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om Italia LabSUMMARYThis paper presents an obje
t oriented software tool, 
alled RTSIM, aimed atsimulating real-time embedded 
ontrollers. The tool 
onsists of a 
olle
tion of C++libraries permitting a separate spe
i�
ation of the fun
tional behaviour of the 
ontrollerand of the hardware/software ar
hite
ture to be used for its deployment. In parti
ular, itis possible to provide an a

urate modeling of the 
on
urrent ar
hite
ture of the 
ontroltasks and of the run-time support o�ered by the operating system for the real-times
heduling of the shared resour
es (CPU, memory bu�ers and network links). In thisway, it is possible to 
ompare di�erent s
heduling solutions by evaluating their simulatedperforman
e dire
tly in the domain of the 
ontrol appli
ation. Moreover, the tool 
anbe utilized to tune up su
h design parameters as the a
tivation frequen
ies of the tasks.The appli
ation of the tool is shown on a meaningful 
ase-study.key words: Simulation, Control systems, Real-Time systems, C++ libraryINTRODUCTIONDuring the last years, the appli
ation of embedded 
ontrol systems has be
ome a dominantfa
tor governing the 
ommer
ial su

ess of several engineering produ
ts. The best knownexample is represented by the automotive industry: from their seminal appli
ations torestri
ted ni
hes of produ
tion vehi
les, embedded devi
es are gradually be
oming ubiquitous
omponents of modern 
ars. In other appli
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2 L. PALOPOLI, GIUSEPPE LIPARI, ET AL.introdu
tion of embedded 
ontrol devi
es began earlier, but newer and newer fun
tionalities,whi
h 
ould not even be 
on
eived only a few years ago, are making inroads.The integration of 
ows of data from heterogenous sensors, having di�erent requirementsin terms of sampling rates and 
omputation times, indu
es almost naturally 
on
urrentimplementation s
hemes. The ability of the system designer to spe
ify, manage, and verifythe fun
tionality and performan
e of real-time 
on
urrent pro
esses (tasks) turns out to be a
ru
ial su

ess fa
tor. Moreover, in the design of mass-produ
ed embedded systems, the 
hoi
eof hardware has a strong in
uen
e on the e
onomy of the solution. Therefore, even in frontof in
reasingly 
omplex problems, the push towards minimization of 
omputing hardware 
ostremains a dominant fa
tor. In this 
ontext, an in
reasing emphasis is put on the e�e
tivenessand on the eÆ
ien
y of the produ
tion pro
ess of real-time software. Traditional development
y
les tend to separate \rigidly" the work of 
ontrol engineers from that of software engineersbut the �nal out
ome is often far from optimal in terms of performan
e/
ost 
riteria.In order to introdu
e a profound innovation in this �eld, the availability of 
o-design toolsspanning over diverse engineering dis
iplines is of utmost importan
e.This paper fo
uses on one of the most familiar problems in real-time 
ontrol softwaredesign, i.e. how the performan
e of a 
ontroller is a�e
ted by ar
hite
tural and implementation
hoi
es (e.g. the de
omposition of feedba
k 
ontrollers into tasks, the allo
ation of 
omputationresour
es to tasks, the s
heduling of the shared resour
es, et
). Realisti
 and quantitativeanswers to this question during the early phases of the development are a pre
ious tool forprodu
t development.The 
on
ept of performan
e evaluation for a real-time 
ontroller 
an be developed alongdi�erent dire
tions. Most of the resear
h in the area of real-time 
omputing has studied theperforman
e of 
on
urrent software systems under the viewpoint of their timing behaviour.Ever sin
e the seminal work of Liu and Layland [25℄, a fundamental performan
e metri
 is
onsidered to be the tasks' s
hedulability, i.e. the ability for a set of tasks to exe
ute respe
tingtheir assigned deadlines. For some 
lasses of real-time appli
ations (quali�ed as soft real-time),a more useful performan
e metri
 is represented by the probability for ea
h task to exe
uterespe
ting its deadlines [1, 37, 18℄. At a higher level of abstra
tion, the \
olle
tive" timingperforman
e of a set of tasks has been evaluated in terms of end-to-end delay, output jitter,and other metri
s [11℄.The 
omplian
e of a 
ontroller's timing behaviour with some spe
i�ed requirements (e.g.s
hedulability) is not always suÆ
ient to 
hara
terize performan
e at the system level. Classi
alperforman
e metri
s normally used during the 
ontrol synthesis 
onsider the step response(rise time, overshoot, et
.) or the 
losed loop transfer fun
tion. Quadrati
 
ost fun
tions,or other metri
s su
h as H2=H1 norms, are the foundation of popular pro
edures foranalyti
al 
ontrol synthesis. However, during the 
ontrol synthesis phase, e�e
ts derivingfrom the implementation ar
hite
ture are not usually taken into a

ount. The diÆ
ulties in�nding tra
table analyti
al models for the sto
hasti
 delays deriving from data dependen
iesand s
heduling jitter and the la
k of adequate modeling and simulation tools, indu
e the
ontrol designers to synthesize 
ontrol laws assuming null or �xed delays from the underlyingimplementation platform. As a 
onsequen
e, even a software design 
omplying with thedeadline 
onstraints 
an result into a poorly performing system. These problems are dete
tedonly during the late phases of the design 
y
le, and the solution is often sought by 
y
lingCopyright 
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AN OO TOOL FOR SIMULATING DISTRIBUTED REAL-TIME CONTROL SYSTEMS 3through a long series of 
ostly trial-and-error iterations among the di�erent phases of thedevelopment 
y
le.In this paper, we present a simulation tool, 
alled RTSIM, whi
h alleviates these diÆ
ulties,permitting us to eÆ
iently deal with di�erent aspe
ts of the 
ontrol synthesis. The main goal ofRTSIM is to permit the joint simulation of a real-time 
ontroller and of the 
ontrolled plant,
olle
ting performan
e measures either on the timing behaviour of the 
ontroller or on thequality of the plant dynami
s. Spe
i�
ally, a designer is allowed to spe
ify:� a set of plants (spe
i�ed through their di�erential models) 
onne
ted to a distributed
ontrol system by means of sensors and a
tuators,� the fun
tional behaviour of the 
ontroller,� the ar
hite
tural 
omponents of the implementation (real-time tasks, RTOS, sharedresour
es),� the mapping of fun
tional behaviours onto the ar
hite
tural 
omponents.By leveraging a 
omplete orthogonalization of the fun
tional and ar
hite
tural designs,RTSIM enables: 1) an easy 
omparison of di�erent implementation approa
hes for the samefun
tionalities, 2) a performan
e based tuning of su
h design parameters as the tasks' a
tivationrates/s
heduling priorities. The tool is organized as a 
olle
tion of C++ libraries that in
ludeprogramming fa
ilities for de�ning sto
hasti
 parameters (e.g. for tasks' exe
ution times,network pa
kets dimensions, et
), for 
olle
ting performan
e statisti
 and for re
ording eventsof interest on exe
ution tra
es.A very important feature of the tool is that it en
ompasses the best known solutions forreal-time CPU s
heduling (either on single or on multipro
essor boards) and for boundeddelay sharing of resour
es, as prede�ned library 
lasses. The fun
tional spe
i�
ation of thesystem is provided by inter
onne
ting a set of reusable 
omponents, a

