
For Peer Review
AQuoSA - Adaptive Quality of Service Architecture

Journal: Software: Practice and Experience

Manuscript ID: SPE-07-0099.R1

Wiley - Manuscript type: Research Article

Date Submitted by the
Author:

28-Jan-2008

Complete List of Authors: Cucinotta, Tommaso; Scuola Superiore Sant'Anna, Real Time
Systems Lab
Palopoli, Luigi; University of Trento, DIT
Marzario, Luca; Scuola Superiore Sant'Anna, Real Time Systems
Lab
Lipari, Giuseppe; Scuola Superiore Sant'Anna, Real Time Systems
Lab

Keywords:
Resource Reservations, Adaptive QoS Control, Soft Real-Time,
Embedded Systems, Operating Systems

http://mc.manuscriptcentral.com/spe

Software: Practice and Experience

For Peer Review
SOFTWARE—PRACTICE AND EXPERIENCE
Softw. Pract. Exper. 2000; 00:1–7 Prepared using speauth.cls [Version: 2002/09/23 v2.2]

AQuoSA – Adaptive Quality

of Service Architecture

L. Palopoli∗, T. Cucinotta∗,†, L. Marzario†,
G. Lipari†

ReTiS Laboratory, Scuola Superiore Sant’Anna, Via Moruzzi, 1, 56100 Pisa, Italy

SUMMARY

This paper presents an architecture for Quality of Service (QoS) control of time-
sensitive applications in multi-programmed embedded systems. In such systems,
tasks must receive appropriate timeliness guarantees from the Operating System
independently from one another, otherwise the QoS experienced by users may decrease.
Moreover, fluctuations in time of the workloads make a static partitioning of the CPU
not appropriate nor convenient, whereas an adaptive allocation based on an on-line
monitoring of the application behaviour leads to an optimum design.

By combining a resource reservation scheduler and a feedback based mechanism, we
allow applications to meet their QoS requirements with the minimum possible impact on
CPU occupation. We implemented the framework in AQuoSA [8], a software architecture
that runs on top of the Linux kernel. We provide extensive experimental validation of our
results and offer evaluation of the introduced overhead, which is perfectly sustainable in
the class of addressed applications.

key words: Resource Reservations; Adaptive QoS Control; Soft Real-Time; Embedded Systems

1. Introduction

Over the past years, real-time technologies, traditionally developed for safety-critical systems,
have been applied within new application domains, including consumer electronics (e.g. cellular
phones, PDAs), multimedia (e.g. video servers, VoIP gateways), telecommunication networks
and others. Such applications are referred to as soft real-time, because, differently from
traditional hard real-time ones, violation of their timing constraints does not cause a system

∗Correspondence to: ReTiS Laboratory, Scuola Superiore Sant’Anna, Via Moruzzi, 1, 56100 Pisa, Italy
∗University of Trento, Trento (Italy)
†Scuola Superiore Sant Anna, Pisa (Italy)
Contract/grant sponsor: FRESCOR European project; contract/grant number: FP6/2005/IST/5–034026

Received 13 April 1999
Copyright c© 2000 John Wiley & Sons, Ltd. Revised 23 September 2002

Page 1 of 33

http://mc.manuscriptcentral.com/spe

Software: Practice and Experience

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Peer Review
2 PALOPOLI, CUCINOTTA, MARZARIO, LIPARI

failure, but rather a degradation in the provided Quality of Service (QoS). Such degradation
often depends on the number and severity of constraints violations over a certain interval of
time. Therefore, one goal in executing a soft real-time application is to keep under control
timing constraint violations.

As an example, consider a video streaming application (e.g. DVD player or
videoconferencing). One typical timing constraint is the necessity to process video frames at
a regular frame rate. For example, for a rate of 25 frames per second (fps), every 40 msec the
application is expected to load a frame from a source, decode it, apply some filtering, and show
the frame on the screen. The application is usually designed to be robust to timing violations.
For instance, the use of buffers allows to tolerate delays in decoding frames up to a maximum
threshold, over which the users start perceiving a certain degradation of the provided quality of
service (e.g. non equally spaced frames in time). Therefore, the user satisfaction is a decreasing
function of the number and severity of timing violations.

The problem of providing QoS guarantees to time-sensitive applications has been
traditionally faced with by using a dedicated device for each application. However, the
flexibility of computer based devices can be exploited to full extent and with acceptable costs
only if we allow for a concurrent utilisation of shared resources. For example, in a video-on-
demand server, where many users can concurrently access the videos, it is important to provide
a guaranteed level of QoS to each user. Even on a single-user terminal (e.g. desktop PC, PDA,
mobile phone) it is important to provide stable and guaranteed QoS to different applications.
Therefore, the problem arises of how to design a system that schedules accesses to the shared
resources so that each application executes with a guaranteed QoS, and the resource is utilised
to the maximum extent. Unfortunately, the scheduling solutions adopted in general purpose
operating systems do not offer any kind of temporal guarantees.

A class of real-time scheduling algorithms, referred to as Resource Reservations (RR), has
been proposed in the literature to provide the fundamental property of temporal protection
(also called temporal isolation), in allocating a shared resource to a set of tasks that need to
concurrently use it. Informally speaking, this means that each task is reserved a fraction of
the resource utilisation, so that its ability to meet timing constraints is not influenced by the
presence of other tasks in the system (a formal introduction to RR algorithms will be made in
Section 2).

However, the availability of such a scheduling mechanism is not sufficient per se to ensure a
correct temporal behaviour to the class of time-sensitive applications we are interested in. In
fact, a fixed choice of the scheduling parameters for CPU allocation can be very difficult not
only for the required knowledge of the computation time, but also due to its high fluctuations in
time. A choice tuned on the expected average workload would lead to temporary degradations
of the QoS, while a choice tuned on the worst-case workload would lead to a wasteful usage of
resources. For this reason, the scheduling mechanism has to be complemented by a resource
manager that can operate on the scheduling parameters†.

† This paper does not deal with application-level adaptation, where applications may switch among various
modes of operations.

Copyright c© 2000 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2000; 00:1–7
Prepared using speauth.cls

Page 2 of 33

http://mc.manuscriptcentral.com/spe

Software: Practice and Experience

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Peer Review
AQUOSA – ADAPTIVE QUALITY OF SERVICE ARCHITECTURE 3

1.1. State of the art

Different solutions have been proposed to schedule time-sensitive applications providing the
temporal protection property, like the Proportional Share [40, 20] and Pfair [9] algorithms.
They approximate the Generalised Processor Sharing (GPS) concept of a fluid flow allocation,
in which each application using the resource marks a progress proportional to its weight.
Similar are the underlying principles of a family of algorithms known as Resource Reservations
schedulers [34, 4, 17, 35], that we will describe in Section 2.

As far as the problem of adaptive policies for QoS management is concerned, a remarkable
work has been done in the direction of application-level adaptation [41, 42, 10]. A noteworthy
solution is the one proposed in Q-RAM [33], that allows to associate resources to the different
applications and generates a vector of recommended resource utilisations. This is, however, a
static allocation approach due to the high computational requirements. However, it has been
applied in the context of on-line schedulability tests on high-performance computers [15].

Concerning dynamic resource-level adaptation, a first proposal of this kind dates back to
1962 [12] and it applies to time-sharing schedulers. More recently, feedback control techniques
have been applied to real-time scheduling [28, 36, 23, 11, 26] and multimedia systems [39]. All
of these approaches suffer from a lack of mathematical analysis of the closed loop performance,
due to the difficulties in building up a dynamic model for the scheduler. They typically apply
classical control schemes (such as the Proportional Integral controller), with few theoretical
arguments supporting the soundness of their design.

An approach similar in principles to Q-RAM is the one proposed in [1], where a polynomial
(in the number of tasks multiplied by the number of resources) on-line algorithm is proposed
that, based on a discrete integral controller running at periodic sampling instants, under the
assumption of known lower and upper bounds to the derivative of the task consumption
function (a QoS-level to resource requirement mapping) and its inverse, drives resources
allocation towards achievement of fair QoS levels across all system tasks. Instead, we undertake
the complementary approach to directly synthesise an ad-hoc non-linear controller based on a
formal model for the system evolution and a formal statement of the control goals, providing
conditions ensuring stability of the resulting closed-loop dynamics.

This is possible because, using Resource Reservations scheduling techniques, it is possible
to derive a precise dynamic model of the system, whose closed-loop dynamics may be formally
analysed. This idea, which we call Adaptive Reservations, was pioneered in [5]. In [18] a
continuous state model of a Resource Reservations scheduler is used to design a feedback
controller. In this case the objective of the controller is to regulate the progress rate of each
task, which is defined associating a time stamp to an element of computation and comparing
it with the actual time in which the computation is performed. A continuous state model
for the evolution of a Resource Reservations scheduler is also shown in [7]. In this case, the
authors propose the virtual scheduling error (i.e., the difference between the virtual finishing
time and the deadline) as a metric for the QoS, which is adopted also in this paper. A control
scheme based on a switching Proportional Integral controller is proposed in the paper and
its performance is analysed in [29]. The problem is further investigated in [30] and in [6, 3],
where deterministic and stochastic non-linear feedback control schemes taking advantage of
the specific structure of the system model are shown. The idea for the controller is to use a

Copyright c© 2000 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2000; 00:1–7
Prepared using speauth.cls

Page 3 of 33

http://mc.manuscriptcentral.com/spe

Software: Practice and Experience

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Peer Review
4 PALOPOLI, CUCINOTTA, MARZARIO, LIPARI

combination of a feedback scheme and of a predictor, and it is revisited in this paper (although
in a different context). Approaches bearing a resemblance to the one just reported are shown
in [2] and in [13], although in the latter paper most of the work is on the architectural side.

As far as architectural issues are concerned, some proposals performing the resource
adaptation in the middleware are [43] and [13, 16]. The latter evolve around the QuO [21]
middleware framework, which is particular noteworthy for it utilises the capabilities of CORBA
to reduce the impact of QoS management on the application code. A CORBA-oriented
approach may also be found in [38], where traditional control theory based on linearisations,
proportional control and linear systems stability is applied to the context of controlling
resources allocation for a real-time object tracking system.

Compared to previous work in the area (partly performed by some of the authors of this
paper), we provide a set of innovative contributions. On the scheduling side, we introduce a
tight yet simple mathematical model for the evolution of the QoS experienced by the tasks,
that accounts for the allocation granularity imposed by the reservation scheduler (Section 3).
This model allows to build a theoretically well-founded adaptive control law, split across a
predictor and controller, acting locally on each task, where control goals are formally specified,
and conditions for their achievement are formally identified (Section 4). We realised a modular
architecture, where applications may choose the QoS controller that best suits their needs, or
even provide their own controllers and/or predictors, if appropriate (Section 6). The algorithms
may be compiled in user-space for maximum flexibility, portability and debugging capabilities,
or in kernel-space for minimum overhead. A resource supervisor ensures global consistency of
the system. Compared to other middleware layers [13, 16], our architecture presents a good
degree of flexibility with a limited overhead (Section 6).

2. Resource Reservations

In this section we present the task model, and briefly describe the scheduler that will be used
as a basis for the adaptive reservation framework.

The real-time task model A real-time task τ (i) is a stream of jobs (or task instances). Each job

J
(i)
j is characterised by an arrival time r

(i)
j , a computation time c

(i)
j , and an absolute deadline

d
(i)
j . When a job arrives at time r

(i)
j , the task is eligible for the allotment of temporal units of

the CPU by the scheduler. The task executes for c
(i)
j time units, then J

(i)
j finishes at time f

(i)
j .

