Available online at www.sciencedirect.com

SCIENCE @mngc-r» Electronic Notes in
Theoretical Computer
ik Science

IO AR A TS
ELSEVIER Electronic Notes in Theoretical Computer Science 116 (2005) 113-131
www.elsevier.com/locate/entcs

QUACK: A Platform for the Quality of New
Generation Integrated Embedded Systems'

Mauro Pezze 2 Andrea Baldini ? Giovanni Denaro 2

Giuseppe Lipari * Matteo Rossi ° Davide Rogai °

Abstract

Over the last two years, the QUACK project investigated a new methodology for assessing the
quality of heterogeneous, modular and configurable embedded systems, i.e., systems made out
of a number of hardware and software components, usually embedded in devices with real-time
requirements, and produced in families of different versions and configurations. The main aim of
the project was to overcome the limitations of traditional techniques in dealing with the many new
aspects and issues that arise, when the addressed class of systems is under concern. This paper
surveys the final results of the QUACK project: that is, a new methodology for quality assessment
of heterogeneous, modular and configurable embedded systems, throughout the whole software
process.

Keywords: embedded system, quality assessment, heterogeneity, modularity

1 This work has been partially supported by the Italian Ministry of University and Research
within the COFIN 2001 project “Quack: a platform for the quality of new generation
integrated embedded systems”

2 G. Denaro and M. Pezzeé are with Universitd degli Studi di Milano Bicocca, via Bicocca
degli Arcimboldi 8, I-20126, Milano, Italy. Email: {denaro, pezze}@disco.unimib.it

3 A. Baldini is with Politecnico di Torino, Corso Duca degli Abruzzi 24, 1-10129, Torino,
Italy. Email: baldini@polito.it

4 G. Lipari is with Scuola Superiore S. Anna, Piazza Martiri della Liberta 33, I-56127, Pisa,
Italy. Email: lipari@sssup.it

5 M. Rossi is with Politecnico di Milano, Via Ponzio 34/5, 1-20133, Milano, Italy. Email:
rossi@elet.polimi.it

6 D. Rogai is with Universita degli Studi di Firenze, Via di Santa Marta 3, I-50139, Firenze,
Italy. Email: rogai@dsi.unifi.it

1571-0661/$ — see front matter © 2004 Elsevier B.V. All rights reserved.
doi:10.1016/j.entcs.2004.02.082

mailto:denaro@disco.unimib.it
mailto:pezze@disco.unimib.it
mailto: baldini@polito.it
mailto:lipari@sssup.it
mailto:rossi@elet.polimi.it
mailto:rogai@dsi.unifi.it
http://www.elsevier.com/locate/entcs

114 M. Pezzé et al. / Electronic Notes in Theoretical Computer Science 116 (2005) 113-131

1 Introduction

Heterogeneous, modular and configurable embedded systems are composed
of several heterogeneous components that share hardware and software re-
sources. The systems of this class are generally available in several versions
and configurations that are obtained by suitably combining different subsets
of components. The components can be in turn characterized by different
real-time and safety requirements even within the same system. This class of
systems is currently applied in several application domains, which include, but
are not limited to, automotive, railways, space, defense, wearable computing,
and domotic.

The board systems of new generation cars well exemplify this category of
systems. They combine several hardware devices, e.g., DVD, GSM and GPS
devices, and provide many complex software services, e.g., Internet facilities,
car alarm monitoring and integrated control of all available devices. Com-
ponents have safety and real-time requirements at different criticality levels:
for example, a failure of the car alarm monitoring system may have severe
consequences, while a failure of the Internet facilities does not produce ma-
jor damages. Different car models use various configurations of the available
components, for example, base models may not include GPS and Internet fa-
cilities, while top models are likely to include all facilities. Configurations are
obtained by changing, adding or updating subsets of components.

The critical nature of these systems entails high quality requirements that
cannot be easily satisfied by means of traditional test and analysis techniques,
which are not able to master the complexity of these systems and do not effec-
tively deal with many variants of the same system. It is often impractical to
pursue the independent verification of the many configurations and versions
in which such systems are available. The development of increasingly many
varieties of configurations and versions of systems with high quality require-
ments, demands new techniques that allow to reuse knowledge on both the
quality of components and their similarities among different configurations,
such to reduce the checks on each system.

The QUACK project studied over the last two years a new methodology
to control the quality of heterogeneous, modular and configurable embedded
systems. The proposed methodology (that we call QUACK methodology after
the project acronym) merges different techniques to be used at various devel-
opment phases or for different types of requirements. The QUACK methodol-
ogy includes formal methods to check initial requirements and to derive system
tests; run time monitoring techniques to automatically capture the behavior of
components in different configurations and compare these behaviors across the
configurations, aiming at identifying potential inconsistencies; schedulability

M. Pezzé et al. / Electronic Notes in Theoretical Computer Science 116 (2005) 113-131 115

analysis and model checking to verify properties of systems with real-time and
fault-tolerance requirements; test case generation for embedded components
and automatic deployment of the test cases in the test environment.

This paper reports the results of the QUACK project. Section 2 overviews
the QUACK methodology, indicating the proposed techniques as well as the
addressed phases and requirements. Section 3 presents the methods proposed
for formalizing system requirements, checking their validity and generating
system tests. Section 4 presents the technology proposed for generating qual-
ity obligations and test cases for components and component-based software
systems. Section 5 presents the methodologies proposed for verifying real-time
and fault-tolerance requirements. Section 6 presents the technique proposed
for automatically deriving test cases from UML design documents. Finally,
Section 7 summarizes the results of the project and outlines ongoing research
work.

