Hierarchical Multiprocessor CPU Reservations for the Linux Kernel*

Fabio Checconi, Tommaso Cucinotta, Dario Faggioli, Gipsdppari
Scuola Superiore S. Anna, Pisa, Italy

Abstract rather than in interrupt context, so as to allow system de-
§igners to have an improved control over the interference

This paper presents ongoing work in the developmenof the peripheral drivers with respect to the running ap-

of a scheduling framework that will improve the ser- ~. "~
) X L d)hcauons.

vice guarantees for soft real-time applications deploye hi hi ke the Li K |

on Linux. The scheduler has been designed around the W_ lle such features ma et € L|nu>§ ernela very ap-

current kernel infrastructure, trying to keep the change®€2ling platform for multimedia applications, still the

minimal, and basing the scheduling policy on strong the.Support for real-time scheduling is somewhat inappropri-

oretical results. The main goal is to achieve hierarchicafite for deqllng }N';h requwe_ments pos:e]d by the ch?lleng-
distribution of the available computing power on multi- Ing scenarios of the upcoming years, that demand for pre-

processor platforms, avoiding alterations to the existingd'Ct""bIe schedulmg.mechanlsms able to achieve a good
user interfaces. degree of temporal isolation among complex concurrent
The proposed framework exploits the hierarchical <';1r-50ftWé_‘r_e co(r;ponenrt]s, low “:‘SPO”E’ e times anr?. T}'gh 'In i
rangement of tasks within groups and subgroups that ig_eractl_\nty. ne stch scenario 1S the one in whic mu-
already possible within the Linux kernel. However, it tiple virtual machines run within the same OS, hosting

adds the capability for each group to be assigned a pres._oftware com_ponents_ realizing professional sgrvi_ces that
cise fraction of the computing power available on all theneed to run with predictable QoS levels and high interac-

processors, using existing uni-processor resource resefV/ty requirements, possibly managed through a service-

vation techniques. Tasks are scheduled globally Withinoriented gpproach, as discussgd for example in [1].
each single group, and the partitions assigned to each Th€ Linux kernel embodies the POSIX com-
group need not to be static, but can be dynamically balPliant _ priority-based real-time scheduling classes
anced. Furthermore, the proposed mechanism can H&CHEDFIFO and SCHEDRR. These may be suffi-

used to support a variety of possible partitioning scheme§ient for dealing with embedded real-time applications,
using processor affinities. but they turn out to be inadequate for providing temporal

isolation among complex software components such as

the ones mentioned above. In fact, the implementation
1 Introduction of such policies in Linux has been enriched by non-

standard features such as support for hierarchies of tasks
Nowadays, the Linux Operating System is being en-andthrottling. However, lacking of a sound design in
riched with more and more real-time capabilities. Inthe domain of real-time scheduling, such capabilities
the last few years, valuable efforts have been spent fostruggle at constituting a solid base for providing an
decreasing the scheduling and interrupt latencies of thadequate real-time scheduling support.
kernel, by embedding such features as full preemption, This paper makes one step further in this direction,
priority inheritance, reduced computation complexity of presenting a novel real-time scheduling strategy for the
the SChedUIer, Support for high'resolution timers. AISO,LinUX kernel, that may be analyzed by means of hierar-
thelinux-rt branch adds such experimental featureschical real-time schedulability analysis techniques. The
as running interrupt handlers in dedicated kernel threadﬁroposed infrastructure has a good degree of flexibility,

