
SOFTWARE|PRACTICE AND EXPERIENCESoftw. Prat. Exper. 2000; 00:1{32 Prepared using speauth.ls [Version: 2000/03/16 v2.12℄An objet oriented tool forsimulating distributedreal-time ontrol systemsLuigi Palopoli1, Giuseppe Lipari1,�, Gerardo Lamastra2, Lua Abeni1, GabrieleBolognini1, Paolo Anilotti11 Suola Superiore Sant'Anna, piazza Martiri della Libert�a 33, 56127 Pisa (ITALY)2 Teleom Italia LabSUMMARYThis paper presents an objet oriented software tool, alled RTSIM, aimed atsimulating real-time embedded ontrollers. The tool onsists of a olletion of C++libraries permitting a separate spei�ation of the funtional behaviour of the ontrollerand of the hardware/software arhiteture to be used for its deployment. In partiular, itis possible to provide an aurate modeling of the onurrent arhiteture of the ontroltasks and of the run-time support o�ered by the operating system for the real-timesheduling of the shared resoures (CPU, memory bu�ers and network links). In thisway, it is possible to ompare di�erent sheduling solutions by evaluating their simulatedperformane diretly in the domain of the ontrol appliation. Moreover, the tool anbe utilized to tune up suh design parameters as the ativation frequenies of the tasks.The appliation of the tool is shown on a meaningful ase-study.key words: Simulation, Control systems, Real-Time systems, C++ libraryINTRODUCTIONDuring the last years, the appliation of embedded ontrol systems has beome a dominantfator governing the ommerial suess of several engineering produts. The best knownexample is represented by the automotive industry: from their seminal appliations torestrited nihes of prodution vehiles, embedded devies are gradually beoming ubiquitousomponents of modern ars. In other appliations, like avionis and fatory automation, the�Correspondene to: Giuseppe Lipari, Suola Superiore Sant'Anna, piazza Martiri della Libert�a 33, 56127 Pisa(ITALY) - E-mail : lipari�sssup.itCopyright 2000 John Wiley & Sons, Ltd.

2 L. PALOPOLI, GIUSEPPE LIPARI, ET AL.introdution of embedded ontrol devies began earlier, but newer and newer funtionalities,whih ould not even be oneived only a few years ago, are making inroads.The integration of ows of data from heterogenous sensors, having di�erent requirementsin terms of sampling rates and omputation times, indues almost naturally onurrentimplementation shemes. The ability of the system designer to speify, manage, and verifythe funtionality and performane of real-time onurrent proesses (tasks) turns out to be aruial suess fator. Moreover, in the design of mass-produed embedded systems, the hoieof hardware has a strong inuene on the eonomy of the solution. Therefore, even in frontof inreasingly omplex problems, the push towards minimization of omputing hardware ostremains a dominant fator. In this ontext, an inreasing emphasis is put on the e�etivenessand on the eÆieny of the prodution proess of real-time software. Traditional developmentyles tend to separate \rigidly" the work of ontrol engineers from that of software engineersbut the �nal outome is often far from optimal in terms of performane/ost riteria.In order to introdue a profound innovation in this �eld, the availability of o-design toolsspanning over diverse engineering disiplines is of utmost importane.This paper fouses on one of the most familiar problems in real-time ontrol softwaredesign, i.e. how the performane of a ontroller is a�eted by arhitetural and implementationhoies (e.g. the deomposition of feedbak ontrollers into tasks, the alloation of omputationresoures to tasks, the sheduling of the shared resoures, et). Realisti and quantitativeanswers to this question during the early phases of the development are a preious tool forprodut development.The onept of performane evaluation for a real-time ontroller an be developed alongdi�erent diretions. Most of the researh in the area of real-time omputing has studied theperformane of onurrent software systems under the viewpoint of their timing behaviour.Ever sine the seminal work of Liu and Layland [25℄, a fundamental performane metri isonsidered to be the tasks' shedulability, i.e. the ability for a set of tasks to exeute respetingtheir assigned deadlines. For some lasses of real-time appliations (quali�ed as soft real-time),a more useful performane metri is represented by the probability for eah task to exeuterespeting its deadlines [1, 37, 18℄. At a higher level of abstration, the \olletive" timingperformane of a set of tasks has been evaluated in terms of end-to-end delay, output jitter,and other metris [11℄.The ompliane of a ontroller's timing behaviour with some spei�ed requirements (e.g.shedulability) is not always suÆient to haraterize performane at the system level. Classialperformane metris normally used during the ontrol synthesis onsider the step response(rise time, overshoot, et.) or the losed loop transfer funtion. Quadrati ost funtions,or other metris suh as H2=H1 norms, are the foundation of popular proedures foranalytial ontrol synthesis. However, during the ontrol synthesis phase, e�ets derivingfrom the implementation arhiteture are not usually taken into aount. The diÆulties in�nding tratable analytial models for the stohasti delays deriving from data dependeniesand sheduling jitter and the lak of adequate modeling and simulation tools, indue theontrol designers to synthesize ontrol laws assuming null or �xed delays from the underlyingimplementation platform. As a onsequene, even a software design omplying with thedeadline onstraints an result into a poorly performing system. These problems are detetedonly during the late phases of the design yle, and the solution is often sought by ylingCopyright 2000 John Wiley & Sons, Ltd. Softw. Prat. Exper. 2000; 00:1{32Prepared using speauth.ls

AN OO TOOL FOR SIMULATING DISTRIBUTED REAL-TIME CONTROL SYSTEMS 3through a long series of ostly trial-and-error iterations among the di�erent phases of thedevelopment yle.In this paper, we present a simulation tool, alled RTSIM, whih alleviates these diÆulties,permitting us to eÆiently deal with di�erent aspets of the ontrol synthesis. The main goal ofRTSIM is to permit the joint simulation of a real-time ontroller and of the ontrolled plant,olleting performane measures either on the timing behaviour of the ontroller or on thequality of the plant dynamis. Spei�ally, a designer is allowed to speify:� a set of plants (spei�ed through their di�erential models) onneted to a distributedontrol system by means of sensors and atuators,� the funtional behaviour of the ontroller,� the arhitetural omponents of the implementation (real-time tasks, RTOS, sharedresoures),� the mapping of funtional behaviours onto the arhitetural omponents.By leveraging a omplete orthogonalization of the funtional and arhitetural designs,RTSIM enables: 1) an easy omparison of di�erent implementation approahes for the samefuntionalities, 2) a performane based tuning of suh design parameters as the tasks' ativationrates/sheduling priorities. The tool is organized as a olletion of C++ libraries that inludeprogramming failities for de�ning stohasti parameters (e.g. for tasks' exeution times,network pakets dimensions, et), for olleting performane statisti and for reording eventsof interest on exeution traes.A very important feature of the tool is that it enompasses the best known solutions forreal-time CPU sheduling (either on single or on multiproessor boards) and for boundeddelay sharing of resoures, as prede�ned library lasses. The funtional spei�ation of thesystem is provided by interonneting a set of reusable omponents, aording to a syntaxlosely related to well-known dataow paradigmsy Another important feature of the tool isthe presene of a well de�ned programming framework guiding users in developing their ownfuntional and arhitetural omponents. One the design of the ontroller has been settledand properly tuned, its implementation on a real-time operating system is straightforward.The �ne grained modeling of suh software arhitetural omponents as real-time tasks,shedulers, synhronization protools and so on, enables a very aurate simulation of thesystem's performane.As far as the simulation of the plant is onerned, RTSIM exploits the funtionality of apowerful mathematial library, alled OCTAVE [7℄, embodying state of the art solutions forthe integration of di�erential equations.yThe term \dataow" generally denotes a sublass of Kahn proesses [13℄, introdued by Dennis in 1975 [6℄.However, sine many software environments laim variants of this model even if their semantis bear littleresemblane with that proposed by Davis, throughout this paper a loose meaning for this term will be used.Therefore, dataow will intuitively denote a direted sequene of transformations applied on data owing frominputs to outputs.Copyright 2000 John Wiley & Sons, Ltd. Softw. Prat. Exper. 2000; 00:1{32Prepared using speauth.ls