2 An Integrated Approach to the Quality of Hetero-
geneous, Modular and Configurable Embedded Sys-
tems

Figure 1 illustrates the main elements of the QUACK methodology and in-
dicates the sections of this paper where the corresponding approaches are
presented. The figure identifies the needs of support for quality assessment at
three main phases of the development of heterogeneous, modular and config-
urable embedded systems.

Specification: the development of a new version or configuration of a system,
starts analyzing the user requirements for the new system and defining the
system specification, i.e., a document that identifies the expected behavior
independently from the internal architecture of the system. In the current
practice, systems specifications are often expressed in natural language.

Design: system specifications are mapped onto a suitable architecture based
on the examination of existing versions and configurations (System Family)
and identifying the components to be reused, adapted, added or substituted
to turn an existing configuration in a new one. Modular design is often
expressed in diagrammatic visual languages, e.g., suitable subsets of UML.

Deployment: the final components, either new or reused, are integrated in
the software architecture to produce the new system. Suitable middleware
technologies, e.g., the Java 2 Enterprise Edition platform [46], can facilitate
the deployment.

116 M. Pezzé et al. / Electronic Notes in Theoretical Computer Science 116 (2005) 113-131

Section 3
System . ﬂ;mal Mo;j-;i\ /" Validation
Specifications ~ ——p (Temporal Logic) ——p of Specifications |
(Natural Language) \\ P g// \ (Execution) J
,/ Generation \
'Qf System Test Cae‘y
Section 5

| Real Time Analysis |

I

pum—— —

N7 / Schedulabili ty\
= — g \ Analysis /
e == N Modular /’4\—,.”_, ,,

—
Component |~ % Design
_ DataBase

\J

ﬂnalysis of Fauh_
\ Tolerance /

Section 6

il - | System Family
/utomanc analymsh ~ B -
Section 4

\ UML designs /
SN A

I 4 R e
@neration of er;d\ Software ‘A'm time analy5®
(& L i Z
Q.nne test Casgs/‘ Deployment &omponems behavy

. .

/Genera‘uon of‘\ / Behanvioral \

integration test {]
cases / \ Ahdlysla y

Fig. 1. The main elements of the QUACK methodology

The QUACK methodology includes four sets of methods for supporting
quality assessment of systems at each phase, thus aiming at anticipating as
much as possible fault identification and removal. Each set of methods takes
advantage from the different information that are available at the specific
phase. According to the QUACK methodology:

(i) System specifications are formalized by means of temporal logic. The
formal specifications are executed to identify inconsistencies and incom-
pleteness of the specified requirements, and used to automatically gener-
ate test suites for system testing.

M. Pezzé et al. / Electronic Notes in Theoretical Computer Science 116 (2005) 113-131 117

(ii) Run-time monitors collect data on both the functional behavior of the
different components and the dynamic interaction patterns within exist-
ing configurations and versions. The collected data are used to generate
invariants that support the identification of potential faulty behaviors
for new versions and configurations. Integration test suites are generated
based on the invariants.

(iii) Schedulability analysis and model checking are used to verify real-time
and fault-tolerance properties addressing the component-based nature of
the systems.

(iv) Automatic analysis of design diagrams expressed in UML, supports the
automatic generation of test suites for end-of-production testing of both
the final systems and their components.

The proposed techniques are highly automated, thus contributing to im-
prove the quality of the final system with a low impact on the overall costs
of the development process. The integration of the different methods is very
light: although the best results are achieved with the integrated methodology,
each method can be independently used to verify systems that do not require
all analysis steps.

3 Formal Specification of Real Time Embedded Sys-
tems

Initial (informal) specifications are translated into temporal logic specification
for early analysis that includes:

* Component-based verification of systems through model checking.

e Deductive verification of modular systems thorough theorem proving.
 Specification of real-time systems through states and events.

e Code derivation of real-time systems by direct execution of their behavior

specification.

This section describes how the above approaches have been implemented
in the QUACK methodology.

As the range of issues covered by the QUACK methodology is wide, dif-
ferent, complementary formalisms have been developed and studied. The
approaches explored are based on three temporal logics: OTL [24], which
is compatible with UML; TRIO [20], which is suitable for specification and
verification (through model checking and theorem proving) of both discrete
and continuous real-time systems; TILCO [31], which can produce expressive,

118 M. Pezzé et al. / Electronic Notes in Theoretical Computer Science 116 (2005) 113-131

directly executable and verifiable specifications, from which it is possible to
automatically generate code.

Despite its wide acceptance in industry, UML still lacks powerful model-
ing mechanisms for effectively dealing with temporal constraints. Lavazza,
Morasca and Morzenti presented an extension to the UML Object Constraint
Language (OCL) [36], called Object Temporal Logic (OTL) [24] to deal with
timing aspects.

OTL simply adds two classes, Time and Offset to the OCL 2.0 standard
library. Class Time models time instants, while class 0Offset models the dis-
tance between two time instants. Time instants are referred to the current
time, which plays the role of time origin.

Classes Time and Offset allow to define the typical temporal operators of
temporal logics (i.e. Always, Sometimes, Until, etc.), and thus model timing
aspects. OTL allows users to reason about time in a quantitative fashion, so
that it is possible to express properties like event B must occur at most | time
units after event A. Time and 0ffset may be discrete or dense, depending on
the modeled application, thus allowing users great flexibility and expressive
power.

