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Abstract

HRT-HOOD has methodological strengths that deserve

to be preserved in the face of the commercial decline of

HOOD technology. The UML meta-model, on the other

hand, has a level of flexibility that makes it an especially

attractive platform to express the specific real-time design

minded features of the HRT-HOOD method. The object-

oriented connotation of the method that results from map-

ping HRT-HOOD onto UML raises methodological issues

that we deem of interest to the real-time community at large.

This paper discusses three such issues in particular: the

prevalence of objects over classes in real-time design, with

the consequent inversion of the standard object-oriented de-

velopment paradigm; the need to derive classes “by ex-

ample”, which arises from the demand to allow multiple,

yet static, instances of real-time objects initially designed

as singleton; the opportunity of reuse-oriented component-

based real-time development, which descends from using

interfaces instead of classes as the target of associations

among objects.

1. Introduction

A query for HRT-HOOD [3, 4] on popular search en-

gines currently scores in the range of 300 to 600 significant

hits. This score arguably attests the varied use that HRT-

HOOD has attained as a reference term, a teaching aid and

an industrially-applied method.

Albeit originated from within the niche market of the

somewhat esoteric HOOD community, HRT-HOOD ex-

hibits two distinguishing features that make it especially

significant to the real-time domain: (i) it encompasses a

well-defined process model, with the discipline and rigour

that are paramount to the development of high-integrity

real-time systems; (ii) it promotes design conformance to

a computational model that facilitate static timing analysis;

a most attractive instance of computation model especially

suited for HRT-HOOD is the recently emerged Ada Raven-

scar Profile [1, 2], the consolidation process of which was

effectively prompted by the definition of the method.

The simultaneous occurrence of the commercial obso-

lescence of the HOOD technology offer (not the discipline,

though!) and the massive advent of the UML one [10] offers

the opportunity for a thorough reflection on whether and

how the “goodies” of HRT-HOOD can be migrated to and,

possibly, augmented by the UML meta-model platform.

Exploring this opportunity was the objective of a re-

search project recently sponsored by the Italian Space

Agency, with the authors as the main actors. This project

defined an HRT-UML method that preserves the distin-

guishing features of HRT-HOOD while also importing use-

ful characteristics from pure object-oriented design.

We believe that the embedding of selected object ori-

entation characteristics into the process of real-time design

raises issues of interest to the real-time community at large.

In this paper, we undertake to illustrate the nature of those

issues and the way we have addressed them in the definition

of the HRT-UML method.

2. Setting the Scene

The UML has been designed from the outset as a wide-

ranging, general-purpose modeling language, aimed to a va-
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riety of application domains, including business and other

non-software processes.

Inclination towards generality was by no means unique

to UML. Since their inception in the late 80s, in fact, most

object-oriented methods have assumed generality and flexi-

bility as paramount, with a view to addressing the needs of

the widest possible audience.

Domain-specific communities, though, among which the

real-time systems one, have constantly countered this pull

with the demand for more specific (i.e. more semantically

characterised) concepts and notations.

Several methods have attempted to address the specific

needs of real-time systems analysis and design.

The HRT-HOOD method is one such method. Its defini-

tion responded to the customer requirement (the European

Space Agency) to base upon the HOOD method [7] at the

then-current version 3.1. A subsequent effort by the HOOD

user group progressed the method definition to a more ex-

tensively object-oriented flavored version 4.0 [8]. Revi-

sion 4.0 did not attempt to address the real-time concerns,

though, simply referring users with that concern to HRT-

HOOD. All references to the base HOOD method in this

paper shall therefore be understood as referring to HOOD

v3.1.

The founding principle of HOOD was hierarchical, rig-

orously top-down development. HOOD uses the object as

the main design abstraction. A HOOD object is an encap-

sulated unit fully defined by its provided and required in-

terfaces, and internally structured as a set of co-operating

child objects. The interfaces include operations that can be

annotated with information on the associated data flows and

possible exceptions, and with the synchronisation semantics

of the operation invocations.

A modern component-based methodology does require

the formal definition of interface, functionality and struc-

ture. Interestingly, HOOD serves this aspect (at least

for the required interface and structure definitions) much

better than UML does. Extending UML to capture this

component-oriented features of HOOD thus became one of

the main strands of our effort.