We consider preemptive scheduling algorithms. In our model, job J
(i)
j cannot receive execution

units before f
(i)
j−1, i.e. the activation of a job is deferred until the previous ones from the same

task have been completed. Furthermore, we restrict to periodic tasks: τ (i) generates a job at
integer multiples of a fixed period T (i) and the deadline of a job is equal to the next periodic

activation: ∀j ≥ 1, r
(i)
j = (j − 1)T (i) and d

(i)
j = r

(i)
j+1 = jT (i).

A real-time task τ (i) is said to respect its deadlines if ∀j, f
(i)
j ≤ d

(i)
j . We focus on soft real-

time tasks that can tolerate deadline misses. Therefore, a job is allowed to complete after its

Copyright c© 2000 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2000; 00:1–7
Prepared using speauth.cls

Page 4 of 33

http://mc.manuscriptcentral.com/spe

Software: Practice and Experience

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Peer Review
AQUOSA – ADAPTIVE QUALITY OF SERVICE ARCHITECTURE 5

deadline, equal to the activation of the next job. In our model, when J
(i)
j finishes, if J

(i)
j+1 has

not yet arrived then τ (i) blocks, otherwise τ (i) is ready to execute.

The Constant Bandwidth Server Resource Reservations, originally proposed in [34], is a
family of schedulers suitable for systems with hard, soft and non-real-time tasks. These
algorithms provide the temporal protection property, thus it is possible to give individual
guarantees to each task. Our framework is based on the Constant Bandwidth Server (CBS)
[4]. While the applicability of the CBS is very general, we restrict for simplicity to the case of
single threaded applications and periodic tasks.

In this case, each task τ (i) is associated a server S(i) and a reservation RSV (i) = (Q(i), P (i)),
with the meaning that, at time kP (i) from its start, the task has been scheduled for at least
kQ(i) time units. Q(i) is the reservation maximum budget and P (i) is the reservation period.
A server is a schedulable entity that maintains two internal variables, the current budget q(i)

and the scheduling deadline s(i). A server is active at time t if its task has at least one active
non-completed job at that time.

When a task τ (i) becomes active due to the arrival of a new job at time t, the corresponding
server deadline is set to s(i) ← t + P (i), and the current budget is replenished to Q(i). The
Earliest Deadline First (EDF) algorithm is used to schedule servers: among all active servers,
the one with the earliest scheduling deadline is selected and the corresponding task is executed.
Every time unit in which a task is executed corresponds to a decrement in the current budget
of the associated server, until either the budget is exhausted or the task has completed all
pending jobs, or it is preempted by another server with earlier deadline (for a complete
description of the CBS algorithm, please refer to [4]). The CBS algorithm has been modified to
implement both hard and soft reservations. In the former version, whenever a server exhausted
the current budget, the associated task is suspended until the server deadline, when the current
budget is recharged to Q(i). Therefore, task τ (i) is guaranteed exactly Q(i) time units every
[kP (i), (k + 1)P (i)] time slot, and the processor may remain idle even in presence of pending
jobs. In the latter version, instead, the current budget is immediately recharged and the server
deadline postponed to s(i) ← s(i) + P (i), thus up to a time instant kP (i) from its start, a task
is guaranteed at least kQ(i) time units.

By using EDF, the system can theoretically reach the maximum possible utilisation [24],
under the global consistency constraint that the system must never violate:

∑

i

Q(i)

P (i)
≤ U lub = 1 (1)

The ratio B(i) = Q(i)

P (i) is the reserved bandwidth and it can intuitively be thought of as the
fraction of the CPU time reserved to the task.

The CBS algorithm satisfies the following properties, where s(i)(t) denotes the scheduling
deadline of server S(i) at time t:

Theorem 1 (Temporal Protection [4]) If Equation (1) holds, then at any time t, for each
server S(i) active at time t, t ≤ s(i)(t), i.e., each server always executes its assigned budget
before its current scheduling deadline. Furthermore, if hard reservations are used, then it also
holds: t ≥ s(i)(t)− P (i).

Copyright c© 2000 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2000; 00:1–7
Prepared using speauth.cls

Page 5 of 33

http://mc.manuscriptcentral.com/spe

Software: Practice and Experience

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Peer Review
6 PALOPOLI, CUCINOTTA, MARZARIO, LIPARI

Corollary 1. Given a task τ (i) handled by a server S(i), consider job J
(i)
j with finishing time

f
(i)
j and let s

(i)
j be equal to the latest server deadline during execution of J

(i)
j (a.k.a. virtual

finishing time): s
(i)
j = s(i)(f

(i)
j). Then, in the soft reservation version, f

(i)
j ≤ s

(i)
j , and in the

hard reservation version, s
(i)
j − P (i) ≤ f

(i)
j ≤ s

(i)
j .

In the next section, we discuss how the above rules can be translated in a dynamic model
for the execution of a task scheduled by the CBS.

3. Adaptive reservations

Adaptive Reservations are an extension of Resource Reservations addressing the problem of
how to dimension the (Q(i), P (i)) pair in presence of scarcely known and/or time-varying
execution times. To this regard, a static choice for (Q(i), P (i)) would lead to infeasible or
inflexible solutions, while a feedback based mechanism can be used to self-tune the scheduling
parameters and to dynamically reconfigure them in presence of changes in the workload. Such
a mechanism may be defined in terms of: a measured value, used as input; an actuator, used
to apply a corrective action whenever the measured value deviates from the desired value; a
dynamic model of a reservation, useful for designing the controller. Hereinafter, we assume the
use of hard reservations for the model and control design. Most results can be reformulated in
a weaker form for soft reservations, but we omit them for the sake of brevity.

As adaptive reservations have the purpose of making the resource allocation continuously
match the instantaneous workload, an ideal goal to pursue could be formalized as: schedule

every task so that ∀i, j, f
(i)
j = d

(i)
j . This would guarantee not only respect of all deadlines,

but also optimum occupation of the CPU by each task (i.e., minimum allocation sufficient to

respect all deadlines). Therefore, the scheduling error f
(i)
j − d

(i)
j is a reasonable choice as a

measured value on which the feedback control scheme may work. When this quantity is positive
(and this is allowed to occur in a soft real-time system), we need to increase the amount of
CPU reserved to the task. When it is negative, then it means that the task received CPU time
in excess and we may want to decrease it.

Unfortunately, using Resource Reservations, it is impossible to control the exact time instant
when a job finishes, within the bounds identified by Corollary 1. Instead, we are able to control

the virtual finishing time, therefore the virtual scheduling error defined as ǫ
(i)
j = s

(i)
j−1 − d

(i)
j−1,

that may be regarded as a quantised measure of f
(i)
j−1−d

(i)
j−1. For the sake of brevity, from now

on the term scheduling error will implicitly refer to the virtual scheduling error.

Concerning the choice of the actuator, we use the maximum budget Q
(i)
j as an actuator

variable (keeping constant the reservation period P (i)), and we update it everytime we get a

new measurement for the scheduling error, thus at each job finishing time f
(i)
j . In order to

keep consistency of the CBS scheduler, the new maximum budget value can be applied only
at the time of the next recharge for the server. Therefore, if the next job is already pending
for execution at the time a job ends, the new job starts executing in the same server period as

Copyright c© 2000 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2000; 00:1–7
Prepared using speauth.cls

Page 6 of 33

http://mc.manuscriptcentral.com/spe

Software: Practice and Experience

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Peer Review
AQUOSA – ADAPTIVE QUALITY OF SERVICE ARCHITECTURE 7

the job that has just finished. The new job will use the residual budget in that server period
first, then the new maximum budget computed by the controller for the subsequent periods.

3.1. Dynamic model of a reservation

As the discussion that follows is referred to a single task, for notational convenience we will
drop the task index in this section and wherever convenient in the rest of the paper.

A considerable advantage of the choice of the measured value and actuator as proposed above
is that it is possible to construct an accurate mathematical model of the system dynamic
evolution. This model can be leveraged in the design of a feedback function. In order to
construct such a model, we have to specify how the sk variable evolves over time (consider
Figure 1, showing a task τ with a period T = 10 that is assigned a reservation with period
P = T/2 and an equal budget for the two jobs Q1 = Q2 = 2). We have to consider two
cases: 1) sk−1 ≤ dk−1, 2) sk−1 > dk−1. In the first case (Figure 1.a), job Jk−1 finishes
before the end of its period, so Jk becomes active right after its arrival and the number

of server periods necessary to finish it is
⌈

ck

Qk

⌉

. Hence the last server deadline for Jk is given

by: sk = rk +
⌈

ck

Qk

⌉

P = dk−1 + 2P .

In the second case (Figure 1.b), jobs Jk−1 and Jk share a reservation period, during which
the system evolves with the previously assigned budget Qk−1. Let us introduce another state
variable xk, representing the residual budget of the shared server period usable by Jk when it
is already pending at the time Jk−1 finishes. If we also consider the possibility, for a new job
starting within a shared reservation period with the previous one, to entirely fit within the
residual available budget, then the following discrete event model is obtained:

x0 = 0

xk+1 =















0 if sk ≤ dk

xk − ck if sk > dk and ck < xk

Qk

⌈

ck−xk

Qk

⌉

− (ck − xk) if sk > dk and ck ≥ xk.

(2)

ǫk+1 = sk − dk =















⌈

ck

Qk

⌉

P − (dk − dk−1) =
⌈

ck

Qk

⌉

P − T if ǫk ≤ 0

sk−1 − dk−1 − (dk − dk−1) = ǫk − T if ǫk > 0 and ck < xk

ǫk +
⌈

ck−xk

Qk

⌉

P − T if ǫk > 0 and ck ≥ xk

(3)

The dynamic model of a reservation is described by Equation (2) and Equation (3). However,
we are interested in controlling only the evolution of ǫk (our interest in xk is very limited).
Therefore, observing that xk is an exogenous, bounded (xk < Qj for some j < k) and
measurable term, we can write the following simplified model:

ǫk+1 =







⌈

c′k
Qk

⌉

P − T if ǫk ≤ 0

ǫk +
⌈

c′k
Qk

⌉

P − T if ǫk > 0
(4)

Copyright c© 2000 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2000; 00:1–7
Prepared using speauth.cls

Page 7 of 33

http://mc.manuscriptcentral.com/spe

Software: Practice and Experience

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Peer Review
8 PALOPOLI, CUCINOTTA, MARZARIO, LIPARI

T

P

J 1

J 2a)

b)

(3) (3)

(5) (3)

Figure 1. System evolution occurring when a job finishes within its deadline (a) and not (b).

where the computation time c′k has been discounted of the disturbance xk:

c′k =











ck if ǫk ≤ 0

0 if ǫk > 0 and ck < xk

ck − xk if ǫk > 0 and ck ≥ xk

Note that, replacing c′k with ck in Equation (4), the resulting model would represent the
evolution of either an upper bound of the scheduling error, or the scheduling error itself
obtained under the assumption that the residual computation time xk in a reservation shared
between two jobs is not utilised.

