
Multi-level feedback control for Quality of Service Management ∗

Tommaso Cucinotta, Giuseppe Lipari†

{t.cucinotta, g.lipari}@sssup.it

Luigi Palopoli, Luca Abeni‡

{l.palopoli, l.abeni}@unitn.it

Rodrigo Santos§

ierms@criba.edu.ar

Abstract

We consider the problem of power-aware Quality of Ser-

vice (QoS) control for soft real-time embedded systems. Ap-

plications can have time-varying and scarcely known re-

source requirements, and can be activated and terminated

at any time. However, they have the capability to switch

among a discrete set of operation modes with different QoS

levels and resource requirements. In addition, the platform

provides resources with power-scaling capabilities and may

be subject to power constraints.

We present a QoS control architecture achieving opti-

mum trade-offs between overall QoS and power consump-

tion of the system, based on two nested control loops. The

external one decides dynamically the optimum configura-

tion for the system, in terms of application QoS modes and

resource power modes, while the internal one modulates the

resource allocations on a job by job basis, so as to respect

timing constraints. We demonstrate the effectiveness of the

approach by extensive simulations with trace data of real

multimedia applications.

1 Introduction

An emerging class of soft real-time applications is char-

acterised by strongly varying resource requirements and is

commonly executed in open systems. In our terminology, a

computing system is defined “open” if applications can be

activated and terminated in any moment generating a time–

varying workload. For such applications, classical real-time

systems design methodologies are hardly applicable, be-

cause they assume a priori knowledge both on the appli-

cation requirements and on the availability of resources. An

interesting alternative for ensuring reliable levels of Quality

of Service (QoS) is then offered by the application of a feed-

back control loop, in which design parameters can be fine-

tuned by measuring the behaviour of the application and/or

∗The research leading to these results has received funding from the

European Community’s Seventh Framework Programme FP7 under grant

agreement n.214777 “IRMOS – Interactive Realtime Multimedia Applica-

tions on Service Oriented Infrastructures”, and n.IST-2008-224428 “CHAT

- Control of Heterogeneous Automation Systems”.
†Tommaso Cucinotta and Giuseppe Lipari are with Scuola Superiore

Sant’Anna, Pisa, Italy
‡Luigi Palopoli and Luca Abeni are with Università di Trento, Trento,

Italy
§Rodrigo Santos is with Universidad Nacional del Sur, Bahı́a Blanca,

Argentina

the level of workload in the system.

This idea has recently become very popular, producing

different approaches, that can be roughly classified into two

groups: application-level adaptation, in which the appli-

cation operating modes are adapted to the availability of

resources; and resource-level adaptation, in which the re-

source shares granted to the applications are adapted to the

dynamic workload requirements. Finally, a third perspec-

tive on the system QoS is given by energy consumption. As

an example, if the application is run on a portable device,

the duration of the battery is directly perceived as a quality

indicator. Some authors propose to scale down the power of

the CPU when the system workload is below a threshold.

In this paper, we make the point that, if we consider each

of these different perspectives in isolation, we miss impor-

tant opportunities for optimising the system behaviour. In-

deed, a “low-level” feedback scheme, which simply oper-

ates on resource allocation to accommodate the timing con-

straints of the tasks, is not clearly able to solve permanent

overloads of the system, nor is it able to switch to more ag-

gressive setting for the application if the workload in the

system becomes low. Conversely, if the feedback loop sim-

ply operates with a high QoS application mode, the problem

of finding an appropriate allocation of resources remains un-

addressed. A static choice of scheduling parameters in this

case may lead to an unsatisfactory timing behaviour.

Original contributions. In this paper, a power-aware

QoS management architecture for soft real-time systems

is presented, that combines application-level and resource-

level adaptation. Combining these two approaches is non-

trivial: not only a correct “communication” between the

two controllers must occur, but their interaction needs also

a proper design, so as to avoid undesired instabilities.

We use an adaptive reservation algorithm in the internal

loop and a dynamic optimisation algorithm using discrete

options for the QoS and power in the external loop. Our

most important contribution in this paper is to show an in-

tegrated design of these two control loops, based on a well

founded model of the system and on a formal statement of

the control goals.

Organisation. The paper is organised as follows. In Sec-

tion 2 we provide an overview of the approach and describe

the control goals. In Sections 3 and 4 we describe the inner

and outer control schemes, respectively. In Section 5, we re-

Figure 1. Two-level control loop.

port simulation results that validate the proposed approach.

In Section 6, we compare our work with the previous work.

Finally, in Section 7 we draw conclusions and present future

work directions.