ording to a syntax
losely related to well-known data
ow paradigmsy Another important feature of the tool isthe presen
e of a well de�ned programming framework guiding users in developing their ownfun
tional and ar
hite
tural 
omponents. On
e the design of the 
ontroller has been settledand properly tuned, its implementation on a real-time operating system is straightforward.The �ne grained modeling of su
h software ar
hite
tural 
omponents as real-time tasks,s
hedulers, syn
hronization proto
ols and so on, enables a very a

urate simulation of thesystem's performan
e.As far as the simulation of the plant is 
on
erned, RTSIM exploits the fun
tionality of apowerful mathemati
al library, 
alled OCTAVE [7℄, embodying state of the art solutions forthe integration of di�erential equations.yThe term \data
ow" generally denotes a sub
lass of Kahn pro
esses [13℄, introdu
ed by Dennis in 1975 [6℄.However, sin
e many software environments 
laim variants of this model even if their semanti
s bear littleresemblan
e with that proposed by Davis, throughout this paper a loose meaning for this term will be used.Therefore, data
ow will intuitively denote a dire
ted sequen
e of transformations applied on data 
owing frominputs to outputs.Copyright 
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4 L. PALOPOLI, GIUSEPPE LIPARI, ET AL.STATE OF THE ARTThe best known tool suite for simulating 
ontrol systems is MATLAB. The MATLAB/Simulinkplatform is an ex
ellent 
hoi
e to model and simulate a plant and a fun
tionally des
ribed
ontroller. Moreover, it permits one to automati
ally generate a prototype on a target real-time operating system (by the use of the Real-Time Workshop tool). However, it is not possibleto immediately to model generi
 Hardware/Software ar
hite
ture and s
heduling algorithms.To 
ope with this short
oming, a MATLAB tool to simulate a real-time s
heduler in a Simulinkblo
k is proposed in [8℄. This allows, to a given degree, the simulation of timing propertiesand the assessment of the performan
e of real-time 
ontrollers against 
hanges in the timingattributes of the tasks. The most important feature of this tool is the good integration with theMATLAB/Simulink environment. On the other hand, the la
k of a 
lear separation betweenfun
tional and ar
hite
tural spe
i�
ations hinders the appli
ation of the tool to 
omplexsystems having event driven and/or time driven a
tivities.An interesting produ
t, mainly targeted to the automotive industry, is As
et-SD, by Etasengineering tools. The tool in
ludes an easy to use graphi
al interfa
e that permits modelingthe fun
tionalities of a 
ontroller in a Simulink like environment. The main fo
us of As
et-3Dis the generation of high quality real-time 
ode for prototyped or produ
tion hardware.In re
ent years many interesting tools have been proposed for the analysis and simulation of
omplex real-time systems, networks and kernels. One of the �rst softwares aimed at simulatingreal-time s
heduling was produ
ed by Audsley et al. [3℄. The tool permits modeling a systemof real-time periodi
 and aperiodi
 tasks through a s
ripting language.A well-known 
ommer
ial produ
t in this 
lass is TimeWiz, by Timesys 
orp., whi
h ismostly aimed at the analysis of the timing behaviour of a real-time system with respe
t tos
hedulability 
onstraints. The toolset is being integrated with a UML design framework whi
hallows one to des
ribe 
omplex systems in a fairly general way. However, the tool does not allowone to perform hybrid simulations of a digital 
ontroller along with the 
ontinuous dynami
s ofthe 
ontrolled plant; thus it is not possible to intera
tively evaluate the performan
e of 
ontrolsystems against 
hanges in the task ar
hite
ture and/or in the s
heduling poli
ies.The idea of separating fun
tional and ar
hite
tural spe
i�
ation is well supported bythe VCC tool, produ
ed by Caden
e 
orp. Fun
tional behaviours 
an be spe
i�ed usingdi�erent syntaxes (in
luding the C/C++ language) and the tool permits one to map a givenfun
tionality either on hardware 
omponents (e.g. Asi
) or on software (e.g. 
on
urrent tasks)in order to pursue di�erent performan
e/
ost tradeo�s. The performan
e assessment in VCCregards mainly the timing behaviour of the 
omponents and the simulation of a 
ontinuoustime plant is not dire
tly supported.The GIOTTO programming language [36℄ has been devised to develop hybrid 
ontrolappli
ations 
onsisting of periodi
 tasks. The model of 
omputation is primarily aimedat the design and prototyping of time-predi
table 
ontrol system by the usual paradigmof separating the fun
tional from the timing behaviour (hard s
hedulability requirements).Time predi
tability (s
hedulability) is obtained by restri
ting the design to a time-triggeredar
hite
ture [15℄. A remarkable advantage of this paradigm is the elimination of input andoutput jitters. However, the introdu
ed delays 
an be a very pessimisti
 solution in many
ases. Moreover, the time triggered approa
h does not easily 
ope with event-driven systems.Copyright 
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AN OO TOOL FOR SIMULATING DISTRIBUTED REAL-TIME CONTROL SYSTEMS 5
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Figure 1. Typi
al design pro
ess for the spe
i�
ation and the simulation of a real-time 
ontroller.An integrated design of real-time 
ontrol systems en
ompassing performan
e ands
hedulability 
on
erns was �rst proposed by Seto et al. [27℄. In this work an optimizationpro
edure for the a
tivation frequen
ies of 
ontrol threads is proposed; the goal is maximizingthe 
ontroller's performan
e under s
hedulability 
onstraints. The paper is inspired to theevaluation approa
h for embedded 
ontrollers suggested by Shin et al. [29℄. Other noteworthyresults on this problem are presented by Kim et al. [14℄; the authors �rst map the 
lassi
al
ontrol design parameters onto the end-to-end requirements of the 
ontroller and then applythe method of period 
alibration [11℄ to derive the exe
ution parameters of ea
h thread sothat the end-to-end requirements are respe
ted. A tool like RTSIM may be a very useful aid tovalidate the assumptions and the result of these methods and of any other 
o-design pro
edure.DESIGN PROCESS AND MODELING PRIMITIVESThe 
onstru
tion of a simulation model for RTSIM is 
arried out 
onsidering two orthogonalviewpoints: the fun
tional behaviour of the 
ontroller and the HW/SW ar
hite
ture of itsimplementation. In Figure 1, an overview on a typi
al design pro
ess based on RTSIM isdepi
ted.The fun
tional design, starting from the mathemati
al model of the plant and of itsintera
tions with the environment, produ
es a model of the fun
tional behaviour. Thefun
tional behaviour spe
i�es a sequen
e of operations to be performed on data 
owingthrough the 
ontroller. Su
h operations in
lude the 
omputation of the feedba
k 
ontrol law,the extra
tion of meaningful information from sensors and so on. The fun
tional design alsoprodu
es a set of timing 
onstraints based on the dynami
s of the plant and on the physi
allimitations of sensors and a
tuators.The ar
hite
tural design 
an be 
arried out almost independently. This a
tivity leads to thede�nition of a model 
onsisting of software tasks, s
hedulers, network proto
ols and so on.The fun
tional design is then mapped onto the ar
hite
tural design, wrapping up thefun
tional 
omponents into 
orresponding ar
hite
tural entities having spe
i�ed requirementsCopyright 
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6 L. PALOPOLI, GIUSEPPE LIPARI, ET AL.in terms of exe
ution time, length of messages and so on. In this phase, the timing 
onstraintsare translated into real-time 
onstraints on the pro
esses and on the messages on the network.The separation of the fun
tional and ar
hite
tural viewpoints permits us to easily test and
ompare di�erent implementations for the same fun
tional spe
i�
ation in order to identifythe solution whi
h best �ts the performan
e/
ost tradeo�s of the proje
t.Finally the system model, 
omposed of its fun
tional and ar
hite
tural spe
i�
ation, 
an besimulated obtaining di�erent types of results. A �rst possibility is to analyze the exe
utiontra
es (by an appropriate visual tool) to verify if the design meets the desired timing
onstraints. Moreover, statisti
s 
an be 
olle
ted on the o