Objects in HOOD may be active or passive: an active ob-

ject possesses an own thread of control, and the execution of

its provided operations may be constrained by the current

internal state of the object. HOOD objects have a struc-

tured textual description, called ODS for Object Descrip-

tion Skeleton, which effectively defines the meta-model of

the method. The ODS may also contain a description of

the object behaviour in any formalism of liking to the de-

signer, the typical choice being state machines, for which

HOOD offers a graphical notation called Object State Tran-

sition Diagram.

HRT-HOOD significantly refined the HOOD object def-

inition, with the intent of tailoring the expressive power of

the design activity to the needs of real-time systems. HRT-

HOOD achieved this goal by purposefully shedding (and

deprecating) generality from the design abstractions. To this

end, HRT-HOOD made two distinctive choices: (i) firstly,

it incorporated explicit design and analysis support for the

abstractions that are typically required by real-time system

designers; (ii) secondly, it constrained the logical architec-

ture design activity (which conveys the functional view of

the system) so that it conform, by construction, to a compu-

tational model that facilitates timing analysis.

HRT-HOOD broke the concept of active object down

into that of cyclic and sporadic, each with specific opera-

tion and synchronisation semantics and restrictions on the

allowable provided and required interfaces, and introduced

the concept of protected object to permit controlled shar-

ing of resources. With this choice, HRT-HOOD effectively

captured the most fundamental design abstractions to be en-

countered in the development of real-time systems.

HRT-HOOD also augmented the HOOD ODS to permit

the capture and the expression of the real-time attributes of

the object (e.g.: period, deadline, priority, worst-case com-

putation time).

The fostered elicitation of the real-time attributes of ob-

jects and their semantic conformance to a specific computa-

tional model allow HRT-HOOD designs to be analysed for

their schedulability since early in the development cycle. A

particularly attractive computational model for HRT-HOOD

is the Ada Ravenscar Profile, in conjunction with deadline

monotonic priority assignment and response time analysis,

which is amply discussed in [2].

The close tie to a language-supported computational

model represents an outstanding asset of HRT-HOOD over

other real-time design methods, for the intended semantics

of its design components is faithfully preserved in the tran-

sition from design to code.

HOOD (and likewise HRT-HOOD) objects model the

main structural components of a system, those that have

a control and computational role. Data are modeled by

the types of the target implementation language (which

Ada 83 [9] was for HOOD) or, recently, by user-defined

classes. In fact, the notion of class is somewhat ill-fitted in

HOOD, which really is object-based as it lacks support for

true inheritance and polymorphism among objects. HOOD

objects are notionally singleton, that is, classes that allow a

single instance only. Data types are an orthogonal dimen-

sion to a HOOD design, which effectively is left out from

architectural modeling and deferred to the detailed design

and coding phase, where target language code can be em-

bedded in the ODS. This deficiency has recently been ad-

dressed in the 4.0 revision of the HOOD method, which is

however of little consequence to HRT-HOOD that is based

on the earlier 3.1 version.

HRT-HOOD is not the sole method that can claim ad-
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vanced support for real-time system design.

Cornwell [15] proposes a methodology for component-

based hard real-time system development consisting of a

process model, which extends the TARDIS framework [16]

and a method largely based on HOOD. Although predat-

ing the UML, Cornwell’s work is relevant to our project,

since it also addresses component-based development un-

der HOOD. Cornwell combines HRT-HOOD with Z [20]

for specifying object functionality, and RTL [19] for the ex-

pression of timing constraints. He also extends the HOOD

notation to provide an explicit required interface specifica-

tion as part of the object representation, and a clearer differ-

entiation between classes and objects. Cornell’s work also

uses the notion of placeholder objects for composability,

but in a context vastly different from ours. Cornell’s place-

holder objects are used to defer implementation of an object

(whereby they only consist of a provided and required in-

terface) in the context of the so-called vertical interconnec-

tion. Conversely, our placeholder objects (discussed in the

following section) loosely correspond to the required object

interface and are used in the context of Cornell’s horizontal

interconnection, i.e. the composition of objects at the same

level of abstraction.

Another well-known method is ROOM [11]. In ROOM,

actors are the main structuring abstraction. Actors are en-

capsulated units that model active system components and

can be decomposed into contained actors. Actors can be

derived by inheritance from other actors. Furthermore, an

actor’s interface is defined by a set of ports (as opposed to

by operations as in HOOD), which model communication

terminals.