OTL formulas are evaluated with respect to the current time instant, which
is left implicit. Primitive eval of class Time is used in OCL to evaluate
predicates at time instants different from the current one. For example, given
an object t of class Time and a predicate p (which is an OclExpression),
t.eval(p) returns true (a boolean value) if p holds at time instant t.

Further details about the use of OTL in the QUACK methodology can be
found in this volume in the paper by Lavazza et al. [25].

While OTL is a very promising approach to the problem of modeling the
behavior of object-oriented applications, it is quite young; in addition, a set
of tools for the verification of systems specified with OTL is currently lacking.
Another, more mature, logic-based approach to modeling real time systems
is the TRIO temporal logic [20,35]. To support the QUACK methodology,
tools and techniques for the (semi)automatic formal verification of modular
real time systems specified with TRIO have been developed.

The quack methodology supports the verification of applications though
both model checking and theorem proving. While many current model check-
ers (and most notably the popular SPIN [21]) use Linear Temporal Logic
(LTL, [41]), which only has future temporal operators, to express properties
of transition systems, TRIO [20] can express properties both in the future and
in the past with respect to the current instant (which is left implicit in TRIO
formulae). The QUACK project studied how formulae with both past and fu-
ture operators can be treated in SPIN (see [42] for details), and how to apply

M. Pezzé et al. / Electronic Notes in Theoretical Computer Science 116 (2005) 113-131 119

those principles to perform model checking with TRIO formulae (see [34] for
details).

The technique described in [34] is centered around the concept of an “event
generator” that explores the space of the input variables for the different
modules composing the system. An exhaustive search of that space would
produce a combinatorial explosion in the complexity of the algorithm, so some
optimizations are introduced in order for the event generator-based approach
to be viable. These optimizations focus around the concept of “input” and
“output” variables for a TRIO module and, in particular, on the idea that
an “output” variable can be computed from the inputs, instead of simply
generated.

The QUACK methodology complements model checking with theorem
proving of TRIO specification focusing on the modular characteristics of the
language that allow to specify component-based systems. To support TRIO-
based theorem proving in the QUACK methodology, the encoding of TRIO
in PVS has been revised and extended, and a compositional framework for
PVS-supported deductive proofs with TRIO has been developed.

The compositional framework is centered around a new temporal operator
(<>, called “while-plus”), and on a sound compositional inference rule based
on it.

Here we outline the approach with a simple example. Let S be a system

composed by n modules Ci,...,C,. Let each module i = 1,...,n be asso-
ciated with an assumption E; about the behavior of its environment and a
behavioral property M; of the module itself, i.e., each module ¢ = 1,...,n is

associated with a specification of the form: assuming the environment of C;
behaves as in F;, we can guarantee that the module behaves as in M;. In
general, the system S has its own environment it interacts with. Let F be
the assumption we make on S’s environment and M the global property we
want to prove of S. S is characterized by a global specification of the form:
assuming the environment of S behaves as in E, we can guarantee that the
composite module behaves as in M.

The compositional inference rule developed for the TRIO language lets us
derive the validity of the global specification of S from the validity of the local
specifications of the Cjs.

Further details about TRIO-based theorem proving in the QUACK tech-
nology can be found in this volume in the paper by Furia and Rossi [17].

A notion of compositionality in the context of theorem proving has been
explored also for TILCO. The TILCO temporal logic uses theorem proving to
ensure important properties of a TILCO-written specification, such as safety

120 M. Pezzé et al. / Electronic Notes in Theoretical Computer Science 116 (2005) 113-131

and liveness. TILCO expressive operators (dynamic interval, bounded hap-
pen) showed in [8] allow to express very complex properties in a readable
form. The extension of TILCO presented in [7] (CTILCO, i.e., Communicat-
ing TILCO) provides a new model for composition/decomposition of complex
systems and for process communication. In CTILCO a specification can be
obtained from several interconnected processes, and theorem proving can be
performed to validate the correctness of the interaction between different pro-
cesses. In the context of the QUACK methodology the use of PVS has been
studied, and strategies to prove TILCO expressions have been produced; such
strategies are based on ad-hoc lemmas which are tailored on the basic TILCO
operators.

The benefits of modeling reactive, embedded time-critical systems with a
combination of state-like and event-like concepts (as opposed to restricting the
specification alphabet to either kind of item) is discussed in [19].

A case study about the application of CTILCO according as part of the
QUACK methodology can be found in this volume in the paper by Bellini et
al [9].

The most important feature of the TILCO approach is the executability of
specifications [5]. A TILCO specification can be executed in a real-time con-
text, where the computational cost to determine the system outputs at each
instant is bounded and predictable. The execution process requires a trans-
formation of the TILCO rules in a lower-level language called Basic Temporal
Logic. Thanks to this formalism it is possible to obtain a Temporal Inference
Network, the evolution of which generates the system reactive behavior. This
process has been automated by a suitable compiler to produce a file which
models the inference network; this file is loaded by the TILCO Executor,
which produces the outputs on the basis of input histories.

