
Hierarchical Multiprocessor CPU Reservations for the Linux Kernel∗

Fabio Checconi, Tommaso Cucinotta, Dario Faggioli, Giuseppe Lipari
Scuola Superiore S. Anna, Pisa, Italy

Abstract

This paper presents ongoing work in the development
of a scheduling framework that will improve the ser-
vice guarantees for soft real-time applications deployed
on Linux. The scheduler has been designed around the
current kernel infrastructure, trying to keep the changes
minimal, and basing the scheduling policy on strong the-
oretical results. The main goal is to achieve hierarchical
distribution of the available computing power on multi-
processor platforms, avoiding alterations to the existing
user interfaces.

The proposed framework exploits the hierarchical ar-
rangement of tasks within groups and subgroups that is
already possible within the Linux kernel. However, it
adds the capability for each group to be assigned a pre-
cise fraction of the computing power available on all the
processors, using existing uni-processor resource reser-
vation techniques. Tasks are scheduled globally within
each single group, and the partitions assigned to each
group need not to be static, but can be dynamically bal-
anced. Furthermore, the proposed mechanism can be
used to support a variety of possible partitioning schemes
using processor affinities.

1 Introduction

Nowadays, the Linux Operating System is being en-
riched with more and more real-time capabilities. In
the last few years, valuable efforts have been spent for
decreasing the scheduling and interrupt latencies of the
kernel, by embedding such features as full preemption,
priority inheritance, reduced computation complexity of
the scheduler, support for high-resolution timers. Also,
the linux-rt branch adds such experimental features
as running interrupt handlers in dedicated kernel threads

∗The research leading to these results has been supported by the Eu-
ropean Commission under grant agreement n.214777, in the context of
the IRMOS Project. More information at: http://www.irmosproject.eu.

rather than in interrupt context, so as to allow system de-
signers to have an improved control over the interference
of the peripheral drivers with respect to the running ap-
plications.

While such features make the Linux kernel a very ap-
pealing platform for multimedia applications, still the
support for real-time scheduling is somewhat inappropri-
ate for dealing with requirements posed by the challeng-
ing scenarios of the upcoming years, that demand for pre-
dictable scheduling mechanisms able to achieve a good
degree of temporal isolation among complex concurrent
software components, low response times and high in-
teractivity. One such scenario is the one in which mul-
tiple virtual machines run within the same OS, hosting
software components realizing professional services that
need to run with predictable QoS levels and high interac-
tivity requirements, possibly managed through a service-
oriented approach, as discussed for example in [1].

The Linux kernel embodies the POSIX com-
pliant priority-based real-time scheduling classes
(SCHEDFIFO and SCHEDRR). These may be suffi-
cient for dealing with embedded real-time applications,
but they turn out to be inadequate for providing temporal
isolation among complex software components such as
the ones mentioned above. In fact, the implementation
of such policies in Linux has been enriched by non-
standard features such as support for hierarchies of tasks
and throttling. However, lacking of a sound design in
the domain of real-time scheduling, such capabilities
struggle at constituting a solid base for providing an
adequate real-time scheduling support.

This paper makes one step further in this direction,
presenting a novel real-time scheduling strategy for the
Linux kernel, that may be analyzed by means of hierar-
chical real-time schedulability analysis techniques. The
proposed infrastructure has a good degree of flexibility,
allowing for a variety of configurations between two tra-
ditionally antithetic settings: on one side, the perfect
compatibility with the current POSIX compliant priority-

1

based semantics, and on the other side an improved usage
of resources by means of a partitioned EDF.

1.1 Paper Contributions

This paper presents a hierarchical multiprocessor
scheduling framework for the Linux kernel. The main
advantages of the presented approach over prior works
are:

• tight integration with the existing Linux code;

• no need for the introduction of new interfaces nor
new scheduling classes;

• support for multiple configuration schemes, includ-
ing fully partitioned approaches;

• strong theoretical background justifying the rele-
vance of the approach, mainly inspired to [2], with
the derivation of an appropriate admission test for
the tasks to be scheduled;

• capability to handle accesses to shared resources.