Accordingly, a port carries both structural information

on the connection between actors and protocol information

that specify what messages can be exchanged across the

connection. A state machine and/or a message sequence

chart (similar to UML sequence diagram) may be associated

to a protocol to express the allowable message exchanges.

Two actors can interact if there is a binding (an abstrac-

tion of a communication connection) between any two ports

that the actors own and that support the same protocol in

complementary (or conjugated in ROOM speak) roles. An

actor’s behaviour is specified by means of a ROOMchart, a

form of statechart.

The ROOM design abstractions have been shown to be

compatible with the UML meta-model, wherein they can be

represented by means of a small set of new stereotypes. In

the UML version of the method, ROOM actors (renamed

capsules, presumably to avoid conflict with standard UML

actors) and ports are stereotyped classes, whereas protocols

are stereotyped collaborations. The structural role of ports

shows from the choice of modeling them as classes (or class

instances) rather than interfaces: UML interfaces can only

specify behaviour in the form of a list of operations accepted

by classes that realise an association; a ROOM port also

specifies that the operations are valid in the context of a spe-

cific association. Ports enable designers to state explicitly

which pairs of objects are partners in a given communica-

tion relationship and under which protocol the communi-

cation takes place. A collaboration is thus the appropriate

UML construct to model a ROOM protocol and a port is

represented as a capsule component that realises a role in

the collaboration that models the port protocol.

Interestingly, no specific notations have been proposed,

in either plain ROOM or the ROOM UML extension, to

express timeliness-related properties and constraints.

COMET [6] is another real-time design method of inter-

est, which from its outset relies on a set of UML stereo-

types. COMET offers a larger assortment of abstractions

than ROOM. The system structure is described in terms of

classes stereotyped according to the role of the component

they model. For example, COMET includes stereotypes for

input and output interfaces, for coordinator objects, and for

data. Collaboration diagrams and statecharts are used to

specify behaviour. Some items of timeliness-related infor-

mation such as activity period and computation time can be

expressed as annotations to sequence diagrams, but the pro-

posed annotations do not seem to correspond to any formal

extension of the UML.

Arguably, the common underlying goal of ROOM and

COMET is to seek an acceptable compromise between the

appeal of generality and the urge for specialisation, the for-

mer being the toll to pay to commercial fortune.

The distinctive character of HRT-HOOD was to privilege

specialisation downright. Which choice, we contend, had

two contrasting consequences. The first, commercially neg-

ative, was to restrain the spread of the method to the limited

market penetration of HOOD base technology. The second,

especially beneficial in retrospective, was to limit the scope

and the complexity of the method, with positive repercus-

sions on the user’s learning curve and the comparative ease

of transposal into a tailored UML profile for the sake of

preserving its methodological value from the decline of the

HOOD-based technology.

Before delving further into the core matter of this paper,

we wish to position our objective with respect to other re-

search on schedulability analysis of UML models and to the

recent response to the OMG Request for Profile for Schedu-

lability, Performance and Time (cf. [12]).

Schedulability of UML models is discussed in [18]

and [17], which both release the requirement (common to

HOOD and other hard real-time design methodologies) of

associating a thread to each active object and also allow ac-

tive objects to exchange multiple synchronization signals in

a controlled way. MAST [17] promotes a new UML pro-

file for schedulability of objects mapped onto fixed-priority

threads. Schedulability analysis of UML models in [18]
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uses the so-called event-based design paradigm, where pri-

orities are associated to events and inherited by the handling

objects and the threads implementing their actions.

The November 2001 response to the OMG call defines

a comprehensive conceptual framework that extends the

UML meta-model and which inevitably has a much broader

scope and a higher abstraction level than any real-time de-

sign method proposed thus far. Our HRT-UML profile, in

contrast, aims at a much less ambitious goal. It can be ex-

pected, though, that any new analysis and design methods

in the real-time domain (including ours) should take bene-

fit for the emerging OMG framework. Expectedly in fact,

method-specific concepts could be defined more clearly,

more rigorously and more portably if expressed in terms

of the more general OMG framework. Standard ways to

express timeliness and quality of service attributes could

be reused. Existing UML technology could be extended to

support specific methods with less effort.