urren
e of events measuringsu
h quantities as the average delay, the jitter and so forth. Most importantly, fundamentalinformation 
an be derived on the 
ontrol system's performan
e by using typi
al 
ontroltheoreti
al metri
s (overshoot, rise time, integral 
ost fun
tions). If the resulting performan
eis not satisfa
tory, it is easily possible to return ba
k to any of the previous phases and 
hangethe system parameters, the system 
omponents (s
hedulers, 
ommuni
ation proto
ols) andeven the entire ar
hite
ture.In the rest of this se
tion, the most important modeling primitives of RTSIM for de�ningboth the fun
tional and the ar
hite
tural spe
i�
ation are introdu
ed. A simple example willshow how these primitives are applied to a pra
ti
al 
ase.Modeling the fun
tional behaviourThe separation between the fun
tional and ar
hite
tural spe
i�
ation is aided, in the RTSIMtool, by the use of a data
ow approa
h for the fun
tional modeling of the system. Data
owmodels are a well-suited tool in the design of real-time software [34, 39℄ and they are provided,in di�erent 
avours, by a variety of tools in
luding Simulink, Ptolemy [20℄, and GIOTTO [36℄.The fun
tional abstra
tions of RTSIM are essentially of two types: 
omputing units andstorage units. Computing units are used to perform the 
omputation while storage units areused to ex
hange data between di�erent 
omputing units or between the 
ontroller and theexternal environment.A 
omputing unit is endowed with a set of input ports and output ports whi
h mustbe 
onne
ted to storage units. Ea
h 
omputing unit 
an respond to three di�erent external
ommands. The �rst 
ommand, 
alled read is used to a
quire external data from the storageunits 
onne
ted with its input ports. The se
ond one, 
alled exe
ute, 
omputes an output value,while the third one, 
alled write, is used to write the output into the storage units 
onne
tedwith the output ports. A 
omputing unit 
an have an internal state (i.e. state remainingbetween two 
onse
utive invo
ation). Noti
e that no parti
ular model is required to spe
ifythe exe
ute method. Thus, a 
omputing unit 
an be a �nite state ma
hine, a digital �lter,a proportional integral derivative (PID) 
ontroller, or whatever is needed in the 
ontroller'sstru
ture. A set of 
ommon use 
omputing units su
h as matrix gains, digital �lters, dis
retetime systems are prede�ned library obje
ts and 
an be used in 
onstru
ting a model of thesystem without any further programming e�ort.Storage units are of three types: input bu�ers, memory bu�ers or output bu�ers. Inputbu�ers serve as an interfa
e between the environment and the 
ontroller. From the point of viewof the environment they 
an be thought of as sensors performing a measure on a 
ontinuousCopyright 
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AN OO TOOL FOR SIMULATING DISTRIBUTED REAL-TIME CONTROL SYSTEMS 7
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Figure 2. Fun
tional design of a simple 
ontroller for an inverted pendulum.time quantity. RTSIM o�ers also the possibility of modeling sensors whose measurement area�e
ted by band-limited white noise. From the 
ontroller's side, an input bu�er models anI/O 
ard whose 
ontent 
hanges when a sampling 
ommand is re
eived. Output bu�ers 
anbe used to model a
tuators and 
an only be 
onne
ted to the output ports of a 
omputingunit. They model digital to analog 
onverters, i.e. when a 
omputing unit writes new data intoan output bu�er, the value is held up to the next writing. Memory bu�ers 
an be a

essedeither for reading or for writing operations and they realize 
ommuni
ations among di�erent
omputing units.It is important to observe that when a fun
tional model is 
onstru
ted no parti
ularassumption is made either on the hardware implementation of a storage unit, or on the way
on
urrent a

ess requests should be s
heduled.Example. An example of fun
tional design is reported in Figure 2. The addressed problemis the 
ontrol of a simple physi
al devi
e (an inverted pendulum). The pendulum is mountedon a 
art moving on a one-dimensional tra
k. The horizontal position x and the pendulumangle � are a
quired through a 
ouple of sensors and their values are stored into two inputbu�ers (named In x and In th respe
tively). Data held in the input bu�ers are pro
essed bythe 
omputing units Filt x and Filt th in order to extra
t the meaningful information andto �lter out the sensor noise: the results are stored into the F x and F th memory bu�ers. Twodigital �lters, namely Der x and Der th, are derivative blo
ks and are used to estimate thelinear and angular velo
ities. Finally the four estimated state variables are used by a 
omputingunit (Feedba
kGain) to 
ompute the for
e to be applied to the 
art whi
h is stored into anCopyright 
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8 L. PALOPOLI, GIUSEPPE LIPARI, ET AL.output bu�er (Out u). It is worth observing that the 
omputing units shown in this s
hemeare instan
es of library prede�ned obje
ts (four digital �lters and a matrix gain).Modeling the ar
hite
ture of the systemIn our model, a task (or pro
ess) is a �nite or in�nite sequen
e of requests for exe
ution,or jobs. Ea
h job exe
utes a pie
e of 
ode (a sequen
e of instru
tions) implementing somefun
tional behaviour. When a job is a
tivated, we say that it arrives and the a
tivation timeis 
alled arrival time. Depending on the pattern of arrival times, tasks 
an be 
lassi�ed as:Periodi
 : if the arrivals are separated by a 
onstant interval of time, 
alled \period";Sporadi
 : if the arrivals are separated by variable intervals of time with a lower bound,
alled minimum inter-arrival time;Aperiodi
 : if a lower bound is not known on the inter-arrival times.In real-time systems, tasks have time 
onstraints, often expressed as deadlines: for example,a typi
al time 
onstraint for a periodi
 task is that ea
h job must �nish before the nexta
tivation. Another typi
al 
onstraint is on the 
ompletion jitter (the interval of time betweentwo 
onse
utive job 
ompletions).The instru
tions of a task are used to model its timing behaviour. Basi
ally, an instru
tionis modeled by an exe
ution time (whi
h 
an be deterministi
 or sto
hasti
) and 
an beasso
iated with the read, write or exe
ute 
ommand of a 
omputing unit. In this way, oneor more 
omputing units 
an be easily mapped onto a task.Tasks are assigned to the 
omputational resour
es (nodes) of the system. Ea
h node 
onsistsof one or more pro
essors and a real-time operating system (kernel) endowed with a s
hedulingpoli
y and a syn
hronization proto
ol. The state of the art algorithms for CPU s
heduling(su
h as Fixed Priority, Rate Monotoni
 [25℄, Earliest Deadline First (EDF) [25℄, Proportionalshare [35℄) are provided as prede�ned obje
ts, both for single pro
essor and multi-pro
essorsystems. The performan
e of the s
hedulers 
an be enhan
ed by using aperiodi
 servers (Pollingserver [22℄, Sporadi
 Server [30℄, Constant Bandwidth Server [1℄, et
). Priority inversion ina

