SOFTWARE—PRACTICE AND EXPERIENCE
Softw. Pract. Ezper. 2000; 00:1-32 Prepared using speauth.cls [Version: 2000/03/16 v2.12]

An object oriented tool for RI
simulating distributed
real-time control systems

Luigi Palopoli', Giuseppe Lipari'**, Gerardo Lamastra®, Luca Abeni', Gabriele
Bolognini!, Paolo Ancilotti'

L' Scuola Superiore Sant’Anna, piazza Martiri della Liberta 33, 56127 Pisa (ITALY)
2 Telecom Italia Lab

SUMMARY

This paper presents an object oriented software tool, called RTSIM, aimed at
simulating real-time embedded controllers. The tool consists of a collection of C++4
libraries permitting a separate specification of the functional behaviour of the controller
and of the hardware/software architecture to be used for its deployment. In particular, it
is possible to provide an accurate modeling of the concurrent architecture of the control
tasks and of the run-time support offered by the operating system for the real-time
scheduling of the shared resources (CPU, memory buffers and network links). In this
way, it is possible to compare different scheduling solutions by evaluating their simulated
performance directly in the domain of the control application. Moreover, the tool can
be utilized to tune up such design parameters as the activation frequencies of the tasks.
The application of the tool is shown on a meaningful case-study.

KEY WORDS: Simulation, Control systems, Real-Time systems, C++ library

INTRODUCTION

During the last years, the application of embedded control systems has become a dominant
factor governing the commercial success of several engineering products. The best known
example is represented by the automotive industry: from their seminal applications to
restricted niches of production vehicles, embedded devices are gradually becoming ubiquitous
components of modern cars. In other applications, like avionics and factory automation, the

*Correspondence to: Giuseppe Lipari, Scuola Superiore Sant’Anna, piazza Martiri della Liberta 33, 56127 Pisa
(ITALY) - E-mail : lipari@sssup.it

Copyright © 2000 John Wiley & Sons, Ltd.

2 L. PALOPOLI, GIUSEPPE LIPARI, ET AL. SP E
&

introduction of embedded control devices began earlier, but newer and newer functionalities,
which could not even be conceived only a few years ago, are making inroads.

The integration of flows of data from heterogenous sensors, having different requirements
in terms of sampling rates and computation times, induces almost naturally concurrent
implementation schemes. The ability of the system designer to specify, manage, and verify
the functionality and performance of real-time concurrent processes (tasks) turns out to be a
crucial success factor. Moreover, in the design of mass-produced embedded systems, the choice
of hardware has a strong influence on the economy of the solution. Therefore, even in front
of increasingly complex problems, the push towards minimization of computing hardware cost
remains a dominant factor. In this context, an increasing emphasis is put on the effectiveness
and on the efficiency of the production process of real-time software. Traditional development
cycles tend to separate “rigidly” the work of control engineers from that of software engineers
but the final outcome is often far from optimal in terms of performance/cost criteria.

In order to introduce a profound innovation in this field, the availability of co-design tools
spanning over diverse engineering disciplines is of utmost importance.

This paper focuses on one of the most familiar problems in real-time control software
design, i.e. how the performance of a controller is affected by architectural and implementation
choices (e.g. the decomposition of feedback controllers into tasks, the allocation of computation
resources to tasks, the scheduling of the shared resources, etc). Realistic and quantitative
answers to this question during the early phases of the development are a precious tool for
product development.

The concept, of performance evaluation for a real-time controller can be developed along
different directions. Most of the research in the area of real-time computing has studied the
performance of concurrent software systems under the viewpoint of their timing behaviour.
Ever since the seminal work of Liu and Layland [25], a fundamental performance metric is
considered to be the tasks’ schedulability, i.e. the ability for a set of tasks to execute respecting
their assigned deadlines. For some classes of real-time applications (qualified as soft real-time),
a more useful performance metric is represented by the probability for each task to execute
respecting its deadlines [1, 37, 18]. At a higher level of abstraction, the “collective” timing
performance of a set of tasks has been evaluated in terms of end-to-end delay, output jitter,
and other metrics [11].