2 System model

We consider a set of soft real-time applications running

on a hardware platform consisting of a set of resources

(CPU, network, disk, etc). For the purposes of this work we

consider CPU-intensive tasks, so the resource needed for ex-

ecuting a task is essentially a processor. More formally, our

system consists of a set of n applications A(1), . . . ,A(n),
sharing a pool of m processors R(1), . . . ,R(m). Applica-

tions can dynamically enter and leave the system, so the

number n can change at run-time. Each application A(i)

is comprised of one or more tasks, each one executing on

a processor. For the sake of simplicity, and without loss

of generality, we assume that in an application there is at

most one task per processor: by T (i, r) we denote the task

belonging to application (i) that uses processor (r).
A task T (i, r) consists of a stream of jobs, or instances,

J
(i, r)
k . Each job J

(i, r)
k arrives (becomes executable) at time

r
(i, r)
k , and finishes at time f

(i, r)
k after using the processor

R(r) for a time c
(i, r)
k (in Section 3, we will introduce the

concept of stochastic computation times). Job J
(i, r)
k is as-

sociated a deadline d
(i, r)
k , which is met if f

(i, r)
k ≤ d

(i, r)
k ,

and is missed otherwise. In this paper, we do not explic-

itly consider the interactions between tasks: this is possible

assuming that the end-to-end deadlines of the application

have been decomposed into partial deadlines for the tasks.

We assume that tasks are periodically activated (r
(i, r)
k+1 =

r
(i, r)
k + T (i)) and that their relative deadline is equal to the

period: d
(i, r)
k = r

(i, r)
k + T (i) = r

(i, r)
k+1 .

Each application A(i) may vary its mode of operation

within a finite set V (i) , {1, . . . , n
(i)
am} of cardinality n

(i)
am.

This means that the algorithm implemented in the applica-

tion task(s) has a set of discrete options that can be chosen

to change the quality. Every mode j ∈ V (i) is associated

with a quality index q(i,j) ∈ R, which is a measure of the

user satisfaction when A(i) executes in the j-th mode.

The hardware platform may consist of one or more pro-

cessors, exhibiting multiple power operation modes (e.g., by

using Dynamic Voltage Scaling), each one associated with

a different speed and power consumption. For the sake of

simplicity, we assume that the power mode of each proces-

sor can be set independently of the others. More formally,

each resource R(r) may vary its operating mode within a

finite set P (r) , {1, . . . , n
(r)
rm} of cardinality n

(r)
rm. In each

mode k, the resource R(r) has a power consumption p(r,k).

We make the reasonable assumption that power modes as-

sociated with a higher power consumption reduce the exe-

cution time of the tasks.

In the following, for the purpose of clarity, whenever the

discussion refers to a single task and/or resource, the corre-

sponding superscripts (i) and/or (r) is omitted.

2.1 Scheduling

We assume that each processor may be shared between

multiple tasks by using a Reservation Based (RB) schedul-

ing policy. We assume a partitioned scheduling strategy,

where tasks are statically allocated to processors and cannot

migrate between them during the application lifetime. How

this allocation is performed is out of the scope of this paper.

In a RB framework, a task T (i, r) using a resource R(r) is

associated a pair (Q(i, r), P (i, r)), said reservation, meaning

that the scheduling algorithm guarantees to T (i, r) a bud-

get of Q(i, r) execution time units in every reservation pe-

riod P (i, r) for the processor whenever in need. The ratio

B(i, r) = Q(i, r)/P (i, r) is referred to as reserved bandwidth

and quantifies the fraction of the processor reserved to the

application. In our framework, the reserved bandwidth for a

task can be dynamically changed by changing the reserved

budget Q(i, r) for each job (we never change the reserva-

tion period). We will use B
(i, r)
k to denote the bandwidth

required for the k-th job. To analyse the timing behaviour

of the tasks, it is convenient to characterise each job J
(i, r)
k

execution by the scheduling error ǫ
(i, r)
k . This quantity is

a measure of the delay of a job with respect to its dead-

line (see [5] for a formal definition). If the scheduling error

is negative, then the job received an excessive amount of

CPU. Conversely, if the scheduling error is positive, then

the job received too little and the task is accumulating de-

lays. A positive scheduling error does not always have an

immediate impact on the QoS exhibited by the application.

For example, in the multimedia domain, buffers are usually

used to compensate undesired fluctuations on the finishing

times. However, the introduction of buffers increases end-

to-end latencies, so for real-time applications with tight re-

sponsiveness and interactivity constraints, their use should

be limited to the minimum.

In order for a RB scheduler to work properly, the follow-

ing relation has to be respected at all times:

∀r ∈ 1, . . . , m
∑

i

B(i, r) ≤ U
(r)
lub , (1)

where U
(r)
lub ≤ 1 depends on the scheduling algorithm used

on R(r). As detailed in Section 4, basing our schedulability

condition on a utilisation-based test, leads to the advantage

of obtaining a problem formulation falling within the stan-

dard class of Integer Linear Programming (ILP) problems.

2.2 Control Specification

The two-level feedback scheme proposed in this paper is

sketched in Figure 1. The internal feedback loop performs

the resource-level adaptation, and it is depicted in the box

labelled Resource Controller. There is a separate resource

controller for each task in the system. The controller oper-

ates at the end of each job; first it measures the computation

time and the scheduling error of the task, then it computes

the bandwidth for the next job and actuates it by chang-

ing the scheduling parameters (the reservation budget). The

goal of each controller is to keep in check the scheduling

error of the corresponding task. As far as some basic as-

sumptions on the workload are respected, the resource con-

troller is able in its turn to respect the specification on the

real-time behaviour of the tasks. If some changes occur in

the workload generated by the applications that invalidate

these assumptions (i.e., a new application enters the system

or a running application exhibits a substantial change in the

workload characteristics) then the resource controller is no

longer able to work properly.