essing mutually ex
lusive resour
es [28℄ 
an be avoided by using appropriate syn
hronizationproto
ols implemented in the tool, su
h as the Priority Ceiling Proto
ol [28℄ or the Sta
kResour
e Poli
y [4℄.Finally, the system 
an be 
omprised of several 
omputational nodes 
onne
ted by networklinks. Tasks on di�erent nodes 
an 
ommuni
ate by means of real-time messages. A
ommuni
ation resour
e is modeled by a shared physi
al link, an a

ess proto
ol and a real-time message s
heduler.Example. A better understanding of what is really meant in RTSIM by \ar
hite
ture of thesystem" 
an be a
hieved by getting ba
k to the example shown in Figure 2.Suppose, in the 
ase of the inverted pendulum, that the horizontal position is 
omputedfrom the images grabbed by a 
amera, whereas a potentiometer is used to a
quire the angle.In this 
ase the 
omputation workload ne
essary to 
ompute x (asso
iated to 
omputing unitCopyright 
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AN OO TOOL FOR SIMULATING DISTRIBUTED REAL-TIME CONTROL SYSTEMS 9
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Figure 3. Ar
hite
tural design for the example shown in Figure 2. The instru
tions inside ea
h taskare exe
uted sequentially at every a
tivation.
Copyright 
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10 L. PALOPOLI, GIUSEPPE LIPARI, ET AL.Filt x) is mu
h higher than the workload ne
essary to 
ompute � (asso
iated to 
omputingunit Filt th). Thus, a possible ar
hite
ture for the system 
an be based on two periodi
 real-time tasks, Task 1 and Task 2. In parti
ular, Task 1 triggers the a
tions on 
omputing unitFilt x and Der x in order to 
ompute x and to estimate the _x horizontal velo
ity. Task 2triggers the same operations on 
omputing units Filt th and Der th.The main ar
hite
tural 
omponents for this example are depi
ted in Figure 3: ea
h taskis represented by a box 
ontaining the list of instru
tions exe
uted every period. The twotasks 
ommuni
ate by means of a shared bu�er a

essed in mutual ex
lusion (through theshared.lo
k() and shared.unlo
k() instru
tions). The 
on
urrent exe
ution of the two tasksis possible using a s
heduler 
omponent (named EDFS
heduler) endowed with the EarliestDeadline First s
heduling poli
y [25℄. A resour
e manager is used to sele
t the a

ess poli
y:in this example we use a simple blo
king poli
y. Both the task s
heduler and the resour
emanager are 
omponents of a software layer modeling a real-time operating system (Kernel).Of 
ourse, this is only one of many possible 
hoi
es for the hardware/software ar
hite
ture.This parti
ular 
hoi
e aims at 
omputational eÆ
ien
y by 
on
entrating in one task alla
tivities that may be performed at the same rate. A potential drawba
k of this 
hoi
e is thela
k of modularity. For example, Task 2 
ould be repla
ed by two tasks, the �rst operating theF th and F thdot 
omputing units, and the se
ond operating the gain unit (Feedba
kGain).In this way, it 
ould be possible to 
hange \on-line" the way x position is a
quired to 
opewith a potential sensor fault or with a mode 
hange. Another possibility, in 
ase a very highloop rate was needed for stability reasons, is to use two di�erent CPU boards 
onne
tedby a network link, one performing Task 1 (whi
h is 
omputationally expensive), and theother one performing Task 2. More generally, this simple example shows that the 
hoi
e ofthe hardware/software ar
hite
ture is the solution to a potentially 
omplex problem involvingperforman
e issues, 
ost limitations and physi
al 
onstraints. This is the reason why de
ouplingar
hite
tural and fun
tional design turns out to be a 
onvenient 
hoi
e.Moreover, even with the ar
hite
ture shown in Figure 3, the developer has some degreeof freedom in setting the parameters. The 
hoi
e of the s
heduling algorithm, the resour
emanager and the task a
tivation rates 
an in
uen
e the delay of the two tasks and this in turnimpa
ts upon the stability of the system and the \quality" of the 
ontrol. For this reason, it isdesirable to know in advan
e whi
h s
heduling strategy and whi
h 
ombination of parametersmust be assigned in order to maximize the performan
e of the 
ontrol strategy.Assessing performan
eOn
e a system has been modeled, a designer is provided with di�erent opportunities to simulatethe system and evaluate the quality of the design. A simulation 
onsists of a sequen
e of eventsasso
iated with relevant situations in the ar
hite
tural model of the system (i.e. task arrivals,task terminations, deadline expirations et
.), whi
h may trigger a
tions in the fun
tional model.Therefore, events are the fundamental element of any simulation and they 
an be used in avariety of ways to evaluate the system's performan
e. With this respe
t, the �rst possibilitya designer is o�ered, is to re
ord all events of a simulation, or a meaningful subset, into atra
e �le. The toolset 
omprises a utility, 
alled RTTra
er, whi
h interprets a tra
e �le andvisualizes events in a 
lear form (see Figure 6). In order to fa
ilitate portability RTTra
er isCopyright 
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AN OO TOOL FOR SIMULATING DISTRIBUTED REAL-TIME CONTROL SYSTEMS 11entirely written in Java. The appli
ation of RTTra
er is parti
ularly useful for performing a\temporal" debugging of a 
omplex system when simulations reveal a failure in respe
tingdeadlines for some task or network message. The se
ond important possibility is to de�nestatisti
al probes, whi
h 
an be atta
hed to obje
ts to measure the o

urren
e of events.Statisti
s 
an be 
olle
ted over multiple runs when su
h parameters as 
omputation timesare assigned to vary sto
hasti
ally a