The compliance of a controller’s timing behaviour with some specified requirements (e.g.
schedulability) is not always sufficient to characterize performance at the system level. Classical
performance metrics normally used during the control synthesis consider the step response
(rise time, overshoot, etc.) or the closed loop transfer function. Quadratic cost functions,
or other metrics such as Hs/Ho norms, are the foundation of popular procedures for
analytical control synthesis. However, during the control synthesis phase, effects deriving
from the implementation architecture are not usually taken into account. The difficulties in
finding tractable analytical models for the stochastic delays deriving from data dependencies
and scheduling jitter and the lack of adequate modeling and simulation tools, induce the
control designers to synthesize control laws assuming null or fixed delays from the underlying
implementation platform. As a consequence, even a software design complying with the
deadline constraints can result into a poorly performing system. These problems are detected
only during the late phases of the design cycle, and the solution is often sought by cycling

Copyright © 2000 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2000; 00:1-32
Prepared using speauth.cls

AN 00 TOOL FOR SIMULATING DISTRIBUTED REAL-TIME CONTROL SYSTEMS 3

through a long series of costly trial-and-error iterations among the different phases of the
development cycle.

In this paper, we present a simulation tool, called RTSIM, which alleviates these difficulties,
permitting us to efficiently deal with different aspects of the control synthesis. The main goal of
RTSIM is to permit the joint simulation of a real-time controller and of the controlled plant,
collecting performance measures either on the timing behaviour of the controller or on the
quality of the plant dynamics. Specifically, a designer is allowed to specify:

a set of plants (specified through their differential models) connected to a distributed
control system by means of sensors and actuators,

the functional behaviour of the controller,

the architectural components of the implementation (real-time tasks, RTOS, shared
resources),

the mapping of functional behaviours onto the architectural components.

By leveraging a complete orthogonalization of the functional and architectural designs,
RTSIM enables: 1) an easy comparison of different implementation approaches for the same
functionalities, 2) a performance based tuning of such design parameters as the tasks’ activation
rates/scheduling priorities. The tool is organized as a collection of C++ libraries that include
programming facilities for defining stochastic parameters (e.g. for tasks’ execution times,
network packets dimensions, etc), for collecting performance statistic and for recording events
of interest on execution traces.

A very important feature of the tool is that it encompasses the best known solutions for
real-time CPU scheduling (either on single or on multiprocessor boards) and for bounded
delay sharing of resources, as predefined library classes. The functional specification of the
system is provided by interconnecting a set of reusable components, according to a syntax
closely related to well-known dataflow paradigms! Another important feature of the tool is
the presence of a well defined programming framework guiding users in developing their own
functional and architectural components. Once the design of the controller has been settled
and properly tuned, its implementation on a real-time operating system is straightforward.
The fine grained modeling of such software architectural components as real-time tasks,
schedulers, synchronization protocols and so on, enables a very accurate simulation of the
system’s performance.

As far as the simulation of the plant is concerned, RTSIM exploits the functionality of a
powerful mathematical library, called OCTAVE [7], embodying state of the art solutions for
the integration of differential equations.

tThe term “dataflow” generally denotes a subclass of Kahn processes [13], introduced by Dennis in 1975 [6].
However, since many software environments claim variants of this model even if their semantics bear little
resemblance with that proposed by Davis, throughout this paper a loose meaning for this term will be used.
Therefore, dataflow will intuitively denote a directed sequence of transformations applied on data flowing from
inputs to outputs.

Copyright © 2000 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2000; 00:1-32
Prepared using speauth.cls

4 L. PALOPOLI, GIUSEPPE LIPARI, ET AL. SPE
&

STATE OF THE ART

The best known tool suite for simulating control systems is MATLAB. The MATLAB/Simulink
platform is an excellent choice to model and simulate a plant and a functionally described
controller. Moreover, it permits one to automatically generate a prototype on a target real-
time operating system (by the use of the Real-Time Workshop tool). However, it is not possible
to immediately to model generic Hardware/Software architecture and scheduling algorithms.
To cope with this shortcoming, a MATLAB tool to simulate a real-time scheduler in a Simulink
block is proposed in [8]. This allows, to a given degree, the simulation of timing properties
and the assessment of the performance of real-time controllers against changes in the timing
attributes of the tasks. The most important feature of this tool is the good integration with the
MATLAB/Simulink environment. On the other hand, the lack of a clear separation between
functional and architectural specifications hinders the application of the tool to complex
systems having event driven and/or time driven activities.

An interesting product, mainly targeted to the automotive industry, is Ascet-SD, by Etas
engineering tools. The tool includes an easy to use graphical interface that permits modeling
the functionalities of a controller in a Simulink like environment. The main focus of Ascet-3D
is the generation of high quality real-time code for prototyped or production hardware.