*The research leading to these results has been supported Byt allowing for a variety of configurations between two fra-

ropean Commission under grant agreement n.214777, in thextaof ditiona”_y.a_'mithetic settings: on one sidg, the .pe.rfect
the IRMOS Project. More information at: http://iwww.irmasiect.eu. compatibility with the current POSIX compliant priority-

based semantics, and on the other side animproved usageThe Adaptive Quality of Service Architecture [5]

of resources by means of a partitioned EDF. (AQuoSA for Linux provides hard CBS [6], an EDF
based real-time policy, which has also been enhanced
1.1 Paper Contributions with the Bandwidth Inheritance protocol [7] for dealing

with shared resources. However, having been developed
This paper presents a hierarchical multiprocessoin the context of the FRESCOREuropean Project for
scheduling framework for the Linux kernel. The main embedded system&QuoSAsuffers from the main lim-
advantages of the presented approach over prior workigation of not supporting SMP systems.
are: The Litmusf" project [8, 9] provides (among others)
Pfair [10], a real-time scheduling strategy theoretically
capable of saturating SMP systems with real-time tasks.
e no need for the introduction of new interfaces nor However, it contains major changes of the Linux kernel
new scheduling classes; internals, and it is currently more a testbed for experi-
menting with real-time scheduling within Linux, rather
e support for multiple configuration schemes, includ- than something that aims at being integrated in the main-
ing fully partitioned approaches; line kernel.

Recently, an implementation of the POSIX
SCHEDSPORADI(11] real-time policy for Linux has
been proposed to the Linux kernel community [12].
This scheduler has been developed with the aim of being
integrated into the mainstream kernel, by proposing a
e capability to handle accesses to shared resources. very limited set of modifications to the kernel scheduler,
and exploiting existing user-space APIs such as the
cgroups . The great advantage of such scheduling
policy is the one of having been standardized by POSIX,
The rest of the paper is organized as follows. Sechowever it suffers of the limitations typical of priority-
tion 2 reviews related work in the area, then Section 3based policies, such as the well-known utilization limit
introduces considered system model and scheduling abf 69% on uni-processor systems.
gorithm, summarizing its formal properties. Section 4
dgscribes the implemgntation of the framework in the3 Scheduling Algorithm
Linux kernel, and Section 5 reports experimental results

that validate the approach. Finally, Section 8 contains ar,g design of the scheduling algorithm started in a quite

e tight integration with the existing Linux code;

e strong theoretical background justifying the rele-
vance of the approach, mainly inspired to [2], with
the derivation of an appropriate admission test for
the tasks to be scheduled;

1.2 Paper Outline

few concluding remarks. unusual way, analyzing the existing Linux scheduler, and
trying to derive a formal model for the policy it is imple-
2 Related Work menting for real-time scheduling, especially concerning

the part of hierarchical scheduling. It turned out that the

The growing interest in having more advanced real-timemodel in [2] is not far from matching the Linux imple-
scheduling support within the Linux kernel has been wit-mentation. The work we present in this paper aims to
nessed in the last years by various research projects. Traehieve a convergence between a hierarchical schedul-
first approach that has been undertaken has been the adg infrastructure that is minimally invasive as compared
dition of a hypervisor to the Linux kernel, so as to ob- to the current Linux scheduler code base, and a theory of
tain a highly predictable hard real-time computing plat- hierarchical real-time schedulers that is quite generic to
form where real-time control tasks are scheduled veryoe adapted to the Linux case.
precisely, and the entire Linux OS is run in the back- We exploited the current user-space interface for the
ground. Such an approach, adopted in the RTLinux [3]throttling mechanism, which offers to applications the
and RTAI [4] projects, however is not adequate for inter- possibility to assign a paii@;, P;) to thei-th group of
active nor multimedia applications, due to the high limi- tasks. However, these parameters are reinterpreted as the
tations it poses on the services available to real-time apscheduling parameters (the budget and period, respec-
plications. tively) to be assigned to the group according to the well

An alternative trend is constituted by the addition of known resource reservation paradigm [@]; units of
a (soft) real-time scheduling policy directly within the time are available to the group every period of length
Linux kemel, that allows for a more predictable execu- IFramework for Real-Time embedded Systems based on Cantract

tion of unmodified Linux applications. Projects that fall (rrescoRr), European Project No. FP6/2005/1ST/5-034026¢in-
in this category comprise the following. formation at: http://www.frescor.org.