Hereinafter, we assume that T (i) = L(i)P (i) with L(i) ∈ N
+, i.e., the reservation period is

an integer sub-multiple of the activation period. As a result, ε
(i)
k takes values in the lattice

set E(i) = {hP (i), h ∈ N ∩ [−L + 1, +∞[}. We assume Q
(i)
k to be a real number in the range

]0, P (i)] and c
(i)
k to be a positive real number, neglecting such issues as the quantisation of c

(i)
k

to the machine clock cycles.

3.2. Consistency of adaptive reservations

In this section we discuss when and how changes in Qk do not compromise the consistency of
the Resource Reservations scheduler. For the sake of simplicity, we assume that a change in
the maximum budget Qk is effective only from the very next recharge of the server budget‡.

We define a global variable Btot(t) that keeps track of the total system bandwidth at all
instants. Suppose that, at time t, a server S(i) needs to change its budget from Q(i) to Q′(i),
and its bandwidth from B(i) = Q(i)/P (i) to B′(i) = Q′(i)/P (i). The following cases must be
considered:

• B′(i) < B(i): the new budget is applied from the next server instance. At the time the
current server period ends s(i)(t), the total bandwidth can be decreased using the update

‡ Actually it is possible to at least partially anticipate the change, but the resulting algorithm is more involved.

Copyright c© 2000 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2000; 00:1–7
Prepared using speauth.cls

Page 8 of 33

http://mc.manuscriptcentral.com/spe

Software: Practice and Experience

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Peer Review
AQUOSA – ADAPTIVE QUALITY OF SERVICE ARCHITECTURE 9

rule:
Btot(s(i)(t))new = Btot(s(i)(t))−B(i) + B′(i). (5)

• B′(i) > B(i): we must distinguish two further cases:

1. if Btot(t)−B(i) + B′(i) ≤ U lub, then the total bandwidth is immediately increased
by using the update rule in Equation (5), while the new budget is actually used
starting from the next server instance;

2. if Btot(t) − B(i) + B′(i) > U lub, then the system is experimenting an overload
condition and the request cannot be directly accepted, because it would jeopardise
the consistency condition of the CBS. It is then possible to operate with different
policies, the simplest one consisting in saturating the request to B(i)(t) = U lub −
Btot(t) + B(i) (and we fall back in the previous case).

It is easy to show that, applying the rules described above, the properties of the CBS
algorithm continue to hold. In particular, Theorem 1 and Corollary 1 are still valid.

Another possibility for managing overload conditions is to leave the request as pending,
saturating it temporarily, then waiting for other servers to reduce their bandwidths. This
way, whenever Btot(t) decreases as a result of another server decreasing its request, S(i) may
increase its bandwidth to min{B′(i), U lub − Btot(t) + B(i)(t)}, thus increase the maximum
budget accordingly from the subsequent recharge. This process of convergence of the current
bandwidth B(i)(t) to the requested value B′(i) is greatly acceleretad if the other servers are
forced to reduce their bandwidth occupation, for example due to a fair rescaling of the
bandwidths among all the servers. In Section 4.4 we will describe the supervisor module,
along with the exact policy it implements for managing this kind of situations.

As a final remark, Equation (4) describes accurately the evolution of the scheduling error
assuming that the maximum budget is constant throughout a single job execution. However,
as we have just seen, in case of overload the supervisor policy can change the bandwidth
asynchronously with respect to job boundaries. In these conditions, the model in Equation (4)
is still valid if the variable Qk does not represent a real budget, but an equivalent one computed
as an appropriate average on the sequence of budgets granted to a job (further details are
omitted for the sake of brevity).

4. Feedback control mechanism

In this section we provide the control theoretical foundations of our approach. For the sake of
brevity, we do not report the proofs of the theorems. The interested reader is referred to [31].

4.1. Design goals

The idea of a feedback controlled system typically subsumes two different facts: 1) the system
exhibits a desired behaviour at specified equilibrium points, 2) the controller has the ability
to drive the trajectories of the system state towards the desired equilibrium in a specified way
(e.g., within a maximum time).

Copyright c© 2000 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2000; 00:1–7
Prepared using speauth.cls

Page 9 of 33

http://mc.manuscriptcentral.com/spe

Software: Practice and Experience

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Peer Review
10 PALOPOLI, CUCINOTTA, MARZARIO, LIPARI

Due to the influence of the unpredictable ck variable on the system evolution, our notion of
equilibrium is forcibly restricted to the possibility for the controller to keep the system state
within a prefixed range εk ∈ E around the origin, contrasting the action of the disturbance term.
Also, for the kind of applications we are addressing, it is reasonable to rely on a last-minute
estimate of the expected variability range for the unpredictable variable ck ∈ Ck = [hk, Hk]
(we will clarify this concept later). A formal definition of this concept is offered next.

Definition 1. Consider a system εk+1 = f(εk, ck, Qk) where εk ∈ E denotes the state variable,
Qk ∈ Q denotes the command variable, and ck ∈ C denotes an exogenous disturbance term
whose actual variability range Ck ⊆ C is only known at time k and is constituted by a closed
and bounded set Ck ∈ CC . A set I ⊆ E is said a robustly controlled invariant set (RCIS), if
there exists a control law g : E ×CC → Q, qk = g(εk, Ck), such that, for all k0, if εk0 ∈ I, then
∀k > k0 and ∀ck ∈ Ck, it holds that εk ∈ I.

In our case, the f function is defined by Equation (4) and the RCIS is an interval [−e, E], with
E ≥ 0 and (L− 1)P ≥ e ≥ 0, which we wish to be of minimum measure. Both extremal points
of the interval, e and E, have a practical significance. By increasing E, we allow greater delays
in the termination of each job, degrading the offered QoS level. On the other hand, increasing
e we allow a task to terminate earlier, so it may receive more bandwidth than the minimum
it strictly requires. As shown below, feasible choices for e and E result from the width of the
uncertainty interval Ck and from the Q set.

The equilibrium condition can be sustained if: 1) the prediction of interval Ck is correct,
2) the value decided for Qk is immediately and correctly applied. Occasional violations of
these two conditions could drive the system state outside of the RCIS. In this case the desired
behaviour for the controller is to restore the equilibrium situation. More formally:

Definition 2. Consider a system as in definition 1 and two sets I and J with I ⊆ J ⊆ E

1. I is h-step-reachable from J , if there exists a control law g : E ×CC → Q, qk = g(εk, Ck), such
that ∀εk ∈ J \I : cj ∈ Cj∀j = k, . . . , k + h =⇒ εk+h ∈ I

2. I is reachable from J if there exists h such that I is h-step-reachable from J .

We are interested in the case in which the target set I in the reachability definition is an RCIS
for the system, whereas J defines the maximum deviation that a task is temporarily allowed
to take from its desired condition (i.e. the maximum delay that it makes sense for a task to
accumulate). If J = E , we speak of global h-step-reachability (or of global reachability).

We are now in condition to formally state design goals for the controller. Such goals are
related to the QoS guarantees provided to each task τ (i), for which we assume the definition
of two intervals I(i) and J (i) with I(i) ⊆ J (i) and of a number h(i). In particular, we partition
the tasks in the system in the following three classes:

• Class A: 1) I(i) is a globally reachable RCIS, 2) I(i) is h(i)-step-reachable from J (i),
3) (ancillary) if the task features a piecewise constant computation time, then the ǫ(i) is
reduced to 0 in a finite number of steps.

• Class B (superclass of class A): I(i) is globally reachable

Copyright c© 2000 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2000; 00:1–7
Prepared using speauth.cls

Page 10 of 33

http://mc.manuscriptcentral.com/spe

Software: Practice and Experience

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Peer Review
AQUOSA – ADAPTIVE QUALITY OF SERVICE ARCHITECTURE 11

Figure 2. Control scheme: each task is attached a local feedback controller and the total bandwidth
requests are mediated by a supervisor.

• Class C: no guarantee is offered but the controller tries to offer the same performance
as for class A according to a best-effort policy (i.e., if there is availability of bandwidth).

The third goal for tasks of class A is an ancillary one: it refers to a limited class of
applications, which have several operation modes and exhibit a repetitive behaviour in each
mode, leading to a practically piecewise constant ck.

4.2. Control architecture

Since we take measurements upon the termination of each job, we do not assume any
fixed sampling period. In fact, our feedback scheme is based on a discrete event model.
Moreover, a system-wide notion of “sampling” is entirely missing, since the sampling events
are asynchronous for the different tasks. These considerations dictate a decentralised control
scheme (Figure 2), where each task is attached a dedicated task controller that is responsible for
maintaining the task QoS level within specified bounds with the minimum CPU utilisation.
Still, the total bandwidth requests from the different task controllers is allowed to exceed
the bound in Equation (1). To handle this situation (henceforth referred to as overload),
a supervisor component is used to compute the actual bandwidth allocations that allow to
respect the QoS requirements of the various classes of tasks.

One final requirement is that the workload due to the control components themselves
needs to be very low. This rules out such design approaches as dynamic programming or
model predictive control, which feature excellent performance at the price of unacceptable
computation resources.

4.3. Task controller

A task controller is comprised of two components: a feedback controller and a predictor. At the
termination of each job Jk, sensors located inside the Resource Reservations scheduler provide
its computation time ck and the experienced scheduling error ǫk+1. The former information
may be used by the predictor in the estimation of a range Ck+1 expected to contain the next

Copyright c© 2000 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2000; 00:1–7
Prepared using speauth.cls

Page 11 of 33

http://mc.manuscriptcentral.com/spe

Software: Practice and Experience

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Peer Review
12 PALOPOLI, CUCINOTTA, MARZARIO, LIPARI

job computation time. This information, along with the measured εk+1 value, is used by the
feedback controller to fulfil the task design goals.

4.3.1. Feedback controller

In the following, we assume that the feedback controller operates with perfect predictions
(ck ∈ Ck). It operates evaluating the worst case effects (with respect to the design goals)
caused by the uncertainty of ck. As discussed above, the reachability of the equilibrium makes
the scheme resilient to occasional errors.

Robust controlled invariance Since εk evolves in the lattice E introduced in Section 4.1, the
RCIS sets of interest are of the form I = [−e, E] = [−êP, ÊP], with ê ∈ N ∩ [0, L], Ê ∈ N (we
chose T = LP). For the sake of brevity, we assume that ê + Ê < L − 1. The following result
provides what choices of ê and Ê yield an attainable RCIS, for a given prediction Ck = [hk, Hk]
and saturation value for the command variable Q, and what feedback control laws enact robust
controlled invariance of I.

Theorem 2. Consider system in Equation (4) and assume that ck ∈ Ck = [hk, Hk], and
Qk ∈ Q = [0, Q]. Consider the interval I as defined above and let αk , hk

Hk
, α , infk{αk},

H , supk{Hk}. Then, I is a RCIS if and only if

ê + αÊ > L(1− α)− 1 ∧Q >
H

L
, (6)

furthermore, the family of controllers ensuring robust controlled invariance of I is described
as follows:

Qk ∈

[

Hk

L + Ê − S(εk)
P

, min

{

hk

L− 1− ê− S(εk)
P

, Q

}[

(7)

where S : R→ [0, +∞[is defined as S(x) , max{0, x}.

The result above does not simply lead to a feedback controller but to a family of feedback
controllers that can keep the system state in the desired equilibrium. Possible guidelines for
feedback design can be:

• choose the leftmost extremal point in Equation (7) to either save bandwidth or have
the maximum possible tolerance to small violations of the lower prediction bound of the
prediction (ck < hk);

• choose the rightmost extremal point to have the maximum possible tolerance to small
violations of the upper prediction bound ck > Hk for the next sample;

• choose the middle point in order to gain maximum robustness with respect to violations
of both bounds;

• choose a point which, for piecewise constant inputs, realises a perfectly null scheduling
error as soon as possible;

• choose a point which optimises some other property of the system, such as a cost function
defined by weighting the resulting uncertainty on the next scheduling error and the used
bandwidth.