In recent years many interesting tools have been proposed for the analysis and simulation of
complex real-time systems, networks and kernels. One of the first softwares aimed at simulating
real-time scheduling was produced by Audsley et al. [3]. The tool permits modeling a system
of real-time periodic and aperiodic tasks through a scripting language.

A well-known commercial product in this class is TimeWiz, by Timesys corp., which is
mostly aimed at the analysis of the timing behaviour of a real-time system with respect to
schedulability constraints. The toolset is being integrated with a UML design framework which
allows one to describe complex systems in a fairly general way. However, the tool does not allow
one to perform hybrid simulations of a digital controller along with the continuous dynamics of
the controlled plant; thus it is not possible to interactively evaluate the performance of control
systems against changes in the task architecture and/or in the scheduling policies.

The idea of separating functional and architectural specification is well supported by
the VCC tool, produced by Cadence corp. Functional behaviours can be specified using
different syntaxes (including the C/C++ language) and the tool permits one to map a given
functionality either on hardware components (e.g. Asic) or on software (e.g. concurrent tasks)
in order to pursue different performance/cost tradeoffs. The performance assessment in VCC
regards mainly the timing behaviour of the components and the simulation of a continuous
time plant is not directly supported.

The GIOTTO programming language [36] has been devised to develop hybrid control
applications consisting of periodic tasks. The model of computation is primarily aimed
at the design and prototyping of time-predictable control system by the usual paradigm
of separating the functional from the timing behaviour (hard schedulability requirements).
Time predictability (schedulability) is obtained by restricting the design to a time-triggered
architecture [15]. A remarkable advantage of this paradigm is the elimination of input and
output jitters. However, the introduced delays can be a very pessimistic solution in many
cases. Moreover, the time triggered approach does not easily cope with event-driven systems.

Copyright © 2000 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2000; 00:1-32
Prepared using speauth.cls

AN 00 TOOL FOR SIMULATING DISTRIBUTED REAL-TIME CONTROL SYSTEMS 5

Architectural

%7 Design %

N Simulation
Plant Mappin 2
PRIng Performance
% - Assessment
Functional %7
Design Time constraints

.

Figure 1. Typical design process for the specification and the simulation of a real-time controller.

An integrated design of real-time control systems encompassing performance and
schedulability concerns was first proposed by Seto et al. [27]. In this work an optimization
procedure for the activation frequencies of control threads is proposed; the goal is maximizing
the controller’s performance under schedulability constraints. The paper is inspired to the
evaluation approach for embedded controllers suggested by Shin et al. [29]. Other noteworthy
results on this problem are presented by Kim et al. [14]; the authors first map the classical
control design parameters onto the end-to-end requirements of the controller and then apply
the method of period calibration [11] to derive the execution parameters of each thread so
that the end-to-end requirements are respected. A tool like RTSIM may be a very useful aid to
validate the assumptions and the result of these methods and of any other co-design procedure.

DESIGN PROCESS AND MODELING PRIMITIVES

The construction of a simulation model for RTSIM is carried out considering two orthogonal
viewpoints: the functional behaviour of the controller and the HW/SW architecture of its
implementation. In Figure 1, an overview on a typical design process based on RTSIM is
depicted.

The functional design, starting from the mathematical model of the plant and of its
interactions with the environment, produces a model of the functional behaviour. The
functional behaviour specifies a sequence of operations to be performed on data flowing
through the controller. Such operations include the computation of the feedback control law,
the extraction of meaningful information from sensors and so on. The functional design also
produces a set of timing constraints based on the dynamics of the plant and on the physical
limitations of sensors and actuators.

The architectural design can be carried out almost independently. This activity leads to the
definition of a model consisting of software tasks, schedulers, network protocols and so on.

The functional design is then mapped onto the architectural design, wrapping up the
functional components into corresponding architectural entities having specified requirements

Copyright © 2000 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2000; 00:1-32
Prepared using speauth.cls

6 L. PALOPOLI, GIUSEPPE LIPARI, ET AL. SPE
&

in terms of execution time, length of messages and so on. In this phase, the timing constraints
are translated into real-time constraints on the processes and on the messages on the network.

The separation of the functional and architectural viewpoints permits us to easily test and
compare different implementations for the same functional specification in order to identify
the solution which best fits the performance/cost tradeoffs of the project.