3.2 Main Algorithm

a4) e)
@ @ @ @ @ The proposed algorithm can be described as a two-layer

D:l: hierarchical scheduler, with the first layer scheduler se-
lecting which task group to execute on each processor,

T, and the second layer selecting which task to run within
\ J J

the selected task group.
Z Each task groujp’; is assigned a set of virtual proces-
¥i sors; these virtual processors are scheduled using parti-
tioned resource reservation techniques. Each virtual pro-
Physical Processors . .
cessor is allocated a share of one of the physical proces-
sors in the system. The algorithm used to schedule vir-

tual processors on physical processors is the Hard Con-
stant Bandwidth Server (H-CBS) [6].

P;. The scheduling guarantee is given to each group as a In other word_s_, the first layer is composed_M/ n-
whole, including all the tasks attached to the group itse”depend_ent partitioned H-CBS _schedulers Wh'Ch manage
and to all the nested subgroups. However, the framewor®! th_e virtual processors; ; _aSS|gne_d to th_elr respective
allows each group and subgroup to posses its own set Hhysical processor. Looking again at F|g.. 1, there are
scheduling parameters. On multiprocessor systems, tH&/0 H-CBS schedulers, one to schedule virtual proces-
Q./P; assignment is replicated on all the processors ircO"S 'unning orry, and one for the ones running an.

the system, but the resulting schedulers on the variou he H-CBS onr, schedules the first virtual processors

CPUs run independently from one another, minimizingOf the groups in the systerw(; andv; 1), while the H-
synchronization overheads. CBS onmy, schedules the second ones § andws).

Within each group tasks are kept in a global fixed-
priority queué, and tasks belonging to the same task
3.1 System Model and Terminology group are sch_eduled _globally according tp t_heir priority.
At every time instant, if a virtual platfori; is in execu-
Throughout the paper we stick to the Linux terminology tion onm physical processors, then itshighest priority
as much as possible; when referring to entities that ddasks are executing. Note that< M changes overtime
not have a counterpart in the current Linux code yet, wedue to the asynchronous scheduling of virtual processors
derive our notation and terminology from [2]. over the physical ones.
In the model we consider, a task graupis composed
by set ofn; sporadic task§; = {7; ; }].:1 vvvvv - Each)
task is described by its worst-case executioniie its 3.3 Formal Properties
relative deadline); ; and its minimum inter-arrival time
T ;7 = (Cij,D;;,Ti). Ataskr ; is a sequence
of jobsn’fj, each characterized by its own release time,
computation time and deadline, denotedy, ¢; ; and

Figure 1: System Architecture.

The proposed scheduling strategy falls within the class
of schedulers identified in the theoretical schedulability
analysis framework presented in [2]. Therefore, for pur-
d . respectively poses related to S(_:hedula_bility analysis, the same system
(VL) ' _ model and analysis techniques may be adopted, with an
_Following [2], we callvirtual platformV; a set ofim; aqditional extension to support hierarchical scheduling.
virtual processors; = {vi},_, - Eachvirtualpro-\ypon a0 arbitrary hierarchy is considered, the prob-
cesson;, is characterized by a supply functiéh i(t) |em of scheduling an applicatidhon a group with band-
representing the amount of servigg can provideinany \yigih allocated on multiple processors is reduced to the
time interval of duratiort. problem of scheduling on theMaA abstraction cor-
Tasks are grouped in task groups, organized in gesponding to the service provided by the given group.
hierarchical fashion. Each task group is assigned &nown techniques can be used to derive the parameters
virtual platform, one per physical processer, € for theMaA abstraction representing the group.
{mm}—1,..n IN the system. In this section we present well-known results and
Fig. 1 depicts the global structure of our model, in adapt them to our framework; a schedulability test will
the case of two physical processors,andm,, and five pe derived from Theorem 1 and Theorem 3 in [2].
tasks organised in two groupsi 1,7 2,71 3 insidel’;

a.nd7'2717 72,2 insidel's; each task grou_p is assigned two 2As Section 4 will explain, the global policy of the queue igier
virtual processors, one for each physical processor. mented using per-processor queues.