3. Mapping Issues

The mapping strategy we have adopted rests on two

founding principles: (i) preservation and reinforcement of

the HRT-HOOD development model, which constructively

steers the design process within the boundaries of the com-

putational model of choice, thereby leading to systems that

can be statically analysed from the outset; (in effect, as

discussed in [14], HRT-HOOD fosters the execution of a

“reflective” design process that trades exceeding expressive

power and design freedom for structural conformance to

a rigorously-defined computational model — i.e. a spe-

cific set of objects, relations, operations and semantics —

from analysis throughout to coding); (ii) transposition of

(dated) HOOD and HRT-based concepts and notations into

UML, by refinement, clarification and replacement, follow-

ing what we may regard as a process of UML rendering and

augmentation of the [HRT-]HOOD meta-model.

This strategy yielded quite an interesting negotiation be-

tween the pull for conservation and the push for innovation

exercised by the two competing forces. In the following

we illustrate some of the major findings that we have come

across as part of this process. In particular, we will focus our

discussion on three main aspects of our reflection: (i) the

prevalence of objects over classes (and of the object model

over the class model) in an HRT-minded object-oriented de-

velopment; (ii) the opportunity to derive classes by means

of object-level examples and, thus, of feeding and relying

on an “immanent” class model, which exists in the back-

ground without getting in the way of the HRT designer; (iii)

the appeal of composable objects, which allow the designer

to differentiate between “required” objects and “offered” in-

stances and to replace the former with the latter as the de-

velopment progresses.

3.1. The Prevalence of Objects

The wisdom of standard object-oriented development is

that the class model be the main constructive model and

the focus of development. Object modeling in this con-

text configures as a supplementary activity intended to clar-

ify aspects of behaviour and collaboration among class in-

stances. The scenarios and the collaboration diagrams that

are used for this clarification purpose neither reveal nor im-

ply the way the system is built; they merely provide an aid

for the analyst to better understand and convey the system

behaviour in some specific circumstances.

The HRT-HOOD development philosophy, instead, re-

quires all system components to be statically known in num-

ber, operations and relations, and be fully characterised for

their real-time attributes, at design time. From an object-

oriented standpoint, therefore, this vision does promote

objects to first-level development entities over and above

classes.

More specifically, the defining information for an HRT-

HOOD system is the topology of its objects, that is to say,

what the objects are in HRT terms and the way they are

interconnected to one another, which HOOD describes in

terms of use and include relationships. An HRT-HOOD

system is thus built by directly defining its objects and their

links, instead of its classes and their relations.

In fact, as we have seen, the object-basedness of HOOD

actually degrades classes to singletons, that is classes with

a single instance. This approach collapses the class model

into an object model and attains an awkward isomorphism

between the two, which UML is not really able to express,

given the difference it purposefully sets between the respec-

tive notations and semantics.

On this and other accounts that we discuss below, we

regard the isomorphism that HRT-HOOD imports from

HOOD as neither useful nor especially desirable to HRT

design.

HOOD concentrates on the object model solely and pro-

vides very modest support for class-level modeling. UML,

conversely, brings class modeling to the foreground, but

with semantics that are plainly inadequate (because not in-

tended) for expressing instance properties. Not surprisingly,

therefore, this differing strategies complicate finding a use-

ful semantic mapping between models expressed in the two

notations.

Our view of HRT design sides neither with UML nor

with HOOD.

We contend that HRT design requires the object model

to come to the foreground and the class model to rest in

the background, and does not necessarily want them to be

isomorphic. In fact, an HRT object-oriented design may

arguably gain from the ability to express multiple static in-

stances of well-formed HRT objects. A simple example will
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illustrate the apparent need for this provision and the power

of the corresponding concept.

Before discussing the example, though, we should note

that, by dropping the HOOD constraint of singleton-based

isomorphism between class model and object model, we

have effectively taken a middle ground between pure object

orientation (as typified by the UML meta-model) and pure

HRT-HOOD (as dominated by the HOOD meta-model). Ta-

ble 1 positions our approach with respect to the two pure

alternatives.

Normal OO HRT-UML Singleton

development development HRT-HOOD

Class main background

isomorphic
model constructive model concept

Object
analysis aid

main

model constructive model

Table 1. Development paradigms vs. class

model and object model.