4 L. PALOPOLI, GIUSEPPE LIPARI, ET AL.STATE OF THE ARTThe best known tool suite for simulating ontrol systems is MATLAB. The MATLAB/Simulinkplatform is an exellent hoie to model and simulate a plant and a funtionally desribedontroller. Moreover, it permits one to automatially generate a prototype on a target real-time operating system (by the use of the Real-Time Workshop tool). However, it is not possibleto immediately to model generi Hardware/Software arhiteture and sheduling algorithms.To ope with this shortoming, a MATLAB tool to simulate a real-time sheduler in a Simulinkblok is proposed in [8℄. This allows, to a given degree, the simulation of timing propertiesand the assessment of the performane of real-time ontrollers against hanges in the timingattributes of the tasks. The most important feature of this tool is the good integration with theMATLAB/Simulink environment. On the other hand, the lak of a lear separation betweenfuntional and arhitetural spei�ations hinders the appliation of the tool to omplexsystems having event driven and/or time driven ativities.An interesting produt, mainly targeted to the automotive industry, is Aset-SD, by Etasengineering tools. The tool inludes an easy to use graphial interfae that permits modelingthe funtionalities of a ontroller in a Simulink like environment. The main fous of Aset-3Dis the generation of high quality real-time ode for prototyped or prodution hardware.In reent years many interesting tools have been proposed for the analysis and simulation ofomplex real-time systems, networks and kernels. One of the �rst softwares aimed at simulatingreal-time sheduling was produed by Audsley et al. [3℄. The tool permits modeling a systemof real-time periodi and aperiodi tasks through a sripting language.A well-known ommerial produt in this lass is TimeWiz, by Timesys orp., whih ismostly aimed at the analysis of the timing behaviour of a real-time system with respet toshedulability onstraints. The toolset is being integrated with a UML design framework whihallows one to desribe omplex systems in a fairly general way. However, the tool does not allowone to perform hybrid simulations of a digital ontroller along with the ontinuous dynamis ofthe ontrolled plant; thus it is not possible to interatively evaluate the performane of ontrolsystems against hanges in the task arhiteture and/or in the sheduling poliies.The idea of separating funtional and arhitetural spei�ation is well supported bythe VCC tool, produed by Cadene orp. Funtional behaviours an be spei�ed usingdi�erent syntaxes (inluding the C/C++ language) and the tool permits one to map a givenfuntionality either on hardware omponents (e.g. Asi) or on software (e.g. onurrent tasks)in order to pursue di�erent performane/ost tradeo�s. The performane assessment in VCCregards mainly the timing behaviour of the omponents and the simulation of a ontinuoustime plant is not diretly supported.The GIOTTO programming language [36℄ has been devised to develop hybrid ontrolappliations onsisting of periodi tasks. The model of omputation is primarily aimedat the design and prototyping of time-preditable ontrol system by the usual paradigmof separating the funtional from the timing behaviour (hard shedulability requirements).Time preditability (shedulability) is obtained by restriting the design to a time-triggeredarhiteture [15℄. A remarkable advantage of this paradigm is the elimination of input andoutput jitters. However, the introdued delays an be a very pessimisti solution in manyases. Moreover, the time triggered approah does not easily ope with event-driven systems.Copyright 2000 John Wiley & Sons, Ltd. Softw. Prat. Exper. 2000; 00:1{32Prepared using speauth.ls

AN OO TOOL FOR SIMULATING DISTRIBUTED REAL-TIME CONTROL SYSTEMS 5
Design

Functional

Architectural

Design
Simulation

&
Performance
Assessment

Mapping

Time constraints

Plant

Figure 1. Typial design proess for the spei�ation and the simulation of a real-time ontroller.An integrated design of real-time ontrol systems enompassing performane andshedulability onerns was �rst proposed by Seto et al. [27℄. In this work an optimizationproedure for the ativation frequenies of ontrol threads is proposed; the goal is maximizingthe ontroller's performane under shedulability onstraints. The paper is inspired to theevaluation approah for embedded ontrollers suggested by Shin et al. [29℄. Other noteworthyresults on this problem are presented by Kim et al. [14℄; the authors �rst map the lassialontrol design parameters onto the end-to-end requirements of the ontroller and then applythe method of period alibration [11℄ to derive the exeution parameters of eah thread sothat the end-to-end requirements are respeted. A tool like RTSIM may be a very useful aid tovalidate the assumptions and the result of these methods and of any other o-design proedure.DESIGN PROCESS AND MODELING PRIMITIVESThe onstrution of a simulation model for RTSIM is arried out onsidering two orthogonalviewpoints: the funtional behaviour of the ontroller and the HW/SW arhiteture of itsimplementation. In Figure 1, an overview on a typial design proess based on RTSIM isdepited.The funtional design, starting from the mathematial model of the plant and of itsinterations with the environment, produes a model of the funtional behaviour. Thefuntional behaviour spei�es a sequene of operations to be performed on data owingthrough the ontroller. Suh operations inlude the omputation of the feedbak ontrol law,the extration of meaningful information from sensors and so on. The funtional design alsoprodues a set of timing onstraints based on the dynamis of the plant and on the physiallimitations of sensors and atuators.The arhitetural design an be arried out almost independently. This ativity leads to thede�nition of a model onsisting of software tasks, shedulers, network protools and so on.The funtional design is then mapped onto the arhitetural design, wrapping up thefuntional omponents into orresponding arhitetural entities having spei�ed requirementsCopyright 2000 John Wiley & Sons, Ltd. Softw. Prat. Exper. 2000; 00:1{32Prepared using speauth.ls

6 L. PALOPOLI, GIUSEPPE LIPARI, ET AL.in terms of exeution time, length of messages and so on. In this phase, the timing onstraintsare translated into real-time onstraints on the proesses and on the messages on the network.The separation of the funtional and arhitetural viewpoints permits us to easily test andompare di�erent implementations for the same funtional spei�ation in order to identifythe solution whih best �ts the performane/ost tradeo�s of the projet.Finally the system model, omposed of its funtional and arhitetural spei�ation, an besimulated obtaining di�erent types of results. A �rst possibility is to analyze the exeutiontraes (by an appropriate visual tool) to verify if the design meets the desired timingonstraints. Moreover, statistis an be olleted on the ourrene of events measuringsuh quantities as the average delay, the jitter and so forth. Most importantly, fundamentalinformation an be derived on the ontrol system's performane by using typial ontroltheoretial metris (overshoot, rise time, integral ost funtions). If the resulting performaneis not satisfatory, it is easily possible to return bak to any of the previous phases and hangethe system parameters, the system omponents (shedulers, ommuniation protools) andeven the entire arhiteture.In the rest of this setion, the most important modeling primitives of RTSIM for de�ningboth the funtional and the arhitetural spei�ation are introdued. A simple example willshow how these primitives are applied to a pratial ase.Modeling the funtional behaviourThe separation between the funtional and arhitetural spei�ation is aided, in the RTSIMtool, by the use of a dataow approah for the funtional modeling of the system. Dataowmodels are a well-suited tool in the design of real-time software [34, 39℄ and they are provided,in di�erent avours, by a variety of tools inluding Simulink, Ptolemy [20℄, and GIOTTO [36℄.The funtional abstrations of RTSIM are essentially of two types: omputing units andstorage units. Computing units are used to perform the omputation while storage units areused to exhange data between di�erent omputing units or between the ontroller and theexternal environment.A omputing unit is endowed with a set of input ports and output ports whih mustbe onneted to storage units. Eah omputing unit an respond to three di�erent externalommands. The �rst ommand, alled read is used to aquire external data from the storageunits onneted with its input ports. The seond one, alled exeute, omputes an output value,while the third one, alled write, is used to write the output into the storage units onnetedwith the output ports. A omputing unit an have an internal state (i.e. state remainingbetween two onseutive invoation). Notie that no partiular model is required to speifythe exeute method. Thus, a omputing unit an be a �nite state mahine, a digital �lter,a proportional integral derivative (PID) ontroller, or whatever is needed in the ontroller'sstruture. A set of ommon use omputing units suh as matrix gains, digital �lters, disretetime systems are prede�ned library objets and an be used in onstruting a model of thesystem without any further programming e�ort.Storage units are of three types: input bu�ers, memory bu�ers or output bu�ers. Inputbu�ers serve as an interfae between the environment and the ontroller. From the point of viewof the environment they an be thought of as sensors performing a measure on a ontinuousCopyright 2000 John Wiley & Sons, Ltd. Softw. Prat. Exper. 2000; 00:1{32Prepared using speauth.ls