Copyright c© 2000 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2000; 00:1–7
Prepared using speauth.cls

Page 12 of 33

http://mc.manuscriptcentral.com/spe

Software: Practice and Experience

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Peer Review
AQUOSA – ADAPTIVE QUALITY OF SERVICE ARCHITECTURE 13

Remark 1. It is straightforward to show that if the predictor succeeds with probability at least
p (Pr{ck ∈ Ck} ≥ p), then the control approach proposed above ensures that Pr{εk+1 ∈ I |
εk ∈ I} ≥ p. In simpler words, controlled invariance of I is preserved with a probability at
least equal to the one of producing a correct prediction.

4.3.1.1. Reachability The following result shows how to steer the system from a state
belonging a set of the form J = [−(L − 1)P, ΓP], with Γ > Ê, back into an RCIS interval of
the form I = [−(L − 1)P, ÊP], with Ê ∈ N. In view of Equation (4), if the system is able to
preserve invariance of I, then it is trivial to steer the system from a negative scheduling error
to I in one step. Therefore, bounding e to the maximum possible value of (L − 1)P is not a
loss of generality.

Theorem 3. Consider the system defined by Equation (4). Consider the intervals I and

J as defined above. Let H̃h = supk
1
h

∑k+h−1
j=k

⌈

Hj

Q

⌉

Q and assume that limit H̃ ,

limk→+∞
1
k

∑k−1
j=0

⌈

Hj

Q

⌉

Q exist and be finite. Then:

1. a sufficient condition for the global reachability of I is Q > H̃
L

;

2. a necessary condition for the global reachability of I is Q ≥ H̃
L

;

3. if J is globally reachable, then I is h-step-reachable from J if and only if h ≥
⌈

Γ−Ê
L−1

⌉

and

Q ≥ hH̃h

hL−Γ+Ê
;

4.3.1.2. Control to zero Assume that the system evolves in a RCIS using a control law
compliant with Equation (7). Concerning the third requirement for class A tasks, the following
result shows under what conditions the error may be reduced to 0 in one step, whenever the
controller has a good estimate of the next computation time (as it might happen if the input
features a piecewise constant behaviour).

Fact 1. Assume that the system evolves in a RCIS I = [−e, E] using a control law compliant
with Equation (7). Let H = supk Hk and h = infk hk. Then, the set Z of ck values which,
if known in advance by the controller, allow a choice of Qk among the ones dictated by
Equation (7) which controls the scheduling error to zero in one step ∀εk ∈ I, is given by:

Z =

{

c̃ | H
T − E − P

T
< c̃ ≤ h

T

T − P − e
∧ c̃ ≤

Q

P
(T − E)

}

, (8)

where the 1-step zero controller may choose Qk in the following range qk ∈
[

c̃
T−S(εk) ,

c̃
T−S(εk)−P

[

intersected with Equation (7).

4.3.2. Predictor

Due to Theorem 2 and Remark 1, the prediction interval should be as small as possible, so to
have an RCIS as small as possible. On the other hand, it is important that it be correct with
a good probability, so to have a good probability of keeping the scheduling error within the

Copyright c© 2000 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2000; 00:1–7
Prepared using speauth.cls

Page 13 of 33

http://mc.manuscriptcentral.com/spe

Software: Practice and Experience

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Peer Review
14 PALOPOLI, CUCINOTTA, MARZARIO, LIPARI

RCIS. Therefore, it is necessary to find a good trade-off between a tight interval and a good
prediction probability. This design activity is influenced by the knowledge on the stochastic
properties of the process {ck}, which are largely application dependent. For this reason our
architecture (see Section 5) allows the application to use a custom predictor together with
the task controller. This is extremely useful for exploiting results like found in [37], where
it is shown that, while parsing an MPEG2 or MPEG4 video frame, from such information
as the pixel count, byte count, macroblock counts and a few others, it is possible to build
an accurate estimate of the frame decoding time with roughly a 5% overhead, a great part
of which due to the frame parsing operation that extracts the cited parameters, and that is
anyway needed by the decoder for its operation. Nonetheless, the architecture provides a set
of simple “library” predictors of general usefulness, displaying a fair level of performance for a
wide set of applications, at a very limited computational cost.

Considering the set of the latest n observed computation times, the prediction interval Ck is
obtained as a weighted average of these samples µk =

∑n

j=1 wjck−j plus/minus their standard
deviation σk multiplied by a constant γ, that permits to trade prediction accuracy against
probability of wrong estimation. If the weights are all equal to 1/n, we get a standard Moving
Average of length n, henceforth denoted as MA[n]. In this case, µk and σk may be computed
with a O(1) computation time and a O(n) memory occupation.

In some cases (e.g. MPEG decoding), the application has a periodic pattern (e.g. due to the
Groups of Pictures), which is reflected in the autocorrelation structure of the ck process. In
this case, we experimented using more than one moving average, e.g. as many moving averages
as the periodicity of the process. If S is the period of the sequence, this algorithm features a
O(1) computation time and a memory occupation of nS. We denote this type of predictor as
MMA[n,S], meaning that it runs S moving averages of length n each.

The algorithms proposed above are very efficient and offer an acceptable accuracy (see
Section 6). Also, we evaluated the possibility to compute the taps wj as a result of a least
square optimisation program. If the process stochastic properties do not change too much in
time, it is possible to have a first “training” phase, during which the application executes with
a fixed bandwidth and a certain number of samples are collected. When the number of samples
is sufficient, it is possible to optimise the prediction filter and - henceforth - proceed with the
computed taps. We will denote this solution as OL[n,N], where n denotes the number of taps
and N the length of the training set. More sophisticated prediction schemes (e.g. adaptive
ones like recursive least squares) lead to an unsustainable overhead.

4.4. Supervisor

The main role of the supervisor is to ensure that each task receives its guaranteed amount
of bandwidth, whenever its dedicated task controller requires it, even when the system is
overloaded and the cumulative requests of bandwidth from the different controllers exceed U lub.

To this regard, Theorem 3 provides an estimation of the minimum bandwidth B
(i)

B = Q
(i)

B /P (i)

required for tasks of class B. Likewise, the minimum bandwidth B
(i)

A = Q
(i)

A /P (i) required for
tasks of class A is the maximum between the one indicated in Theorem 3 and the one indicated
in Theorem 2. Note that for the same task τ (i), B

(i)

A ≥ B
(i)

B .

Copyright c© 2000 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2000; 00:1–7
Prepared using speauth.cls

Page 14 of 33

http://mc.manuscriptcentral.com/spe

Software: Practice and Experience

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Peer Review
AQUOSA – ADAPTIVE QUALITY OF SERVICE ARCHITECTURE 15

In order for the task controllers to attain their design goals, the supervisor has to behave as
follows:

• if task τ (i) is of class A, then if B(i) ≤ B
(i)

A then B(i) is granted; otherwise the supervisor

has to grant at least B
(i)

A ;

• if task τ (i) is of class B, then if B(i) ≤ B
(i)

B then B(i) is granted; otherwise the supervisor

has to grant at least B
(i)

B ;
• the difference between U lub and the total bandwidth that has to be granted according

to the first two points is allocated to the tasks using some heuristics (see Section 5.3).

Clearly, a preliminary condition is that the relation between the running tasks holds:

∑

j∈class A

B
(j)

A +
∑

j∈class B

B
(j)

B ≤ U lub (9)

As a final remark, the changes in the bandwidth of the tasks subsequent to the occurrence
of an overload condition have to be performed according to the rules stated in Section 3.2 to
maintain consistency of the adaptive reservation mechanism. Therefore the configuration of
the scheduler eventually decided by the supervisor is not instantly applied. However, in our
practical experience, the feedback scheme is resilient to the small delays thus introduced.

5. Software architecture

In this section we describe the software architecture we developed for providing a concrete
implementation of the techniques proposed in the previous sections. As a reference system,
we chose the GNU/Linux OS, with kernel versions up to 2.4.32 and 2.6.21. A considerable
advantage of Linux, alongside of the free availability of source code and documentation, is its
modular structure that allows to extend the kernel functionality by simply inserting a module.
Our software is comprised of a set of application libraries and of dynamically loadable kernel
modules.

5.1. Design goals and architecture overview

The design of the system was carried out pursuing the following goals:

• Portability: the link between the proposed architecture and the adoption of a specific
kernel platform is shallow. To achieve this goal, we designed a layered structure where
kernel-dependent code is confined inside the lowermost level. Moreover, the changes made
on the kernel are minimal and the communication between the different components of
the architecture (which runs partly at user and partly at kernel level) uses virtual devices,
which are commonplace in POSIX Operating Systems.

• Backward compatibility: existing non real-time applications run without modifications
and are scheduled by the standard Linux scheduler in the background w.r.t. soft RT
applications.

Copyright c© 2000 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2000; 00:1–7
Prepared using speauth.cls

Page 15 of 33

http://mc.manuscriptcentral.com/spe

Software: Practice and Experience

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Peer Review
16 PALOPOLI, CUCINOTTA, MARZARIO, LIPARI

Figure 3. System Architecture.

• Flexibility: our architecture allows to easily introduce new control and prediction
algorithms, different from those shown in this paper. These algorithms can be run either
in user or in kernel space.

• Efficiency: the overhead introduced by our framework, in addition to the one due to
context switches (that are a direct consequence of the new functionality) is negligible;

• Security: in order to prevent voluntary denial of service attacks based on the new
mechanism, it must be possible to define maximum CPU bandwidths on a per-user
or per-group basis (in the same way as disk quotas).

The proposed architecture is depicted in Figure 3, and it is composed of the following main
components:

• the Generic Scheduler Patch (GSP), a small patch to the kernel (less than 200 lines in
7 modified files) which allows to extend the Linux scheduler by intercepting scheduling
events and executing external code in a kernel module;

• the Kernel Abstraction Layer (KAL), a set of C macros that abstract the additional
functionality we require from the kernel, e.g. ability to measure time and set timers,
ability to associate data to the tasks, etc...;

• the QoS Reservation component, composed of a kernel module and of an application
library communicating through a Linux virtual device:

– the Resource Reservation module implements an EDF scheduler, the resource
reservation mechanism (based on EDF scheduler) and the RR supervisor; a
set of compile-time configuration options allows one to use different Resource
Reservation (RR) primitives, and to customise their exact semantics (e.g. soft or
hard reservations);

Copyright c© 2000 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2000; 00:1–7
Prepared using speauth.cls

Page 16 of 33

http://mc.manuscriptcentral.com/spe

Software: Practice and Experience

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Peer Review
AQUOSA – ADAPTIVE QUALITY OF SERVICE ARCHITECTURE 17

– the Resource Reservation library provides an API allowing an application to use
resource reservation functions;

• the QoS Manager component, composed of a kernel module, an application library, and
a set of predictor and feedback sub-components which may be configured to be compiled
either within the library or within the kernel module. It uses the RR module to allocate
the CPU:

– the QoS Manager module offers kernel-space implementations of the feedback
control and prediction algorithms shown in this paper;

– the QoS Manager library provides an API allowing an application to use
QoS management functionality; as far as the control computation is concerned,
the library either implements the control loop (if the controller and predictor
algorithms are in user-space) or redirects all requests to the QoS Manager
kernel module (in case a kernel-space implementation is required). The latter
communicates with the Resource Reservation module to take measurements of the
scheduling error or to require bandwidth changes. Consistently with the feedback
scheme presented in the previous section, such requests are “filtered” by the QoS
supervisor.