Finally the system model, composed of its functional and architectural specification, can be
simulated obtaining different types of results. A first possibility is to analyze the execution
traces (by an appropriate visual tool) to verify if the design meets the desired timing
constraints. Moreover, statistics can be collected on the occurrence of events measuring
such quantities as the average delay, the jitter and so forth. Most importantly, fundamental
information can be derived on the control system’s performance by using typical control
theoretical metrics (overshoot, rise time, integral cost functions). If the resulting performance
is not satisfactory, it is easily possible to return back to any of the previous phases and change
the system parameters, the system components (schedulers, communication protocols) and
even the entire architecture.

In the rest of this section, the most important modeling primitives of RTSIM for defining
both the functional and the architectural specification are introduced. A simple example will
show how these primitives are applied to a practical case.

Modeling the functional behaviour

The separation between the functional and architectural specification is aided, in the RTSIM
tool, by the use of a dataflow approach for the functional modeling of the system. Dataflow
models are a well-suited tool in the design of real-time software [34, 39] and they are provided,
in different flavours, by a variety of tools including Simulink, Ptolemy [20], and GIOTTO [36].

The functional abstractions of RTSIM are essentially of two types: computing units and
storage units. Computing units are used to perform the computation while storage units are
used to exchange data between different computing units or between the controller and the
external environment.

A computing unit is endowed with a set of input ports and output ports which must
be connected to storage units. Each computing unit can respond to three different external
commands. The first command, called read is used to acquire external data from the storage
units connected with its input ports. The second one, called ezecute, computes an output value,
while the third one, called write, is used to write the output into the storage units connected
with the output ports. A computing unit can have an internal state (i.e. state remaining
between two consecutive invocation). Notice that no particular model is required to specify
the ezecute method. Thus, a computing unit can be a finite state machine, a digital filter,
a proportional integral derivative (PID) controller, or whatever is needed in the controller’s
structure. A set of common use computing units such as matrix gains, digital filters, discrete
time systems are predefined library objects and can be used in constructing a model of the
system without any further programming effort.

Storage units are of three types: input buffers, memory buffers or output buffers. Input
buffers serve as an interface between the environment and the controller. From the point of view
of the environment they can be thought of as sensors performing a measure on a continuous

Copyright © 2000 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2000; 00:1-32
Prepared using speauth.cls

AN 00 TOOL FOR SIMULATING DISTRIBUTED REAL-TIME CONTROL SYSTEMS 7

Angle
// Force LEGEND

%,}/‘/” | Horizontal
position p Output
U oo
Plant
Feedback [:] Memory
Gain [In_x } [In_th } Buffers
Buffers
F_x Filt_x C] Computing
L Units
F_xdotH Der_x

(e —{Fin |

Figure 2. Functional design of a simple controller for an inverted pendulum.

time quantity. RTSIM offers also the possibility of modeling sensors whose measurement are
affected by band-limited white noise. From the controller’s side, an input buffer models an
I/O card whose content changes when a sampling command is received. Output buffers can
be used to model actuators and can only be connected to the output ports of a computing
unit. They model digital to analog converters, i.e. when a computing unit writes new data into
an output buffer, the value is held up to the next writing. Memory buffers can be accessed
either for reading or for writing operations and they realize communications among different
computing units.

It is important to observe that when a functional model is constructed no particular
assumption is made either on the hardware implementation of a storage unit, or on the way
concurrent access requests should be scheduled.

Example. An example of functional design is reported in Figure 2. The addressed problem
is the control of a simple physical device (an inverted pendulum). The pendulum is mounted
on a cart moving on a one-dimensional track. The horizontal position z and the pendulum
angle 6 are acquired through a couple of sensors and their values are stored into two input
buffers (named In_x and In_th respectively). Data held in the input buffers are processed by
the computing units Filt_x and Filt_th in order to extract the meaningful information and
to filter out the sensor noise: the results are stored into the F_x and F_th memory buffers. Two
digital filters, namely Der_x and Der_th, are derivative blocks and are used to estimate the
linear and angular velocities. Finally the four estimated state variables are used by a computing
unit (FeedbackGain) to compute the force to be applied to the cart which is stored into an

Copyright © 2000 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2000; 00:1-32
Prepared using speauth.cls

8 L. PALOPOLI, GIUSEPPE LIPARI, ET AL. SPE
&

output buffer (Out_u). It is worth observing that the computing units shown in this scheme
are instances of library predefined objects (four digital filters and a matrix gain).

Modeling the architecture of the system

In our model, a task (or process) is a finite or infinite sequence of requests for execution,
or jobs. Each job executes a piece of code (a sequence of instructions) implementing some
functional behaviour. When a job is activated, we say that it arrives and the activation time
is called arrival time. Depending on the pattern of arrival times, tasks can be classified as:

Periodic : if the arrivals are separated by a constant interval of time, called “period”;

Sporadic : if the arrivals are separated by variable intervals of time with a lower bound,
called minimum inter-arrival time;

Aperiodic : if a lower bound is not known on the inter-arrival times.