3.1.1 Multiple Static Instances and the Underlying

Class Model

The HRT-HOOD development paradigm that we want to

preserve requires all systems components (all objects) to be

fully characterised for type, attributes, operations and rela-

tions, at design time. This requirement clearly excludes the

use of any form of dynamic creation of instances that oc-

cur at run time, which is one of the outstanding features of

pure object orientation. At the same time, the HOOD meta-

model concept of singleton class disallows even the very

concept of multiple instantiation.

Allowing static (design-time) multiple instantiation is

thus the obvious middle ground between dynamic run-time

creation and plain single instances. The question is whether

this concept fits the HRT development paradigm method-

ologically and is at all useful for it. We contend that it does

and that it also reinforces our argument for bringing the ob-

ject model in the foreground and for keeping the class model

present but in the background.

Consider a simple real-time system comprised of two

light bulbs (a higher-powered, primary one, and a lower-

powered backup one), two thermal threshold sensors (one

placed near the primary bulb, on the surface plane of the

system and another, near the backup bulb, below the sys-

tem surface) and two coolers that are primed into service

by a dedicated driver connected to a specific sensor. The

system is designed to operate with the primary bulb and its

sensor-cooler chain on, except when the system tempera-

ture is sensed to exceed an alarm threshold that the cooler

cannot safely decrease without switching the primary, more

energy-dissipating, bulb off and switching the backup one

on in its place until the system is safe again. The two sen-

sors are independent of one another and operate on different

thresholds, as they monitor the temperature in the vicinity

of their specific bulb of competence. The two coolers (and

the respective drivers) are also placed in the vicinity of their

respective driver, so that the sensor closer to the primary

bulb commands into service the cooler in that zone, whereas

the sensor nearby the backup bulb commands its own cooler

(which however gets into service only when the backup bulb

comes up).

This contrived example serves a three-fold purpose:

1. It makes a case for multiple static instances.

2. It manifests the inadequacy of the class model for the

HRT designers to express and control the topological

aspects of the system, which can only be suitably con-

veyed by object modeling.

3. It reveals the need for methodological mechanisms that

enable the HRT designer to concentrate on object mod-

eling while relying on an underlying class model to

perform design-time multiple instantiation as well as

assignment of specific attributes to the target instance.

Contention 1 clearly follows from the presence of dupli-

cate instances of every component of the example system

(which, in fact, form a two-redundant system), each with

specific attributes, operations and relations.

Figure 1 sustains contention 2 by showing a UML class

model for the example, whose absolute absence of topolog-

ical information makes it unfit, because uninformative, for

an HRT designer.

System

2

2

2

2

Bulb

Cooler

Driver

Sensor

1

Figure 1. The lack of topological information

in the class model for the example system.

The topological information of interest for an HRT de-

signer would in this case include: which sensors is con-

nected to which driver and to which cooler; what are the

actual values for the characterising attributes of each object

instance.
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Contention 3 follows from the observation of how best

equipped an object-model diagram like the one shown in

figure 2 be to convey the required information.

surfSens : Sensor

Threshold =  50C

<<C>>

<<S>> surfDriv : Driver

main : Bulb<<Pr>>

Power =  300W

<<S>> surfCool : Cooler

<<Pr>>

<<S>>

backup : Bulb

Power =  100W

<<C>> intSens : Sensor

Threshold =  40C

<<S>> intDriv : Driver

intCool : Cooler

Figure 2. An initial object model that con-

veys topological information. The dashed

boxes enclose objects and relations that can

be viewed as instances. HRT-type tagging of

objects uses the UML stereotype mechanism.

The highlight of this example, as captured in table 1, is

that we operate an inversion of the classical object-oriented

development paradigm. In our view, in fact, the HRT de-

signer starts out with object modeling, where he/she can

express system topology and capture the need (the opportu-

nity) for multiple static instances of objects initially drawn

as singleton. This opportunity is apparent in the example

system, where the dashed rectangles enclose objects and re-

lations that can be viewed as (design-time, characterised)

instances of an underlying class model, effectively inferred

from the object model. We contend, in essence, that in our

design paradigm the class model proceeds from, as opposed

to precedes, the object model.