In this case, the external control loop, containing the

QoS controller box in Figure 1, provides the application-

level adaptation. It monitors the system periodically and

if detects that some resource controller is not working prop-

erly, it switches the modes of the applications and the power

modes of the processors to change the minimum bandwidth

requirement of the tasks and changes the configuration of

the task controllers. Similarly, if a reduction in the aver-

age resource requirements is detected, the QoS controller

can make more aggressive choices in the application modes

increasing the “macroscopic” QoS perceived by the user.

2.3 Macroscopic QoS

The QoS, in our setting, can be evaluated using differ-

ent metrics. Namely, for every application A(i) and for ev-

ery possible mode j, we have defined a QoS index q(i,j).

If this level is maintained for a time interval ∆t (which is

equal to the sampling period of the external loop), the total

QoS accumulated is given by q(i,j)∆t. For certain types of

applications, changing the application mode too often may

diminish the QoS experienced by the user. For example,

changing the bit-rate of the play-back of a video stream too

frequently can be very annoying. To model this detrimental

effect, when going from mode (j) to mode (k), we intro-

duce a negative QoS metric given by −k
(i)
a |q(i,k) − q(i,j)|,

with k
(i)
s > 0, which quantifies the quality degradation due

to the change. This term does not depend on the duration of

the time interval. Therefore, its impact becomes smaller if

we increase the sampling period ∆t.

Another dimension for evaluating the QoS is energy con-

sumption. For each processor R(r), and each operating

mode k, we specify a power consumption p(r,k) when the

resource is operated in mode k. The energy spent over the

sampling interval ∆t is simply given by p(r,k)∆t. Clearly

this term has to be accounted for with a negative sign (the

greater the energy consumed, the lower the quality). If the

information is available, also in this case it is possible to in-

troduce a metric quantifying the energy spent in a transition

between two different power modes (j) and (k): −k
(r)(j, k)
p .

These different metrics are clearly in conflict with each

other. For instance, if we increase the level of one appli-

cation, we have to correspondingly increase the quantity of

resource dedicated to the application. Likewise, reducing

the power mode of a processor produces a longer lifetime

for the system but it also increases the computation times

of the different tasks. In response to this action, we may be

forced to switch to lower QoS application modes so as to

prevent overload conditions.

Generally speaking, our problem is one of multi-

objective optimisation and is generally addressed by identi-

fying the front of Pareto optimal points1 and by studying the

best trade-offs between the different metrics on this front.

In our case, we adopt a simple technique known as “scalar-

isation” [7]. The idea is to construct a simple linear utility

function in which each different metric is associated with

a weight. In our case, suppose that the optimisation is run

at time t and has to decide the parameters for the interval

t + ∆t. Let j(i), k(i) denote the application mode of A(i)

before and after the optimisation, and j(r) and k(r) repre-

sent the power modes of processor R(r) before and after the

optimisation. The utility function is given by:

n
∑

i=1

w(i)
a

(

∆tq(i,k(i)) − k(i)
a |q(i,k(i)) − q(i,j(i))|

)

(2)

−
m

∑

r=1

w(r)
p

(

∆tp(r,k(r)) + k(r)(k(r), j(r))
p

)

,

where the weights w
(i)
a , w

(r)
p are positive real numbers that

emphasise/de-emphasise the importance of each application

or resource in the search on the Pareto front.

2.4 Constraints

Independently from the configured mode of operation,

each application is associated with a soft real-time con-

straint. This may be specified in terms of the probability

π(i) that the scheduling error ǫ(i) respects an upper bound

δ(i). Formally:

Pr
{

ǫ
(i)
k ≤ δ(i)

}

≥ π(i). (3)

If the bound δ(i) is chosen equal to 0, we get the probability

of respecting the deadline. In some cases, larger delays can

1A point is said Pareto Optimal if no further improvement can be

achieved on a metric without lowering the other ones.

be tolerated and a greater value can be chosen for δ(i).

The control action is subject to two types of con-

straints. The most important one is the schedulability con-

dition Equation (1). If the inner feedback loop violates this

condition, the schedulability algorithm is not in condition

to work consistently. Therefore, we can define as “feasible”

a vector of application and power modes such that the re-

source controller is able to enforce the timing requirement

in Equation (3) without violating Equation (1). Another

constraint that we will consider is on the maximum power

consumption for the set of available power-aware processors

on the system. This constraint is particularly useful for guar-

anteeing a minimum lifetime for battery-operated devices,

but it may equally be useful in those situations in which en-

vironmental conditions constrain the maximum power that

the system can dissipate.