1.2 Paper Outline

The rest of the paper is organized as follows. Sec-
tion 2 reviews related work in the area, then Section 3
introduces considered system model and scheduling al-
gorithm, summarizing its formal properties. Section 4
describes the implementation of the framework in the
Linux kernel, and Section 5 reports experimental results
that validate the approach. Finally, Section 8 contains a
few concluding remarks.

2 Related Work

The growing interest in having more advanced real-time
scheduling support within the Linux kernel has been wit-
nessed in the last years by various research projects. The
first approach that has been undertaken has been the ad-
dition of a hypervisor to the Linux kernel, so as to ob-
tain a highly predictable hard real-time computing plat-
form where real-time control tasks are scheduled very
precisely, and the entire Linux OS is run in the back-
ground. Such an approach, adopted in the RTLinux [3]
and RTAI [4] projects, however is not adequate for inter-
active nor multimedia applications, due to the high limi-
tations it poses on the services available to real-time ap-
plications.

An alternative trend is constituted by the addition of
a (soft) real-time scheduling policy directly within the
Linux kernel, that allows for a more predictable execu-
tion of unmodified Linux applications. Projects that fall
in this category comprise the following.

The Adaptive Quality of Service Architecture [5]
(AQuoSA) for Linux provides hard CBS [6], an EDF
based real-time policy, which has also been enhanced
with the Bandwidth Inheritance protocol [7] for dealing
with shared resources. However, having been developed
in the context of the FRESCOR1 European Project for
embedded systems,AQuoSAsuffers from the main lim-
itation of not supporting SMP systems.

TheLitmusRT project [8,9] provides (among others)
Pfair [10], a real-time scheduling strategy theoretically
capable of saturating SMP systems with real-time tasks.
However, it contains major changes of the Linux kernel
internals, and it is currently more a testbed for experi-
menting with real-time scheduling within Linux, rather
than something that aims at being integrated in the main-
line kernel.

Recently, an implementation of the POSIX
SCHEDSPORADIC[11] real-time policy for Linux has
been proposed to the Linux kernel community [12].
This scheduler has been developed with the aim of being
integrated into the mainstream kernel, by proposing a
very limited set of modifications to the kernel scheduler,
and exploiting existing user-space APIs such as the
cgroups . The great advantage of such scheduling
policy is the one of having been standardized by POSIX,
however it suffers of the limitations typical of priority-
based policies, such as the well-known utilization limit
of 69% on uni-processor systems.

3 Scheduling Algorithm

The design of the scheduling algorithm started in a quite
unusual way, analyzing the existing Linux scheduler, and
trying to derive a formal model for the policy it is imple-
menting for real-time scheduling, especially concerning
the part of hierarchical scheduling. It turned out that the
model in [2] is not far from matching the Linux imple-
mentation. The work we present in this paper aims to
achieve a convergence between a hierarchical schedul-
ing infrastructure that is minimally invasive as compared
to the current Linux scheduler code base, and a theory of
hierarchical real-time schedulers that is quite generic to
be adapted to the Linux case.

We exploited the current user-space interface for the
throttling mechanism, which offers to applications the
possibility to assign a pair(Qi, Pi) to thei-th group of
tasks. However, these parameters are reinterpreted as the
scheduling parameters (the budget and period, respec-
tively) to be assigned to the group according to the well
known resource reservation paradigm [6]:Qi units of
time are available to the group every period of length

1Framework for Real-Time embedded Systems based on Contracts
(FRESCOR), European Project No. FP6/2005/IST/5-034026, more in-
formation at: http://www.frescor.org.

2

π1 π2

ν1,1 ν1,2 ν2,1 ν2,2

τ1,1 τ1,2 τ1,3 τ2,1 τ2,2

Γ1 Γ2

Physical Processors

Figure 1: System Architecture.

Pi. The scheduling guarantee is given to each group as a
whole, including all the tasks attached to the group itself
and to all the nested subgroups. However, the framework
allows each group and subgroup to posses its own set of
scheduling parameters. On multiprocessor systems, the
Qi/Pi assignment is replicated on all the processors in
the system, but the resulting schedulers on the various
CPUs run independently from one another, minimizing
synchronization overheads.

3.1 System Model and Terminology

Throughout the paper we stick to the Linux terminology
as much as possible; when referring to entities that do
not have a counterpart in the current Linux code yet, we
derive our notation and terminology from [2].