In real-time systems, tasks have time constraints, often expressed as deadlines: for example,
a typical time constraint for a periodic task is that each job must finish before the next
activation. Another typical constraint is on the completion jitter (the interval of time between
two consecutive job completions).

The instructions of a task are used to model its timing behaviour. Basically, an instruction
is modeled by an execution time (which can be deterministic or stochastic) and can be
associated with the read, write or execute command of a computing unit. In this way, one
or more computing units can be easily mapped onto a task.

Tasks are assigned to the computational resources (nodes) of the system. Each node consists
of one or more processors and a real-time operating system (kernel) endowed with a scheduling
policy and a synchronization protocol. The state of the art algorithms for CPU scheduling
(such as Fixed Priority, Rate Monotonic [25], Earliest Deadline First (EDF) [25], Proportional
share [35]) are provided as predefined objects, both for single processor and multi-processor
systems. The performance of the schedulers can be enhanced by using aperiodic servers (Polling
server [22], Sporadic Server [30], Constant Bandwidth Server [1], etc). Priority inversion in
accessing mutually exclusive resources [28] can be avoided by using appropriate synchronization
protocols implemented in the tool, such as the Priority Ceiling Protocol [28] or the Stack
Resource Policy [4].

Finally, the system can be comprised of several computational nodes connected by network
links. Tasks on different nodes can communicate by means of real-time messages. A
communication resource is modeled by a shared physical link, an access protocol and a real-
time message scheduler.

Example. A better understanding of what is really meant in RTSIM by “architecture of the
system” can be achieved by getting back to the example shown in Figure 2.

Suppose, in the case of the inverted pendulum, that the horizontal position is computed
from the images grabbed by a camera, whereas a potentiometer is used to acquire the angle.
In this case the computation workload necessary to compute z (associated to computing unit

Copyright © 2000 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2000; 00:1-32
Prepared using speauth.cls

AN 00 TOOL FOR SIMULATING DISTRIBUTED REAL-TIME CONTROL SYSTEMS

9

Application

Task 1

Sh

HEit

Filt_x.read()
Filt_x.execute()
Shared.lock()
Filt_x.write()
Der_x.read()
Der_x.execute()

Der_x.write()

ared.unlock() 4

Shared
Buffer

Task 2

~—_|

Filt_th.read()
Filt_th.execute()
Filt_th.write()
Der_th.read()
Der_th.execute()
Der_th.write()
Shared.lock()
FGain.read()
Shared.unlock()

FGain.execute()

i

FGain.write()

Kernel

Single CPU

‘ EDF Scheduler

‘ Resource Manager

Figure 3. Architectural design for the example shown in Figure 2. The instructions inside each task
are executed sequentially at every activation.

Copyright © 2000 John Wiley & Sons, Ltd.

Prepared using speauth.cls

Softw. Pract. Exper. 2000; 00:1-32

10 L. PALOPOLI, GIUSEPPE LIPARI, ET AL. SPE
&

Filt_x) is much higher than the workload necessary to compute 6 (associated to computing
unit Filt_th). Thus, a possible architecture for the system can be based on two periodic real-
time tasks, Task 1 and Task 2. In particular, Task 1 triggers the actions on computing unit
Filt_x and Der_x in order to compute x and to estimate the Z horizontal velocity. Task 2
triggers the same operations on computing units Filt_th and Der_th.

The main architectural components for this example are depicted in Figure 3: each task
is represented by a box containing the list of instructions executed every period. The two
tasks communicate by means of a shared buffer accessed in mutual exclusion (through the
shared.lock () and shared.unlock() instructions). The concurrent execution of the two tasks
is possible using a scheduler component (named EDFScheduler) endowed with the Earliest
Deadline First scheduling policy [25]. A resource manager is used to select the access policy:
in this example we use a simple blocking policy. Both the task scheduler and the resource
manager are components of a software layer modeling a real-time operating system (Kernel).