3 Resource Level QoS Control

This section presents some background on resource-level

adaptation (a more complete description of this work can

be found in [14]). The proposed approach is comprised of

two basic elements: 1) a set of local controllers associated

with each task (task controllers), and 2) a set of resource

supervisors associated with each processor. The purpose of

the local controller is to formulate a minimum bandwidth

request B
(i, r)

k that allows the task to respect its timing con-

straints. Because the controllers have only a local visibility,

they could formulate bandwidth requests exceeding U
(r)
lub

in Condition (1). The resource supervisor in this case can

change the value B
(i, r)
k of the bandwidth granted to the ap-

plication so that the condition is respected. The conceptual

link between the two components is a minimum bandwidth

B
(i, r)
G that has to be granted to job J

(i, r)
k , whenever the task

controller formulates a request B
(i, r)

k ≥ B
(i, r)
G . Clearly,

to respect the schedulability constraint in Equation (1), the

minimum guaranteed bandwidths have to respect it in turn:

∀r ∈ {1, . . . , m},
∑

i B
(i, r)
G ≤ U

(r)
lub . Indeed, in the worst

case all tasks could require their guaranteed bandwidths.

From now on, to simplify the notation, we will refer to a

single processor.

Task controllers. Considering a single task, we can ap-

proximate the evolution of the scheduling error as follows:

ǫk+1 = S(ǫk) +
ck+1

Bk+1
− T (4)

where S(x) = x if x > 0, and S(x) = 0 if x ≤ 0.
In order to find a feedback control law to achieve Condi-

tion (3), the sequence of computation times {ck}k∈N and of

experimented scheduling errors {ǫk}k∈N are considered as

discrete-time, continuous-valued, stochastic processes, re-

lated by Equation (4). We denote by Ek and Ck the stochas-

tic processes for which ǫk and ck are specific realisations.

The problem is therefore, given δ, to find a function relating

Bk+1 to ǫk such that Pr {Ek ≤ δ} ≥ π.

It is very difficult to compute the expression of the

scheduling error probability distribution, as resulting from

the combination of the computation times distribution, the

control law function, and the system evolution equation.

Therefore, we consider the following “relaxed” goal. If the

scheduling error is in a region R = [−T, R] enclosing the

target region RT = [−T, δ] (R ≥ δ), then it is steered to

RT with at least the probability π:

Pr {Ek+1 ∈ RT | Ek ∈ R} ≥ π. (5)

Therefore, if the scheduling error is sufficiently close to the

target set, then it is reduced into the target set with at least

the probability π. We will refer to R as attractivity region.

A control law achieving this goal can be constructed as

shown in the following result (whose proof is in [14]):

Theorem 1 Assuming that the controller has knowledge of

a boundary Hk+1 for the computation times such that:

Pr {Ck+1 ≤ Hk+1} ≥ π, (6)

and that the minimum bandwidth BG guaranteed to the task

satisfies

BG ≥ sup
k

Hk

T + δ − R
, (7)

then Condition (5) is fulfilled by the following control law:

Bk+1 =
Hk+1

T + δ − S(ǫk)
. (8)

Following the same line of reasoning as in the theorem

above, for a given BG, the controller fulfils the requirement

if ǫk ≤ Rk , T + δ − Hk+1

BG
. We can extend the control

law proposed above by saturating it to BG for values of the

scheduling error greater than Rk:

B(ǫk) =

{

Hk+1

T+δ−S(ǫk) , for ǫk ≤ Rk

BG otherwise.
(9)

As discussed in [14], this saturated law, together with a

further constraint on the minimum guaranteed bandwidth,

guarantees that, if at some point in time the scheduling error

leaves the attractivity region, it returns to it in a finite num-

ber of steps, and the maximum value it can take is bounded.

Predictor. Many algorithms are available for time series

predictions [6]. Generally, these rely on an analysis of the

past observed ck samples, where both simple solutions like

moving averages, or complex ones based on optimal filter-

ing theory, are possible.

A better performance can be obtained customising the

predictor by using knowledge on the domain of the applica-

tion. Thus we suggest that, whenever possible, the predictor

should be provided by the application itself. For example,

a very effective approach for prediction of MPEG decod-

ing times can be found in [18], where a quick parsing of

a frame before starting its decoding process is used to per-

form an accurate estimation of the decoding time for that

frame, with a sustainable overhead. For the MPEG streams

structured with a Group of Pictures of fixed size, an inter-

esting trade-off between prediction accuracy and overhead

is achieved by the algorithm we proposed in [4], where each

sample is estimated using multiple interleaved moving av-

erages. This way, we can take advantage of the knowledge

on the structure of the MPEG stream.