3.3.1 The Supply Function 3.3.2 The(a, A) Abstraction

An abstraction to model the minimum CPU time pro- A simpler abstraction, still able to model the CPU allo-
vided in a given interval of time is theupply func- catior® provided by a virtual processor, but using fewer
tion [2,13]. To introduce the supply function first we parameters, and easier to derive is the “bounded delay
need the concept diime partition partition,” described by two parameters: a bandwidth
and a delayA. The bandwidtho measures the rate at
which an active virtual processor provides service, while
the delayA represents the worst-case service delay.

The formal definitions ofa and A, from [13], are

P = U [ai, bi) a; < b <ajir. 1) given below.
i€N

Definition 1 A time partition” is a countable union of
non-overlapping time intervals

Definition 5 Given a virtual processor with supply
Without loss of generality, we set the time when thefynctionZ, (t), its bandwidtho,, is defined as
first virtual processor starts in the system equal to O.
Given a time partitioriP, its supply function [2, 13] . Z,(t)
measures the minimum amount of CPU time provided ay = lim ot)

by the partition in any time interval.
Definition 6 Given a virtual processor with supply

Definition 2 Given a time partitioriP, its supply func- functionZ, (¢) and bandwidtf,, its delay,, is defined

tion Zp(t) is the minimum amount of CPU time provided as Z,(t)
by the partition in any time interval of length> 0, i.e., A, = sup {t - = } (6)
t>0 Qy
Zp(t) = 1{?;%/77 - da.) Using the two definitions above, the supply function
= PNlto,to+] Z,(t) of a virtual processor can be lower bounded as
follows:

Since, given a virtual processorit is not possible to
determine the time partitioR it will provide, the above
definition cannot be used in practice; the following two Z,(t) < max{0, o, (t — A,)},)
definitions generalize the considered time partition to all | . . T I
the possible partitions that can be generated by a virtua}vll\'h'ch gives an intuitive definition of the, A) abstrac-

processor, and extend Def. 2 to be actually usable. on, as a way fo extract a lower bound for the actual
' supply function of a virtual processat;, represents the

share of the physical processor time assigned to the vir-
Definition 3 Given a virtual processow, legal(v) isthe tya| processor, whilé represents the responsiveness of
set of time partitiong” that can be allocated by. the allocation. In the case of a H-CBS virtual processor
of budget and periodP, we have:
Definition 4 Given a virtual processot, its supply

fqnctionZl,(t) is the m_inimum amount of CPU time pro- o= %7 A =2P —2Q. ®)
vided by the server in every time interval of length
t>0,
Z,t)= min Zp(t). (3) 3.3.3 (a,A) Abstractions and Multiprocessors
Pelegal(v)

In [2] an extension of thén, A) abstraction for multipro-

A virtual processor implemented through a H-CBS C€ssors is given, along with the calculation of theA)
with budgetQ and periodP, when active, conforms to Parameters for several algorithms described in literature
the Explicit Deadline Periodic model [14] with deadline
equal to the period. As a consequence, we can use theefinition 7 The Multi{«, A) (MaA) abstraction of a
well-known supply function: setV = {v;};=1,...m Of virtual processors, represented

by the m pairs {(a;,Aj)}j=1,..m iS @ multi-supply
function defined by the set of supply functidis,; :
Z,(t) = max{0,t — (k+2)(P — Q),kQ}, (4) Zu;(t) =max(0,0;(t — Aj))}j=1,...m-

3The same abstraction does not apply to CPU time only [15], but

; -r
with k& = {%J . here we consider only CPU time.