In the QUACK methodology, this development step to implement real-time
systems from specification execution has been improved and extended. A new
integrated development environment, called Dev-TILCO, has been created to
better answer to the industrial request of a high-productive development tool.
In Dev-TILCO a formal specification design can be performed by taking into
account formal parts and traditional programming language modules (C++
sources) [6]. The development process starts from a design which separates
the temporal behavior of single processes and interactions from the executable
code. The names of the temporal predicates (input or output) related to sys-
tem events are declared and used in the specification. These declarations are
automatically processed to obtain programming language objects, which are
connected to the TILCO executor (to execute the behavior specification) and
are usable together with the other sources of the application, in order to build

M. Pezzé et al. / Electronic Notes in Theoretical Computer Science 116 (2005) 113-131 121

an executable program ruled by a formal description of the time constraints.
Like in event-driven programming predicates events are connected to special
functions which are customizable to interact with the “classic environment”
of the program (like typed internal variables, functions or threads).

4 Test of New Configurations of Component-Based Sys-
tems

The development of a new heterogeneous, modular and configurable embedded
system is often based on modifying a subset of modules of a system of the same
family already in use. In the general setting, some components are eliminated,
others are modified, and yet others are added. Very frequently already existing
components are reused, directly or with small modifications.

The integration of new components can result in failures due to subtle dif-
ferences in the interactions triggered by the new components. For example,
let us consider a system in which a component is responsible for dynami-
cally selecting the best catalog to locate certain items. Furthermore, let us
consider that this component substitutes and updates a previous component
that, in another configuration of the same system, was able to locate items in
a fixed catalog. In this case, the new system may fail when catalogs cannot
be dynamically located or when they become unavailable under some execu-
tion conditions, which was never the case in the previous configuration. The
new system may behave correctly in many cases and fail only in particular
situations.

The issue of testing and analyzing component-based software has been
studied in the last year [44,40], but the solutions proposed so far do not address
all aspects of the problems. Design-for-testability techniques proposed by
Binder and extended by the self-test components proposed by Martins et al.,
assume that components are suitably instrumented with built in facilities for
testing [11,30]. Retrocomponents proposed by Liu and Richardson require
significant work of tester designers and thus imply substantial costs [28]. BIT
wrappers proposed by Edwards require detailed knowledge of the design of
components ad thus do not always apply to third parties COTS [12].

The technique developed during the QUACK project springs from the
ideas underlying perpetual testing of Pavlopoulou and Young [39] and takes
advantage from the technique for invariant detection by Ernst et al. [13]. The
technique requires no specific knowledge of the internal structure of compo-
nents nor detailed understanding of specifications, thus overcoming the main
usability limitations of previous work.

The technique applies to all cases in which one or more components are

122 M. Pezzé et al. / Electronic Notes in Theoretical Computer Science 116 (2005) 113-131
I/O invariants e
distiller | g
7 DAIKON ‘ V" (O invariants)
/\, .
interaction
. / “7 Test data generator > Integration test
// | _ datai_/_/_ J
LI ™= 3 —
<> > N/ stimuli
‘ Component X recorder
4 P
System &
7
Interaction = |
invariants distiller ——— interaction
{_invariants
Fig. 2. Automatic recording of components’ behaviors. Interaction and stimuli recorders are

inserted between the system and the monitored component.

substituted with new ones for obtaining a new system, and is based on three
main phases: data gathering, invariant detection, and component verification.
In the data gathering phase, the target systems are automatically instru-
mented to collect information about the interactions between the components
and between the components and the environment. The invariant detection
phase distills the information collected at runtime into:

I/O invariants that describe properties of the data exchanged between the
system and the monitored component,

interaction invariants that describe properties of the interaction patterns
of the monitored component with the other components of the system,

integration test data that represent the recorder interactions.

The recording process is illustrated in Figure 2. Interaction and stim-
uli recorders capture the interactions of the components with the systems.
They can be based on different technology. In the QUACK prototype, we
designed non-intrusive recorders for Java that are bound at system start-up.
The I/0O invariants distiller “flattens” the objects exchanged between the com-
ponent and the system by recursively extracting the key information up to a
given depth, using automatically identified “inspectors”. I/O invariants are

M. Pezzé et al. / Electronic Notes in Theoretical Computer Science 116 (2005) 113-131 123

extracted from the flattened data by means of Daikon, a tool by Ernst et
al. [13], which applies to simple scalar variables and collections. The Inter-
action Invariant distiller computes a regular expression that summarizes the
interaction patterns between the component and the system. Finally, the Test
data generator filters the recorder data according to different criteria to se-
lect a reasonable subset of the collected data that is suitable for integration
testing.

In the component verification phase, new components are verified and
tested for compatibility with the system. Verification is based on the invari-
ants collected in the data gathering phase. When substituting a component
with a new one already in use in other versions or configurations, the invari-
ants of the new component are checked against the system invariants. The
identified differences are then analyzed to discover potential problems in the
new system. Testing is based on the execution of the integration test data
collected in the data gathering phase. Oracles are automatically derived from
system invariants.

Further details about the QUACK technology for testing new configuration
of component based systems can be found in this volume in the paper by
Mariani and Pezze [29].

5 Verification of non functional properties

The correctness of a real-time system depends not only on the correctness
of the produced results but also on the time at which they are produced.
Temporal logic specifications support the analysis of temporal properties of
early requirements. Temporal constraints must be verified also at design and
deployment level. At design level, we assign a a worst case execution time to
each activity and we compute the worst case interleaving of all the activities
to see if the constraints are satisfied.

Most of the research on component based real-time embedded system is
related to the software design phase. Only recently non-functional constraints
like deadline are being taken into consideration. In particular, component
based software development techniques have been only recently applied to
the design and implementation of safety critical real-time systems with little
practical results. Many problems should be addressed before being able to suc-
cessfully apply component based design methodologies in real-time systems.

