks, one
of them has a large computation time and does not fit in any
of the processors, while the other one has a low computation
time. So, maybe splitting the pipeline in three tasks we can
make the pipeline feasible.

We now consider the case ofm = 2 andn = 3. In this case
ξ ≤ 5/3. Again, there are many ways to split the pipeline in
three tasks:

• Consider the following three tasks:τ1 = {σ1}, τ2 =
{σ2, σ3}, τ3 = {σ4}. Hence,C1 = 1, C2 = 5, C3 = 3.
The only possibility is to allocate bothτ1 andτ3 on the
same reservation, andτ2 on a second reservation. Notice
that in this case, the bound ofξ ≤ 5/3 is pessimistic:
in fact, the two tasksτ1 and τ3 have very different
computation times. The exact value of the energy is
insteadξ = 3/2 (computed by using Equation (20)).
Therefore,α1 = ξU1 = ξC1+C3

T
= 0.5, and τ1 and

τ3 can be allocated on any of the first three processors.

Unfortunately,α2 = ξC2

T
= 5

8 = 0.625, and it cannot be
allocated on any processor.

• Again, it is easy to see that any other combination of
the stages inton = 3 tasks andm = 2 processors is
unfeasible.

Thus, we can only increase the number of processorsm,
hoping that using more processors we can better distribute the
load. However, we pay a price becauseξ also increases: when
m = 3 andn = 3, ξ = 2.

• Consider the following three tasks:τ1 = {σ1, σ2}, τ2 =
{σ3}, τ3 = {σ4}. Hence,C1 = C2 = C3 = 3. Then

∀k = 1, 2, 3, Uk =
1

4
αk =

1

2

Now it is possible to allocate the three tasks on the first
three processors.

It is worth to highlight one important property. Consider the
two cases in whichm = n = 3, andm′ = 2, n′ = 4. The
upper bound for the energy in these two cases is the same and
equal to3

d
. However, in the first case the bound is exact, while

in the second case the bound may be pessimistic, depending
on the relative values of the computation times of the tasks
allocated on the same reservations. In other words:

ξ′ ≤ ξ =
3

d

This means that in certain cases it may be convenient to
allocate more than one non-consecutive tasks on the same
reservation, in order to reduce the overall amount of required
bandwidth. Also, this result confirms the fact that using a
higher number of parallel processors often requires a larger
amount of reserved bandwidth.

VII. C ONCLUSIONS

In this paper we analysed the performance of theORDER
algorithm [15], which is used to set intermediate deadlines
for pipelines of tasks. We derived a simple but tight bound
on the total amount of resources that the designer must
allocate in order to feasibly schedule the pipeline. We used
this simple result to reason on the problem of allocating tasks
to processors in a multi-core real-time systems.

Currently, we are working at deriving an allocation al-
gorithm that uses this simple bound to drive the allocation
strategy. Also, we plan to extend this work to task graphs.
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