3.3.4 Schedulability Analysis Theorem 2 A task sef” = {7;};=1,...» iS schedulable
by a fixed priority algorithm on a set of virtual processors

We consider the schedulability of a single task groupv — (v} modeled by Z;},_, i
- 2J1=L,....om JJ1=1,....m>»

I' (composed ot tasks) over a se¥ = {v;},=1,..
of virtual processors, with supply functiorss; (¢)

Z,,(t). First, assuming to know the time partition, VkeN:1<k<n Cn+1, <Dy (14)
provided by eaclv;, we definethe characteristic func-
tion S;(t), defined as follows: using the following values for the lengthd.; }r—o,....m:
.0 1 teP, 9 Lo = Dyp—Zi(Dy)
i) = {Ot¢P - ©) Lo = ZuDi)~Zm(Dy) (15)
Without loss of generality, assume the tasks} Ly = Zu(Dg).

within T" are ordered by non-increasing priority. Con-
sider a single task;, € I'. L, denotes the sum of the
duration of all the time intervals ove6, D) where/
virtual processors provide service in parallel:

The symmetry of our bandwidth distribution allows
for a simplification in the above test. In fact we assign
the same bandwidth and the same period to all the vir-
tual processors corresponding to the same task group;
thus the intermediate lengtls are zero, and Eq. (13)
can be simplified, resulting in the following equation for

V0:0</{<m,L;= € [0, Dy,) Z S;(t) ~theinterferencd,:

Jj=

=

(10) _ '
With W, we denote the workload of jobs with higher ~ Ix = Lo +min <Lm,
priority interfering withr;,, and I, denotes the total du-

max (0, Wi, — mL,,)
-) . (16)

ration in[0, Dy) in which 7, is preempted by higher pri- As a final note, to multiplex different task groups on
ority jobs. From [16] we know that, for a fixed priority the same set of physical processors, the basic (neces-
scheduler, the Worklan,EP can be bounded using: sary and sufficient) H-CBS admission test over the vir-

tual processorév; };—1,..., €xecuting on the same phys-

e ical processors must be verified:
=> Wk, (12) .
i=1 Qz
=< 17
where 2.F = (17)

Wi = NesCh+ min{Ci, Dy + D — Cs — NesTi}, 3.4 Shared Resources

(12) In order to support access to shared resources, the prior-

with Ny ; = W ity inheritance and boosting mechanisms, already present
The following theorems, proved in [2], allow us to in the Linux kernel, may be exploited. Within the Linux
build a schedulability test. kernel, the fact that internal mutexes do not adopt priority

inheritance mechanisms limits the possibility of giving
Theorem 1 Given a multi-supply function characterized formal upper bounds to blocking times.

by the lengthg L} ,—o...., over a window0, Dy,), the In our implgmerl_tf'ition, we are exp_loring t_hg usage of
interferencel;, onr, produced by a set of higher priority Non-preemptive critical sections, realized raising the pr
jobs with total workload¥;, cannot be larger than ority of the task executing in critical section to the maxi-

mum one available in the system. We are trying to adapt

the approaches and the analysis in [17] and [18] to our

max (0, Wi — Zf;;ll pr) model; a formal treatment of the topic is left as a future
7 work.

Ti. = Lo+ Y _min | Ly,
=1
13) 35 Policy and Mechanisms
Now that we know how to calculate an N upper boundThe proposed scheduling framework can be used as the
to the mterferencel,c , Substituting, = W,c in the basis forimplementing several different variations, gsin
equation above, we can use the following theorem (againnechanisms already present in the kernel, or introducing
from [2]) to derive a schedulability test. small modifications.

As an example, consider a user willing to adopt @static inline int
purely partitioned approach: said user needs only to usét-entity-before (struct schedrt_entity xa,

thecpuset mechanism to specify a CPU affinity for the {
task groups, and no changes are required to the scheduler
itself. The partitioned queues make handling this case
quite efficient, while the H-CBS scheduler takes care of
partitioning the bandwidth among the task groups on the
same physical processor, according to the specified tllgn
ing constraints. 1
Another open issue is the optimal bandwidth assigh-
ment between virtual processors. We stick to the current
Linux model of using the same assignment on each phys-
ical processor, both for its simplicity and for lack of an

struct schedrt_entity *b)