Of course, this is only one of many possible choices for the hardware/software architecture.
This particular choice aims at computational efficiency by concentrating in one task all
activities that may be performed at the same rate. A potential drawback of this choice is the
lack of modularity. For example, Task 2 could be replaced by two tasks, the first operating the
F_th and F_thdot computing units, and the second operating the gain unit (FeedbackGain).
In this way, it could be possible to change “on-line” the way z position is acquired to cope
with a potential sensor fault or with a mode change. Another possibility, in case a very high
loop rate was needed for stability reasons, is to use two different CPU boards connected
by a network link, one performing Task 1 (which is computationally expensive), and the
other one performing Task 2. More generally, this simple example shows that the choice of
the hardware/software architecture is the solution to a potentially complex problem involving
performance issues, cost limitations and physical constraints. This is the reason why decoupling
architectural and functional design turns out to be a convenient choice.

Moreover, even with the architecture shown in Figure 3, the developer has some degree
of freedom in setting the parameters. The choice of the scheduling algorithm, the resource
manager and the task activation rates can influence the delay of the two tasks and this in turn
impacts upon the stability of the system and the “quality” of the control. For this reason, it is
desirable to know in advance which scheduling strategy and which combination of parameters
must be assigned in order to maximize the performance of the control strategy.

Assessing performance

Once a system has been modeled, a designer is provided with different opportunities to simulate
the system and evaluate the quality of the design. A simulation consists of a sequence of events
associated with relevant situations in the architectural model of the system (i.e. task arrivals,
task terminations, deadline expirations etc.), which may trigger actions in the functional model.
Therefore, events are the fundamental element of any simulation and they can be used in a
variety of ways to evaluate the system’s performance. With this respect, the first possibility
a designer is offered, is to record all events of a simulation, or a meaningful subset, into a
trace file. The toolset comprises a utility, called RTTracer, which interprets a trace file and
visualizes events in a clear form (see Figure 6). In order to facilitate portability RT Tracer is

Copyright © 2000 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2000; 00:1-32
Prepared using speauth.cls

AN 00 TOOL FOR SIMULATING DISTRIBUTED REAL-TIME CONTROL SYSTEMS 11

entirely written in Java. The application of RTTracer is particularly useful for performing a
“temporal” debugging of a complex system when simulations reveal a failure in respecting
deadlines for some task or network message. The second important possibility is to define
statistical probes, which can be attached to objects to measure the occurrence of events.
Statistics can be collected over multiple runs when such parameters as computation times
are assigned to vary stochastically according to specified distributions. The main use of this
feature is to derive such measures of the system’s performance as jitter, latency of data, end-
to-end delays on pipelines of tasks and so forth. Finally, particular types of input buffers can
be used to measure the evolution of some quantities of interest in the plant (very much like
in Simulink). Such units can be connected to files in order to record the time evolution of the
observed quantities. In a similar way it is possible to define performance probes which can, for
instance, integrate over time the squared norm of the measured quantity.

Example. In order to show some of the possibilities offered by RTSIM, we get back to the
example of the inverted pendulum introduced in the previous sections. The code for this
example is included in the official distribution of RTSIM (it can be downloaded from the web
site http://rtsim.sssup.it), where the interested reader can find the exact parameters of
the simulation.

The state space of the pendulum is composed of four variables: [z, &, 6, é]T, where z is the
linear position, & is the linear velocity, 8 is the pendulum angle and 6 is the angular velocity. In
the simulations presented in this section, the pendulum starts from the state [-0.1, 0, 0, 0]7
and has to be stabilized into the origin of the state space [0, 0, 0, 0]T.

The functional and the architectural model of the controller have been introduced above.
In order to provide an experimental validation for the use of the tool, we realized a physical
implementation of the system based on the SHARK [9] kernel (for details see the Web site
http://shark.sssup.it). The execution times of the tasks were profiled and imported into
the simulation model.

A first element of information on the correctness of the system’s behaviour can be obtained
by visually inspecting the execution traces of the tasks. In Figure 6 the RTTracer output for
a simulation is shown. The assumed hard real-time algorithm is the classic Earliest Deadline
First. In order for the compliance of the control design with some performance expectation to
be verified, it is very important to show the evolution of state variables in time. In Figure 4, the
dynamics of and 6 obtained from a simulation run are shown. In order to verify the quality of
the simulation we report on the same plot also data obtained from an experimental realization.
For both simulation and experimental dynamics convergence to zero takes approximatively four
seconds.