Resource Supervisor. The supervisor comes into play

whenever the set of requested reservations violate Equa-

tion (1). In such a case, the supervisor must guarantee to

each task its minimum bandwidth B
(i)
G . This problem can

be approached in several ways. A simple, yet effective so-

lution, is to use a compression function. Let
{

B
(i)

}

denote

the bandwidths required by the task controllers at some time

t. If
∑

i B
(i)

≤ Ulub, then the granted bandwidths B(i) are

simply set equal to the required values: ∀i, B(i) = B
(i)

.
Otherwise, set the granted bandwidths

{

B(i)
}

as follows:

∀i, B(i) = B(i)
m +



Ulub −
∑

j

B(j)
m





B
(i)

− B
(i)
m

∑

j

(

B
(j)

− B
(j)
m

)

with B
(i)
m , min

{

B
(i)
G , B

(i)
}

. Due to the supervisor ac-

tion, the bandwidth allocated to a task can change during

a job execution. This does not affect the properties of the

task controllers, as long as the change respects the mini-

mum guaranteed bandwidth. The technological solutions to

carry out this change are discussed in detail in [11].

4 Application-level QoS control

The outer control loop, i.e., the QoS controller, performs

an optimisation whose decision variables are the modes of

the application and of the processors. Because these levels

are discrete, we can conveniently set up the problem as a

Boolean linear program (BLP). To this end, we introduce

a vector of Boolean variables x(i) = [x(i,1), . . . , x(i,n(i)
am)],

where x(i,j) is 1 if the mode j is selected for application

A(i), 0 otherwise. The vector x̃(i) denotes the current con-

figuration (as computed by the controller at the previous

sampling instant). Similarly, we introduce for each resource

a vector of Boolean variables y(r) = [y(r,1), . . . , y(r,n(r)
rm)],

where y(r,j) is 1 if the mode j is selected for resource R(r).

We introduce a vector notation also for the QoS lev-

els q(i) = [q(i,1), . . . , q(i,n(i)
am)] and the power consump-

tions p(r) = [p(r,1), . . . , p(r,n(r)
rm)]. Finally, for each ap-

plication A(i) and resource R(r), we introduce the matrix

B
(i, r)
G , [B

(i,j)(r,k)
G]j,k containing on each row j the re-

quirements of the application mode j for the various re-

source modes, and on each column k the requirements of the

resource mode k for the various application modes. More

precisely, the components of BG represent the minimum

guaranteed bandwidth required to each resource controller

to sustain the performance specification in Equation (5).

This quantity can be computed, given an an estimate of

supk {Hk} , by using Equation (7). Such estimates may be

based on information acquired upon each sampling period

from the Resource Controller (see Figure 1), thus they may

be time-varying. Concerning the resource requirements re-

lated to configurations of the system that are not currently in

use, we assume that they can be estimated, based on the val-

ues measured on the current configuration, by application-

dependent interpolators (the so called multi-mode predic-

tors). In the next section, we will provide details for a spe-

cific application domain.

Now, we may formalise the problem as:

max
x(i,j),y(r,k)

n
∑

i=1

w(i)
a

(

∆Tq(i) · x(i)+

−
n

∑

i=1

k(i)
a

∣

∣

∣q
(i) · x(i) − q(i) · x̃(i)

∣

∣

∣

)

−
m

∑

r=1

w(r)
p ∆Tp(r) · y(r)

subject to the constraints:

m
∑

r=1

p(r) · y(r) ≤ P

n
∑

i=1

x(r)TB
(i, r)
G y(i) ≤ 1, r = 1, . . . , m

∑

j

x(i,j) = 1, i = 1, . . . , n x(i,j) ∈ {0, 1}, ∀i, j

∑

j

y(r,j) = 1, r = 1, . . . , m y(r,j) ∈ {0, 1}, ∀r, j

where the first constraint limits the maximum instantaneous

power consumption P sustainable by the system, while

the next constraints represent the consistency conditions in

Equation (1), for the various possible configurations. For

notational convenience we omitted the term related to the

change in the power mode. The problem has bi-linear con-

straints and absolute values in the objective function. How-

ever, it may be transformed in a standard Integer Linear Pro-

gramming (ILP) problem through simple transformations.

If the problem does not have solutions, the outer loop may

remove one application (or reject it if it is being admitted).

4.1 Solving the optimisation problem

The exact solution of a BLP has generally an exponen-

tial complexity in the number of decision variables. Taking

inspiration from [1], we developed a greedy heuristic which

is quadratic in the number of tasks and resources and linear

in the number of levels, and works as follows:

1. set application modes to min QoS, and resource modes

to max power;

na nam nr nrm vopt topt vheu theu

8 6 1 5 704 75984 700 25

12 6 1 5 904 49703 900 58

16 6 1 5 904 104789 883 87

20 6 1 5 900 187304 883 105

24 6 1 5 900 282101 879 128

28 6 1 5 908 403547 875 147

Table 1. Number of variables (v∗) and com-

putation times (t∗) obtained when using the
exact (∗opt) and the heuristic (∗heu) solvers, in
various cases.

2. compute the changes of the objective function due to

changing each application or resource mode to the next

one; only changes that do not violate constraints are

considered; if no such changes exist, then exit;

3. select the change in either the QoS mode of an applica-

tion, or the power mode of a resource that maximises

the objective function increment;

4. repeat from step 2.