AN OO TOOL FOR SIMULATING DISTRIBUTED REAL-TIME CONTROL SYSTEMS 7
Gain

Feedback

F_xdot

F_thdot

Der_x

Der_th

F_th

F_x Filt_x

Filt_th

In_thIn_x

���
���
���

���
���
�������

����
����
����

����
����
����
����

Out_u

Angle

Horizontal
position

Force

Plant

Output
Buffers

Memory

Buffers

Input

Buffers

Computing

Units

LEGEND

Figure 2. Funtional design of a simple ontroller for an inverted pendulum.time quantity. RTSIM o�ers also the possibility of modeling sensors whose measurement area�eted by band-limited white noise. From the ontroller's side, an input bu�er models anI/O ard whose ontent hanges when a sampling ommand is reeived. Output bu�ers anbe used to model atuators and an only be onneted to the output ports of a omputingunit. They model digital to analog onverters, i.e. when a omputing unit writes new data intoan output bu�er, the value is held up to the next writing. Memory bu�ers an be aessedeither for reading or for writing operations and they realize ommuniations among di�erentomputing units.It is important to observe that when a funtional model is onstruted no partiularassumption is made either on the hardware implementation of a storage unit, or on the wayonurrent aess requests should be sheduled.Example. An example of funtional design is reported in Figure 2. The addressed problemis the ontrol of a simple physial devie (an inverted pendulum). The pendulum is mountedon a art moving on a one-dimensional trak. The horizontal position x and the pendulumangle � are aquired through a ouple of sensors and their values are stored into two inputbu�ers (named In x and In th respetively). Data held in the input bu�ers are proessed bythe omputing units Filt x and Filt th in order to extrat the meaningful information andto �lter out the sensor noise: the results are stored into the F x and F th memory bu�ers. Twodigital �lters, namely Der x and Der th, are derivative bloks and are used to estimate thelinear and angular veloities. Finally the four estimated state variables are used by a omputingunit (FeedbakGain) to ompute the fore to be applied to the art whih is stored into anCopyright 2000 John Wiley & Sons, Ltd. Softw. Prat. Exper. 2000; 00:1{32Prepared using speauth.ls

8 L. PALOPOLI, GIUSEPPE LIPARI, ET AL.output bu�er (Out u). It is worth observing that the omputing units shown in this shemeare instanes of library prede�ned objets (four digital �lters and a matrix gain).Modeling the arhiteture of the systemIn our model, a task (or proess) is a �nite or in�nite sequene of requests for exeution,or jobs. Eah job exeutes a piee of ode (a sequene of instrutions) implementing somefuntional behaviour. When a job is ativated, we say that it arrives and the ativation timeis alled arrival time. Depending on the pattern of arrival times, tasks an be lassi�ed as:Periodi : if the arrivals are separated by a onstant interval of time, alled \period";Sporadi : if the arrivals are separated by variable intervals of time with a lower bound,alled minimum inter-arrival time;Aperiodi : if a lower bound is not known on the inter-arrival times.In real-time systems, tasks have time onstraints, often expressed as deadlines: for example,a typial time onstraint for a periodi task is that eah job must �nish before the nextativation. Another typial onstraint is on the ompletion jitter (the interval of time betweentwo onseutive job ompletions).The instrutions of a task are used to model its timing behaviour. Basially, an instrutionis modeled by an exeution time (whih an be deterministi or stohasti) and an beassoiated with the read, write or exeute ommand of a omputing unit. In this way, oneor more omputing units an be easily mapped onto a task.Tasks are assigned to the omputational resoures (nodes) of the system. Eah node onsistsof one or more proessors and a real-time operating system (kernel) endowed with a shedulingpoliy and a synhronization protool. The state of the art algorithms for CPU sheduling(suh as Fixed Priority, Rate Monotoni [25℄, Earliest Deadline First (EDF) [25℄, Proportionalshare [35℄) are provided as prede�ned objets, both for single proessor and multi-proessorsystems. The performane of the shedulers an be enhaned by using aperiodi servers (Pollingserver [22℄, Sporadi Server [30℄, Constant Bandwidth Server [1℄, et). Priority inversion inaessing mutually exlusive resoures [28℄ an be avoided by using appropriate synhronizationprotools implemented in the tool, suh as the Priority Ceiling Protool [28℄ or the StakResoure Poliy [4℄.Finally, the system an be omprised of several omputational nodes onneted by networklinks. Tasks on di�erent nodes an ommuniate by means of real-time messages. Aommuniation resoure is modeled by a shared physial link, an aess protool and a real-time message sheduler.Example. A better understanding of what is really meant in RTSIM by \arhiteture of thesystem" an be ahieved by getting bak to the example shown in Figure 2.Suppose, in the ase of the inverted pendulum, that the horizontal position is omputedfrom the images grabbed by a amera, whereas a potentiometer is used to aquire the angle.In this ase the omputation workload neessary to ompute x (assoiated to omputing unitCopyright 2000 John Wiley & Sons, Ltd. Softw. Prat. Exper. 2000; 00:1{32Prepared using speauth.ls

AN OO TOOL FOR SIMULATING DISTRIBUTED REAL-TIME CONTROL SYSTEMS 9

Single CPU Resource Manager

EDF Scheduler

Kernel

Shared
Buffer

Filt_x.read()

Filt_x.execute()

Shared.lock()

Filt_x.write()

Der_x.read()

Der_x.execute()

Der_x.write()

Shared.unlock()

Filt_th.read()

Filt_th.execute()

Filt_th.write()

Der_th.read()

Der_th.execute()

Der_th.write()

Shared.lock()

Shared.unlock()

FGain.write()

FGain.execute()

FGain.read()

Task 2Task 1

Application

Figure 3. Arhitetural design for the example shown in Figure 2. The instrutions inside eah taskare exeuted sequentially at every ativation.
Copyright 2000 John Wiley & Sons, Ltd. Softw. Prat. Exper. 2000; 00:1{32Prepared using speauth.ls

10 L. PALOPOLI, GIUSEPPE LIPARI, ET AL.Filt x) is muh higher than the workload neessary to ompute � (assoiated to omputingunit Filt th). Thus, a possible arhiteture for the system an be based on two periodi real-time tasks, Task 1 and Task 2. In partiular, Task 1 triggers the ations on omputing unitFilt x and Der x in order to ompute x and to estimate the _x horizontal veloity. Task 2triggers the same operations on omputing units Filt th and Der th.The main arhitetural omponents for this example are depited in Figure 3: eah taskis represented by a box ontaining the list of instrutions exeuted every period. The twotasks ommuniate by means of a shared bu�er aessed in mutual exlusion (through theshared.lok() and shared.unlok() instrutions). The onurrent exeution of the two tasksis possible using a sheduler omponent (named EDFSheduler) endowed with the EarliestDeadline First sheduling poliy [25℄. A resoure manager is used to selet the aess poliy:in this example we use a simple bloking poliy. Both the task sheduler and the resouremanager are omponents of a software layer modeling a real-time operating system (Kernel).Of ourse, this is only one of many possible hoies for the hardware/software arhiteture.This partiular hoie aims at omputational eÆieny by onentrating in one task allativities that may be performed at the same rate. A potential drawbak of this hoie is thelak of modularity. For example, Task 2 ould be replaed by two tasks, the �rst operating theF th and F thdot omputing units, and the seond operating the gain unit (FeedbakGain).In this way, it ould be possible to hange \on-line" the way x position is aquired to opewith a potential sensor fault or with a mode hange. Another possibility, in ase a very highloop rate was needed for stability reasons, is to use two di�erent CPU boards onnetedby a network link, one performing Task 1 (whih is omputationally expensive), and theother one performing Task 2. More generally, this simple example shows that the hoie ofthe hardware/software arhiteture is the solution to a potentially omplex problem involvingperformane issues, ost limitations and physial onstraints. This is the reason why deouplingarhitetural and funtional design turns out to be a onvenient hoie.Moreover, even with the arhiteture shown in Figure 3, the developer has some degreeof freedom in setting the parameters. The hoie of the sheduling algorithm, the resouremanager and the task ativation rates an inuene the delay of the two tasks and this in turnimpats upon the stability of the system and the \quality" of the ontrol. For this reason, it isdesirable to know in advane whih sheduling strategy and whih ombination of parametersmust be assigned in order to maximize the performane of the ontrol strategy.Assessing performaneOne a system has been modeled, a designer is provided with di�erent opportunities to simulatethe system and evaluate the quality of the design. A simulation onsists of a sequene of eventsassoiated with relevant situations in the arhitetural model of the system (i.e. task arrivals,task terminations, deadline expirations et.), whih may trigger ations in the funtional model.Therefore, events are the fundamental element of any simulation and they an be used in avariety of ways to evaluate the system's performane. With this respet, the �rst possibilitya designer is o�ered, is to reord all events of a simulation, or a meaningful subset, into atrae �le. The toolset omprises a utility, alled RTTraer, whih interprets a trae �le andvisualizes events in a lear form (see Figure 6). In order to failitate portability RTTraer isCopyright 2000 John Wiley & Sons, Ltd. Softw. Prat. Exper. 2000; 00:1{32Prepared using speauth.ls