In order to achieve a quantitative assessment of the influence of the scheduling choices on
the control performance, it is necessary to introduce a performance index. A possible choice,
as proposed by Shin et al. [29], is the use of a quadratic function:

+
J = E{/O oo(ZT Q7 + Ru®} (1)

where:

e E{.} denotes the expectation value (calculated over stochastically varying parameters),

Copyright © 2000 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2000; 00:1-32
Prepared using speauth.cls

12 L. PALOPOLI, GIUSEPPE LIPARI, ET AL.

Dynamics of the linear position

0.02

—-0.02

|
o
=)
R

X position (m)

-0.06

-0.08

-0.1

~0.12 I I I I I
0 1 2 3 4 5 6
Time(sec) (a)
Dynamics of the angle
0.04 T

0.03

0.02

Angle (rad)
o

L
o
o
2

-0.02

-0.03

-0.04

-0.05 L L L I I

° ! : Timea(sec) ‘ ° ® (b)
Figure 4. Dynamics of the z (a) and # (b) variables for a simulation run compared with an experimental
realization.
Copyright © 2000 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2000; 00:1-32

Prepared using speauth.cls

AN 00 TOOL FOR SIMULATING DISTRIBUTED REAL-TIME CONTROL SYSTEMS 13

Performance index of the controller (simulation + experiment)
130 T T T

experiment

120

110~

=

o

=)
T

simulation

Performance index
©
o
T

80

701 1

60 b

50 I I I I I
10 15 20 25 30 35 40

Period of task T1 (msec)

Figure 5. Performance index variations with respect to the activation period of Task 1.

e 7 denotes the state vector,
e 1 denotes the command variable,
e the (Q matrix and the R constant are two weighting factors.

As said above, a particular type of input buffer can be attached to the state and to the input
variables in order to compute f0+ oo(#T Q7+ Ru? as the simulation takes place. The expectation
value can easily be approximated by attaching a statistical probe to the storage unit and by
collecting the measures over a sufficient number of runs.

The simulations were aimed at evaluating the impact of the task frequencies. The
schedulability of tasks for this algorithm is ensured, provided that % + % < Uy, where
T, and T are the activation periods of the tasks, C'i, Cs are the worst case execution times
and U; = 1. Residual computation activities (for data logging and man/machine interfaces)
where considered by using a lower utilization bound: U; = 0.8.

The simulated and the experimental plots for the performance index are reported in Figure 5.
In the horizontal axis period 7; is varied while 75 is chose accordingly to the relation
%1 + % = 0.8. The performance index for each point was evaluated averaging the result
of twenty execution and simulation runs. As a remark, the evaluation of each point required
approximately forty seconds on a PC with an Athlon 1.2 Ghz processor running the Linux
operating system.

As it is possible to see, if high values are chosen for T}, the system tends to instability and
the value of the performance index increases. Similarly, if T becomes too small there is a steep

Copyright © 2000 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2000; 00:1-32
Prepared using speauth.cls

14 L. PALOPOLI, GIUSEPPE LIPARI, ET AL. SP E
&

X RTTracer 5@ @
H|| RnDm

Task 1 'L- | | L_- T- | | h
e T " T T T T T T I I

‘@ @ .Time: a Event: E m

Opening: trace.trc
End of File reached: 236 descriptors read

S

S

Figure 6. Graphical output of a trace of a RTSIM simulation.

degradation of the performance. The latter phenomenon is due to the corresponding value of
T5, which tends to increase according to the schedulability relation. The best performance is
achieved by a trade-off choice for the periods. The behaviour of the cost function is pretty
similar in the two plots, except for the higher values of the experimental data. This difference,
which is also evident in the plots in Figure 4, is due to the adoption of a simplified model for
the plant. As a matter of fact, such aspects as the transfer function of the motor, the sensors
and process noise and the nonlinearities on the actuators were neglected in the construction
of the plant model, since the accuracy level obtained with the simplified model was deemed
satisfactory for the purposes of this work.

DESCRIPTION OF THE TOOL

Summarizing the illustration above, RTSIM consists of a collection of C++ libraries containing
three types of objects:

e continuous time plants,
e functional components of control software, and
e architectural components of control software.

The distinction of these conceptual domains dictated a decomposition of the software into
three interacting packages, as shown in Figure 7.

The package denoted as “Numerical Package” is used to model and simulate plants. Objects
living in this package evolve in continuous time and they are described by means of differential
equations. The package called “CTRLIB” is used to construct the functional model of the
system. Objects belonging to this package do not posses an intrinsic concept of time evolution:
their actions are triggered by objects belonging to other packages (in particular to RTLIB).

Copyright © 2000 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2000; 00:1-32
Prepared using speauth.cls

AN 00 TOOL FOR SIMULATING DISTRIBUTED REAL-TIME CONTROL SYSTEMS 15

Event

Generating
Package

Numerical
Package RTLIB

+ GenericPlant

+ Sensor + Contrinstr

+ ColumnV ector
+ Matrix, ...