Since at each step the algorithm always identifies a fea-

sible solution, the execution can be interrupted at any itera-

tion. Therefore, it is possible to consider different trade-offs

between the computation time and the result accuracy.

We ran a set of experiments on problems of different

sizes, in order to evaluate the effectiveness of the heuris-

tic approach, as compared to an exact solution, which has

been obtained by using the GLPK library2. For each prob-

lem, we measured the time needed for the execution of both

the exact and the heuristic solvers, and the respective values

of the objective function that were achieved. The experi-

ments have been conducted on an AMD Turion64 at 1800

MHz with 512MB of RAM. Results are reported in Table 1,

where the first four columns represent the problem config-

uration, in terms of number of applications (na column),

number of QoS modes (nam column), number of resources

(nr column) and number of power modes (nrm column).

Then, the achieved objective value function and the aver-

age execution times (in µs) achieved for the exact and the

heuristic solvers are shown. While the generic GLPK-based

solver requires execution times that may be hardly deemed

acceptable on an embedded system, the heuristic solver in-

stead has execution times that are orders of magnitude be-

low, with a value of the achieved objective function that is

only slightly below the absolute optimum.

5 Simulation results

The proposed QoS control framework has been simu-

lated on data gathered from real applications3. Both QoS

2GNU Linear Programming kit (GLPK), more information at the URL:

http://www.gnu.org/software/glpk.
3We would like to thank Alberto Donadoni for adapting the ffmprobe

software to gather the necessary application data.

Table 2. QoS control loop parameters
Parameter Value Parameter Value

w
(1)
p · p(1,lofreq) 0 w

(1)
p · p(1,hifreq) 60

δ(i) 5ms π(i) 83.3%

w
(i)
a 1 w

(i)
s 0

q(i,DV D) 100 q(i,SV CD) 67

q(i,V CD) 24

control levels have been implemented in ARSim4, an open-

source simulation tool we developed in order to evaluate the

behaviour of different adaptive reservation policies on the

evolution of the scheduling error.

We set up a simple experiment emulating three MPEG

streaming tasks running on the same CPU. Each task has

three operation modes, corresponding to decoding three dis-

tinct stream types with different resolutions: DVD, SVCD

and VCD. The shared CPU has 5 power modes, correspond-

ing to operating frequencies in the set 3.05 GHz, 2.68 GHz,

1.92 GHz, 1.15 GHz and 767 MHz.

In order to keep the simulation realistic, we used exe-

cution times measured on real traces of the frame decod-

ing times as measured during the execution of a modified

version of ffprobe, an MPEG decoder based on the ffmpeg

library, on an Intel Celeron D at 3.05 GHz with 1 GB of

RAM, while decoding MPEG movie segments. Measure-

ments have been averaged over multiple executions of the

program run at SCHED FIFO policy, and without using the

disk (with all the necessary data in a RAM disk). The multi-

ple application modes and CPU modes have been accounted

for by acquiring decoding time traces for each combination

of the 3 application modes, and 2 out of the 5 available CPU

modes, with a total of 6 traces per movie.

Multi-Mode predictor. The multi-mode predictor is used

to construct the matrix BG introduced in the previous sec-

tion starting from the knowledge of some of its elements

(the one related to the current mode).

By analysing the traces obtained in the previous step,

we could observe that computation times vary linearly with

the frequency ratios between the two modes. Also, when

switching resolution, the computation times vary linearly

with the ratios among the number of pixels of the modes.

Thereby, a simple linear transformation mapping the re-

source requirements of one mode onto the other can be ob-

tained by interpolation. Indeed, we verified that, transform-

ing one trace using the linear transformations, led to an aver-

age relative error with respect to the actually measured data,

of less than 10%, for all the other possible configurations.

More details can be found in [10].

QoS Control Set-up. In the resource-level controller we

used a very simple history-based predictor, built of two

parts: a sample estimator, plus a percentile estimator. The

4More information at the URL: https://gna.org/svn/?group=arsim.

-50

 0

 50

 100

 150

 200

 250

 300

 0 0.2 0.4 0.6 0.8 1

A
v
e

ra
g

e
 u

ti
lit

y
 f

u
n

c
ti
o

n
 v

a
lu

e

Probability of deadline non-violation (average among tasks)

Optimization only

Optimization + Feedback

Feedback only

Figure 2. Comparison of different adaptation
strategies.

former uses 3 interleaved moving averages, as described in

Section 3. The second part consists in an algorithm that

observes the prediction errors done by the first part over a

sliding time horizon of 12 frames, and estimates the pth per-

centile of such errors. The obtained error percentile is fi-

nally summed to the estimated sample as output by the first

part, to obtain Hk. Table 2 summarises the configuration

set-up for the QoS control loops.

Comparison with a single feedback loop. In Figure 2

we summarise the simulation results for the set up de-

scribed above, showing a comparison between the perfor-

mance achieved with the external loop only (Optimisation

only), with the internal loop only (Feedback only) and with

the combination of the two.