AN OO TOOL FOR SIMULATING DISTRIBUTED REAL-TIME CONTROL SYSTEMS 11entirely written in Java. The appliation of RTTraer is partiularly useful for performing a\temporal" debugging of a omplex system when simulations reveal a failure in respetingdeadlines for some task or network message. The seond important possibility is to de�nestatistial probes, whih an be attahed to objets to measure the ourrene of events.Statistis an be olleted over multiple runs when suh parameters as omputation timesare assigned to vary stohastially aording to spei�ed distributions. The main use of thisfeature is to derive suh measures of the system's performane as jitter, lateny of data, end-to-end delays on pipelines of tasks and so forth. Finally, partiular types of input bu�ers anbe used to measure the evolution of some quantities of interest in the plant (very muh likein Simulink). Suh units an be onneted to �les in order to reord the time evolution of theobserved quantities. In a similar way it is possible to de�ne performane probes whih an, forinstane, integrate over time the squared norm of the measured quantity.Example. In order to show some of the possibilities o�ered by RTSIM, we get bak to theexample of the inverted pendulum introdued in the previous setions. The ode for thisexample is inluded in the oÆial distribution of RTSIM (it an be downloaded from the website http://rtsim.sssup.it), where the interested reader an �nd the exat parameters ofthe simulation.The state spae of the pendulum is omposed of four variables: [x; _x; �; _�℄T , where x is thelinear position, _x is the linear veloity, � is the pendulum angle and _� is the angular veloity. Inthe simulations presented in this setion, the pendulum starts from the state [�0:1; 0; 0; 0℄Tand has to be stabilized into the origin of the state spae [0 ; 0; 0; 0℄T .The funtional and the arhitetural model of the ontroller have been introdued above.In order to provide an experimental validation for the use of the tool, we realized a physialimplementation of the system based on the SHARK [9℄ kernel (for details see the Web sitehttp://shark.sssup.it). The exeution times of the tasks were pro�led and imported intothe simulation model.A �rst element of information on the orretness of the system's behaviour an be obtainedby visually inspeting the exeution traes of the tasks. In Figure 6 the RTTraer output fora simulation is shown. The assumed hard real-time algorithm is the lassi Earliest DeadlineFirst. In order for the ompliane of the ontrol design with some performane expetation tobe veri�ed, it is very important to show the evolution of state variables in time. In Figure 4, thedynamis of x and � obtained from a simulation run are shown. In order to verify the quality ofthe simulation we report on the same plot also data obtained from an experimental realization.For both simulation and experimental dynamis onvergene to zero takes approximatively fourseonds.In order to ahieve a quantitative assessment of the inuene of the sheduling hoies onthe ontrol performane, it is neessary to introdue a performane index. A possible hoie,as proposed by Shin et al. [29℄, is the use of a quadrati funtion:J = EfZ +0 1(~xTQ~x+Ru2g (1)where:� Ef.g denotes the expetation value (alulated over stohastially varying parameters),Copyright 2000 John Wiley & Sons, Ltd. Softw. Prat. Exper. 2000; 00:1{32Prepared using speauth.ls

12 L. PALOPOLI, GIUSEPPE LIPARI, ET AL.

0 1 2 3 4 5 6
−0.12

−0.1

−0.08

−0.06

−0.04

−0.02

0

0.02
Dynamics of the linear position

Time(sec)

X
 p

os
iti

on
 (

m
)

(a)

0 1 2 3 4 5 6
−0.05

−0.04

−0.03

−0.02

−0.01

0

0.01

0.02

0.03

0.04
Dynamics of the angle

Time (sec)

A
ng

le
 (

ra
d)

(b)Figure 4. Dynamis of the x (a) and � (b) variables for a simulation run ompared with an experimentalrealization.
Copyright 2000 John Wiley & Sons, Ltd. Softw. Prat. Exper. 2000; 00:1{32Prepared using speauth.ls

AN OO TOOL FOR SIMULATING DISTRIBUTED REAL-TIME CONTROL SYSTEMS 13

10 15 20 25 30 35 40
50

60

70

80

90

100

110

120

130
Performance index of the controller (simulation + experiment)

Period of task T1 (msec)

P
er

fo
rm

an
ce

 in
de

x

experiment

simulation

Figure 5. Performane index variations with respet to the ativation period of Task 1.� ~x denotes the state vetor,� u denotes the ommand variable,� the Q matrix and the R onstant are two weighting fators.As said above, a partiular type of input bu�er an be attahed to the state and to the inputvariables in order to ompute R +0 1(~xTQ~x+Ru2 as the simulation takes plae. The expetationvalue an easily be approximated by attahing a statistial probe to the storage unit and byolleting the measures over a suÆient number of runs.The simulations were aimed at evaluating the impat of the task frequenies. Theshedulability of tasks for this algorithm is ensured, provided that C1T1 + C2T2 � Ul, whereT1 and T2 are the ativation periods of the tasks, C1, C2 are the worst ase exeution timesand Ul = 1. Residual omputation ativities (for data logging and man/mahine interfaes)where onsidered by using a lower utilization bound: Ul = 0:8.The simulated and the experimental plots for the performane index are reported in Figure 5.In the horizontal axis period T1 is varied while T2 is hose aordingly to the relationC1T1 + C2T2 = 0:8. The performane index for eah point was evaluated averaging the resultof twenty exeution and simulation runs. As a remark, the evaluation of eah point requiredapproximately forty seonds on a PC with an Athlon 1.2 Ghz proessor running the Linuxoperating system.As it is possible to see, if high values are hosen for T1, the system tends to instability andthe value of the performane index inreases. Similarly, if T1 beomes too small there is a steepCopyright 2000 John Wiley & Sons, Ltd. Softw. Prat. Exper. 2000; 00:1{32Prepared using speauth.ls

14 L. PALOPOLI, GIUSEPPE LIPARI, ET AL.

Figure 6. Graphial output of a trae of a RTSIM simulation.degradation of the performane. The latter phenomenon is due to the orresponding value ofT2, whih tends to inrease aording to the shedulability relation. The best performane isahieved by a trade-o� hoie for the periods. The behaviour of the ost funtion is prettysimilar in the two plots, exept for the higher values of the experimental data. This di�erene,whih is also evident in the plots in Figure 4, is due to the adoption of a simpli�ed model forthe plant. As a matter of fat, suh aspets as the transfer funtion of the motor, the sensorsand proess noise and the nonlinearities on the atuators were negleted in the onstrutionof the plant model, sine the auray level obtained with the simpli�ed model was deemedsatisfatory for the purposes of this work.DESCRIPTION OF THE TOOLSummarizing the illustration above, RTSIM onsists of a olletion of C++ libraries ontainingthree types of objets:� ontinuous time plants,� funtional omponents of ontrol software, and� arhitetural omponents of ontrol software.The distintion of these oneptual domains ditated a deomposition of the software intothree interating pakages, as shown in Figure 7.The pakage denoted as \Numerial Pakage" is used to model and simulate plants. Objetsliving in this pakage evolve in ontinuous time and they are desribed by means of di�erentialequations. The pakage alled \CTRLIB" is used to onstrut the funtional model of thesystem. Objets belonging to this pakage do not posses an intrinsi onept of time evolution:their ations are triggered by objets belonging to other pakages (in partiular to RTLIB).Copyright 2000 John Wiley & Sons, Ltd. Softw. Prat. Exper. 2000; 00:1{32Prepared using speauth.ls

AN OO TOOL FOR SIMULATING DISTRIBUTED REAL-TIME CONTROL SYSTEMS 15

+ ComputingUnit

+ ActuatorBuffer

+ SensorBuffer

+ PeriodicTimers

+ ContrInstr

+ GenericPlant

+ Sensor

+ ColumnVector

+ Matrix, ...