In the model we consider, a task groupΓi is composed
by set ofni sporadic tasksΓi = {τi,j}j=1,...,ni

. Each
task is described by its worst-case execution timeCi,j , its
relative deadlineDi,j and its minimum inter-arrival time
Ti,j : τi,j = (Ci,j , Di,j , Ti,j). A task τi,j is a sequence
of jobs τk

i,j , each characterized by its own release time,
computation time and deadline, denoted byrk

i,j , c
k
i,j and

dk
i,j , respectively.
Following [2], we callvirtual platformVi a set ofmi

virtual processorsVi = {νi,l}l=1,...,mi
. Each virtual pro-

cessorνi,l is characterized by a supply functionZi,l(t)
representing the amount of serviceνi,l can provide in any
time interval of durationt.

Tasks are grouped in task groups, organized in a
hierarchical fashion. Each task group is assigned a
virtual platform, one per physical processorπm ∈
{πm}m=1,...,M in the system.

Fig. 1 depicts the global structure of our model, in
the case of two physical processors,π1 andπ2, and five
tasks organised in two groups:τ1,1, τ1,2, τ1,3 insideΓ1

andτ2,1, τ2,2 insideΓ2; each task group is assigned two
virtual processors, one for each physical processor.

3.2 Main Algorithm

The proposed algorithm can be described as a two-layer
hierarchical scheduler, with the first layer scheduler se-
lecting which task group to execute on each processor,
and the second layer selecting which task to run within
the selected task group.

Each task groupΓi is assigned a set of virtual proces-
sors; these virtual processors are scheduled using parti-
tioned resource reservation techniques. Each virtual pro-
cessor is allocated a share of one of the physical proces-
sors in the system. The algorithm used to schedule vir-
tual processors on physical processors is the Hard Con-
stant Bandwidth Server (H-CBS) [6].

In other words, the first layer is composed byM in-
dependent partitioned H-CBS schedulers which manage
all the virtual processorsνi,l assigned to their respective
physical processor. Looking again at Fig. 1, there are
two H-CBS schedulers, one to schedule virtual proces-
sors running onπ1, and one for the ones running onπ2.
The H-CBS onπ1 schedules the first virtual processors
of the groups in the system (ν1,1 andν2,1), while the H-
CBS onπ2 schedules the second ones (ν1,2 andν2,2).

Within each group tasks are kept in a global fixed-
priority queue2, and tasks belonging to the same task
group are scheduled globally according to their priority.
At every time instant, if a virtual platformVi is in execu-
tion onm physical processors, then itsm highest priority
tasks are executing. Note thatm ≤ M changes over time
due to the asynchronous scheduling of virtual processors
over the physical ones.

3.3 Formal Properties

The proposed scheduling strategy falls within the class
of schedulers identified in the theoretical schedulability
analysis framework presented in [2]. Therefore, for pur-
poses related to schedulability analysis, the same system
model and analysis techniques may be adopted, with an
additional extension to support hierarchical scheduling.

When an arbitrary hierarchy is considered, the prob-
lem of scheduling an applicationΓ on a group with band-
width allocated on multiple processors is reduced to the
problem of schedulingΓ on theMα∆ abstraction cor-
responding to the service provided by the given group.
Known techniques can be used to derive the parameters
for theMα∆ abstraction representing the group.

In this section we present well-known results and
adapt them to our framework; a schedulability test will
be derived from Theorem 1 and Theorem 3 in [2].

2As Section 4 will explain, the global policy of the queue is imple-
mented using per-processor queues.

3

3.3.1 The Supply Function

An abstraction to model the minimum CPU time pro-
vided in a given interval of time is thesupply func-
tion [2, 13]. To introduce the supply function first we
need the concept oftime partition.

Definition 1 A time partitionP is a countable union of
non-overlapping time intervals

P =
⋃

i∈N

[ai, bi) ai < bi < ai+1. (1)

Without loss of generality, we set the time when the
first virtual processor starts in the system equal to 0.

Given a time partitionP , its supply function [2, 13]
measures the minimum amount of CPU time provided
by the partition in any time interval.