struct rt_rq xrqa = grouprt_rg(a), xrgb =
group.rt_rq(b);

if (('rga & !rgb) || (rga—>rt_nr_boosted &&
rgb—>rt_nr_boosted))
return rt_se_prio(a) < rt_se_prio(b);

if (rqa—>rt_nr_boosted)
return 1;

if (rgb—rt_nr_boosted)
return O;

return (s64)(rqa—>rt_.deadline —
rgb—>rt_deadline)< 0;

interface to express different assignments. Anyway thé
H-CBS scheduler would support asymmetric partitions
too, and exploiting this capability would came at the cost
of adding the user interface to st/ P, on a per-virtual

processor basis, again, with no modification to the sched-

uler structure. 1 struct rt_edf-tree {
struct rb_root rb_root;

struct rb_node rhleftmost;

Figure 2: Entity Ordering.

2
3
4}
5
6 struct rt_rq {
struct rt_edf_tree active;
u64 rt_deadline;

struct hrtimer rt_period_-timer;
I o %]

4 Implementation

We implemented our framework in the Linux kernel. We
modified the existing real-time scheduling class, charlfog—
ing how task groups are selected for service. u)
The existing code represents groups of tasks usjh%mm taskgroup {
struct task _group objects; tasks can be groupeﬁ e
on the basis of their user id or on the basis of the cgraep
they belong to. Each task group contains an array.0f;;
per-processor runqueues and scheduling entities. Each
runqueue contains the scheduling entities belonging to
all its (active) child nodes in the hierarchy. Tasks are
leaf nodes, represented only by their own scheduling en-
tity. Each processor has its own runqueue, containing the)
scheduling entities belonging to tasks and groups fronthe hlgrarchy. Qur solution was to addla leaf runqueue to
the highest level in the hierarchy: a task group has a dif€ach intermediate runqueue, to store its tasks.
ferent scheduling entity on each processor it can run on. Just to give a rough sketch of how the active tree is
Fig. 3 shows the main differences introduced to thehandled, Fig. 2 shows the function used to order enti-
kernel data structures: the priority array $truct ties. When inserting into a leaf runqueue both entities
rt _rq has been substituted with a red-black tree, andfre tasks, so their priorities are compared. When both
a new field ¢t _deadline) had to be added. The per- entities are runqueues they are ordered by priority if both
group high-resolution timer previously used for imple- of them are boosted (i.e., executing inside a critical sec-
menting the throttling limitation was replaced by a per-tion), otherwise boosted runqueues are favored over non-
runqueue timer. Thet Igs of a same task group are boosted ones. If none of them is boosted, they are or-
scheduled independently on the processors with H-CBSdered by deadline.
thus the limitation periods are asynchronous among each The cgroup interface exported by the scheduler has
other. If the high resolution tick is enabled on the sys-been extended, in order to allow the definition of the CPU
tem, the scheduler will use it to deliver accurate end-ofreservation for the tasks belonging to a group. As we pre-
instance preemptions. viously said, all the tasks in a group are scheduled using
The two arrays added t&truct task _group are a “ghost” runqueue, which gets its own CPU share; the
used to store all the tasks for the given task group on eachnly change we made to the current cgroup user inter-
processor. The problem here is that tasks are not scheflace was adding the filesystem parameters to specify the
uled using H-CBS, and there is no easy way to mix theirbandwidth allocated to this ghost queue, i.e., the band-
entities with the ones associated to intermediate nodes iwidth allocated to the tasks in each given group.

struct schedrt_entity xxrt_task.se;
struct rt_rq =xrt_taskorq;
I . %]

Figure 3: Data Structures.

5 Experiments

1400
This section presents some preliminary results obtained |
with our implementation of the scheduler described so
far. Our primary focus is evaluating the overhead intro-
duced by the mechanism, thus we compare it to the cur-
rent throttling implementation.