For each application we measured the experimental prob-

ability of meeting the deadline and the cost function in

Equation (3). Both metrics were computed for the three ap-

plications and then averaged over a time horizon and over

the three applications. Each experiment is then reported as

a point in the plot. In particular, the first metric is reported

on the X axis and the second one on the Y axis.

First, we consider the application of resource feedback

only, with a static configuration of the application and power

modes. We repeated this experiment with different configu-

rations, so we have multiple points in the plot. The obtained

results highlight that, with some configurations, we can get

very good probability of respecting the deadlines. In fact,

if the selection of the modes leads to a sustainable work-

load, the probabilities of meeting the deadline are close to

98%. The cost function value, though, is very low. On the

other hand, if we increase the modes, we get values of the

cost function around 300 (left-top corner), but a very low

probability of meeting the deadline. It is difficult to get a

high value for both the QoS and the probability of meeting

the deadlines because the controller is not able to switch the

mode even when the current workload permits it.

On the other hand, the external feedback alone selects

modes that generate a sustainable workload over time. The

probability of meeting the deadline, though, is disappoint-

ing since the system does not efficiently distribute the band-

width to applications. Only the combination of the two feed-

back loops achieves at once a good probability of meeting

the deadline and an acceptable average QoS value.

6 Related Work

While various works have been done on both QoS opti-

misation and adaptive scheduling, the problem of integrat-

ing these two levels of adaptation has been considered only

in a few of them. In [3], a dual-loop QoS control strategy

was proposed. An inner controller performed on-line adap-

tation of the requested bandwidth, which was re-modulated

by adopting a system-wide compression function; an outer

controller performed a slower on-line adaptation of the ap-

plication QoS level by modulating the task activation rate.

In [8], a middleware was presented to dynamically adapt

the QoS levels of applications, however the idea of tuning

the resource allocations for multiple applications by max-

imising a cost function quantifying the overall system QoS

was proposed in QRAM [17], where the optimisation was

done off-line due to the heavyweight computations. The

QRAM approach has also been used on-line in an adaptive

scheme [13]. In [12], a hierarchical multi-level QoS con-

trol architecture was presented, however the paper focused

on the software components and interactions, rather than

on the description of the system-wide optimisation goals

achieved by the infrastructure. In [22], a QoS optimisa-

tion framework was presented whose goals are similar to

the one presented in this paper, in that an objective function

to maximise was defined, that depends on deadline misses,

application QoS levels, and QoS level changes, and whose

evolution depends on a well-defined evolution model not far

from the one used in this paper. However, each application

was optimised in isolation, and a global optimisation strat-

egy was left as future work.

None of the above works addressed the system-wide QoS

optimisation by means of a QoS optimisation problem, for-

mulated so as to fit within a class of well-known problems

(ILP), by accounting also for the power-related issues, like

done in this paper. However, the outer control loop we pro-

pose is inspired by QRAM.

Adaptive schemes in which power consumption is ex-

plicitly considered along with temporal guarantees have

been proposed in [19] and [15], but in those papers scal-

ability of the resource requirements depending on a time-

varying QoS level is absent.

A fundamental ingredient of most of the adaptive

schemes is a scheduling algorithm that allows for fine

grained control of the resource allocation, like resource

reservation schedulers [16], and the feedback-based

scheduling algorithms built on top of them known as adap-

tive reservations [2]. This idea enables a well founded de-

sign for a QoS control algorithm [4], and constitutes a fun-

damental brick of the present paper. In [20], a middleware is

proposed for adaptive QoS control using real-time schedul-

ing facilities at the computation and network levels, how-

ever power-related issues are not considered.

Similar ideas, although based on different scheduling

algorithms, are the ones behind the notion of real-rate

scheduling [21]. In other cases [9], the use of different

classical schedulers does not permit to write a precise dy-

namic model for the plant, and the adaptive algorithm can

be mainly regarded as a heuristic solution.

7 Conclusions

In this paper, we presented a multilevel feedback ap-

proach to the problem of QoS management. The outer feed-

back loop manages the operation modes of the applications

and the power modes of the resources, while the inner loop

is focused on timing constraints. We have shown that in

our framework the two levels coexist nicely and their com-

bination produces better results than the application of one

of them in isolation. Our future work will be aimed at the

development of a middleware architecture, built on top of

the AQuoSA framework [11], that will implement the ideas

shown in the paper. Much work remains to be done also on

the theoretical side, in which we will use control theoretical

tools to study and formalise the stability properties of the

combination of the two feedback loops.