Definition 2 Given a time partitionP , its supply func-
tion ZP(t) is the minimum amount of CPU time provided
by the partition in any time interval of lengtht ≥ 0, i.e.,

ZP(t) = min
t0≥0

∫

P∩[t0,t0+t]

dx. (2)

Since, given a virtual processorν, it is not possible to
determine the time partitionP it will provide, the above
definition cannot be used in practice; the following two
definitions generalize the considered time partition to all
the possible partitions that can be generated by a virtual
processor, and extend Def. 2 to be actually usable.

Definition 3 Given a virtual processorν, legal(ν) is the
set of time partitionsP that can be allocated byν.

Definition 4 Given a virtual processorν, its supply
functionZν(t) is the minimum amount of CPU time pro-
vided by the serverν in every time interval of length
t ≥ 0,

Zν(t) = min
P∈legal(ν)

ZP(t). (3)

A virtual processorν implemented through a H-CBS
with budgetQ and periodP, when active, conforms to
the Explicit Deadline Periodic model [14] with deadline
equal to the period. As a consequence, we can use the
well-known supply function:

Zν(t) = max{0, t − (k + 2)(P − Q), kQ}, (4)

with k =
⌊

t−P+Q
P

⌋

.

3.3.2 The(α, ∆) Abstraction

A simpler abstraction, still able to model the CPU allo-
cation3 provided by a virtual processor, but using fewer
parameters, and easier to derive is the “bounded delay
partition,” described by two parameters: a bandwidthα,
and a delay∆. The bandwidthα measures the rate at
which an active virtual processor provides service, while
the delay∆ represents the worst-case service delay.

The formal definitions ofα and ∆, from [13], are
given below.

Definition 5 Given a virtual processorν with supply
functionZν(t), its bandwidthαν is defined as

αν = lim
t→∞

Zν(t)

t
. (5)

Definition 6 Given a virtual processorν with supply
functionZν(t) and bandwidthαν , its delay∆ν is defined
as

∆ν = sup
t≥0

{

t −
Zν(t)

αν

}

. (6)

Using the two definitions above, the supply function
Zν(t) of a virtual processorν can be lower bounded as
follows:

Zν(t) ≤ max{0, αν(t − ∆ν)}, (7)

which gives an intuitive definition of the(α, ∆) abstrac-
tion, as a way to extract a lower bound for the actual
supply function of a virtual processor;α represents the
share of the physical processor time assigned to the vir-
tual processor, while∆ represents the responsiveness of
the allocation. In the case of a H-CBS virtual processor
of budgetQ and periodP, we have:

α =
Q
P , ∆ = 2P − 2Q. (8)

3.3.3 (α, ∆) Abstractions and Multiprocessors

In [2] an extension of the(α, ∆) abstraction for multipro-
cessors is given, along with the calculation of the(α, ∆)
parameters for several algorithms described in literature.

Definition 7 The Multi-(α, ∆) (Mα∆) abstraction of a
setV = {νj}j=1,...,m of virtual processors, represented
by the m pairs {(αj , ∆j)}j=1,...,m is a multi-supply
function defined by the set of supply functions{Zνj

:
Zνj

(t) = max(0, αj(t − ∆j))}j=1,...,m.

3The same abstraction does not apply to CPU time only [15], but
here we consider only CPU time.

4

3.3.4 Schedulability Analysis

We consider the schedulability of a single task group
Γ (composed ofn tasks) over a setV = {νj}j=1,...,m

of virtual processors, with supply functionsZj(t) =
Zνj

(t). First, assuming to know the time partitionPj

provided by eachνj , we definethe characteristic func-
tion Sj(t), defined as follows:

Sj(t) =

{

1 t ∈ Pj

0 t /∈ Pj
. (9)

Without loss of generality, assume the tasks{τk}
within Γ are ordered by non-increasing priority. Con-
sider a single taskτk ∈ Γ. Lℓ denotes the sum of the
duration of all the time intervals over[0, Dk) whereℓ
virtual processors provide service in parallel:

∀ℓ : 0 ≤ ℓ ≤ m, Lℓ =

∣

∣

∣

∣

∣

∣







t ∈ [0, Dk) :

m
∑

j=1

Sj(t) = ℓ







∣

∣

∣

∣

∣

∣

.