Event

Package

Generating

RTLIBNumerical
Package

CTRLIB

Package

Data

ProcessingFigure 7. Main omponents involved in a RTSIM based simulation of a real-time ontrollerThe \RTLIB" pakage is used to desribe the arhitetural omponents a funtional model ismapped onto. Objets evolve aording to a disrete event model of omputation [19℄: theyreat to events and are able to generate other events in their turn.When designing the lass hierarhies for the pakages, we wanted to ahieve a high degreeof deoupling so as to failitate an autonomous evolution of the tool along the three di�erentdimensions. For instane, in our intentions, a developer should be able to extend the libraryof omputing units with new algorithms without aring too muh for the struture of kernelsor sheduling algorithms and vie versa. In order to ahieve this goal, strutural relationsbetween omponents and their interations had to be aptured through a set of lear interfaes.Partiularly, for what onerns the interation between the three pakages, we ould leveragean important property of the addressed systems: meaningful interations between plants andontrollers take plae only on the ourrene of a spei� set of events generated by RTLIB.On one hand, in the time interval separating two writings on the output bu�er, the di�erentialequations of a plant an be integrated assuming onstant values in the atuatorsz. On theother hand the plant state an be observed through the objets simulating the sensors onlywhen an event assoiated with sampling is generated. Hene, a substantial role in the RTSIMsimulation environment is played by the generation of disrete events for RTLIB. This isahieved by using the Metasim library, whih is a small software layer developed at the RetiszMore sophistiated atuator shemes suh as �rst order hold or analog loops an easily be modeled in theplant desription.Copyright 2000 John Wiley & Sons, Ltd. Softw. Prat. Exper. 2000; 00:1{32Prepared using speauth.ls

16 L. PALOPOLI, GIUSEPPE LIPARI, ET AL.
«Interface»

AbsTask
+schedule()
+deschedule()
+onArrival()
+onEnd()

«Interface»
AbsRTTask

+getDeadline()
+getRelDeadline()

Task

RTTask

Entity

Instr
+schedule()
+deschedule()
+onEnd() *

ExecInstrWaitInstrContrInstr

UML legend

inheritance, arrow
toward base class

inheritance, arrow
interface

+ public

<<Interface>> abstract collection
of method specifications

Figure 8. Class diagram representing the Task family of lasses.Lab of Suola Superiore S. Anna. Metasim provides the basi lasses for writing generi disreteevent simulations [5, 16, 17℄ and a lear framework to use them.The remainder of this setion is devoted to a short desription of the three pakages (bothstrutural and behavioural) and of their most important interations. For obvious spaeonstraints, the desription is far from omplete. The interested reader is referred to thetehnial doumentation of the tool [23℄. The omponents of the libraries and their behaviourare desribed by the UML graphial notation [26℄.The RTLIB PakageRTLIB is a library designed to simulate the timing behaviour of a real-time software system.It models entities like real-time tasks, sheduling algorithms, single and multi proessor nodes,and network links.Tasks. One of the most important entities needed to speify a software arhiteture is thetask. The family of lasses for modeling tasks is shown in Figure 8 as a UML lass diagram.In order to de-ouple the interfae of a task from its internal implementation, we deidedto provide an abstrat interfae AbsTask that exposes the basi methods to handle a task(shedule, deshedule, onArrival, onEnd). This same interfae is used by all entities thatan be sheduled: for example, an aperiodi server will implement the AbsTask interfae (seethe server setion below).Copyright 2000 John Wiley & Sons, Ltd. Softw. Prat. Exper. 2000; 00:1{32Prepared using speauth.ls

AN OO TOOL FOR SIMULATING DISTRIBUTED REAL-TIME CONTROL SYSTEMS 17The Task lass ontains a list of instrutions, whih are modeled by the Instr lass.Examples of instrutions are:� ExeInstr that models a piee of sequential ode with a ertain exeution time; theexeution time is desribed by a RandomVar objet: hene it is possible to model aportion of ode with an arbitrarily distributed random exeution time;� WaitInstr and SignalInstr that model the wait and signal system alls for onurrentaess to shared resoures using semaphores; and� the ControlInstr family of lasses that model the exeution of omputing units.A programmer inserts instrutions into tasks, just as she/he would write a real implementation.Instrutions are exeuted sequentially x and have a duration, whih an either be deterministior spei�ed as a random variable.In the types of appliations we want to model, tasks have timing requirements. The mostommon onstraint is the deadline: the absolute deadline of a job is the instant of time bywhih the job must �nish; the relative deadline of a task is the interval of time between thearrival time and the absolute deadline of eah job.A real-time task is modeled by the abstrat interfae AbsRTTask whih derives from theAbsTask (Figure 8). It omprises the getDeadline() and getRelDeadline()methods, whih returnrespetively the absolute and the relative deadline of a task.Kernels. The Kernel family of lasses models a omputational resoure, like single proessoror multi-proessor nodes. As in the ase of tasks, we found it useful to introdue an abstratinterfae, AbsKernel, apturing the minimum set of servies required to any type of kernel. Inpartiular we identi�ed the following servies:� task insertion into a ready queue (method ativate),� task extration from the ready queue (method suspend),� task dispath (method dispath): the urrently exeuting task is revoked use of the CPU,whih is assigned to the �rst task in the ready queue. In multiproessor systems thekernel performs this operation on eah proessor under its ontrol.The kernel interfae also inludes methods to handle the most important events a kernelan reeive: the arrival of a new task (method onArrival) and the termination of a task's job(method onEnd).Notie that, at this point, we have not yet introdued any notion of \task priority". In fat,di�erent sheduling poliies ompare tasks based on di�erent parameters. For example, theRate Monotoni sheduler requires a stati priority to be assigned to eah task, whereas theEarliest Deadline First sheduler uses the absolute deadline of a job to determine the taskxThus far, this model has proven suÆiently expressive, sine we restrited the appliation of the tool tomodeling lassial \data-ow" oriented real-time ontrol appliations. In the future, we plan to model alsomultimodal appliations for whih a diret support for branhes will be neessary. The addition of this featurerequires slight modi�ation to the struture of RTLIB and it is planned for future revisions.Copyright 2000 John Wiley & Sons, Ltd. Softw. Prat. Exper. 2000; 00:1{32Prepared using speauth.ls

18 L. PALOPOLI, GIUSEPPE LIPARI, ET AL.
«Interface»
AbsKernel

+activate(t:AbsTask *)
+suspend(t:AbsTask *)
+dispatch()
+onArrival(t:AbsTask *)
+onEnd(t:AbsTask *)

RTKernel

«Interface»
Scheduler

+insert()
+extract()
+getFirst()

RTScheduler

PrioScheduler
+addTask(t:AbsRTTask *,p:int)

EDFScheduler
+addTask(t:AbsRTTask *)

PrioModel

RTModel
+getPriority()