References

[1] T. F. Abdelzaher, E. M. Atkins, and K. G. Shin. Qos nego-

tiation in real-time systems and its application to automated

flight control. In IEEE Real Time Technology and Applica-

tions Symposium, pages 228–238, 1997.
[2] L. Abeni and G. Buttazzo. Adaptive bandwidth reservation

for multimedia computing. In Proceedings of the IEEE Real

Time Computing Systems and Applications, Hong Kong, De-

cember 1999.
[3] L. Abeni and G. Buttazzo. Hierarchical qos management for

time sensitive applications. In Proceedings of the IEEE Real-

Time Technology and Applications Symposium (RTAS 2001),

Taipei, Taiwan, May 2001.
[4] L. Abeni, T. Cucinotta, G. Lipari, L. Marzario, and

L. Palopoli. Adaptive reservations in a linux based environ-

ment. In Proceeding of the Real-Time Application Sympo-

sium (RTAS 04), Toronto (Canada), May 2004. IEEE.
[5] L. Abeni, L. Palopoli, G. Lipari, and J. Walpole. Analysis of

a reservation-based feedback scheduler. In Proc. of the Real-

Time Systems Symposium, Austin, Texas, November 2002.
[6] G. E. P. Box and G. Jenkins. Time Series Analysis, Forecast-

ing and Control. Holden-Day, Incorporated, 1990.
[7] S. Boyd and L. Vandenberghe. Convex Optimization. Cam-

bridge University Press, New York, NY, USA, 2004.
[8] S. A. Brandt, G. J. Nutt, T. Berk, and J. E. Mankovich. A

dynamic quality of service middleware agent for mediating

application resource usage. In IEEE Real-Time Systems Sym-

posium, pages 307–, 1998.
[9] G. T. C. Lu, J. Stankovic and S. Son. Feedback control real-

time scheduling: Framework, modeling and algorithms. Spe-

cial issue of RT Systems Journal on Control-Theoretic Ap-

proaches to Real-Time Computing, 23(1/2), September 2002.
[10] T. Cucinotta, G. Lipari, and L. Palopoli. Control algo-

rithms for coordinated resource-level and application-level

adaptation ii. Deliverable D-AQ2v2, FRESCOR EU project

(FP6/2005/IST/5-034026), May 2008.
[11] T. Cucinotta, L. Palopoli, L. Marzario, and G. Lipari. AQu-

oSA – adaptive quality of service architecture. Software –

Practice and Experience, 2008.
[12] M. Garcı́a-Valls, A. Alonso, J. Ruiz, and A. M. Groba. An

architecture of a quality of service resource manager middle-

ware for flexible embedded multimedia systems. In A. Coen-

Porisini and A. van der Hoek, editors, SEM, volume 2596 of

Lecture Notes in Computer Science, pages 36–55. Springer,

2002.
[13] S. Ghosh, J. Hansen, R. R. Rajkumar, and J. Lehoczky. In-

tegrated resource management and scheduling with multi-

resource constraints. In Proceedings of the 25th IEEE In-

ternational Real-Time Systems Symposium (RTSS04), pages

12–22, Washington, DC, USA, 2004. IEEE Computer Soci-

ety.
[14] L. Palopoli, L. Abeni, T. Cucinotta, G. Lipari, and S. K.

Baruah. Weighted feedback reclaiming for multimedia ap-

plications. In ESTImedia, pages 121–126, 2008.
[15] G. Qu and M. Potkonjak. Energy minimization with guar-

anteed quality of service. In Proc. 2000 International Sym-

posium on Low Power Electronics and Design, pages 43–48,

2000.
[16] R. Rajkumar, K. Juvva, A. Molano, and S. Oikawa. Resource

kernels: A resource-centric approach to real-time and multi-

media systems. In Proceedings of the SPIE/ACM Conference

on Multimedia Computing and Networking, January 1998.
[17] R. Rajkumar, C. Lee, J. Lehoczky, and D. Siewiorek. A re-

source allocation model for qos management. In Proc. 18th

IEEE Real-Time Systems Symposium, pages 298–307, San

Francisco, 1997.
[18] M. Roitzsch and M. Pohlack. Principles for the Prediction of

Video Decoding Times applied to MPEG-1/2 and MPEG-4

Part 2 Video. In Proceedings of the 27th IEEE Real-Time

Systems Symposium (RTSS 06), Rio de Janeiro, Brazil, De-

cember 2006. IEEE.
[19] R. Santos, M. B. D’Amico, J. Orozco, P. Doñate, L. Ordinez,

and D. Donari. Power and real time requirements integrated

with an adaptive resource reservation soft real-time sched-

uler. In Proc. 31st Latin American Conference of Informat-

ics, Cali, 2005.
[20] R. E. Schantz, J. P. Loyall, C. Rodrigues, D. C. Schmidt,

Y. Krishnamurthy, and I. Pyarali. Flexible and adaptive qos

control for distributed real-time and embedded middleware.

In Middleware ’03: Proceedings of the ACM/IFIP/USENIX

2003 International Conference on Middleware, pages 374–

393, New York, NY, USA, 2003. Springer-Verlag New York,

Inc.
[21] D. Steere, A. Goel, J. Gruenberg, D. McNamee, C. Pu, and

J. Walpole. A feedback-driven proportion allocator for real-

rate scheduling. In Proceedings of the Third usenix-osdi.

pub-usenix, feb 1999.
[22] C. C. Wüst, L. Steffens, W. F. Verhaegh, R. J. Bril, and

C. Hentschel. Qos control strategies for high-quality video

processing. Real-Time Syst., 30(1-2):7–29, 2005.