(10)
With Wk we denote the workload of jobs with higher

priority interfering withτk, andIk denotes the total du-
ration in [0, Dk) in which τk is preempted by higher pri-
ority jobs. From [16] we know that, for a fixed priority

scheduler, the workloadW
FP

k can be bounded using:

W
FP

k =

k−1
∑

i=1

W k,i, (11)

where

W k,i = Nk,iCi + min{Ci, Dk + Di − Ci − Nk,iTi},
(12)

with Nk,i =
⌊

Dk+Di−Ci

Ti

⌋

.

The following theorems, proved in [2], allow us to
build a schedulability test.

Theorem 1 Given a multi-supply function characterized
by the lengths{Lℓ}ℓ=0,...,m over a window[0, Dk), the
interferenceIk onτk produced by a set of higher priority
jobs with total workloadWk cannot be larger than

Ik = L0+
m

∑

ℓ=1

min



Lℓ,
max

(

0, Wk −
∑ℓ−1

p=1 pLp

)

ℓ



 .

(13)

Now that we know how to calculate an upper bound

to the interferenceI
FP

k , substitutingWk = W
FP

k in the
equation above, we can use the following theorem (again,
from [2]) to derive a schedulability test.

Theorem 2 A task setΓ = {τi}i=1,...,n is schedulable
by a fixed priority algorithm on a set of virtual processors
V = {νj}j=1,...,m modeled by{Zj}j=1,...,m, if

∀k ∈ N : 1 ≤ k ≤ n Ck + I
FP

k ≤ Dk, (14)

using the following values for the lengths{Lℓ}ℓ=0,...,m:

L0 = Dk − Z1(Dk)

Lℓ = Zℓ(Dk) − Zℓ+1(Dk) (15)

Lm = Zm(Dk).

The symmetry of our bandwidth distribution allows
for a simplification in the above test. In fact we assign
the same bandwidth and the same period to all the vir-
tual processors corresponding to the same task group;
thus the intermediate lengthsLℓ are zero, and Eq. (13)
can be simplified, resulting in the following equation for
the interferenceIk:

Ik = L0 + min

(

Lm,
max(0, Wk − mLm)

m

)

. (16)

As a final note, to multiplex different task groups on
the same set of physical processors, the basic (neces-
sary and sufficient) H-CBS admission test over the vir-
tual processors{νi}i=1,...,n executing on the same phys-
ical processors must be verified:

n
∑

i=1

Qi

Pi

≤ 1. (17)

3.4 Shared Resources

In order to support access to shared resources, the prior-
ity inheritance and boosting mechanisms, already present
in the Linux kernel, may be exploited. Within the Linux
kernel, the fact that internal mutexes do not adopt priority
inheritance mechanisms limits the possibility of giving
formal upper bounds to blocking times.

In our implementation, we are exploring the usage of
non-preemptive critical sections, realized raising the pri-
ority of the task executing in critical section to the maxi-
mum one available in the system. We are trying to adapt
the approaches and the analysis in [17] and [18] to our
model; a formal treatment of the topic is left as a future
work.

3.5 Policy and Mechanisms

The proposed scheduling framework can be used as the
basis for implementing several different variations, using
mechanisms already present in the kernel, or introducing
small modifications.

5

As an example, consider a user willing to adopt a
purely partitioned approach: said user needs only to use
thecpuset mechanism to specify a CPU affinity for the
task groups, and no changes are required to the scheduler
itself. The partitioned queues make handling this case
quite efficient, while the H-CBS scheduler takes care of
partitioning the bandwidth among the task groups on the
same physical processor, according to the specified tim-
ing constraints.

Another open issue is the optimal bandwidth assign-
ment between virtual processors. We stick to the current
Linux model of using the same assignment on each phys-
ical processor, both for its simplicity and for lack of an
interface to express different assignments. Anyway the
H-CBS scheduler would support asymmetric partitions
too, and exploiting this capability would came at the cost
of adding the user interface to setQi/Pi on a per-virtual
processor basis, again, with no modification to the sched-
uler structure.

4 Implementation

We implemented our framework in the Linux kernel. We
modified the existing real-time scheduling class, chang-
ing how task groups are selected for service.