A detailed description of the different components follows.

5.2. Generic Scheduler Patch

A preliminary description of this patch can be found in [22]. The idea is not to implement the
Resource Reservations by a direct modification of the Linux scheduler. Instead, the Generic
Scheduler Patch (GSP) intercepts scheduling related events invoking appropriate functions
inside the Resource Reservation module. This way, it is possible to force Linux scheduling
decisions without replacing its scheduler (which can be called, for instance, to schedule the
non real-time activities in background).

The patched kernel exports a set of function pointers (called hooks). The code excerpt in
Figure 4 clarifies this concept: whenever a scheduling-related event occurs, the appropriate
function is invoked through a function pointer (the hook), if set. The table of hooks may be
appropriately set by a dynamically loadable module§. The relevant events for which hooks have
been introduced are: task creation and termination, block and unblock when accessing a shared
resource, stop and continue due to receive of the SIGSTOP and SIGCONT signals. For each
of these events, there is a corresponding pointer in the hook table: fork_hook, cleanup_hook,
block_hook, unblock_hook, stop_hook and continue_hook.

The event handlers and the necessary data structures (e.g., scheduling queues) are contained
in a kernel module. They receive the pointer(s) to the task_struct of the interested task(s)

§Due to the full preemptiveness of the latest kernel releases, use of hooks in the shown code fragment and
changes to the hook table need to follow an appropriate synchronisation protocol, whose details are omitted
for the sake of brevity.

Copyright c© 2000 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2000; 00:1–7
Prepared using speauth.cls

Page 17 of 33

http://mc.manuscriptcentral.com/spe

Software: Practice and Experience

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Peer Review
18 PALOPOLI, CUCINOTTA, MARZARIO, LIPARI

/∗ Code in the patched ke rne l ∗/

/∗ Modi f i ca t i on o f the Linux ta s k s t r u c t ∗/
struct task_struct {

/∗ Linux standard f i e l d s ∗/
. . .
void ∗ scheduling_data ; /∗ GSP add i t i o n a l f i e l d ∗/

} ;

/∗ De f i n i t i on o f the hook ∗/
void (∗ fork_hook) (void ∗) = NULL;

/∗ Standard Linux func t i on execu ted upon the f o r k ∗/
. . . do_fork (. . .) {

i f ((fork_hook !=NULL) && is_rea l t ime (task))
fork_hook (task) ;

/∗ Ori g ina l code o f do_fork () ∗/
. . .

}

/∗ Code in the s chedu l i n g module ∗/

extern void (∗ fork_hook) (void ∗) ;

/∗ De f i n i t i on o f the handler ∗/
void fork_hook_handler(void ∗) { . . . } ;

/∗ Standard Linux module i n i t i a l i s a t i o n func t i on ∗/
. . . init_module (. .) {

. . .
fork_hook = fork_hook_handler ;
. . .

}

Figure 4. Example utilisation of the hook mechanism.

as parameter(s). The GSP patch also allows to link external data to each task, through a
new scheduling_data field that extends the task_struct structure. As an example, the
Resource Reservation module implementing the Resource Reservations uses this pointer to
quickly associate each task to the server it is currently running into.

5.3. QoS Reservation component

To better understand how our scheduler works, we briefly recall here the structure of the Linux
scheduler. The standard kernel provides three scheduling policies: SCHED_RR, SCHED_FIFO

and SCHED_OTHER. The first two policies are the “real-time scheduling policies”, based on
fixed priorities, whereas the third one is the default time-sharing policy. Linux processes are
generally scheduled by the SCHED_OTHER policy, but privileged tasks can change it by using
the sched_setscheduler() system call when they need real-time performance.

Copyright c© 2000 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2000; 00:1–7
Prepared using speauth.cls

Page 18 of 33

http://mc.manuscriptcentral.com/spe

Software: Practice and Experience

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Peer Review
AQUOSA – ADAPTIVE QUALITY OF SERVICE ARCHITECTURE 19

The Linux scheduler works as follows:

• If a real-time task (SCHED_RR or SCHED_FIFO) is ready for execution, then the highest
priority one is executed. If SCHED_FIFO is specified, then the task can only be preempted
by a higher priority task. If SCHED_RR is specified, after a time quantum (typically 10
milliseconds) the next task with the same priority (if any) is scheduled (i.e. all SCHED_RR
tasks with the same priority are scheduled in round-robin).

• If no real-time task is ready for execution, SCHED_OTHER tasks are executed and scheduled
according to a set of heuristics.

Furthermore, Linux implements POSIX threads as tasks that share a set of resources (e.g.
the memory tables), but the scheduler is only concerned with scheduling of single threads of
execution, referred to as tasks for historical reasons. Therefore, from now on we will use the
term task to denote either a single-threaded process, or a single thread within a multi-threaded
process.

The KAL layer affects the Linux scheduler decisions by simply manipulating the queue(s) of
ready tasks used by the standard kernel scheduler, with the help of the GSP patch functionality.
Tasks are forced to run at a higher priority than any other Linux task by assigning them a
SCHED_RR policy and a statically configurable real-time priority. On the contrary, tasks are
forbidden to run (for example for implementing hard reservations) by temporarily removing
them from the Linux ready queue (for kernel 2.4 we used to set their real-time priority to a
value below the minimum possible value).

The described mechanism works as expected as long as there are no Linux tasks running at a
real-time priority higher than the one used by the KAL, and the soft real-time tasks themselves
do not try to use Linux real-time scheduling facilities, in addition to the functionality provided
by our infrastructure. In the former case, the reserved tasks would undergo the interferences
of the higher priority tasks. In the latter case, their requests to the Linux scheduler would be
silently ignored by the kernel.

This approach minimises the changes required to the kernel and it permits coexistence and
compatibility with other patches that modify the scheduler behaviour, e.g. the preemptability
patch [32].

We are now ready to present our QoS Reservation component. The core mechanism is
implemented in a Linux kernel module: the Resource Reservation module. The scheduling
service is offered to applications through a library (Resource Reservation library). The
communication between the Resource Reservation library and the Resource Reservation
module is established through a Linux virtual device.

Resource Reservation module This module implements various resource reservation
algorithms: CBS [4], IRIS [27] and GRUB [17]. When the module is inserted, the appropriate
hooks are set and the data structures are initialised (see Figure 4). Linux tasks that do not need
resource reservations are still managed by the Linux scheduler. Tasks that use the Resource
Reservation mechanism are scheduled by our module. The module internally implements an
EDF queue with the purpose of implementing the selected Resource Reservations algorithm
(CBS or one of its variants).

Copyright c© 2000 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2000; 00:1–7
Prepared using speauth.cls

Page 19 of 33

http://mc.manuscriptcentral.com/spe

Software: Practice and Experience

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Peer Review
20 PALOPOLI, CUCINOTTA, MARZARIO, LIPARI

The module is configurable to allow a server to serve only one task or, alternatively, a
group of tasks. The second choice is particularly useful when allocating bandwidth to a multi-
threaded application since developers/designers do not need to allocate bandwidth to each
thread but to the entire application. This option, however, is not illustrated in depth in this
paper, where we assume that a server is only used for one task.

If the module is configured for allowing multiple tasks per server, one default server is
dedicated to Linux tasks that are not associated to any server. This is to avoid that reserved
tasks starve standard Linux tasks and system services.

QoS supervisor component The bandwidth requests coming from the task controllers can
be accepted, delayed, reshaped or rejected by the QoS Supervisor, in order to enforce the
global consistency relation in Equation (1). In addition, for security reasons, we want to avoid
that a single user, either maliciously or due to a software bug, causes a system overload by
requesting too much bandwidth and forcing tasks of other users to get a reduced bandwidth
assignments. For this reason, a privileged user (e.g. the system administrator) can define
maximum bandwidths for each user and users group. The supervisor operates both at the
creation of a server and during the execution of a task. In the first case, the application
provides the required minimum guaranteed bandwidth, that undergoes the admission control
process, based on the test in Equation (9). When the system is not overloaded, the QoS
Supervisor propagates (see also Section 4.2) to the scheduler the bandwidth requests from the
task controllers. In overload conditions, tasks of class A and B receive at least their minimum

guaranteed bandwidth if they required it B
(i)

A and B
(i)

B . The bandwidth left from this initial

assignment U lub−
∑

i∈classA B
(i)

A −
∑

i∈classB B
(i)

B is assigned using a heuristic based on priority
levels and weights. First, requests from tasks with higher priority levels are satisfied. Among
tasks in the same level, the bandwidth is shared in proportion to their weights. Moreover,
maximum per-level bandwidth limits may be specified so as to avoid complete starvation of
lower levels.

The supervisor policy, based on the different configurations options described earlier, can be
configured into the system by a privileged user by means of the Resource Reservation library.
The administrator can configure the supervisor through a configuration file.

Resource Reservation library The Resource Reservation library exports the functionality of
the Resource Reservation module and of the QoS Supervisor module to the user applications
through an appropriate API. All functions can operate on any Linux process, provided that
the application has enough privileges.

The library provides an API to:

• create a new server with either statically or dynamically assigned bandwidth;
• change and retrieve server parameters after creation;
• move a task from a server to another;
• configure the supervisor.

The communication with the Resource Reservation module and the QoS Supervisor module
is performed through a Linux virtual device and the ioctl() primitive.

Copyright c© 2000 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2000; 00:1–7
Prepared using speauth.cls

Page 20 of 33

http://mc.manuscriptcentral.com/spe

Software: Practice and Experience

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Peer Review
AQUOSA – ADAPTIVE QUALITY OF SERVICE ARCHITECTURE 21

5.4. QoS manager component

This component is responsible for providing a task with a set of standard control and prediction
techniques that may be used by the task in order to dynamically adjust its bandwidth
requirements.

The QoS Manager is split into two distinct parts: a user-space library and a loadable kernel
module. The control and prediction algorithms can be located in both spaces. The application
is always linked to the QoS Manager library and interacts with it. Depending on the configured
location of the required sub-components, the library redirects all library calls to either user-
space code or kernel-space management code (through the proper virtual device).

In Figure 5 we report a sequence diagram that shows the sequence of functions called when
a job ends if the controller is implemented as a library function in user-space (the case of
kernel-space implementation is very similar).

When a job of a periodic task is about to suspend, it calls qmgr_end_cycle() which
is redirected to the appropriate function (for kernel-space implementation, the primitive is
translated into a ioctl() invocation to the virtual device).

The main difference between user space and kernel-space implementation is in the number of
times the application switches between user and kernel-space. For kernel-space implementation
only one switch is needed. On the contrary, when the controller is implemented in user space
we need two switches (the first one to get the sensor data and the second one to request the
bandwidth change). The possibility to compile a control algorithm in kernel-space aims at
reducing at the bare minimum the overhead of our QoS management infrastructure, what is
particularly relevant in the context of embedded systems.