We measured the time spent by the scheduler inside *“°f
each of the class-specific hooks, filtering out the call- 200 -
backs registered by the other scheduling classes. Forour o
measurements we instrumented the scheduler code and
then we used an ad-hoc minimal tratethat measured
the time spent in the main scheduling functions using the
timestamp counter present in all the modern x86 CPUs.

The values acquired using the TSC were stored in @ per- Figure 4: Scheduling Overhead—Flat Hierarchy.

processor ring buffer and copied to userspace using a

daemon reading from a character device; the fact that all 1.0 : : : : Ty

the functions we profiled are called under the runqueue | EOF Thr.+ itk £ |

locks assured that measurement errors due to interrupts

or preemptions were avoided. 1000
The functions we measured are:

Throu‘ling —
EDF Throttling
EDF Thr. + hrtick =

1000

800

Duration (ns)

800

600 [

Duration (ns)

e check _preempt _curr _rt() , which, given the
current task and a newly woken one, checks if the 400
latter is entitled to preempt the former; 00 |

e task _tick _rt() ,which handles the system tick o
for RT tasks (mainly it checks for timeslice expira-
tion of round-robin tasks);

e enqueue _task _rt() , which adds a task to the
RT runqueues. In our implementation this function
is responsible of updating the deadline according to
the H-CBS rules, if necessary;

Figure 5: Scheduling Overhead—Full Hierarchy.

It is also worth noting that using the high resolution tick
does not seem to affect the performance of the scheduling
functions, except fopick _next _task _rt() , which

is the function that programs the timer.

Fig. 5 shows the execution times of the RT schedul-
ing class methods when there are more than a single root
e pick _next _task _rt() , which selects the next group,and with groups using different periods. We could

task to run (if any). not show the current scheduler behavior, as it does not
support non-uniform periods. Performance is not too far
The system used was a quad-core Intel Q6600from what shown in Fig 4 for native Linux, while in this
clocked at 2.40GHz, equipped with 2GB of RAM. The case the overhead for posting the high resolution tick is
synthetic load we chose was the Fixed Time Quanta [19more evident.
benchmark, executed at RT priority.
Fig. 4 shows the execution times for the RT o
scheduling-related functions mentioned above, in the6 Availability
case there are four (one per core) application thread
running. With our approach, the enqueue and dequeu
paths are slower, as one would expect with the substitu
tion of the previou)(1) priority array implementation.

e dequeue task _rt() , which removes a task
from the RT runqueues;

e put _prev _task _rt() ,which movesthe running
task back to the ready (but not running) state;

he implementation of the scheduler described in this pa-
per is available as a patch to the Linux kernel, version
2.6.30-rc8, the latest available at the time of writing. It
can be downloaded from

4We didn't use thdtrace infrastructure because on our configu-
ration it introduced non-negligible overheads. http://feanor.sssup.it/“fabio/linux/edf-throttling/

7 Future Work

The scheduler presented in this paper is still a work in
progress. Our final objective is obtaining an implemen- [8]
tation that can be considered for merging by the Linux

community, yet based on sound theoretical principles.

About the implementation, we need a detailed study of [9]
the introduced overheads, along with the analysis of the
computational cost given by keeping partitioned queues
to implement a global scheduling strategy. From the the-
oretical standpoint, the biggest hole that needs to be filled
in our opinion is the analysis of shared resources acces§l0]

8 Conclusion

(11]

In this paper we introduced a scheduling framework ex-

tending the Linux scheduler in order to improve its sup-
port for real-time workloads on multiprocessor systems.[lz

The main contribution of the paper is the synthesis be-
tween known theoretical results and the simplicity of the
scheduler implementation, along with the specification
of a complete strategy to solve the different issues that
must be considered when designing a CPU schedule[ﬁ3]

(i.e., it deals with shared resources, CPU affinities, parti

tioned data structures and so on).

References

[1] T. Cucinotta, G. Anastasi, and L. Abeni, “Respect-
ing temporal constraints in virtualised services,” in

To appear in Proceedings of ti#¢ IEEE Inter-

(14]

(15]

national Workshop on Real-Time Service-Oriented

Architecture and Applications (RTSOAA 2009)

Seattle, Washington, July 2009.