The existing code represents groups of tasks using
struct task group objects; tasks can be grouped
on the basis of their user id or on the basis of the cgroup
they belong to. Each task group contains an array of
per-processor runqueues and scheduling entities. Each
runqueue contains the scheduling entities belonging to
all its (active) child nodes in the hierarchy. Tasks are
leaf nodes, represented only by their own scheduling en-
tity. Each processor has its own runqueue, containing the
scheduling entities belonging to tasks and groups from
the highest level in the hierarchy; a task group has a dif-
ferent scheduling entity on each processor it can run on.

Fig. 3 shows the main differences introduced to the
kernel data structures: the priority array instruct
rt rq has been substituted with a red-black tree, and
a new field (rt deadline) had to be added. The per-
group high-resolution timer previously used for imple-
menting the throttling limitation was replaced by a per-
runqueue timer. Thert rq s of a same task group are
scheduled independently on the processors with H-CBS,
thus the limitation periods are asynchronous among each
other. If the high resolution tick is enabled on the sys-
tem, the scheduler will use it to deliver accurate end-of-
instance preemptions.

The two arrays added tostruct task group are
used to store all the tasks for the given task group on each
processor. The problem here is that tasks are not sched-
uled using H-CBS, and there is no easy way to mix their
entities with the ones associated to intermediate nodes in

1 s t a t i c i n l i n e i n t
2 r t e n t i t y b e f o r e (s t r u c t s c h e d r t e n t i t y ∗a ,
3 s t r u c t s c h e d r t e n t i t y ∗b)
4 {
5 s t r u c t r t r q ∗ rqa = g r o u p r t r q (a) , ∗ rqb =

g r o u p r t r q (b) ;
6

7 i f ((! r qa && ! rqb) | | (rqa−>r t n r b o o s t e d &&
rqb−>r t n r b o o s t e d))

8 re turn r t s e p r i o (a) < r t s e p r i o (b) ;
9

10 i f (rqa−>r t n r b o o s t e d)
11 re turn 1 ;
12

13 i f (rqb−>r t n r b o o s t e d)
14 re turn 0 ;
15

16 re turn (s64) (rqa−>r t d e a d l i n e −
rqb−>r t d e a d l i n e)< 0 ;

17 }

Figure 2: Entity Ordering.

1 s t r u c t r t e d f t r e e {
2 s t r u c t r b r o o t r b r o o t ;
3 s t r u c t rb node r b l e f t m o s t ;
4 } ;
5

6 s t r u c t r t r q {
7 s t r u c t r t e d f t r e e a c t i v e ;
8 u64 r t d e a d l i n e ;
9 s t r u c t h r t i m e r r t p e r i o d t i m e r ;

10 /∗ . . . ∗ /
11 } ;
12

13 s t r u c t t a s k g r o u p {
14 s t r u c t s c h e d r t e n t i t y ∗∗ r t t a s k s e ;
15 s t r u c t r t r q ∗∗ r t t a s k r q ;
16 /∗ . . . ∗ /
17 } ;

Figure 3: Data Structures.

the hierarchy. Our solution was to add a leaf runqueue to
each intermediate runqueue, to store its tasks.

Just to give a rough sketch of how the active tree is
handled, Fig. 2 shows the function used to order enti-
ties. When inserting into a leaf runqueue both entities
are tasks, so their priorities are compared. When both
entities are runqueues they are ordered by priority if both
of them are boosted (i.e., executing inside a critical sec-
tion), otherwise boosted runqueues are favored over non-
boosted ones. If none of them is boosted, they are or-
dered by deadline.

The cgroup interface exported by the scheduler has
been extended, in order to allow the definition of the CPU
reservation for the tasks belonging to a group. As we pre-
viously said, all the tasks in a group are scheduled using
a “ghost” runqueue, which gets its own CPU share; the
only change we made to the current cgroup user inter-
face was adding the filesystem parameters to specify the
bandwidth allocated to this ghost queue, i.e., the band-
width allocated to the tasks in each given group.

6

5 Experiments

This section presents some preliminary results obtained
with our implementation of the scheduler described so
far. Our primary focus is evaluating the overhead intro-
duced by the mechanism, thus we compare it to the cur-
rent throttling implementation.