5.5. Task structure

The typical structure of a task making use of our architecture for the adaptive reservations
is shown in Figure 6. For the sake of flexibility, the mechanism required to ensure a periodic
activation of the task is left to the application programmer. As an aid to programmers, the
QoS Manager library also offers the qmgr_start_periodic() utility function. This function
receives as a parameter a pointer to the function that implements a job, and ensures that such
function is periodically activated and terminated by a call to qmgr_end_cycle().

The user is allowed to specify his/her own user-level implementation for the control and
prediction algorithms or to choose among one of the library components. For the moment,
the only available control algorithm is the one shown in this paper. Our system supports the
mechanism of trial executions, i.e. the ability to run an application with no guarantees or with
a fixed bandwidth for a limited period of time, in order to compute the QoS parameters needed
by the middleware. These parameters may be retrieved by the application at the end of the
trial execution by means of a library call.

As a final remark, if one does not need to use the adaptation mechanism, it is possible to
transparently use the Resource Reservations mechanism. In this way, legacy applications can
be executed with a fixed bandwidth without any modification. The qres-wrap command-line
utility available within the AQuoSA framework allows to start (through an exec() call) any

Copyright c© 2000 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2000; 00:1–7
Prepared using speauth.cls

Page 21 of 33

http://mc.manuscriptcentral.com/spe

Software: Practice and Experience

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Peer Review
22 PALOPOLI, CUCINOTTA, MARZARIO, LIPARI

Figure 5. Interaction among various parts of the architecture when controller and predictor are in user
space. The dash and dot line separates between user-space and kernel-space components.

program within a server, so that any spawn thread or task is automatically attached to the
same server.

6. Experimental Results

In order to validate the presented approach, we used our middleware in an example application
consisting of a simple MPEG-2 decoder, which complies with the periodic task model shown
earlier. The implementation was based on the FFMPEG library [14] and it consists of a task
that periodically reads a frame from a RAM virtual disk partition, and decodes it writing
the result into the frame-buffer. The decoding task has a period of 40 ms (corresponding to a
standard 25f/s).

We performed two classes of experiments. The first one is aimed at showing the effectiveness
of the feedback controller, by comparing the evolution of the scheduling error attained for
different configurations. The second one is aimed at assessing the overhead introduced by our
mechanisms. The description of the hardware/software platform we used is in Table I.

Experiments have been done on a system running the Linux 2.4.27 kernel release. Together
with the GSP patch, we applied two additional patches: the High Resolution Timer (hrtimers-
2.4.20-3.0; [19]) and Linux Trace Toolkit (TraceToolkit-0.9.5; [25]).

Copyright c© 2000 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2000; 00:1–7
Prepared using speauth.cls

Page 22 of 33

http://mc.manuscriptcentral.com/spe

Software: Practice and Experience

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Peer Review
AQUOSA – ADAPTIVE QUALITY OF SERVICE ARCHITECTURE 23

/∗ Task s t ru c tu r e ∗/

void my_task () {
/∗ I n i t i a l i s e QoS Manager and check i f modules loaded ∗/
i f (qmgr_init () != QOS_OK) { /∗ Handle error ∗/ }

/∗ Set c o n t r o l l e r parameters ∗/
qmgr_set_task_period (TASK_PERIOD) ;
qmgr_set_server_period (SERV_PERIOD) ;
qmgr_set_max_bandwidth(SERV_MAX_BW) ;

/∗ Set p r ed i c t o r and c o n t r o l l e r parameters ∗/
qmgr_set_predictor (QMGR_PRED_MOVAVG) ;
movavg_set_sample_size(DEFAULT_SAMPLE_SZ) ;
qmgr_set_control ler (QMGR_CTRL_INVARIANT) ;

/∗ Performs the admission con t ro l ∗/
i f (qmgr_start () == QOS_OK) {

/∗ j ob e x e cu t i on s (main loop) ∗/
while (cond i t i on) {

do_job () ;

/∗ t a k e s measurements and performs f eedback con t ro l ∗/
qmgr_end_cycle () :

/∗ go to s l e e p wa i t i ng f o r next a c t i v a t i o n ∗/
wait_for_next_job () ;

}
} else {

/∗ Not i f y to user over l oad cond i t i on ∗/
}
/∗ Release data s t r u c t u r e s and s top f eedback loop ∗/
qmgr_end () ;

}

Figure 6. Sample task code

The use of the High Resolution Timers patch is de facto necessary for our applications since
the default Linux timers resolution is too low for our purposes (10 ms for kernel 2.4, may be
configured up to 1 ms for kernel 2.6). Using the High Resolution Timers patch, it is possible
to set timers and take time measurements with a granularity in the order of ten microseconds.

The LTT patch is a powerful kernel-tracing system developed for the Linux kernel. LTT
has been used for measuring the overhead of the Resource Reservations mechanism, but it is
not strictly required in the middleware. The overhead introduced by LTT in our experiments
is negligible with respect to the measured quantities. Indeed, the traced events are only the
scheduling changes, which are few enough to keep in check the overhead introduced by the
tracer.

Copyright c© 2000 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2000; 00:1–7
Prepared using speauth.cls

Page 23 of 33

http://mc.manuscriptcentral.com/spe

Software: Practice and Experience

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Peer Review
24 PALOPOLI, CUCINOTTA, MARZARIO, LIPARI

Table I. Hardware-Software platform.

Hardware Platform
Processor AMD Athlon(tm) XP 2000
Frequency 1666MHz
RAM size 512 Mb
RAM disk partition size 128Mb

Software Platform
Linux distribution Fedora core 2
Compiler version gcc v. 3.3.2
Kernel reference version 2.4.27
FFMPEG library version 0.4.8

6.1. Performance evaluation

Before illustrating the experimental results of this section, it is useful to briefly introduce the
metrics that we adopted to measure performance and the main factors that influence it.

As discussed earlier, the design goal of a task controller is to maintain the system state
in an equilibrium condition (in which ǫk is contained in the [−e, E] set), and to restore the
equilibrium in case of perturbations. Hence, a first important performance metric for our
system is the experimental probability of ǫk falling into the target set [−e, E]. This metric,
along with the average number of steps required to recover the equilibrium, quantifies the
robustness of our design with respect to practical implementation issues. Moreover, a metric
of interest is the average bandwidth allocated to the task: keeping this value as close as possible
to the strict necessary allows us to maximise the use of the resource for applications having
QoS guarantees (which is not doable using a fixed bandwidth allocation enriched with some
reclaiming scheme [17]). Along with the quantitative performance metrics indicated above, a
useful qualitative assessment can be made by a visual inspection of the experimental probability
mass function (PMF), which should display small tails outside the target set [−e, E].

The main factors degrading the target performance are: 1) prediction errors, 2) approximate
knowledge of the application parameters required in Theorem 3 and Theorem 2, 3) overload
situations. For the sake of simplicity, we will not consider here the third factor. This is
equivalent to assuming that the considered task is of class A. The quality of the prediction
can be evaluated considering the measure of the interval [hk, Hk] and the probability of
ck ∈ [hk, Hk]. These parameters are influenced by the stochastic properties of process ck

and by the prediction algorithm.

To evaluate the impact of the ck process, we considered two different video streams (see
Figure 7.a). For both we used an adaptive reservation with period P = 1ms, which is 1/40th

of the task period.

Copyright c© 2000 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2000; 00:1–7
Prepared using speauth.cls

Page 24 of 33

http://mc.manuscriptcentral.com/spe

Software: Practice and Experience

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Peer Review
AQUOSA – ADAPTIVE QUALITY OF SERVICE ARCHITECTURE 25

 0
 1
 2
 3
 4
 5
 6
 7
 8
 9

 0 0.33
Computation time relative to task period

First movie
Second movie

(a)

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 5 10 15 20 25 30

Autocorrelation sample

First movie
Second movie

(b)

Figure 7. Experimental probability mass function (a) and autocorrelation (b) of the two input traces.

The difference in the stochastic properties of the processes is due to the coding scheme.
Indeed, an MPEG-2 file consists of frames belonging to three classes: I, P, B. It is very frequent
in DVD to have a periodic structure (e.g., IBBPBBPBBPBBI. . .). This situation is referred to
as closed group of pictures (GOP). This is exactly the case for the first video stream in which
frames of type I are repeated with period 12. This is visible in the autocorrelation structure
(see Figure 7.b), which displays important peaks repeated with period 12. There is also a
sub-period (due to the repetition of P frames), which determines smaller peaks every three
samples. The second MPEG file has a more complex structure. In this case, the coding scheme
is piecewise periodic (i.e., frames of type I are more frequent in certain scenes). In other words,
we do not have a closed GOP. In particular, in certain segments we identified a periodicity
of 15. The autocorrelation function (which is averaged throughout the whole trace) does only
display a significant peak for the third sample (see Figure 7.b)¶.

For the first video stream, the average and the maximum computation bandwidth required
through the whole trace were respectively Bav1 = 18.33% and Bmax1 = 62.31%. In this number

¶If we had a prior knowledge of the different periods used in a piecewise periodic scheme, it could be possible
to use adaptive predictors able to recognise the periodicity changes and adjust the algorithm accordingly. This
type of sophisticated predictors is out of the scope of this paper.

Copyright c© 2000 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2000; 00:1–7
Prepared using speauth.cls

Page 25 of 33

http://mc.manuscriptcentral.com/spe

Software: Practice and Experience

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Peer Review
26 PALOPOLI, CUCINOTTA, MARZARIO, LIPARI

we also accounted for occational “spurious” spikes due to execution of long interrupt drivers.
Indeed, in order to maintain an acceptable response time for Linux interrupts, we execute the
drivers using the bandwidth of the interrupted tasks. In terms of our control design, this can
be regarded as an unmodelled disturbance term. The specification for the task controller was
to achieve a robust controlled invariant set of e = 0.2T and E = 0. Another requirement was
to recover from a maximum deviation of one period in at most h = 10 steps. We considered
the applications of three types of predictors: MMA[3,12], OL[36,60] and OL[45,180]. A trial
execution of 1000 samples showed that a maximum bandwidth of 25% was sufficient to meet
the requirements.

In Figure 8.a, we compare the experimental PMF attained throughout the whole execution.
For the sake of completeness we also show the PMF obtained with a fixed bandwidth for two
values: 20% and 25%. In Table II we report the quantitative evaluation of the performance
(using the metric introduced above). With a static bandwidth allocation “centring” the
distribution inside the target set is not an easy task. Indeed, a bandwidth value too close to
average results into local instabilities throughout the execution (leading to enormous average
errors). Conversely, a high bandwidth value ensures stability of the system, but the average
scheduling error is negative and high in modulus, highlighting a wasteful usage of the CPU
resource.

The controller endowed with the MMA predictor is able to compensate the different
computation times for frames of different types. Therefore, the second peak of the PMF
disappears and the probability of staying in the target set is 76 %. The improvement attained
with the OL predictors is evident in the picture and in the quantitative figures. The price to
pay is clearly the additional complexity. In most cases, for all predictors, a deviation from the
target set is recovered in one step. Indeed, for instance, the average number of steps required
to restore the equilibrium with the MMA[3,12] predictor was 1.034.

For the second video stream, the average and the maximum computation bandwidth required
through the whole trace were respectively 12.65% and 20.33%. In this case, the specification
for robust controlled invariant set was e = 0.2T and E = 0.05T . In case of deviation from
the equilibrium, we required recovery in 3 steps. As far as predictors are concerned, for
this experiment we used a MA[3],MMA[3,3] and OL[15,180]. Also for this case, a maximum
bandwidth equal to 25% was estimated to be sufficient for attaining the specification in a trial
execution of 1000 samples.