ording to spe
i�ed distributions. The main use of thisfeature is to derive su
h measures of the system's performan
e as jitter, laten
y of data, end-to-end delays on pipelines of tasks and so forth. Finally, parti
ular types of input bu�ers 
anbe used to measure the evolution of some quantities of interest in the plant (very mu
h likein Simulink). Su
h units 
an be 
onne
ted to �les in order to re
ord the time evolution of theobserved quantities. In a similar way it is possible to de�ne performan
e probes whi
h 
an, forinstan
e, integrate over time the squared norm of the measured quantity.Example. In order to show some of the possibilities o�ered by RTSIM, we get ba
k to theexample of the inverted pendulum introdu
ed in the previous se
tions. The 
ode for thisexample is in
luded in the oÆ
ial distribution of RTSIM (it 
an be downloaded from the website http://rtsim.sssup.it), where the interested reader 
an �nd the exa
t parameters ofthe simulation.The state spa
e of the pendulum is 
omposed of four variables: [x; _x; �; _�℄T , where x is thelinear position, _x is the linear velo
ity, � is the pendulum angle and _� is the angular velo
ity. Inthe simulations presented in this se
tion, the pendulum starts from the state [�0:1; 0; 0; 0℄Tand has to be stabilized into the origin of the state spa
e [0 ; 0; 0; 0℄T .The fun
tional and the ar
hite
tural model of the 
ontroller have been introdu
ed above.In order to provide an experimental validation for the use of the tool, we realized a physi
alimplementation of the system based on the SHARK [9℄ kernel (for details see the Web sitehttp://shark.sssup.it). The exe
ution times of the tasks were pro�led and imported intothe simulation model.A �rst element of information on the 
orre
tness of the system's behaviour 
an be obtainedby visually inspe
ting the exe
ution tra
es of the tasks. In Figure 6 the RTTra
er output fora simulation is shown. The assumed hard real-time algorithm is the 
lassi
 Earliest DeadlineFirst. In order for the 
omplian
e of the 
ontrol design with some performan
e expe
tation tobe veri�ed, it is very important to show the evolution of state variables in time. In Figure 4, thedynami
s of x and � obtained from a simulation run are shown. In order to verify the quality ofthe simulation we report on the same plot also data obtained from an experimental realization.For both simulation and experimental dynami
s 
onvergen
e to zero takes approximatively fourse
onds.In order to a
hieve a quantitative assessment of the in
uen
e of the s
heduling 
hoi
es onthe 
ontrol performan
e, it is ne
essary to introdu
e a performan
e index. A possible 
hoi
e,as proposed by Shin et al. [29℄, is the use of a quadrati
 fun
tion:J = EfZ +0 1(~xTQ~x+Ru2g (1)where:� Ef.g denotes the expe
tation value (
al
ulated over sto
hasti
ally varying parameters),Copyright 
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Figure 5. Performan
e index variations with respe
t to the a
tivation period of Task 1.� ~x denotes the state ve
tor,� u denotes the 
ommand variable,� the Q matrix and the R 
onstant are two weighting fa
tors.As said above, a parti
ular type of input bu�er 
an be atta
hed to the state and to the inputvariables in order to 
ompute R +0 1(~xTQ~x+Ru2 as the simulation takes pla
e. The expe
tationvalue 
an easily be approximated by atta
hing a statisti
al probe to the storage unit and by
olle
ting the measures over a suÆ
ient number of runs.The simulations were aimed at evaluating the impa
t of the task frequen
ies. Thes
hedulability of tasks for this algorithm is ensured, provided that C1T1 + C2T2 � Ul, whereT1 and T2 are the a
tivation periods of the tasks, C1, C2 are the worst 
ase exe
ution timesand Ul = 1. Residual 
omputation a
tivities (for data logging and man/ma
hine interfa
es)where 
onsidered by using a lower utilization bound: Ul = 0:8.The simulated and the experimental plots for the performan
e index are reported in Figure 5.In the horizontal axis period T1 is varied while T2 is 
hose a

ordingly to the relationC1T1 + C2T2 = 0:8. The performan
e index for ea
h point was evaluated averaging the resultof twenty exe
ution and simulation runs. As a remark, the evaluation of ea
h point requiredapproximately forty se
onds on a PC with an Athlon 1.2 Ghz pro
essor running the Linuxoperating system.As it is possible to see, if high values are 
hosen for T1, the system tends to instability andthe value of the performan
e index in
reases. Similarly, if T1 be
omes too small there is a steepCopyright 

 2000 John Wiley & Sons, Ltd. Softw. Pra
t. Exper. 2000; 00:1{32Prepared using speauth.
ls



14 L. PALOPOLI, GIUSEPPE LIPARI, ET AL.

Figure 6. Graphi
al output of a tra
e of a RTSIM simulation.degradation of the performan
e. The latter phenomenon is due to the 
orresponding value ofT2, whi
h tends to in
rease a

ording to the s
hedulability relation. The best performan
e isa
hieved by a trade-o� 
hoi
e for the periods. The behaviour of the 
ost fun
tion is prettysimilar in the two plots, ex
ept for the higher values of the experimental data. This di�eren
e,whi
h is also evident in the plots in Figure 4, is due to the adoption of a simpli�ed model forthe plant. As a matter of fa
t, su
h aspe
ts as the transfer fun
tion of the motor, the sensorsand pro
ess noise and the nonlinearities on the a
tuators were negle
ted in the 
onstru
tionof the plant model, sin
e the a

ura
y level obtained with the simpli�ed model was deemedsatisfa
tory for the purposes of this work.DESCRIPTION OF THE TOOLSummarizing the illustration above, RTSIM 
onsists of a 
olle
tion of C++ libraries 
ontainingthree types of obje
ts:� 
ontinuous time plants,� fun
tional 
omponents of 
ontrol software, and� ar
hite
tural 
omponents of 
ontrol software.The distin
tion of these 
on
eptual domains di
tated a de
omposition of the software intothree intera
ting pa
kages, as shown in Figure 7.The pa
kage denoted as \Numeri
al Pa
kage" is used to model and simulate plants. Obje
tsliving in this pa
kage evolve in 
ontinuous time and they are des
ribed by means of di�erentialequations. The pa
kage 
alled \CTRLIB" is used to 
onstru
t the fun
tional model of thesystem. Obje
ts belonging to this pa
kage do not posses an intrinsi
 
on
ept of time evolution:their a
tions are triggered by obje
ts belonging to other pa
kages (in parti
ular to RTLIB).Copyright 
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Event

Package
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RTLIBNumerical
Package

CTRLIB

Package

Data

ProcessingFigure 7. Main 
omponents involved in a RTSIM based simulation of a real-time 
ontrollerThe \RTLIB" pa
kage is used to des
ribe the ar
hite
tural 
omponents a fun
tional model ismapped onto. Obje
ts evolve a

ording to a dis
rete event model of 
omputation [19℄: theyrea
t to events and are able to generate other events in their turn.When designing the 
lass hierar
hies for the pa
kages, we wanted to a
hieve a high degreeof de
oupling so as to fa
ilitate an autonomous evolution of the tool along the three di�erentdimensions. For instan
e, in our intentions, a developer should be able to extend the libraryof 
omputing units with new algorithms without 
aring too mu
h for the stru
ture of kernelsor s
heduling algorithms and vi
e versa. In order to a
hieve this goal, stru
tural relationsbetween 
omponents and their intera
tions had to be 
aptured through a set of 
lear interfa
es.Parti
ularly, for what 
on
erns the intera
tion between the three pa
kages, we 
ould leveragean important property of the addressed systems: meaningful intera
tions between plants and
ontrollers take pla
e only on the o