We measured the time spent by the scheduler inside
each of the class-specific hooks, filtering out the call-
backs registered by the other scheduling classes. For our
measurements we instrumented the scheduler code and
then we used an ad-hoc minimal tracer4, that measured
the time spent in the main scheduling functions using the
timestamp counter present in all the modern x86 CPUs.
The values acquired using the TSC were stored in a per-
processor ring buffer and copied to userspace using a
daemon reading from a character device; the fact that all
the functions we profiled are called under the runqueue
locks assured that measurement errors due to interrupts
or preemptions were avoided.

The functions we measured are:

• check preempt curr rt() , which, given the
current task and a newly woken one, checks if the
latter is entitled to preempt the former;

• task tick rt() , which handles the system tick
for RT tasks (mainly it checks for timeslice expira-
tion of round-robin tasks);

• enqueue task rt() , which adds a task to the
RT runqueues. In our implementation this function
is responsible of updating the deadline according to
the H-CBS rules, if necessary;

• dequeue task rt() , which removes a task
from the RT runqueues;

• put prev task rt() , which moves the running
task back to the ready (but not running) state;

• pick next task rt() , which selects the next
task to run (if any).

The system used was a quad-core Intel Q6600,
clocked at 2.40GHz, equipped with 2GB of RAM. The
synthetic load we chose was the Fixed Time Quanta [19]
benchmark, executed at RT priority.

Fig. 4 shows the execution times for the RT
scheduling-related functions mentioned above, in the
case there are four (one per core) application threads
running. With our approach, the enqueue and dequeue
paths are slower, as one would expect with the substitu-
tion of the previousO(1) priority array implementation.

4We didn’t use theftrace infrastructure because on our configu-
ration it introduced non-negligible overheads.

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

check_preem
pt_curr_rt

task_tick_rt

enqueue_task_rt

dequeue_task_rt

put_prev_task_rt

pick_next_task_rt

D
ur

at
io

n
(n

s)

Throttling
EDF Throttling

EDF Thr. + hrtick

Figure 4: Scheduling Overhead—Flat Hierarchy.

 0

 200

 400

 600

 800

 1000

 1200

 1400

check_preem
pt_curr_rt

task_tick_rt

enqueue_task_rt

dequeue_task_rt

put_prev_task_rt

pick_next_task_rt

D
ur

at
io

n
(n

s)

EDF Throttling
EDF Thr. + hrtick

Figure 5: Scheduling Overhead—Full Hierarchy.

It is also worth noting that using the high resolution tick
does not seem to affect the performance of the scheduling
functions, except forpick next task rt() , which
is the function that programs the timer.

Fig. 5 shows the execution times of the RT schedul-
ing class methods when there are more than a single root
group, and with groups using different periods. We could
not show the current scheduler behavior, as it does not
support non-uniform periods. Performance is not too far
from what shown in Fig 4 for native Linux, while in this
case the overhead for posting the high resolution tick is
more evident.

6 Availability

The implementation of the scheduler described in this pa-
per is available as a patch to the Linux kernel, version
2.6.30-rc8, the latest available at the time of writing. It
can be downloaded from

http://feanor.sssup.it/˜fabio/linux/edf-throttling/

7

7 Future Work

The scheduler presented in this paper is still a work in
progress. Our final objective is obtaining an implemen-
tation that can be considered for merging by the Linux
community, yet based on sound theoretical principles.

About the implementation, we need a detailed study of
the introduced overheads, along with the analysis of the
computational cost given by keeping partitioned queues
to implement a global scheduling strategy. From the the-
oretical standpoint, the biggest hole that needs to be filled
in our opinion is the analysis of shared resources access.

8 Conclusion

In this paper we introduced a scheduling framework ex-
tending the Linux scheduler in order to improve its sup-
port for real-time workloads on multiprocessor systems.
The main contribution of the paper is the synthesis be-
tween known theoretical results and the simplicity of the
scheduler implementation, along with the specification
of a complete strategy to solve the different issues that
must be considered when designing a CPU scheduler
(i.e., it deals with shared resources, CPU affinities, parti-
tioned data structures and so on).