EDFModel

TaskModel
«Interface»
AbsTask

«Interface»
AbsRTTask

 * *

UML legend

inheritance, arrow
toward base class

inheritance, arrow
interface

+ public

<<Interface>> abstract collection
of method specificationsFigure 9. Class diagram representing the Kernel family of lasses.priority. Moreover, some sheduling poliies (like Proportional Share or Round Robin) do notuse any priority at all.Hene, the ordering of tasks in the ready queue depends on the sheduling poliy,whih is implemented by the Sheduler family of lasses. Eah one implements a di�erentqueuing poliy: for example, EDFSheduler implements the Earliest Deadline First shedulingalgorithm, PrioSheduler implements a generi Fixed Priority sheduling algorithm, andso on. The sheduling parameters are not stored in the task lass, but in the wrapper lassTaskModel: thus, the task implementation is independent from the sheduling algorithm (asin the Adapter Pattern [10℄). The TaskModel hierarhy of lasses is similar to the Shedulerhierarhy: every sheduler orresponds to a task model. In Figure 9 the inheritane relationshipsbetween these lasses are summarized.The urrent distribution of RTLIB provides single proessor and multi-proessor kernelsas prede�ned omponents, with any of the following sheduling poliies: FIFO, EDF, �xedpriority (FP) and rate monotoni, and EEVDF [35℄. For the multi-proessor versions of EDFand FP, it is possible to allow/disallow migration: in the latter ase, tasks must be statiallyalloated to proessors.Example. The noti�ation mehanism and the way events are handled in RTLIB are betterexplained with a pratial example. The sequene diagram shown in Figure 10 aptures asnapshot of the system desribed in Figure 3 when a preemption ours: while Task 1 isexeuting, Task 2 is ativated (arrives) and, having a higher priority, preempts Task 1.When Task 2 is ativated, its arrival event is proessed: as a onsequene, the onArrival()method of Task 2 is invoked. After updating its internal status (for example reording thearrival time and resetting the urrent instrution pointer to the �rst instrution), Task 2 allsthe onArrival() method of the kernel. The kernel, in turn, inserts the task in the readyqueue (alling s.insert()), and heks if this task is now the �rst element in the queue. IfCopyright 2000 John Wiley & Sons, Ltd. Softw. Prat. Exper. 2000; 00:1{32Prepared using speauth.ls

AN OO TOOL FOR SIMULATING DISTRIBUTED REAL-TIME CONTROL SYSTEMS 19
e1: ExecInstr k: RTKernel s:EDFScheduler

deschedule()
deschedule()

getFirst()

insert()

schedule()

onArrival()

Task 1: RTTask Task 2: RTTask

onArrival()

Figure 10. Sequene diagram: Task 2 preempts Task 1.so, a preemption must our: the urrent exeuting Task 1 yields the proessor and Task 2beomes the urrent exeuting task.Hene, Task 1 must be signaled alling its deshedule() method; in turn, it alls thedeshedule()method of its urrently exeuting instrution. Finally, Task 2 is signaled allingits shedule() method.Servers. When soft real-time aperiodi tasks are to be sheduled together with hard real-time periodi tasks, the goal is to improve the response time of the aperiodi tasks withoutompromising the shedulability of the hard real-time tasks. A popular oneptual frameworkfor modeling the behaviour of suh systems is to assoiate a server to the soft aperiodi tasks. Aserver is haraterized by ertain parameters speifying exatly its performane expetations.Several aperiodi servie mehanisms have been proposed under RM [22, 21, 2, 38℄ and underEDF [31, 12, 33, 32, 1, 24℄ sheduling.The Server lass models these algorithms.We notied that in almost all the aperiodi server mehanisms, a server is treated as apartiular kind of task and is inserted in the ready queue together with the other regularCopyright 2000 John Wiley & Sons, Ltd. Softw. Prat. Exper. 2000; 00:1{32Prepared using speauth.ls

20 L. PALOPOLI, GIUSEPPE LIPARI, ET AL.
«Interface»
AbsKernel
+activate()
+suspend()

«Interface»
AbsResManager

+lock(r:Resource,t:AbsTask)
+unlock(r:Resource,t:AbsTask)

Resource
+lock(t:AbsTask)
+unlock()
+isLocked(): bool
+getHolder(): AbsTask *

WaitInstr
+getTask(): AbsTask *
+getResource(): Resource *

SignalInstr
+getTask(): AbsTask *
+getResource(): Resource *

ResManager
+addResource(r:Resource)
+setKernel(t:AbsKernel)

SRPManager
+declareResUsage(t:AbsRTTask,r:Resource)

SemManager

Scheduler

UML legend

inheritance, arrow
toward base class

+ public

<<Interface>> abstract collection
of method specificationsFigure 11. Class diagram representing the Resoure Manager family of lasses.tasks. For this reason, we deided to derive the server lass from the AbsTask interfae, so thatthe sheduler does not need to distinguish a regular task from a server. The main advantage isthat, when implementing the server algorithm, the sheduler module an be reused without anymodi�ation. On the other side, a server handles aperiodi tasks just as a kernel does: whenseveral aperiodi requests are pending, the server must hoose whih one must be serviednext. For this reason, the server lass also derives from the AbsKernel interfae. In this way,a task has not to distinguish whether it is served by a server or by a regular kernel, and wean re-use the same ode for the task lass. In the urrent RTLIB distribution, the pollingserver, deferrable server (DS), sporadi server (SS), total bandwidth server (TBS), and onstantbandwidth server (CBS) are provided as prede�ned omponents.Sharing other resoures. Sometimes, tasks aess mutually exlusive resoures: for example,tasks an aess the same memory blok that is proteted by a mutex semaphore. For example,tasks an aess the same memory blok that is proteted by a mutex semaphore.In RTSIM, this an be simulated by means of a lass Semaphore and of a ResoureManager, whih is the entity that manages the operations on a semaphore, holding the blokedtasks in queues. Tasks an operate on semaphores by means of WaitInstr and SignalInstrinstrutions.In Figure 11 the relationship among the lasses is shown while in Figure 12 we show apossible senario of exeution.When a task exeutes a WaitInstr instrution, the Resoure Manager heks if thesemaphore is free by invoking lok(Semaphore *s). In the onsidered senario, the semaphoreCopyright 2000 John Wiley & Sons, Ltd. Softw. Prat. Exper. 2000; 00:1{32Prepared using speauth.ls

AN OO TOOL FOR SIMULATING DISTRIBUTED REAL-TIME CONTROL SYSTEMS 21
Task 1: RTTask Task 2: RTTaskWaitInstrw: k: RTKernel

schedule()
lock(Semaphore *s)

suspend()

SimpleResManagerres:

deschedule()

dispatch()
schedule()

Figure 12. Sequene diagram showing a loking operation on a semaphore.
is loked, thus the task must be bloked: the resoure manager invokes the Kernel::suspend()method to blok the task and Kernel::dispath()methods, in order to shedule another task.In the urrent implementation of RTLIB, a simple loking poliy, the Priority Inheritaneprotool (PIP), the Priority Ceiling protool (PCP), and the Stak Resoure Poliy (SRP)are provided as prede�ned omponents. In the ase where one of these protools is used, theorresponding resoure manager has to interat with Sheduler omponent to hange the taskpriority aording to the protool. This justi�es the relation between the Resoure Managerand the Sheduler omponent in Figure 11.Networks. Every kernel may have one or more network interfaes, modeled by theNetInterfae family of lasses, eah one onneted to a network link, modeled by the NetLinkfamily of lasses. For eah network link lass, there is a orresponding network interfae lass.A task an send a message, modeled by the Message lass, to another task passing it tothe appropriate network interfae of its kernel. The Message lass implements the AbsTaskinterfae: in this way, it an be handled by a Sheduler. A network interfae has a pointer toa Sheduler objet for implementing the message en-queuing poliy. It realizes the mediumaess protool, suh as the Ethernet or CAN bus protool. In partiular, the CANInterfaeCopyright 2000 John Wiley & Sons, Ltd. Softw. Prat. Exper. 2000; 00:1{32Prepared using speauth.ls

22 L. PALOPOLI, GIUSEPPE LIPARI, ET AL.
GenericPlant

+integrate(newTime:Tick)
+addSensor(s:Sensor *)
+getState(): ColumnVector
+addActuator(position:integer,a:Actuator *)
-DiffEq()

*

1

«interface»
Sensor

+updateSensor(p:GenericPlant * p)

«interface»
Actuator

+getCommand()