urren
e of a spe
i�
 set of events generated by RTLIB.On one hand, in the time interval separating two writings on the output bu�er, the di�erentialequations of a plant 
an be integrated assuming 
onstant values in the a
tuatorsz. On theother hand the plant state 
an be observed through the obje
ts simulating the sensors onlywhen an event asso
iated with sampling is generated. Hen
e, a substantial role in the RTSIMsimulation environment is played by the generation of dis
rete events for RTLIB. This isa
hieved by using the Metasim library, whi
h is a small software layer developed at the RetiszMore sophisti
ated a
tuator s
hemes su
h as �rst order hold or analog loops 
an easily be modeled in theplant des
ription.Copyright 
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Figure 8. Class diagram representing the Task family of 
lasses.Lab of S
uola Superiore S. Anna. Metasim provides the basi
 
lasses for writing generi
 dis
reteevent simulations [5, 16, 17℄ and a 
lear framework to use them.The remainder of this se
tion is devoted to a short des
ription of the three pa
kages (bothstru
tural and behavioural) and of their most important intera
tions. For obvious spa
e
onstraints, the des
ription is far from 
omplete. The interested reader is referred to thete
hni
al do
umentation of the tool [23℄. The 
omponents of the libraries and their behaviourare des
ribed by the UML graphi
al notation [26℄.The RTLIB Pa
kageRTLIB is a library designed to simulate the timing behaviour of a real-time software system.It models entities like real-time tasks, s
heduling algorithms, single and multi pro
essor nodes,and network links.Tasks. One of the most important entities needed to spe
ify a software ar
hite
ture is thetask. The family of 
lasses for modeling tasks is shown in Figure 8 as a UML 
lass diagram.In order to de-
ouple the interfa
e of a task from its internal implementation, we de
idedto provide an abstra
t interfa
e AbsTask that exposes the basi
 methods to handle a task(s
hedule, des
hedule, onArrival, onEnd). This same interfa
e is used by all entities that
an be s
heduled: for example, an aperiodi
 server will implement the AbsTask interfa
e (seethe server se
tion below).Copyright 
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AN OO TOOL FOR SIMULATING DISTRIBUTED REAL-TIME CONTROL SYSTEMS 17The Task 
lass 
ontains a list of instru
tions, whi
h are modeled by the Instr 
lass.Examples of instru
tions are:� Exe
Instr that models a pie
e of sequential 
ode with a 
ertain exe
ution time; theexe
ution time is des
ribed by a RandomVar obje
t: hen
e it is possible to model aportion of 
ode with an arbitrarily distributed random exe
ution time;� WaitInstr and SignalInstr that model the wait and signal system 
alls for 
on
urrenta

ess to shared resour
es using semaphores; and� the ControlInstr family of 
lasses that model the exe
ution of 
omputing units.A programmer inserts instru
tions into tasks, just as she/he would write a real implementation.Instru
tions are exe
uted sequentially x and have a duration, whi
h 
an either be deterministi
or spe
i�ed as a random variable.In the types of appli
ations we want to model, tasks have timing requirements. The most
ommon 
onstraint is the deadline: the absolute deadline of a job is the instant of time bywhi
h the job must �nish; the relative deadline of a task is the interval of time between thearrival time and the absolute deadline of ea
h job.A real-time task is modeled by the abstra
t interfa
e AbsRTTask whi
h derives from theAbsTask (Figure 8). It 
omprises the getDeadline() and getRelDeadline()methods, whi
h returnrespe
tively the absolute and the relative deadline of a task.Kernels. The Kernel family of 
lasses models a 
omputational resour
e, like single pro
essoror multi-pro
essor nodes. As in the 
ase of tasks, we found it useful to introdu
e an abstra
tinterfa
e, AbsKernel, 
apturing the minimum set of servi
es required to any type of kernel. Inparti
ular we identi�ed the following servi
es:� task insertion into a ready queue (method a
tivate),� task extra
tion from the ready queue (method suspend),� task dispat
h (method dispat
h): the 
urrently exe
uting task is revoked use of the CPU,whi
h is assigned to the �rst task in the ready queue. In multipro
essor systems thekernel performs this operation on ea
h pro
essor under its 
ontrol.The kernel interfa
e also in
ludes methods to handle the most important events a kernel
an re
eive: the arrival of a new task (method onArrival) and the termination of a task's job(method onEnd).Noti
e that, at this point, we have not yet introdu
ed any notion of \task priority". In fa
t,di�erent s
heduling poli
ies 
ompare tasks based on di�erent parameters. For example, theRate Monotoni
 s
heduler requires a stati
 priority to be assigned to ea
h task, whereas theEarliest Deadline First s
heduler uses the absolute deadline of a job to determine the taskxThus far, this model has proven suÆ
iently expressive, sin
e we restri
ted the appli
ation of the tool tomodeling 
lassi
al \data-
ow" oriented real-time 
ontrol appli
ations. In the future, we plan to model alsomultimodal appli
ations for whi
h a dire
t support for bran
hes will be ne
essary. The addition of this featurerequires slight modi�
ation to the stru
ture of RTLIB and it is planned for future revisions.Copyright 
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lasses.priority. Moreover, some s
heduling poli
ies (like Proportional Share or Round Robin) do notuse any priority at all.Hen
e, the ordering of tasks in the ready queue depends on the s
heduling poli
y,whi
h is implemented by the S
heduler family of 
lasses. Ea
h one implements a di�erentqueuing poli
y: for example, EDFS
heduler implements the Earliest Deadline First s
hedulingalgorithm, PrioS
heduler implements a generi
 Fixed Priority s
heduling algorithm, andso on. The s
heduling parameters are not stored in the task 
lass, but in the wrapper 
lassTaskModel: thus, the task implementation is independent from the s
heduling algorithm (asin the Adapter Pattern [10℄). The TaskModel hierar
hy of 
lasses is similar to the S
hedulerhierar
hy: every s
heduler 
orresponds to a task model. In Figure 9 the inheritan
e relationshipsbetween these 
lasses are summarized.The 
urrent distribution of RTLIB provides single pro
essor and multi-pro
essor kernelsas prede�ned 
omponents, with any of the following s
heduling poli
ies: FIFO, EDF, �xedpriority (FP) and rate monotoni
, and EEVDF [35℄. For the multi-pro
essor versions of EDFand FP, it is possible to allow/disallow migration: in the latter 
ase, tasks must be stati
allyallo
ated to pro
essors.Example. The noti�
ation me
hanism and the way events are handled in RTLIB are betterexplained with a pra
ti
al example. The sequen
e diagram shown in Figure 10 
aptures asnapshot of the system des
ribed in Figure 3 when a preemption o

urs: while Task 1 isexe
uting, Task 2 is a
tivated (arrives) and, having a higher priority, preempts Task 1.When Task 2 is a
tivated, its arrival event is pro
essed: as a 
onsequen
e, the onArrival()method of Task 2 is invoked. After updating its internal status (for example re
ording thearrival time and resetting the 
urrent instru
tion pointer to the �rst instru
tion), Task 2 
allsthe onArrival() method of the kernel. The kernel, in turn, inserts the task in the readyqueue (
alling s.insert()), and 
he
ks if this task is now the �rst element in the queue. IfCopyright 
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e1: ExecInstr k: RTKernel s:EDFScheduler

deschedule()
deschedule()

getFirst()

insert()

schedule()

onArrival()

Task 1: RTTask Task 2: RTTask

onArrival()