References

[1] T. Cucinotta, G. Anastasi, and L. Abeni, “Respect-
ing temporal constraints in virtualised services,” in
To appear in Proceedings of the2nd IEEE Inter-
national Workshop on Real-Time Service-Oriented
Architecture and Applications (RTSOAA 2009),
Seattle, Washington, July 2009.

[2] E. Bini, G. Buttazzo, and M. Bertogna, “The
multi supply function abstraction for mul-
tiprocessors,” to appear,available online at
http://feanor.sssup.it/∼marko/RTCSA09.pdf, 2009.

[3] RTLinux homepage, http://www.rtlinux.org.
[4] RTAI homepage, http://www.rtai.org.
[5] L. Palopoli, T. Cucinotta, L. Marzario, and G. Li-

pari, “AQuoSA — adaptive quality of service ar-
chitecture,” Software – Practice and Experience,
vol. 39, no. 1, pp. 1–31, 2009.

[6] L. Abeni and G. Buttazzo, “Integrating multi-
media applications in hard real-time systems,”
in Proc. IEEE Real-Time Systems Symposium,
Madrid, Spain, 1998.

[7] D. Faggioli, G. Lipari, and T. Cucinotta, “An effi-
cient implementation of the bandwidth inheritance
protocol for handling hard and soft real-time ap-
plications in the Linux kernel,” inProceedings of
the4th International Workshop on Operating Sys-

tems Platforms for Embedded Real-Time Applica-
tions (OSPERT 2008), Prague, Czech Republic,
July 2008.

[8] “Linux Testbed for Multiprocessor Schedul-
ing in Real-Time Systems (LITMUSRT),”
http://www.cs.unc.edu/ anderson/litmus-rt/.

[9] B. Brandenburg, J. M. Calandrino, and J. H. Ander-
son, “On the scalability of real-time scheduling al-
gorithms on multicore platforms: A case study,” in
Proceedings of the Real-Time Systems Symposium,
Barcelona, 2008.

[10] S. Baruah, N. Cohen, C. Plaxton, and D. Varvel,
“Proportionate progress: A notion of fairness in re-
source allocation,”Algorithmica, vol. 6, 1996.

[11] IEEE,Information Technology -Portable Operating
System Interface (POSIX)- Part 1: System Appli-
cation Program Interface (API) Amendment: Addi-
tional Realtime Extensions., 2004.

[12] D. Faggioli, A. Mancina, F. Checconi, and G. Li-
pari, “Design and implementation of a POSIX com-
pliant sporadic server,” inProceedings of the10th

Real-Time Linux Workshop (RTLW), Mexico, Oc-
tober 2008.

[13] A. K. Mok, X. A. Feng, and D. Chen, “Resource
partition for real-time systems,”Real-Time and Em-
bedded Technology and Applications Symposium,
IEEE, vol. 0, p. 0075, 2001.

[14] A. Easwaran, M. Anand, and I. Lee, “Composi-
tional analysis framework using edp resource mod-
els,” Real-Time Systems Symposium, IEEE Interna-
tional, vol. 0, pp. 129–138, 2007.

[15] D. Stiliadis and A. Varma, “Latency-rate servers: A
general model for analysis of traffic scheduling al-
gorithms,” inIEEE/ACM Transactions on Network-
ing, 1996, pp. 111–119.

[16] M. Bertogna, M. Cirinei, and G. Lipari, “Schedula-
bility analysis of global scheduling algorithms on
multiprocessor platforms,”IEEE Transactions on
Parallel and Distributed Systems, 2008.

[17] M. Bertogna, F. Checconi, and D. Faggioli, “Non-
preemptive access to shared resources in hierarchi-
cal real-time systems,” in1st Workshop on Com-
positional Theory and Technology for Real-Time
Embedded Systems, Barcelona, Spain, December
2008.

[18] A. Block, H. Leontyev, B. B. Brandenburg, and
J. H. Anderson, “A flexible real-time locking proto-
col for multiprocessors,” inRTCSA ’07: Proceed-
ings of the 13th IEEE International Conference on
Embedded and Real-Time Computing Systems and
Applications. Washington, DC, USA: IEEE Com-
puter Society, 2007, pp. 47–56.

[19] FTQ http://rt.wiki.kernel.org/index.php/FTQ.

8