*

1

Figure 13. Class diagram representing the omponents of the numerial pakage to be used for modelingplants.has a pointer to a funtion that transforms the message priority (or deadline) in a CANpriority{.Two additional instrutions have been de�ned:� SendInstr instrution: takes as parameters the name of the destination task and afuntion objet for building new messages.� ReeiveInstr instrution: if a message has already arrived for the task, it gets themessage, otherwise it bloks the task waiting for a message from the network interfae.In the urrent distribution of RTLIB, the Ethernet network and the CAN bus are providedas prede�ned omponents.The Numerial PakageThe main purpose of the numerial pakage is to provide programming models for ontinuoustime plants. A plant is desribed by means of its state variables, di�erential equations and soon. From a strutural viewpoint, the numerial pakage is a software layer built on the topof a library whih provides some servies, suh as di�erential equation integration and linearalgebra operations. The urrent implementation is based on the OCTAVE library, whih is afreely available tool enompassing the best known algorithms for numerial omputation. Thepresene of a software abstration layer allows us to replae OCTAVE with any other similarsolution without a�eting the struture of the simulator. As well as permitting the de�nitionof a plant, the numerial pakage also exports a set of useful lasses for linear algebra, suh asMatrix, ColumnVetor and so on.{High level protools (like TCP/IP) have not been implemented for they are well beyond the sope of thiswork.Copyright 2000 John Wiley & Sons, Ltd. Softw. Prat. Exper. 2000; 00:1{32Prepared using speauth.ls

AN OO TOOL FOR SIMULATING DISTRIBUTED REAL-TIME CONTROL SYSTEMS 23

ComputingUnit
+read()
+execute()
+write()
+attachInput(pos:int,in:DataSource *)
+attachOutput(pos:int,o:DataSink)

«interface»
DataSource

+getData(): ColumnVector

«interface»
DataSink

+putData(data:ColumnVector)

OutputBuffer
-value: ColumnVector
-sampledValue: ColumnVector
+sample()

InputBuffer
-value: ColumnVector
+getCommand()

MemoryBuffer

ContrInstr
#onEnd()

PeriodicTimer
+onTimeStamp()

«interface»
Sensor

The sensor may
be sampled periodically
by a Timer (belonging
to the event generating
module)

Operations on a
computing unit can
be triggered by a
pseudoinstruction

ContrReadInstr
+onEnd()

ContrWriteInstr
+onEnd()

ContrExecuteInstr
+onEnd()

«interface»
Actuator

UML legend

inheritance, arrow
toward base class

inheritance, arrow
interface

+ public

<<Interface>> abstract collection
of method specifications

Figure 14. The most important lasses used to model the funtional behaviour of a ontroller.User-de�ned plants are derived from an abstrat lass named GeneriPlant (see Figure 13).The inheritane mehanism permits us to add plant spei� information by inserting new datamembers in the derived lass. The di�erential equations are spei�ed by providing a de�nitionto the abstrat method DiffEq.The plant evolution an be observed by a set of objets implementing the Sensor interfae.Formally speaking, if the state of the plant is represented by the olumn vetor x, a Sensorrealizes an output funtion y = h(x; t). The programmer is required to implement funtion hby writing a virtual method, alled updateSensor, whih an read the plant state by issuinga all to the getState method of the plant. The mehanism used to update the value of thesensor is based on the observer pattern [10℄.The evolution of a plant an be inuened by a set of atuators. An atuator is an objetimplementing the Atuator interfae. Eah atuator is registered into a position, denoted byan integer number. This onvention is to simplify the writing of di�erential equations. TheCopyright 2000 John Wiley & Sons, Ltd. Softw. Prat. Exper. 2000; 00:1{32Prepared using speauth.ls

24 L. PALOPOLI, GIUSEPPE LIPARI, ET AL.integration of the plant di�erential equations is performed by issuing a all to the integratemethod exported by the plant.CTRLIBThe funtional model of the system is expressed using the lasses of the CTRLIB pakage.CTRLIB o�ers two types of omponents: omputing units and storage units. Both of theseomponents are framed within a hierarhy of lasses. The struture of the basi lasses ofCTRLIB is shown in Figure 14.In order to speify a new type of omputing unit, the programmer has to derive it from theabstrat lass ComputingUnit and has to provide an implementation for three pure virtualmethods: read(), exeute() and write(). One the lass is de�ned, the programmer aninstantiate objets from it to be used in di�erent ontexts. For example, a lass implementinga PID ontroller is likely to be a reusable omponent.A ComputingUnit is onneted to a set of inputs, whih are objets implementing theDataSoure interfae, and to a set of outputs whih implement the DataSink interfae. Eahomputing unit an be assoiated with speial instrutions triggering the exeution of theread(), exeute() and write() operation. Suh instrutions derive from the ContrInstrlass.Input bu�ers are realized as lasses implementing both the Sensor and DataSoureinterfaes. A prede�ned method, alled sample(), is used to sample the value of the sensorupon the ourrene of ertain events. A partiular hoie an be the use of a RTLIB objetimplementing a periodi timer. Another possibility is to have the sample() method alledby an instrution of a task. The sampled value an be read by a omputing unit alling thegetValue() method.Output bu�ers are objets implementing both the Atuator and the DataSink interfaes.Thus, they export the putValue() method to the omputing units and the getCommand()method to the plant. Memory bu�ers implement both the DataSoure and DataSink interfaesand are used to exhange information between the di�erent omputing units. Output andmemory bu�ers an be used with no other e�orts than de�ning the width of the data vetorwhen an objet is instantiated. In order to simplify the simulation ode, the reation of memorybu�ers onneting di�erent omputing units an be made in a semi-automati fashion byappropriate programming failities.Some insight into the hybrid simulationThis setion is devoted to showing the main interations between the di�erent omponents ofthe RTSIM tool suite when the libraries are employed to perform a hybrid simulation betweena ontinuous time plant and a digital ontroller, whose timing evolution is simulated by aRTLIB disrete event model.In order to highlight the interations between di�erent omponents of RTSIM that take plaeupon the ourrene of some meaningful events, onsider the sequene diagram in Figure 15.The boxes represent RTSIM objets involved in a simulation. The diagram is partitionedaording to the three di�erent pakages objets belong to. The diagram shows a sequeneCopyright 2000 John Wiley & Sons, Ltd. Softw. Prat. Exper. 2000; 00:1{32Prepared using speauth.ls

AN OO TOOL FOR SIMULATING DISTRIBUTED REAL-TIME CONTROL SYSTEMS 25
rFilt_x: ContrReadInstr Filt_x: MyCompUnit F_x: MemoryBuffer invPend: LTIPlant

onEnd()
integrate()

getData()

read()

RTLIB CTRLIB Numerical PackageFigure 15. Sequene diagram showing the interations whih take plae when an end event for ainstrution is handled.
integrate()

Ode.integrate()

updateSensor()

getCommand()

CTRLIB Numerical Package

In_x: invPend: LTIPlantOut_u: OutputBufferInputBuffer

Figure 16. Sequene diagram showing how the integration is performed.Copyright 2000 John Wiley & Sons, Ltd. Softw. Prat. Exper. 2000; 00:1{32Prepared using speauth.ls

26 L. PALOPOLI, GIUSEPPE LIPARI, ET AL.of method alls that follows the termination event of the rFilt x instrution. This event ishandled by the onEnd() method of the rFilt x objet. The �rst ation performed by rFilt xalls the integrate()method on the invPendulum objet, whih determines the integrationof the di�erential equation up to the urrent instant of time. The seond ation is a all onthe read() method of the omputing unit assoiated with the instrution, whih, in its turn,reads the data from the bu�er.It is also interesting to observe how the integration is performed by detailing the sequeneof operations performed by alling the integrate() method (diagram in Figure 16). At thebeginning of the integration the value of the ommand variables, ontained in the output bu�er,are aquired through the getCommand() method. Then, the integration an be performed(by alling the Ode.integrate() funtion of the OCTAVE library) assuming onstant valuesfor the input throughout the integration interval. At the end of the integration, the valuesontained in the input bu�ers, whih model the sensors, are updated.CONCLUSION AND FUTURE WORKIn this paper a tool for the joint simulation of a plant and of a real-time embedded ontrollerhas been presented. By using hybrid tehniques the tool supports realisti modeling for manyimplementation related issues, whih are not usually aounted for during ontroller design.The tool onsists of a omplete set of C++ libraries for modeling, simulating and gatheringstatistial pro�les of performane metris. The appliation of the tool is partiularly usefulwhenever a given ontrol design is based on heterogeneous dataows from the environmentinduing the use of a omplex Hardware/Software implementation. In these ases, the toolprovides important guidelines in the hoie of suh parameters as the sampling rates of sensorsand, more generally, permits evaluation of di�erent arhitetural alternatives. The futureativities of the RTSIM team will be onentrated on the integration of the tool in moreomplex design environments, inluding visual modeling tools and automati ode generationfor real-time exeution environments.ACKNOWLEDGEMENTSThe authors would like to thank the anonymous reviewers for their preious suggestions, whihhelped to improve the presentation of the material.REFERENCES1. L. Abeni and G.Buttazzo. Integrating multimedia appliations in hard real-time systems. In Proeedingsof the 19th IEEE Real-Time Systems Symposium, Madrid, Spain, deember 1998. IEEE.2. N.C. Audsley, A. Burns, M. Rihardson, K. Tindell, and A. Wellings. Applying new sheduling theory tostati priority preemptive sheduling. Software Engineering Journal, 8(8):284{292, Sep 1993.3. N.C. Audsley, A. Burns, M.F. Rihardson, K. Tindell, and A.J. Wellings. Stress: A simulator for hardreal-time systems. Software: Pratie and Experiene, 6(24), 1994.4. T.P. Baker. Stak-based sheduling of real-time proesses. Journal of Real-Time Systems, 3, 1991.Copyright 2000 John Wiley & Sons, Ltd. Softw. Prat. Exper. 2000; 00:1{32Prepared using speauth.ls