Figure 10. Sequen
e diagram: Task 2 preempts Task 1.so, a preemption must o

ur: the 
urrent exe
uting Task 1 yields the pro
essor and Task 2be
omes the 
urrent exe
uting task.Hen
e, Task 1 must be signaled 
alling its des
hedule() method; in turn, it 
alls thedes
hedule()method of its 
urrently exe
uting instru
tion. Finally, Task 2 is signaled 
allingits s
hedule() method.Servers. When soft real-time aperiodi
 tasks are to be s
heduled together with hard real-time periodi
 tasks, the goal is to improve the response time of the aperiodi
 tasks without
ompromising the s
hedulability of the hard real-time tasks. A popular 
on
eptual frameworkfor modeling the behaviour of su
h systems is to asso
iate a server to the soft aperiodi
 tasks. Aserver is 
hara
terized by 
ertain parameters spe
ifying exa
tly its performan
e expe
tations.Several aperiodi
 servi
e me
hanisms have been proposed under RM [22, 21, 2, 38℄ and underEDF [31, 12, 33, 32, 1, 24℄ s
heduling.The Server 
lass models these algorithms.We noti
ed that in almost all the aperiodi
 server me
hanisms, a server is treated as aparti
ular kind of task and is inserted in the ready queue together with the other regularCopyright 
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e Manager family of 
lasses.tasks. For this reason, we de
ided to derive the server 
lass from the AbsTask interfa
e, so thatthe s
heduler does not need to distinguish a regular task from a server. The main advantage isthat, when implementing the server algorithm, the s
heduler module 
an be reused without anymodi�
ation. On the other side, a server handles aperiodi
 tasks just as a kernel does: whenseveral aperiodi
 requests are pending, the server must 
hoose whi
h one must be servi
ednext. For this reason, the server 
lass also derives from the AbsKernel interfa
e. In this way,a task has not to distinguish whether it is served by a server or by a regular kernel, and we
an re-use the same 
ode for the task 
lass. In the 
urrent RTLIB distribution, the pollingserver, deferrable server (DS), sporadi
 server (SS), total bandwidth server (TBS), and 
onstantbandwidth server (CBS) are provided as prede�ned 
omponents.Sharing other resour
es. Sometimes, tasks a

ess mutually ex
lusive resour
es: for example,tasks 
an a

ess the same memory blo
k that is prote
ted by a mutex semaphore. For example,tasks 
an a

ess the same memory blo
k that is prote
ted by a mutex semaphore.In RTSIM, this 
an be simulated by means of a 
lass Semaphore and of a Resour
eManager, whi
h is the entity that manages the operations on a semaphore, holding the blo
kedtasks in queues. Tasks 
an operate on semaphores by means of WaitInstr and SignalInstrinstru
tions.In Figure 11 the relationship among the 
lasses is shown while in Figure 12 we show apossible s
enario of exe
ution.When a task exe
utes a WaitInstr instru
tion, the Resour
e Manager 
he
ks if thesemaphore is free by invoking lo
k(Semaphore *s). In the 
onsidered s
enario, the semaphoreCopyright 
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Task 1: RTTask Task 2: RTTaskWaitInstrw: k: RTKernel

schedule()
lock(Semaphore *s)

suspend()

SimpleResManagerres:

deschedule()

dispatch()
schedule()

Figure 12. Sequen
e diagram showing a lo
king operation on a semaphore.
is lo
ked, thus the task must be blo
ked: the resour
e manager invokes the Kernel::suspend()method to blo
k the task and Kernel::dispat
h()methods, in order to s
hedule another task.In the 
urrent implementation of RTLIB, a simple lo
king poli
y, the Priority Inheritan
eproto
ol (PIP), the Priority Ceiling proto
ol (PCP), and the Sta
k Resour
e Poli
y (SRP)are provided as prede�ned 
omponents. In the 
ase where one of these proto
ols is used, the
orresponding resour
e manager has to intera
t with S
heduler 
omponent to 
hange the taskpriority a

ording to the proto
ol. This justi�es the relation between the Resour
e Managerand the S
heduler 
omponent in Figure 11.Networks. Every kernel may have one or more network interfa
es, modeled by theNetInterfa
e family of 
lasses, ea
h one 
onne
ted to a network link, modeled by the NetLinkfamily of 
lasses. For ea
h network link 
lass, there is a 
orresponding network interfa
e 
lass.A task 
an send a message, modeled by the Message 
lass, to another task passing it tothe appropriate network interfa
e of its kernel. The Message 
lass implements the AbsTaskinterfa
e: in this way, it 
an be handled by a S
heduler. A network interfa
e has a pointer toa S
heduler obje
t for implementing the message en-queuing poli
y. It realizes the mediuma

ess proto
ol, su
h as the Ethernet or CAN bus proto
ol. In parti
ular, the CANInterfa
eCopyright 
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GenericPlant

+integrate(newTime:Tick)
+addSensor(s:Sensor *)
+getState(): ColumnVector
+addActuator(position:integer,a:Actuator *)
-DiffEq()

*

1

«interface»
Sensor

+updateSensor(p:GenericPlant * p)

«interface»
Actuator

+getCommand()

*

1

Figure 13. Class diagram representing the 
omponents of the numeri
al pa
kage to be used for modelingplants.has a pointer to a fun
tion that transforms the message priority (or deadline) in a CANpriority{.Two additional instru
tions have been de�ned:� SendInstr instru
tion: takes as parameters the name of the destination task and afun
tion obje
t for building new messages.� Re
eiveInstr instru
tion: if a message has already arrived for the task, it gets themessage, otherwise it blo
ks the task waiting for a message from the network interfa
e.In the 
urrent distribution of RTLIB, the Ethernet network and the CAN bus are providedas prede�ned 
omponents.The Numeri
al Pa
kageThe main purpose of the numeri
al pa
kage is to provide programming models for 
ontinuoustime plants. A plant is des
ribed by means of its state variables, di�erential equations and soon. From a stru
tural viewpoint, the numeri
al pa
kage is a software layer built on the topof a library whi
h provides some servi
es, su
h as di�erential equation integration and linearalgebra operations. The 
urrent implementation is based on the OCTAVE library, whi
h is afreely available tool en
ompassing the best known algorithms for numeri
al 
omputation. Thepresen
e of a software abstra
tion layer allows us to repla
e OCTAVE with any other similarsolution without a�e
ting the stru
ture of the simulator. As well as permitting the de�nitionof a plant, the numeri
al pa
kage also exports a set of useful 
lasses for linear algebra, su
h asMatrix, ColumnVe
tor and so on.{High level proto
ols (like TCP/IP) have not been implemented for they are well beyond the s
ope of thiswork.Copyright 
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ComputingUnit
+read()
+execute()
+write()
+attachInput(pos:int,in:DataSource *)
+attachOutput(pos:int,o:DataSink)

«interface»
DataSource

+getData(): ColumnVector

«interface»
DataSink

+putData(data:ColumnVector)

OutputBuffer
-value: ColumnVector
-sampledValue: ColumnVector
+sample()

InputBuffer
-value: ColumnVector
+getCommand()

MemoryBuffer

ContrInstr
#onEnd()

PeriodicTimer
+onTimeStamp()

«interface»
Sensor

The sensor may
be sampled periodically
by a Timer (belonging
to the event generating 
module)