E. Bini, G. Buttazzo, and M. Bertogna, “The
multi supply function abstraction for mul-
tiprocessors,” to appear,available online at
http://feanor.sssup.it/marko/RTCSA09.pd2009.
[3] RTLinux homepage, http://www.rtlinux.org.

[4] RTAlI homepage, http://www.rtai.org.

[5] L. Palopoli, T. Cucinotta, L. Marzario, and G. Li-
pari, “AQUOSA — adaptive quality of service ar-
chitecture,” Software — Practice and Experience
vol. 39, no. 1, pp. 1-31, 2009.

L. Abeni and G. Buttazzo, “Integrating multi-

(2]

[6]

media applications in hard real-time systems,
in Proc. IEEE Real-Time Systems Symposium

Madrid, Spain, 1998.

[7] D. Faggioli, G. Lipari, and T. Cucinotta, “An effi-

cient implementation of the bandwidth inheritance
protocol for handling hard and soft real-time ap-

plications in the Linux kernel,” irProceedings of

the 4*" International Workshop on Operating Sys-

(16]

(17]

(18]

(19]

tems Platforms for Embedded Real-Time Applica-
tions (OSPERT 2008)Prague, Czech Republic,
July 2008.

“Linux Testbed for Multiprocessor Schedul-
ing in Real-Time Systems L(TMUSTT)”
http://www.cs.unc.edu/ anderson/litmus-rt/.

B. Brandenburg, J. M. Calandrino, and J. H. Ander-
son, “On the scalability of real-time scheduling al-
gorithms on multicore platforms: A case study,” in
Proceedings of the Real-Time Systems Symposium
Barcelona, 2008.

S. Baruah, N. Cohen, C. Plaxton, and D. Varvel,
“Proportionate progress: A notion of fairness in re-
source allocation,Algorithmica vol. 6, 1996.

IEEE, Information Technology -Portable Operating
System Interface (POSIX)- Part 1: System Appli-
cation Program Interface (APl) Amendment: Addi-
tional Realtime Extension2004.

] D. Faggioli, A. Mancina, F. Checconi, and G. Li-

pari, “Design and implementation of a POSIX com-
pliant sporadic server,” ilProceedings of the0t"
Real-Time Linux Workshop (RTLWRlexico, Oc-
tober 2008.

A. K. Mok, X. A. Feng, and D. Chen, “Resource
partition for real-time systemsReal-Time and Em-
bedded Technology and Applications Symposium,
IEEE, vol. 0, p. 0075, 2001.

A. Easwaran, M. Anand, and |. Lee, “Composi-
tional analysis framework using edp resource mod-
els,” Real-Time Systems Symposium, IEEE Interna-
tional, vol. 0, pp. 129-138, 2007.

D. Stiliadis and A. Varma, “Latency-rate servers: A
general model for analysis of traffic scheduling al-
gorithms,” inlEEE/ACM Transactions on Network-
ing, 1996, pp. 111-119.

M. Bertogna, M. Cirinei, and G. Lipari, “Schedula-
bility analysis of global scheduling algorithms on
multiprocessor platforms,JEEE Transactions on
Parallel and Distributed System2008.

M. Bertogna, F. Checconi, and D. Faggioli, “Non-
preemptive access to shared resources in hierarchi-
cal real-time systems,” inst Workshop on Com-
positional Theory and Technology for Real-Time
Embedded SystemBarcelona, Spain, December
2008.

A. Block, H. Leontyev, B. B. Brandenburg, and
J. H. Anderson, “A flexible real-time locking proto-
col for multiprocessors,” iRTCSA '07: Proceed-
ings of the 13th IEEE International Conference on
Embedded and Real-Time Computing Systems and
Applications Washington, DC, USA: IEEE Com-
puter Society, 2007, pp. 47-56.

FTQ http://rt.wiki.kernel.org/index.php/FTQ.