AN OO TOOL FOR SIMULATING DISTRIBUTED REAL-TIME CONTROL SYSTEMS 275. G. Booh. Objet oriented design with appliations. Benjamin/Cummings Publishing Company, In.,1991.6. J.B. Dennis. First version dataow proedure language. Tehnial report, Massahusetts In. of Tenology,Lab. Comp. S., 1975.7. John Eaton et al. http://bevo.he.wis.edu/otave.8. J. Eker and A. Cervin. A matlab toolbox for real-time and ontrol systems o-design. In Pro. of TheReal-Time Computiong Systems and Appliations, Hong Kong, China, Deember 1999.9. Paolo Gai, Lua Abeni, Massimiliano Giorgi, and Giorgio Buttazzo. A new kernel approah for modularreal-time systems development. In Proeedings of the 13th IEEE Euromiro Conferene on Real-TimeSystems, June 2001.10. E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design Patterns - Elements of Reusable Objet-Oriented Software. Addison Wesley, 1997.11. R. Gerber, S. Hong, and M. Saksena. Guaranteeing real-time requirements with resoure-based alibrationof periodi proesses. IEEE Transation on Software Engineering, 21(27), 1995.12. T.M. Ghazalie and T.P. Baker. Aperiodi servers in a deadline sheduling environment. Journal ofReal-Time System, 9, 1995.13. G. Kahn. The semantis of a simple language for parallel programming. In Proeedings of the IFIPCongress 74, Amstrdam, 1974.14. N. Kim, M. Ryu, S. Hong, M. Saksena, C. Choi, and H. Shin. Visual asessment of a real-time systemdesign: a ase study on a n ontroller. In Proeedings of the IEEE Real-time Systems Symposium, 1996.15. H. Kopetz, A. Damm, C. Koza, M. Mulazzani, W. Shwabla, C. Senft, and R. Zainlinger. Distributedfault-tolerant real-time systems: The mars approah. IEEE Miro, 9(1), February 1989.16. W. Kreutzer. Systems Simulation - Programming Styles and Languages. Addison-Wesley, 1986.17. A.M. Law and W.D. Kelton. Simulation modeling and analysis. MGraw-Hill Book Company., 1991.18. Chen Lee, Raj Rajkumar, John Lehozky, and Dan Siewiorek. Pratial solutions for qos-based resourealloation. In IEEE Real Time System Symposium, Madrid, Spain, Deember 1998.19. E. Lee and A. Sangiovanni-Vinentelli. A uni�ed framework for omparing models of omputation.Transation on Computer aided Design of Integrated Ciruits and Systems, 17(12):1217{1229, 1998.20. Edward A. Lee. Computing for embedded systems. In IEEE Instrumentation and MeasurementTehnology Conferene, Budapest, Hungary, May 2001.21. J.P. Lehozky and S. Ramos-Thuel. An optimal algorithm for sheduling soft-aperiodi tasks in �xed-priority preemptive systems. In Proeedings of the IEEE Real-Time Systems Symposium, Deember 1992.22. J.P. Lehozky, L. Sha, and J.K. Strosnider. Enhaned aperiodi responsiveness in hard real-timeenvironments. In Proeedings of the IEEE Real-Time Systems Symposium, Deember 1987.23. G. Lipari and L. Palopoli. A framework for simulationg distributed embedded real-time ontrollers.Tehnial report, RETIS-LAB, Suola Superiore S.Anna, 2002.24. Giuseppe Lipari and Giorgio Buttazzo. Shedulability analysis of periodi and aperiodi tasks withresoure onstraints. Journal of Systems Arhiteture, 46:327{338, 2000.25. C.L. Liu and J.W. Layland. Sheduling algorithms for multiprogramming in a hard-real-time environment.Journal of the Assoiation for Computing Mahinery, 20(1), 1973.26. James Rumbaugh, Ivar Jaobson, and Grady Booh. The Uni�ed Modeling Language Referene Manual.Addison-Wesley, 1999.27. D. Seto, J.P. Lehozky, L. Sha, and K.G. Shin. On task shedulability in real-time ontrol systems. InIEEE Real Time System Symposium, Deember 1996.28. Lui Sha, Ragunathan Rajkumar, and john P. Lehozky. Priority inheritane protools: An approah toreal-time synhronization. IEEE transation on omputers, 39(9), September 1990.29. K.G. Shin, C.M. Krishna, and Y. Lee. A uni�ed method for evaluationg real-time omputer ontrollersand its appliation. IEEE Transations on Automati Control, AC30(4):357{366, April 1985.30. B. Sprunt, L. Sha, and J. Lehozky. Aperiodi task sheduling for hard-real-time systems. Journal ofReal-Time Systems, 1, July 1989.31. M. Spuri and G. Buttazzo. EÆient aperiodi servie under earliest deadline sheduling. In Proeedingsof the IEEE Real-Time Systems Symposium, Deember 1994.32. M. Spuri and G.C. Buttazzo. Sheduling aperiodi tasks in dynami priority systems. Journal of Real-Time Systems, 10(2), 1996.33. M. Spuri, G.C. Buttazzo, and F. Sensini. Robust aperiodi sheduling under dynami priority systems.In Proeedings of the IEEE Real-Time Systems Symposium, Deember 1995.34. D.B. Stewart, R.A. Volpe, and P.K. Khosla. Design of dynamially reon�gurable real-time software usingport-based objets. IEEE trans. on Software Engineering, 23(12), 1997.Copyright 2000 John Wiley & Sons, Ltd. Softw. Prat. Exper. 2000; 00:1{32Prepared using speauth.ls

28 L. PALOPOLI, GIUSEPPE LIPARI, ET AL.35. Ian Stoia, Hussein Abdel-Wahab, Kevin Je�ay, Sanjoy K. Baruah, Johannes E. Gehrke, and C. GregPlaxton. A proportional share resoure alloation algorithm for real-time, time-shared systems. In IEEEReal Time System Symposium, 1996.36. C.M. Kirsh T. Henzinger, B. Horowitzm. Embedded ontrol systems development with giotto. InPro. of ACM SIGPLAN 2001 Workshop on Languages, Compilers, and Tools for Embedded Systems(LCTES'2001), June 2001.37. T.-S. Tia, Z. Deng, M. Shankar, M. Storh, J. Sun, L.-C. Wu, and J. W.-S. Liu. Probabilisti performaneguarantee for real-time tasks with varying omputation times. In Real-Time Tehnology and AppliationsSymposium, pages 164{173, Chiago,Illinois, January 1995.38. K. Tindell, A. Burns, and A. Wellings. An extendible approah for analysing �xed priority hard real-timetasks. Journal of Real Time Systems, 6(2):133{151, Mar 1994.39. M. T�orngren. Fundamentals of implementing real-time ontrol appliations in distributed omputersystems. J. of Real-time systems, 14:219{250, 1998.

Copyright 2000 John Wiley & Sons, Ltd. Softw. Prat. Exper. 2000; 00:1{32Prepared using speauth.ls