Notably, neither the Generic Object concept of HOOD

v4.0 [8] nor its misleadingly-named “class” object prede-

cessor of HOOD v3.1, whose aim was to enable multiple in-

stantiation, are of any use to our design paradigm, because:

� generic objects are defined externally to the system un-

der construction, and thus invisibly to the system ob-

jects, with which they can have no relationship;

� the instantiation of a generic object hides its internal

decomposition structure (what we call its topology).

The irreducible difference between the HOOD v4.0 con-

cept and ours is that we draw a clear separation between

the class-model view of instantiatable objects (the generic

object of HOOD v4.0) and the object-model view of con-

crete instances, which we treat as fully topologically char-

acterised objects.We must now find a useful role and an ad-

equate notational rendering for (parts of) the class model

shown in figure 1, whose existence in the background is

methodologically crucial to enable multiple instantiations.

The following section discusses in more depth the role

we have assigned to objects and classes in HRT-UML.

3.2. Deriving Classes by Examples

The “OO prototype” design pattern proposed by the

“Gang of Four” [5] promotes the idea that new object in-

stances may be created by cloning of the structure defined

by what amounts to the prototype instance of a class, that

is to say, a typical object instance, initially drawn as a sin-

gleton. This is admittedly not a standard UML concept, but

it very closely matches the design process we want to cap-

ture. (This notwithstanding, the HRT-UML method can be

wholly expressed by way of standard UML constructs, with

specialised support only required for the consistency checks

of the user design.)

It is interesting to note that the intertwined notions of

underlying class model and prototype instance hold at all

levels of design hierarchy. (Hierarchical decomposition as

a fundamental aid to mastering complexity is an area in

which HOOD appears to be stronger than UML. HOOD

calls parent an object that is internally decomposed, and

terminal an object that features no internal decomposition.

HRT-UML includes support for this design dimension, yet

bearing in mind that the verification-geared nature of HRT

development only tolerates forms of hierarchical decompo-

sition that allow immediate visibility and early characteri-

sation of design components.)

As the example system shows, we can identify prototype

instances worth replicating at the level of individual objects

(e.g.: bulb, sensor, driver, cooler) as well as at any aggregate

level of them, up to the full chain of related objects enclosed

in the dashed rectangles in figure 2.

The way replication (cloning) of such object occurs en-

tails escaping implicitly from the object model view to the

background call model view. To allow this escape, any ob-

ject in an HRT-UML design carries a descriptor, which we

can initially express as a pair comprised of: the underly-

ing class, which describes the abstract properties of object

instances of that class (e.g.: HRT type, provided opera-

tion types, required attributes); and the prototype instance,

which describes the internal topology of the object, which

must be adhered to when cloning the object. The former

component would be expressed in class-model rendering

and semantics; the latter in object-model rendering and se-

mantics.

No components of the object descriptor would be dis-
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played as part of the system design: they exist on a differ-

ent plane, which we want to keep sharply separate from the

design level. Notwithstanding this separation, we wish to

allow the designer to escape to the object descriptor view-

point, for example to study (for possible cloning) the proto-

type instance of a particular object, whether simple or ag-

gregate. Representing entities in this viewpoint requires a

specific notational rendering, which figure 3 illustrates.

<<S>>

<<C>> intSens : Sensor

<<S>> intDriv : Driver

intCool : Cooler<<S>> surfCool : Cooler

<<S>> surfDriv : Driver

Threshold = 

<<C>>

start() start()

start() start()

Threshold = ??? ???

surfSens : Sensor

prototypeinstance : CoolingSystem<<C>>

Figure 3. A notational rendering of the pro-

totype instance of an aggregate subset of the

example system, which shows the predefined

operation compartment of sporadic objects.

3.3. Towards Composable Objects

The information value carried by the prototype instance

part of the object descriptor needs to be explored further.

A crucial aspect of the definition of an object is what

HOOD captures under the use and the include relationships.

The former element may be regarded as the specification

of the required interface of the object. The latter as the

implementation of the provided interface of the object.

From an object-model perspective, both interfaces have

to be fully defined and fully characterised (hence, be re-

alised) for a system design to qualify as HRT. For example,

the provided interface of an HRT-HOOD sporadic object

must include an asynchronous start operation that deliver

the triggering event for the object’s thread of control. Like-

wise, the required interface of an HRT-HOOD protected ob-

ject cannot include any potentially blocking operation.