Real-time systems often consist of several concurrent cyclic tasks. There-
fore, the first requirement for their components is being multi-threaded, i.e.,
components must be able to execute a set of concurrent threads. No method-
ology addresses explicitly the design of a component containing more than

124 M. Pezzé et al. / Electronic Notes in Theoretical Computer Science 116 (2005) 113-131

one thread. The OMG has proposed the UML-RT profile for schedulabil-
ity, performance and time specification [37]. This profile allows the design of
real-time applications with UML. However, the profile is not well suited for
component based design. Isovic, Lindgren and Crnkovic [23] presented a simi-
lar idea in the context of the slot shifting scheduler [16], but in their approach
components consist of one single thread.

The QUACK methodology addresses the problem of specifying compo-
nents containing sets of execution threads, focusing in particular on the prob-
lem of specifying the scheduling strategy for each component. In fact, in a
multi-threaded real-time system, the scheduler plays an important role. Fixed
priority scheduling is commonly used in real-time systems, where each thread
is assigned a fixed priority expressed an integer number. However, when a
component is developed in isolation, it is not clear how priorities should be
assigned. The developers of one component can fix the priorities of the threads
inside the component as relative priorities, but they have no idea of the ab-
solute values that these priorities will have in the final system. Moreover,
different components may want to use different scheduling strategies, such as,
Earliest Deadline First (EDF), static or non-preemptive scheduling. If dif-
ferent components require different schedulers, than it becomes impossible to
assemble all components in the final system.

The approach proposed in QUACK uses a hierarchical scheduling frame-
work: each component can specify its own scheduler; The system implements
a global scheduler that selects the components to be executed, and invokes the
schedulers of the selected components to choose the thread to be executed.

Quack considers also the use of temporal isolation techniques: Since each
component is developed in isolation, it is necessary to analyze and test it in
isolation before the final system assembly. Quack proposes a technique to
“isolate” the temporal behavior of each component from the misbehaviors of
the others.

A general methodology for temporal protection in real-time system is the
resource reservation framework [32,33]. The basic idea, which was formalized
by Rajkumar [43], is that each task is assigned a server that is reserved a
fraction of the processor available bandwidth: if the task tries to use more
than it has been assigned, it is slowed down.

This framework allows a task to execute in a system as if it were executing
on a dedicated virtual processor, whose speed is a fraction of the speed of the
processor. By using a resource reservation mechanism, the problem of schedu-
lability analysis is reduced to the problem of estimating the computation time
of the task without considering the rest of the system.

Recently, many techniques have been proposed for extending the resource

M. Pezzé et al. / Electronic Notes in Theoretical Computer Science 116 (2005) 113-131 125

reservation framework to hierarchical scheduling [26,45], but none of them has
been done in the context of component based software development so far.

In QUACK, we developed a methodology for specifying and analyzing a
component based real-time system, where each component consists of one or
more concurrent threads, and can specify its own scheduling strategy. In our
approach, each component is assigned a minimal fraction of the processor
bandwidth and it is protected from the interference of the other components.
We developed a mathematical model of the component to compute the optimal
server parameters to be assigned to a component to ensure the satisfaction of
the temporal constraints.

Further details on the methodology for specifying and analyzing hierarchi-
cal scheduling strategies for component based systems, can be found in this
volume in the paper by Lipari et al. [27].

Another non-functional aspect relevant to embedded system is dependabil-
ity, that is, their ability to behave following predetermined requirements even
in the case of a fault in the system itself, or in the external environment.

Fault injection is a technique that can be used to evaluate the dependability
of a system, either hardware or software [22], and which involves the study of
failures and errors in order to recreate particular failure scenarios to test the
fault-tolerant architecture of the system. Bernardeschi, Fantechi and Gnesi
proposed a method to inject faults at the specification level, and showed how
to use model checking to verify fault tolerance at specification level [10].

QUACK refined and extended the method, and evaluated the results by
analyzing the SCA system (Sistema Conta Assi, axes counter system), de-
scribed in [15]. SCA is a railway signaling device used to decide if a given
railway section is free or still occupied by a train. The status of the railway is
computed by checking the number of wheelsets entering and leaving specifics
PRAs, i.e., detection points on the railway. A PRA is free if the number of
the wheelsets entering the section is equal to the ones leaving the section.
This information is used by the control and acquisition units, named UCAs,
to enable or prevent the next train to enter the section, by means of suitable
semaphores.

Injection on the SCA model has been done by connecting a suitable SDL
block, which models the Fault Injector, to the SDL model of the UCA unit.
This block contains a SDL process, called Fault_Injector_Process, which mod-
els the Fault Injection activity with an Extended Finite State Machine (EFSM).
This EFSM can be configured accordingly to the type of Fault Injection to be
performed.

A suitable SDT simulator interface has been designed with some of the
main SCA signals and the commands to configure, activate and stop the In-

126 M. Pezzé et al. / Electronic Notes in Theoretical Computer Science 116 (2005) 113-131

jector; the evolution of the system while simulating a particular scenario can
be traced using Message Sequence Charts (MSC). Fault-Tolerant behaviors
can be verified using one or more MSCs, representing scenarios in which the
system has to react in a fault-tolerant way towards wrong signals: if the MSCs
is violated, the SDT Validator returns an MSC indicating the way the fault-
tolerant scenario has been violated, thus allowing modification of the SDL
system to correct the fault.

An elaboration of the model described in [15] is presented in this volume
in the paper by Banci et al. [4].