The experimental PMF are reported in Figure 8.b and the quantitative data in Table II. Due
to the lack of a strong correlation structure in this trace, the improvement using sophisticated
predictors is not as large as for the first video stream. The average number of steps required
to restore the equilibrium with the MA[3] predictor was 1.142.

6.2. Overhead evaluation

The overhead introduced by our middleware is the combination of two different effects:

• the time required to execute the code of the middleware functions (resource reservation
and control mechanisms).

• the number of additional context switches introduced by the scheduler.

Copyright c© 2000 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2000; 00:1–7
Prepared using speauth.cls

Page 26 of 33

http://mc.manuscriptcentral.com/spe

Software: Practice and Experience

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Peer Review
AQUOSA – ADAPTIVE QUALITY OF SERVICE ARCHITECTURE 27

Table II. Empirical statistics collected during the execution of the streams. Average µǫ and variance
σǫ are expressed as percentage of the task period.

First video stream
Predictor p µǫ σǫ µb σb

Fixed bandwidth 20% 26.34% 2700% 5470% - -
Fixed bandwidth 25% 29.7% -24.03% 12.1% - -

MMA[12,3] 76% -6.87% 8.5% 20.41% 6.4%
OL[36,60] 86.61% -8.31% 7.1% 20.64% 6.77%

OL[45,120] 89.93% -8.49% 6.4% 20.68% 6.77%
Second video stream

Predictor p µǫ σǫ µb σb

Fixed bandwidth 13.3% 34.16% 6844% 98.89 - -
Fixed bandwidth 17.8% 42.60% -21.6% 0.089 - -

MA[3] 92.75% -9.73% 0.070 14.45% 4.8%
MMA[3,3] 93.18% -10.04% 0.068 14.49% 4.8%
OL[15,180] 96.36% -11.15% 0.063 14.67% 5.03%

 0

 0.05

 0.1

 0.15

 0.2

 0.25

−0.4 −0.3 −0.2 −0.1 0 0.1 0.2

Fixed bandwidth: 60%
Fixed bandwidth: 75%

Invariant / 12 moving averages with 3 samples

Invariant / OL M=36 H=60
Invariant / OL M=45 H=180

Pr
ob

ab
ili

ty

ε
 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0.14

 0.16

 0.18

 0.2

−0.4 −0.3 −0.2 −0.1 0 0.1 0.2

Fixed bandwidth: 40%
Fixed bandwidth: 50%

Invariant / Moving average with 3 samples
Invariant / 3 moving averages with 3 samples

Invariant / OL M=15 H=180

ε

Pr
ob

ab
ili

ty

(a) (b)

Figure 8. Comparison among the PMF achieved by various controllers and predictors on the first (a)
and second (b) video stream

Copyright c© 2000 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2000; 00:1–7
Prepared using speauth.cls

Page 27 of 33

http://mc.manuscriptcentral.com/spe

Software: Practice and Experience

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Peer Review
28 PALOPOLI, CUCINOTTA, MARZARIO, LIPARI

Table III. Measured execution time in CPU clock cycles, of the scheduling hooks.

No load 10 Tasks 20 Tasks 30 Tasks
fork_hook_handler: 198 194 179 175
cleanup_hook_handler: 80 73 65 59
do_fork: 189920 229867 251982 271998
do_exit: 165154 160233 159187 160244

unblock_hook_handler: 526 645 701 805
block_hook_handler: 230 10719 13501 15274
sched_timeout: 336 420 460 520
schedule: 547 1612 2386 3205

qmgr_end_cycle: 1399 1414 1420 1426

The system workload is a relevant factor for both effects. Indeed, the management of the
scheduling queues grows linearly with the number of tasks (in our implementation). Therefore,
the execution of the hooks invoking the scheduler should display a similar behaviour.

The number of context switches introduced by the mechanism, for a given application, is
also affected by the reservation period P and by the allocated bandwidth (which can be fixed
or dynamic). The influence of P is evident. As far as the bandwidth is concerned, jobs with a
higher bandwidth use a lower number of reservation periods to terminate, i.e., the number of
context switches decreases.

We evaluated the overhead effects on the MPEG decoding application. The first set of
experiments was aimed at assessing the execution time of the different hooks. We measured
the duration of each hook for different workload conditions. In particular, we considered the
execution of the task in isolation, and together with 10, 20 and 30 dummy tasks. Each dummy
task consisted of an infinite loop and it was run by a resource reservation with fixed bandwidth
and with reservation period varying in a range from 20ms to 40ms. For each load condition,
we ran the periodic task with a different bandwidth allocation. In particular we used a fixed
value for the bandwidth of 1.1Bav1 (i.e.,10% greater than the average required bandwidth)
and a feedback scheduler. For the latter, we used the same settings as above for the target
set and a MA[3] predictor. The measurements were taken throughout the execution of 8000
frames of the stream, and we recorded the mean value. The results are reported in Table III.
Clearly, to get the total execution time, we have to sum up the execution time of the hook
to the one of the Linux standard function (see excerpt in Figure 4), which is reported in the
table for the sake of completeness. Each number is expressed in clock cycles (on the considered
system, 1000 clock cycles correspond to about 600 nanoseconds).

A first set of results displays the implementation cost for the Resource Reservation scheduler.
These results are unaffected by the server period and by the bandwidth chosen for the task
(both for what concerns its value and its allocation policy, i.e., static or adaptive). The
execution time of the scheduling functions is approximately of the same order of magnitude as

Copyright c© 2000 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2000; 00:1–7
Prepared using speauth.cls

Page 28 of 33

http://mc.manuscriptcentral.com/spe

Software: Practice and Experience

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Peer Review
AQUOSA – ADAPTIVE QUALITY OF SERVICE ARCHITECTURE 29

that of the standard Linux scheduler. The sched_timeout() function is the handler of timer-
related events: it is involved in budget handling (expiration and replenishment) and server
scheduling. For this reason it is the main “responsible” of the context switches. As shown in
the table, the growth rate of the average execution time of this function with respect to the
workload is lower than the one of the standard Linux function (schedule).

We also evaluated the computation cost for the QoS Management algorithms (feedback and
prediction), which is reported in the last row of the table (qmgr_end_cycle). As one would
expect, in this case no real influence of the workload can be appreciated (only a slight increase
due to cache effects introduced by other tasks in the system).

As far as server creation and termination is concerned, the additional overhead introduced by
the fork_hook_handler() and cleanup_hook_handler() functions is negligible with respect
to the corresponding Linux functions do_fork() and do_exit().

In the second experiment, we evaluated the number of context switches and the total
overhead introduced by our mechanisms. The overhead was measured as the ratio between the
duration of the periodic task in different configurations using our middleware and the duration
of the same task when executed in isolation without using any resource reservation mechanism.
The measurements were taken varying the resource reservation period and the workload, and
they are reported in Figure 9. Namely, for each workload situation, we varied the server period
(on the horizontal axis). The first row is relative to a fixed bandwidth assignment, while the
second raw to the use of feedback scheduling. The plots in the left column show the number
of context switches and in the right column the total overhead. The dummy processes shared
a total bandwidth equal to 10%. In all cases, we can see that the shapes of the plots reporting
the number of context switches and the overhead are quite similar. This is because the function
calls introducing most of the overhead are always associated to a context switch. The growth
rate of both quantities is approximately linear with the number of dummy tasks.

The changes with respect to the reservation period follow approximately an hyperbolic
pattern. This is perfectly consistent with our theoretical expectations. Indeed, if we think of a
task in isolation and consider a periodic task with average execution time C, period P served
by a reservation (Q, P), the average number of context switches in a time interval of length W
is given by: 2W

T
⌈C

Q
⌉ = 2W

T
⌈ C

BP
⌉, which can be approximated by an hyperbolic relation (the

effect of ceiling can be neglected for low values of P). The presence of workload dummy tasks
shifts upward this plot, but the qualitative appearance remains similar.

As a consequence, one would expect a lower overhead using greater bandwidth values, as
it would decrease the number of context switches. This is highlighted in Figure 10, where
the measurements have been taken in absence of dummy tasks. As it is possible to see, the
overheads obtained for the adaptive reservation are intermediate between the ones obtained
for low and large fixed values of the bandwidth.

As a final remark, the overhead introduced by our scheduling mechanism is, in our evaluation,
acceptable: even for a reservation period of 2.5ms, which is 1/16th of the task period, our
mechanism steals no more than 3% of the execution time of the MPEG player (in absence of
dummy tasks).

Copyright c© 2000 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2000; 00:1–7
Prepared using speauth.cls

Page 29 of 33

http://mc.manuscriptcentral.com/spe

Software: Practice and Experience

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Peer Review
30 PALOPOLI, CUCINOTTA, MARZARIO, LIPARI

 0

 200000

 400000

 600000

 800000

 1e+06

 1.2e+06

 1.4e+06

 0 2000 4000 6000 8000 10000 12000 14000 16000

no load
10 tasks
20 tasks
30 tasks

 1

 1.01

 1.02

 1.03

 1.04

 1.05

 1.06

 1.07

 1.08

 1.09

 0 2000 4000 6000 8000 10000 12000 14000 16000

noload
30 load
10 load
20 load

(a) (b)

 0

 200000

 400000

 600000

 800000

 1e+06

 1.2e+06

 1.4e+06

 0 2000 4000 6000 8000 10000 12000 14000 16000

no load
10 tasks
20 tasks
30 tasks

 1

 1.01

 1.02

 1.03

 1.04

 1.05

 1.06

 1.07

 1.08

 1.09

 0 2000 4000 6000 8000 10000 12000 14000 16000

noload
30 load
10 load
20 load

(c) (d)

Figure 9. Number of context switches (left column) and relative overhead (right column) on the first
video stream, with a fixed bandwidth of 1.1Bav1 (a)(b), and with a dynamic allocation using an MA[3]

predictor (c)(d). The horizontal axis represents the server period P .

7. Conclusions

In this paper we have shown a software infrastructure for applications that have to comply
with soft real-time constraints. Our solution is based on a combination of the resource
reservation scheduling algorithm and of a feedback based mechanism for dynamically adjusting
the bandwidth. The adoption of the resource reservation algorithm allowed us to construct a
precise mathematical model of the scheduler. Moreover, we stated in a sound mathematical
framework the closed loop design goals (related to the system stability) and stated conditions
and design solution allowing us to produce an effective control design. We offered a Linux based

Copyright c© 2000 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2000; 00:1–7
Prepared using speauth.cls

Page 30 of 33

http://mc.manuscriptcentral.com/spe

Software: Practice and Experience

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Peer Review
AQUOSA – ADAPTIVE QUALITY OF SERVICE ARCHITECTURE 31

 1

 1.01

 1.02

 1.03

 1.04

 1.05

 1.06

 0 2000 4000 6000 8000 10000 12000 14000 16000

0.32
0.40

fb-sched

Figure 10. Comparison of the total relative overhead for fixed and dynamic bandwidth (no dummy
tasks)

architectural solution that implements these ideas and that was designed to be: 1) flexible (it
allows for the management of different types of resource and for the introduction of new control
algorithms) 2) minimally invasive in terms of required kernel modifications, 3) efficient in terms
of the introduced overhead. We also provided extensive experimental results that prove the
effectiveness of the approach and its robustness to partial knowledge of the design parameters
(collected through trial execution on segments of the application) and an evaluation of the
introduced overhead.