Operations on a
computing unit can
be triggered by a
pseudoinstruction

ContrReadInstr
+onEnd()

ContrWriteInstr
+onEnd()

ContrExecuteInstr
+onEnd()

«interface»
Actuator

UML legend

inheritance, arrow
toward base class

inheritance, arrow
interface

+ public

<<Interface>> abstract collection
of method specifications

Figure 14. The most important 
lasses used to model the fun
tional behaviour of a 
ontroller.User-de�ned plants are derived from an abstra
t 
lass named Generi
Plant (see Figure 13).The inheritan
e me
hanism permits us to add plant spe
i�
 information by inserting new datamembers in the derived 
lass. The di�erential equations are spe
i�ed by providing a de�nitionto the abstra
t method DiffEq.The plant evolution 
an be observed by a set of obje
ts implementing the Sensor interfa
e.Formally speaking, if the state of the plant is represented by the 
olumn ve
tor x, a Sensorrealizes an output fun
tion y = h(x; t). The programmer is required to implement fun
tion hby writing a virtual method, 
alled updateSensor, whi
h 
an read the plant state by issuinga 
all to the getState method of the plant. The me
hanism used to update the value of thesensor is based on the observer pattern [10℄.The evolution of a plant 
an be in
uen
ed by a set of a
tuators. An a
tuator is an obje
timplementing the A
tuator interfa
e. Ea
h a
tuator is registered into a position, denoted byan integer number. This 
onvention is to simplify the writing of di�erential equations. TheCopyright 
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24 L. PALOPOLI, GIUSEPPE LIPARI, ET AL.integration of the plant di�erential equations is performed by issuing a 
all to the integratemethod exported by the plant.CTRLIBThe fun
tional model of the system is expressed using the 
lasses of the CTRLIB pa
kage.CTRLIB o�ers two types of 
omponents: 
omputing units and storage units. Both of these
omponents are framed within a hierar
hy of 
lasses. The stru
ture of the basi
 
lasses ofCTRLIB is shown in Figure 14.In order to spe
ify a new type of 
omputing unit, the programmer has to derive it from theabstra
t 
lass ComputingUnit and has to provide an implementation for three pure virtualmethods: read(), exe
ute() and write(). On
e the 
lass is de�ned, the programmer 
aninstantiate obje
ts from it to be used in di�erent 
ontexts. For example, a 
lass implementinga PID 
ontroller is likely to be a reusable 
omponent.A ComputingUnit is 
onne
ted to a set of inputs, whi
h are obje
ts implementing theDataSour
e interfa
e, and to a set of outputs whi
h implement the DataSink interfa
e. Ea
h
omputing unit 
an be asso
iated with spe
ial instru
tions triggering the exe
ution of theread(), exe
ute() and write() operation. Su
h instru
tions derive from the ContrInstr
lass.Input bu�ers are realized as 
lasses implementing both the Sensor and DataSour
einterfa
es. A prede�ned method, 
alled sample(), is used to sample the value of the sensorupon the o

urren
e of 
ertain events. A parti
ular 
hoi
e 
an be the use of a RTLIB obje
timplementing a periodi
 timer. Another possibility is to have the sample() method 
alledby an instru
tion of a task. The sampled value 
an be read by a 
omputing unit 
alling thegetValue() method.Output bu�ers are obje
ts implementing both the A
tuator and the DataSink interfa
es.Thus, they export the putValue() method to the 
omputing units and the getCommand()method to the plant. Memory bu�ers implement both the DataSour
e and DataSink interfa
esand are used to ex
hange information between the di�erent 
omputing units. Output andmemory bu�ers 
an be used with no other e�orts than de�ning the width of the data ve
torwhen an obje
t is instantiated. In order to simplify the simulation 
ode, the 
reation of memorybu�ers 
onne
ting di�erent 
omputing units 
an be made in a semi-automati
 fashion byappropriate programming fa
ilities.Some insight into the hybrid simulationThis se
tion is devoted to showing the main intera
tions between the di�erent 
omponents ofthe RTSIM tool suite when the libraries are employed to perform a hybrid simulation betweena 
ontinuous time plant and a digital 
ontroller, whose timing evolution is simulated by aRTLIB dis
rete event model.In order to highlight the intera
tions between di�erent 
omponents of RTSIM that take pla
eupon the o

urren
e of some meaningful events, 
onsider the sequen
e diagram in Figure 15.The boxes represent RTSIM obje
ts involved in a simulation. The diagram is partitioneda

ording to the three di�erent pa
kages obje
ts belong to. The diagram shows a sequen
eCopyright 
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rFilt_x: ContrReadInstr Filt_x: MyCompUnit F_x: MemoryBuffer invPend: LTIPlant

onEnd()
integrate()

getData()

read()

RTLIB CTRLIB Numerical PackageFigure 15. Sequen
e diagram showing the intera
tions whi
h take pla
e when an end event for ainstru
tion is handled.
integrate()

Ode.integrate()

updateSensor()

getCommand()

CTRLIB Numerical Package

In_x: invPend: LTIPlantOut_u: OutputBufferInputBuffer

Figure 16. Sequen
e diagram showing how the integration is performed.Copyright 
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26 L. PALOPOLI, GIUSEPPE LIPARI, ET AL.of method 
alls that follows the termination event of the rFilt x instru
tion. This event ishandled by the onEnd() method of the rFilt x obje
t. The �rst a
tion performed by rFilt x
alls the integrate()method on the invPendulum obje
t, whi
h determines the integrationof the di�erential equation up to the 
urrent instant of time. The se
ond a
tion is a 
all onthe read() method of the 
omputing unit asso
iated with the instru
tion, whi
h, in its turn,reads the data from the bu�er.It is also interesting to observe how the integration is performed by detailing the sequen
eof operations performed by 
alling the integrate() method (diagram in Figure 16). At thebeginning of the integration the value of the 
ommand variables, 
ontained in the output bu�er,are a
quired through the getCommand() method. Then, the integration 
an be performed(by 
alling the Ode.integrate() fun
tion of the OCTAVE library) assuming 
onstant valuesfor the input throughout the integration interval. At the end of the integration, the values
ontained in the input bu�ers, whi
h model the sensors, are updated.CONCLUSION AND FUTURE WORKIn this paper a tool for the joint simulation of a plant and of a real-time embedded 
ontrollerhas been presented. By using hybrid te
hniques the tool supports realisti
 modeling for manyimplementation related issues, whi
h are not usually a

ounted for during 
ontroller design.The tool 
onsists of a 
omplete set of C++ libraries for modeling, simulating and gatheringstatisti
al pro�les of performan
e metri
s. The appli
ation of the tool is parti
ularly usefulwhenever a given 
ontrol design is based on heterogeneous data
ows from the environmentindu
ing the use of a 
omplex Hardware/Software implementation. In these 
ases, the toolprovides important guidelines in the 
hoi
e of su
h parameters as the sampling rates of sensorsand, more generally, permits evaluation of di�erent ar
hite
tural alternatives. The futurea
tivities of the RTSIM team will be 
on
entrated on the integration of the tool in more
omplex design environments, in
luding visual modeling tools and automati
 
ode generationfor real-time exe
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