6 End-of-Production Testing

The QUACK methodology includes a technique for end-of-production (EOP)
testing for heterogeneous, modular and configurable embedded systems, which
is mandatory in industry. This technique enables to translate test scenarios
(given by designers or generated from models) to test commands. The test
commands are handled by test simulators that surround the system under
test. In this way, starting from high-level scenarios, it is possible to automati-
cally generate functional test scenarios using the test environment of common
industrial simulators.

This section describes the most critical point of the technique, that is the
translation process.

A big gap exists between the design level and the final commands for
the test equipments, i.e., between the input and the output of the translation
phase. On one hand, in the design phase, the system descriptions are generally
provided at a very abstract level. Very often, these descriptions take the
form of messages that represent the user view of the system. For example,
messages are such as ”phone_call (number:123-4567)” and "hang up” would
be very common in the description of a mobile phone. On the other hand, test
commands are generally the low-level commands of standard test simulators,
stated in the simulator command set and highly customized. For example,
typical test commands may refer to a set of test resources, such as, ports
and interfaces. To fill in this gap, we define an intermediate concept: the
test level messages. The test level messages are the message representation
of test commands. For building the test-level messages, we use a bottom up
approach, i.e., we start from the command set of the simulators and from the
actuators that represent the test environments.

Simulating command messages often requires to set the working environ-
ment of the system. For example, simulating the command CALL for a cellular
phone requires a cellular network to be present in the environment, otherwise

M. Pezzé et al. / Electronic Notes in Theoretical Computer Science 116 (2005) 113-131 127

Test Translation

Design
level Test : - Test
Test Fosjrrostio Mapping Pre- _ Sequencing Coms
Case sequencing

Fig. 3. The translation process

no phone calls can be made. Environment programming is a hard task for
test designers because a lot of environment messages are needed and because
a wrong setting in the environment may alter the test results. To reduce
workload and errors, our technique provides a default environment for each
test-level message. The default environments are created by the test engine,
along with the default observation of the effects of the messages.

The translation process that set up the testing environment is divided into
preparation and translation phases as shown in Figure 3.

The Test Preparation phase ensures that a test case is compliant with
the current test environment. This is accomplished by checking the test case
against a set of pre-defined requirements (expressed as rules) defined such that,
if they are satisfied, the translation is possible. This phase is fully automatic.
The Test Translation phase consists of three steps:

the mapping step establishes a correspondence between the information at
the design level and the test commands. The input of this step is a design-
level test case, previously validated in Test Preparation phase, while the
output is a non-empty set of test-level sequence diagrams. The mapping
step performs three different actions: it resolves message polymorphism;
translates the design layer messages into test layer messages; and adds the
default environment and observation messages. A design level message is
polymorphic when it can be issued to the system in different ways (for exam-
ple, using vocal control or the keyboard). This entails that the translation
is not unique, i.e., there exist different test messages that correspond to the
same design level message. Resolution of polymorphism can be either au-
tomatic (following full or partial coverage criteria, e.g., random) or manual
(performed by the test designer). Apart from polymorphism, the mapping
step is automatic.

the Pre-sequencing step assigns minimum timing attributes to the test
messages. The test designer can indicate a specific timing of the messages
or assign default timings, with the smallest inter-command delay in order

128 M. Pezzé et al. / Electronic Notes in Theoretical Computer Science 116 (2005) 113-131

to keep the test execution time as low as possible.

the sequencing step translates the test-level sequence diagrams generated
at the Mapping step along with the timings added by the Pre-sequencing
step, into a list of commands directly understandable by the test environ-
ment. This step is heavily based on the test engine.

The test engine is a piece of software running on a dedicated worksta-
tion; the test engine controls the simulators using time wheels. Time wheels
are widely used in the hardware world, in the context of simulation. De-
lays are tracked using a time wheel divided into ticks or slots, with each slot
representing a unit of time. A software pointer marks the current time on
the timing wheel. As simulation progresses, the pointer moves forward by
one slot for each time step. The event list tracks the events pending and,
as the pointer moves, the simulator processes the event list for the current
time. On time wheels we directly indicate timed commands to the simulators,
so the first operation is a conversion of each test-level message into a set of
simulator commands, with existence and uniqueness guaranteed by the Test
Preparation phase. The minimum delays between messages inserted during
the Pre-sequencing step are inherited by the test commands.

Since each test command has an associated implementation time the test
engine must send each command to the appropriate simulator in adequate
advance. Moreover, the test engine uses time wheels to track the usage of the
test resources. As a matter of fact, even if all timings required to inject the
messages are respected, it may happen that an environment setting needed by
some further messages is changed before it has been used. In such cases the
test is declared failed.

Further details on the translation process can be found in [1,2,3].

7 Conclusions

Heterogeneous, modular and configurable embedded systems are increasingly
popular in many application domains because the flexibility introduced with
this technology allows for producing complex systems at low cost. However,
this class of systems entails new quality requirements that cannot be ade-
quately dealt with traditional specification, testing and analysis techniques.
This paper presented a set of new techniques for assessing the quality of
heterogeneous, modular and configurable embedded systems. The presented
techniques cover all main quality assessment requirements in the software pro-
cess for the target class of systems, by supporting: the definition and validation
of component-based systems with real-time requirements; the assessment of
both isolated components and their integration; the analysis of schedulability

M. Pezzé et al. / Electronic Notes in Theoretical Computer Science 116 (2005) 113-131 129

and fault-tolerance properties of a composed system based on the properties
of its components; the generation of test cases for embedded components and
the automatic deployment of the test cases in the test environment.