From an object descriptor standpoint, however, such in-

terfaces not only can be concrete (i.e. directed towards spe-

cific object instances), but they can also simply express re-

quirements as to what would be required of internal and ex-

ternal object instances to satisfy the interface specification

of the object in question.

We use the notion of placeholder object to capture this

concept. A placeholder object in the prototype instance of

an object descriptor specifies the interface requirements to

be satisfied for an instantiation of the aggregate object to

succeed. The prototype instance concept promotes the use

of interfaces instead of classes as target entities of asso-

ciations. This reflects the fact that interface specification

(which bases on the corresponding UML notion, but also

includes all the information contents required for HRT mod-

eling) is more productive and expressive for our paradigm

than plain classification.

We can illustrate the use of the placeholder concept as

we look back at the example system.

Assume, for example, that we wanted to bring forward

the prototype instance of a Sensor object. Information ex-

tracted from the object model shown in figure 2 tells us that,

for the purposes of the system under construction, objects

of class sensor carry an association (a link) to objects of

class Driver. The prototype instance of the Sensor object

descriptor expresses this notion by exhibiting a link to a

placeholder object of type Driver.

Placeholder objects are initially loose (i.e. unbound)

when the prototype instance is created. Such creation oc-

curs implicitly in the background dimension where the ob-

ject descriptor resides. In the foreground design dimension,

in the course of the development process, placeholder ob-

jects are bound to actual object instances that are visible in

the instantiation environment and that satisfy the interface

requirements.

The notion of placeholder object enables the HRT devel-

opment paradigm to accommodate the use of the “builder

metaphor”, so successful in GUI development, in the way,

for example, of Visual Basic, JBuilder, Visual Age, and the

like.

By use of placeholder objects, HRT development could

tread the path of reuse, by designing (parts of) the system as

the assembly of static instances of classes that satisfy spe-

cific requirements.

The expressive power of placeholder objects is espe-

cially attractive for reuse-geared, component-based HRT

development. Placeholder objects may be the target of both

use and implemented by relationships, which HOOD and

HRT-HOOD employ to model the realisation of, respec-

tively, required and provided interfaces, and which we pre-

serve in HRT-UML. Thanks to this ability and the combined

use of prototype instance and hierarchical decomposition,

we can allow two flavours of HRT component: one in which

the link to the placeholder object is external to the prototype

instance in question (which thus denotes a fully-resolved

component that allows multiple – but complying – instanti-

ation contexts); another in which the prototype instance it-

self is a composite, non-terminal object whose provided in-
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terface may be realised (implemented by) compliant instan-

tiations of specific placeholder objects. The latter flavour

permits full-fledged forms of reuse by adaptation and con-

figuration. As an example, we maintain that the OBOSS

library of domain-specific reusable HRT components, de-

scribed in [13], is especially suited for being expressed in

HRT-UML by use of placeholder objects. We plan to ex-

plore this issue further in future work, as HRT-minded reuse

is an intriguing area of research.

4. Conclusion

Attempting to map HRT-HOOD onto the object-oriented

meta-model of UML raises methodological issues that con-

cerns the real-time design process in general. In this pa-

per we have discussed what we believe are the major issues

we encountered in the definition of HRT-UML as the re-

ceptor of the unique strengths of the HRT-HOOD method

expressed in terms of UML. By means of a simple example

and some conjectures that need to be consolidated by spe-

cific case studies (that we plan to execute in due course), we

have shown that: (1) real-time design requires the object-

model view of the system to come to the foreground, thus

relegating the class-model view of the same to the back-

ground; (2) the need to effectively support multiple, design-

time, instantiation, which we consider useful and benefi-

cial to real-time design, calls for the ability to derive classes

“by example” from individual objects existing in the object-

model dimension of the design; (3) the use of UML inter-

faces, augmented with HRT-HOOD derived attributes, as

the target of associations (links) among objects allows at-

tractive forms of component-based real-time minded devel-

opment. These three dimensions were inhibited to HRT-

HOOD by the object-based nature of the underlying HOOD

meta-model.

The greater expressive power afforded by the transposi-

tion onto UML has loosened the restraints exclusively due

to HOOD. The result is an augmented HRT development

paradigm that, in our expectation, will preserve the method-

ological strengths of HRT-HOOD beyond the commercial

decline of HOOD technology.
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