This work can be extended in several directions. A first important possibility is to consider
problems of coordinated allocation of multiple resources. As an example we could consider a
pipeline of activities (decoupled by intermediate buffer) that use different types of resources
(e.g., disk, network, CPU). We conjecture that the use of RR scheduler for different resources
can represent an enabling paradigm for this type of technique. A theoretical analysis of this
problem is under way. Moreover, we are planning the extension of the middleware to support
the adaptive allocation of disk and network. Another important research issues is to coordinate
scheduler level and application level adaptation. In particular, one of the possible action of the
supervisor (in response to an overload condition) could be to require the application to lower
its QoS level via a callback mechanism. To this aim, we need both a theoretical analysis of
the problem and a viable architectural solution. Finally, from a purely technological point of
view, we are studying solution for implementing adaptive reservation with a low complexity
(e.g., using quantised priority levels and bit-mapped queues) and for using them with legacy
applications (in a similar way as we currently do for tasks with fixed bandwidth).

REFERENCES

Copyright c© 2000 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2000; 00:1–7
Prepared using speauth.cls

Page 31 of 33

http://mc.manuscriptcentral.com/spe

Software: Practice and Experience

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Peer Review
32 PALOPOLI, CUCINOTTA, MARZARIO, LIPARI

1. Adaptive resource allocation control for fair QoS management. IEEE Transactions on Computers,
56(3):344–357, 2007. Fumiko Harada and Toshimitsu Ushio and Yukikazu Nakamoto.

2. Sherif Abdelwahed, Nagarajan Kandasamy, and Sandeep Neema. Online control for self-management
in computing systems. In Proc. of 10th IEEE Real-Time and Embedded Technology and Applications
Symposium, Toronto, Canada, May 2004.

3. L. Abeni, T. Cucinotta, G. Lipari, L. Marzario, and L. Palopoli. QoS management through adaptive
reservations. Real-Time Systems Journal, 29(2-3):131–155, March 2005.

4. Luca Abeni and Giorgio Buttazzo. Integrating multimedia applications in hard real-time systems. In
Proceedings of the IEEE Real-Time Systems Symposium, Madrid, Spain, December 1998.

5. Luca Abeni and Giorgio Buttazzo. Adaptive bandwidth reservation for multimedia computing. In
Proceedings of the IEEE Real Time Computing Systems and Applications, Hong Kong, December 1999.

6. Luca Abeni, Tommaso Cucinotta, Giuseppe Lipari, Luca Marzario, and Luigi Palopoli. Adaptive
reservations in a linux based environment. In Proceeding of the Real-Time Application Symposium (RTAS
04), Toronto (Canada), May 2004. IEEE.

7. Luca Abeni, Luigi Palopoli, Giuseppe Lipari, and Jonathan Walpole. Analysis of a reservation-based
feedback scheduler. In Proc. of the Real-Time Systems Symposium, Austin, Texas, November 2002.

8. Adaptive quality of service architecture (AQuoSA), http://aquosa.sourceforge.net . Web site.
9. S.K. Baruah, N.K. Cohen, C.G. Plaxton, and D.A. Varvel. Proportionate progress: A notion of fairness

in resource allocation. Algorithmica, 6, 1996.
10. Scott Brandt and Gary Nutt. Flexible soft real-time processing in middleware. Real-time systems journal,

Special issue on Flexible scheduling in real-time systems, 22(1-2):77–118, January-March 2002.
11. Anton Cervin, Johan Eker, Bo Bernhardsson, and Karl-Erik Årzén. Feedback-feedforward scheduling of

control tasks. Real-Time Systems, 2002.
12. F. J. Corbato, M. Merwin-Dagget, and R. C. Daley. An experimental time-sharing system. In Proceedings

of the AFIPS Joint Computer Conference, May 1962.
13. Eric Eide, Tim Stack, John Regehr, and Jay Lepreau. Dynamic cpu management for real-time, middleware-

based systems. In Proc. of 10th IEEE Real-Time and Embedded Technology and Applications Symposium,
Toronto, Canada, May 2004.

14. Ffmpeg project, http://ffmpeg.sourceforge.net . Web site.
15. Sourav Ghosh, Jeffery Hansen, Ragunathan (Raj) Rajkumar, and John Lehoczky. Integrated resource

management and scheduling with multi-resource constraints. In Proceedings of the 25th IEEE
International Real-Time Systems Symposium (RTSS04), pages 12–22, Washington, DC, USA, 2004. IEEE
Computer Society.

16. Christopher D. Gill, Jeanna M. Gossett, David Corman, Joseph P. Loyall, Richard E. Schantz, Michael
Atighetchi, and Douglas C. Schmidt. Integrated adaptive QoS management in middleware: A case study.
Real-Time Systems, 29(2-3):101–130, march 2005.

17. G.Lipari and S.K. Baruah. Greedy reclaimation of unused bandwidth in constant bandwidth servers. In
IEEE Proceedings of the 12th Euromicro Conference on Real-Time Systems, Stokholm, Sweden, June
2000.

18. Ashvin Goel, Jonathan Walpole, and Molly Shor. Real-rate scheduling. In Proceedings of Real-time and
Embedded Technology and Applications Symposium, page 434, 2004.

19. High resolution timers, http://high-res-timers.sourceforge.net . Web site.
20. K. Jeffay and S. M. Goddard. A theory of rate-based execution. In Proceedings of the IEEE Real-Time

Systems Symposium, Phoenix, AZ, December 1999.
21. Yamuna Krishnamurthy, Vishal Kachroo, David A. Karr, Craig Rodrigues, Joseph P. Loyall, Richard E.

Schantz, and Douglas C. Schmidt. Integration of QoS-enabled distributed object computing middleware
for developing next-generation distributed application. In LCTES/OM, pages 230–237, 2001.

22. Abeni L. and Lipari G. Implementing resource reservations in linux. In Real-Time Linux Workshop,
Boston (MA), USA, December 2002.

23. B. Li and K. Nahrstedt. A control theoretical model for quality of service adaptations. In Proceedings of
Sixth International Workshop on Quality of Service, 1998.

24. C. L. Liu and J. Layland. Scheduling alghorithms for multiprogramming in a hard real-time environment.
Journal of the ACM, 20(1), 1973.

25. Linux trace toolkit, http://www.opersys.com/LTT . Web site.
26. C. Lu, J. Stankovic, G. Tao, and S. Son. Feedback control real-time scheduling: Framework, modeling

and algorithms. Special issue of RT Systems Journal on Control-Theoretic Approaches to Real-Time
Computing, 23(1/2), September 2002.

Copyright c© 2000 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2000; 00:1–7
Prepared using speauth.cls

Page 32 of 33

http://mc.manuscriptcentral.com/spe

Software: Practice and Experience

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

http://aquosa.sourceforge.net
http://ffmpeg.sourceforge.net
http://high-res-timers.sourceforge.net
http://www.opersys.com/LTT

For Peer Review
AQUOSA – ADAPTIVE QUALITY OF SERVICE ARCHITECTURE 33

27. Luca Marzario, Giuseppe Lipari, Patricia Balbastre, and Alfons Crespo. IRIS: a new reclaiming algorithm
for server-based real-time systems. In Real-Time Application Symposium (RTAS 04), Toronto (Canada),
May 2004.

28. Tatsuo Nakajima. Resource reservation for adaptive QoS mapping in real-time mach. In Sixth
International Workshop on Parallel and Distributed Real-Time Systems (WPDRTS), April 1998.

29. L. Palopoli, L. Abeni, and G. Lipari. On the application of hybrid control to cpu reservations. In Hybrid
systems Computation and Control (HSCC03), Prague, April 2003.

30. Luigi Palopoli, Tommaso Cucinotta, and Antonio Bicchi. Quality of service control in soft real-time
applications. In Proc. of the IEEE 2003 conference on decision and control (CDC03), Maui, Hawai,
USA, December 2003.

31. Luigi Palopoli, Tommaso Cucinotta, Giuseppe Lipari, and Luca Marzario. Adaptive management of QoS in
open systems. Technical Report DIT-07-003, Department of Information and Communication technology,
University of Trento, 2007.

32. Preemption patch, http://kpreempt.sourceforge.net . Web site.
33. Ragunathan Rajkumar, Chen Lee, John P. Lehoczky, and Daniel P. Siewiorek. Practical solutions for

QoS-based resource allocation. In RTSS, pages 296–306, 1998.
34. Raj Rajkumar, Kanaka Juvva, Anastasio Molano, and Shuichi Oikawa. Resource kernels: A resource-

centric approach to real-time and multimedia systems. In Proceedings of the SPIE/ACM Conference on
Multimedia Computing and Networking, January 1998.

35. Dickson Reed and Robin Fairbairns (eds.). Nemesis, the kernel – overview, May 1997.
36. John Regehr and John A. Stankovic. Augmented CPU Reservations: Towards predictable execution on

general-purpose operating systems. In Proceedings of the IEEE Real-Time Technology and Applications
Symposium (RTAS 2001), Taipei, Taiwan, May 2001.

37. Michael Roitzsch and Martin Pohlack. Principles for the prediction of video decoding times applied to
mpeg-1/2 and mpeg-4 part 2 video. In RTSS’06: Proceedings of the 27th IEEE International Real-Time
Systems Symposium, pages 271–280, Washington, DC, USA, 2006. IEEE Computer Society.

38. Nishanth Shankaran, Xenofon D. Koutsoukos, Douglas C. Schmidt, Yuan Xue, and Chenyang Lu.
Hierarchical control of multiple resources in distributed real-time and embedded systems. In ECRTS’06:
Proceedings of the 18th Euromicro Conference on Real-Time Systems, pages 151–160, Washington, DC,
USA, 2006. IEEE Computer Society.

39. David Steere, Ashvin Goel, Joshua Gruenberg, Dylan McNamee, Calton Pu, and Jonathan Walpole. A
feedback-driven proportion allocator for real-rate scheduling. In Proceedings of the Third usenix-osdi.
pub-usenix, feb 1999.

40. Ian Stoica, Hussein Abdel-Wahab, Kevin Jeffay, Sanjoy K. Baruah, Johannes E. Gehrke, and C. Greg
Plaxton. A proportional share resource allocation algorithm for real-time, time-shared systems. In
Proceedings of the IEEE Real-Time Systems Symposium, December 1996.

41. Hideyuki Tokuda and Takuro Kitayama. Dynamic QoS control based on real-time threads. In
NOSSDAV’93: Proceedings of the 4th International Workshop on Network and Operating System Support
for Digital Audio and Video, pages 114–123, London, UK, 1993. Springer-Verlag.

42. C.C. Wust, L. Steffens, R.J. Bril, and W.F.J. Verhaegh. QoS control strategies for high-quality video
processing. In Proceedings. 16th Euromicro Conference on Real-Time Systems - ECRTS 2004, pages
3–12, 2004.

43. Ronghua Zhang, Chenyang Lu, Tarek F. Abdelzaher, and John A. Stankovic. Controlware: A middleware
architecture for feedback control of software performance. In Proc. of International Conference on
Distributed Computing Systems, Vienna, Austria, July 2002.

Copyright c© 2000 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2000; 00:1–7
Prepared using speauth.cls

Page 33 of 33

http://mc.manuscriptcentral.com/spe

Software: Practice and Experience

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

http://kpreempt.sourceforge.net