So far, we applied the proposed techniques to an initial set of case studies,
including industrial systems provided by our research partners, well-known
examples taken from the literature in the field, public applications that exem-
plify the use of component technology. The results are promising, even though
preliminary. We are now continuing the experiments, aiming at improving our
confidence in and knowledge of the QUACK methodology and at refining and
tuning the single techniques.

References

[1] Baldini, A., A. Benso, S. Mo, A. Taddei and P. Prinetto, A UML process for system level
functional test: an industrial perspective, in: Proceedings of Integrated Design and Process Tech
(IDPT’02), Pasadena, USA, 2002.

[2] Baldini, A., A. Benso, P. Prinetto, S. Mo and A. Taddei, Towards a unified test process: from
UML to end-of-line functional test, in: Proceedings of the IEEE International Test Conference
2001 (ITC’01), 2001, pp. 600-608.

[3] Baldini, A., A. Benso, P. Prinetto, S. Mo and A. Taddei, Efficient design of system test: a
layered architecture, in: Proceedings of the IEEE International Test Conference 2002 (ITC’02),
2002, pp. 930-939.

[4] Banci, M., M. Becucci, A. Fantechi and E. Spinicci, Validation coverage for a component-based
SDL model of a railway signalling system, in: Proceedings of the 2nd International Workshop
on Test and Analysis of Component-Based Software (TAC0S°04), 2004.

[5] Bellini, P., A. Giotti and P. Nesi, Ezecution of TILCO temporal logic specifications, in:
Proceedings of the 8th International Conference on Engineering of Complex Computer Systems
(ICECCS’02) Greenbelt, Maryland (2002), pp. 78-88.

[6] Bellini, P., A. Giotti, P. Nesi and D. Rogai, TILCO temporal logic for real-time systems
implementation in C++, in: Proceedings of the 15th International Conference on Software
Engineering and Knowledge Engineering (SEKE’03) San Francisco Bay (2003).

[7] Bellini, P. and P. Nesi, Communicating TILCO: a model for real-time system specification, in:
Proceedings of the 7th International Conference on Engineering of Complex Computer Systems
(ICECCS’01) Skvde, Sweden (2001), pp. 4-14.

[8] Bellini, P. and P. Nesi, TILCO-X an extension of tilco temporal logic, in: Proceedings of the 7th
International Conference on Engineering of Complex Computer Systems (ICECCS’01) Skuvde,
Sweden (2001), pp. 15-25.

[9] Bellini, P., P. Nesi and D. Rogai, Validating component integration with C-TILCO: A case
study, in: Proceedings of the 2nd International Workshop on Test and Analysis of Component-
Based Software (TAC0S°04), Electronic Notes on Theoretical Computer Science 82(6), 2004.

[10] Bernardeschi, C., A. Fantechi and S. Gnesi, Model checking fault tolerant systems, Software
Testing, Verification and Reliability 12 (2002), pp. 251-275.

[11] Binder, R., Design for testability in object-oriented systems, Communications of the ACM 37
(1994), pp. 87-101.

[12] Edwards, S., A framework for practical, automated black-box testing of component-based
software, Software Testing, Verification and Reliability (STVR) 11 (2001).

130 M. Pezzé et al. / Electronic Notes in Theoretical Computer Science 116 (2005) 113-131

[13] Ernst, M., J. Cockrell, W. Griswold and D. Notkin, Dynamically discovering likely program
invariants to support program evolution, IEEE Transactions on Software Engineering 27 (2001),
pp. 99-123.

[14] Fantechi, A. and E. Spinicci, Fault-injection on SCA SDL model, Technical report, QUACK
Technical Report, DSI (2003).

[15] Fantechi, A. and E. Spinicci, Modelling and wvalidating a multiple-configuration railway
signalling system using SDL, Electronic Notes in Theoretical Computer Science 82 (2003).

[16] Fohler, G., Joint scheduling of distributed complex periodic and hard aperiodic tasks in statically
scheduled systems., in: Proceedings of the 16th Real Time System Symposium, Pisa, Italy, 1995.

[17] Furia, C. A. and M. Rossi, A compositional framework for formally verifying modular systems,
in: 2nd International International Workshop on Test and Analysis of Component Based
Systems, Barcelona, Spain, 2004, submitted for publication.

[18] Gargantini, A. and A. Morzenti, Automated deductive requirement analysis of critical systems,
ACM Transactions on Software Engineering and Methodology (TOSEM) 10 (2001), pp. 255~
307.

[19] Gargantini, A., A. Morzenti and E. Riccobene, Using counters to model temporal relationships
among events, in: Proceedings of State-oriented vs. Event-oriented thinking in Requirements
Analysis, Formal Specification and Software Engineering, Pisa, Italy, 2003.

[20] Ghezzi, C., D. Mandrioli and A. Morzenti, TRIO: A logic language for executable specifications
of real-time systems, The Journal of Systems and Software 12 (1990), pp. 107-123.

(21] Holzmann, G. J., The SPIN model checker, IEEE Transactions on Software Engineering 23
(1997), pp. 279-295.

[22] Hsueh, M., T. Tsai and R. Iyer, Fault injection techniques and tools, Computer 30 (1997),
pp. 75-82.

(23] Isovic, D., M. Lindgren and I. Crnkovic, System development with real -time components, in:
Proc. of ECOOP2000 Workshop 22 - Pervasive Component-based systems, Sophia Antipolis
and Cannes, France, 2000.

[24] Lavazza, L., S. Morasca and A. Morzenti, A dual languae approach to the development
of time-critical systems with UML, in: Proceedings of the UML’08 workshop on Critical
Systems Development with UML, San Francisco, USA, 2003, report TUM-10323 of Technische
Universitat Munchen.

[25] Lavazza, L., S. Morasca and A. Morzenti, A dual languae approach to the development of
time-critical systems with UML, in: Proceedings of the 2nd International Workshop on Test
and Analysis of Component-Based Software (TAC0S’04), Electronic Notes on Theoretical
Computer Science 82(6), 2004.

[26] Lipari, G. and S. K. Baruah, A hierarchical extension to the constant bandwidth server
framework, in: IEEE Proceedings of the 7th Real-Time Systems and Applications Symposium,,
2001.

[27] Lipari, G., P. Gai, M. Trimarchi, G. Guidi and P. Ancilotti, A hierarchical framework for
component-based real-time systems, in: Proceedings of the 2nd International Workshop on
Test and Analysis of Component-Based Software (TAC0S°04), Electronic Notes on Theoretical
Computer Science 82(6), 2004.

[28] Liu, C. and D. Richardson, Software components with retrospectors, in: Proceedings of
the International Workshop on the Role of Software Architecture in Testing and Analysis
(ROSATEA), 1998.

[29] Mariani, L. and M. Pezzé, Automatic validation of component-based systems, in: Proceedings
of the 2nd International Workshop on Test and Analysis of Component-Based Software
(TAC0S°04), Electronic Notes on Theoretical Computer Science 82(6), 2004.

M. Pezzé et al. / Electronic Notes in Theoretical Computer Science 116 (2005) 113-131 131

[30] Martins, E., C. Toyota and R. Yanagawa, Constructing self-testable software components, in:
Proceedings of the 2001 International Conference on Dependable Systems and Networks (DSN
’01) (2001), pp. 151-160.

[31] Mattolini, R. and P. Nesi, An interval logic for real-time system specification, IEEE
Transactions on Software Engineering (TSE) 27 (2001), pp. 208-227.

[32] Mercer, C. W., R. Rajkumar and H. Tokuda, Applying hard real-time technology to multimedia
systems, in: Workshop on the Role of Real-Time in Multimedia/Interactive Computing System,
1993.

[33] Mercer, C. W., S. Savage and H. Tokuda, Processor capacity reserves for multimedia operating
systems, Technical Report CMU-CS-93-157, Carnegie Mellon University, Pittsburg (1993).

[34] Morzenti, A., M. Pradella, P. San Pietro and P. Spoletini, Model-checking TRIO specifications
in SPIN, in: Proceedings of 12th International Formal Methods Europe Symposium, Pisa, Italy,
Lecture Notes in Computer Science 2805 (2003).

[35] Morzenti, A. and P. San Pietro, Object-oriented logical specification of time-critical systems,
ACM TOSEM 3 (1994), pp. 56-98.

[36] Object Management Group, Response to the UML 2.0 OCL RfP (ad/2000-09-03) revised
submission, version 1.6 (2003), OMG Document ad/2003-01-07.

[37] Object Management Group, “UML profile for schedulability, Performance and time,” OMG
(2003).

[38] Owre, S., J. M. Rushby and N. Shankar, PVS: A Prototype Verification System, in: D. Kapur,
editor, Proceedings of the 11th International Conference on Automated Deduction (CADE-11),
Lecture Notes in Computer Science 607 (1992), pp. 748-752.

[39] Pavlopoulou, C. and M. Young, Residual test coverage monitoring, in: Proceedings of the 21th
International Conference on Software Engineering (ICSE’99) (1999), pp. 277-284.

[40] Pezze, M., editor, “Proceedings of the International Workshop on Test and Analysis of
Component-Based Systems (TAC0S’03),” Electronic Notes on Theoretical Comupter Science
82(6), 2003.

[41] Pnueli, A., The temporal logic of programs, in: Proceedings of 18th Annual Symposium on
Foundations of Computer Science, Providence, Rhode Island, 1977, pp. 46-57.

[42] Pradella, M., P. San Pietro, P. Spoletini and A. Morzenti, Practical model checking of LTL with
past, in: Proceedings of 1st International Workshop on Automated Technology for Verification
and Analysis, Taiwan, 2003.

[43] Rajkumar, R., K. Juvva, A. Molano and S. Oikawa, Resource kernels: A resource-centric
approach to real-time and multimedia systems, in: Proceedings of the SPIE/ACM Conference
on Multimedia Computing and Networking, 1998.

[44] Richardson, D. and P. Inverardi, editors, “ROSATEA: International Workshop on the Role of
Software Architecture in Analysis E(and) Testing,” 1998.

[45] Saewong, S., R. Rajkumar, J. P. Lehoczky and M. H. Klein, Analysis of hierarchical fized-

priority scheduling, in: Proceedings of the 14" JEEE Euromicro Conference on Real-Time
Systems, 2002.

[46] Shannon, B., Java 2 platform enterprise edition specification, 1.4 - proposed final draft 2,
Technical report, Sun Microsystems, Inc. (2002).

	Introduction
	An Integrated Approach to the Quality of Heterogeneous, Modular and Configurable Embedded Systems
	Formal Specification of Real Time Embedded Systems
	Test of New Configurations of Component-Based Systems
	Verification of non functional properties
	End-of-Production Testing
	Conclusions
	References