+ PeriodicTimers

CTRLIB
. Data

+ ComputingUnit Pro ng

+ ActuatorBuffer D Package
+ SensorBuffer

Figure 7. Main components involved in a RTSIM based simulation of a real-time controller

The “RTLIB” package is used to describe the architectural components a functional model is
mapped onto. Objects evolve according to a discrete event model of computation [19]: they
react to events and are able to generate other events in their turn.

When designing the class hierarchies for the packages, we wanted to achieve a high degree
of decoupling so as to facilitate an autonomous evolution of the tool along the three different
dimensions. For instance, in our intentions, a developer should be able to extend the library
of computing units with new algorithms without caring too much for the structure of kernels
or scheduling algorithms and vice versa. In order to achieve this goal, structural relations
between components and their interactions had to be captured through a set of clear interfaces.
Particularly, for what concerns the interaction between the three packages, we could leverage
an important property of the addressed systems: meaningful interactions between plants and
controllers take place only on the occurrence of a specific set of events generated by RTLIB.
On one hand, in the time interval separating two writings on the output buffer, the differential
equations of a plant can be integrated assuming constant values in the actuatorst. On the
other hand the plant state can be observed through the objects simulating the sensors only
when an event associated with sampling is generated. Hence, a substantial role in the RTSIM
simulation environment is played by the generation of discrete events for RTLIB. This is
achieved by using the Metasim library, which is a small software layer developed at the Retis

fMore sophisticated actuator schemes such as first order hold or analog loops can easily be modeled in the
plant description.

Copyright © 2000 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2000; 00:1-32
Prepared using speauth.cls

16 L. PALOPOLI, GIUSEPPE LIPARI, ET AL. SPE
&

UML legend
inheritance, arrow
toward base class
«Interface»
4 @nlt-lerfitance, arrow AbsTask
1 intertace Entity +schedul e()
. public A +deschedul e()
+onArrival ()
<<Interface>> abstract collection +onEnd()
of method specifications
1

TN
1
1
Instr «I'nterface»
Tschedule() AbsRTTask
+deschedul e() [% Task +get Deadl i ne()
+onEnd() +get Rel Deadl| i ne()
1 1
1 1
_________ P s

1
[contrinstr | [waitinstr] RTTask

Figure 8. Class diagram representing the Task family of classes.

Lab of Scuola Superiore S. Anna. Metasim provides the basic classes for writing generic discrete
event simulations [5, 16, 17] and a clear framework to use them.

The remainder of this section is devoted to a short description of the three packages (both
structural and behavioural) and of their most important interactions. For obvious space
constraints, the description is far from complete. The interested reader is referred to the
technical documentation of the tool [23]. The components of the libraries and their behaviour
are described by the UML graphical notation [26].

The RTLIB Package

RTLIB is a library designed to simulate the timing behaviour of a real-time software system.
It models entities like real-time tasks, scheduling algorithms, single and multi processor nodes,
and network links.

Tasks. One of the most important entities needed to specify a software architecture is the
task. The family of classes for modeling tasks is shown in Figure 8 as a UML class diagram.
In order to de-couple the interface of a task from its internal implementation, we decided
to provide an abstract interface AbsTask that exposes the basic methods to handle a task
(schedule, deschedule, onArrival, onEnd). This same interface is used by all entities that
can be scheduled: for example, an aperiodic server will implement the AbsTask interface (see
the server section below).

Copyright © 2000 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2000; 00:1-32
Prepared using speauth.cls

AN 00 TOOL FOR SIMULATING DISTRIBUTED REAL-TIME CONTROL SYSTEMS 17

The Task class contains a list of instructions, which are modeled by the Instr class.
Examples of instructions are:

e ExecInstr that models a piece of sequential code with a certain execution time; the
execution time is described by a RandomVar object: hence it is possible to model a
portion of code with an arbitrarily distributed random execution time;

e WaitInstr and SignallInstr that model the wait and signal system calls for concurrent
access to shared resources using semaphores; and

e the ControlInstr family of classes that model the execution of computing units.

A programmer inserts instructions into tasks, just as she/he would write a real implementation.
Instructions are executed sequentially ¥ and have a duration, which can either be deterministic
or specified as a random variable.

In the types of applications we want to model, tasks have timing requirements. The most
common constraint is the deadline: the absolute deadline of a job is the instant of time by
which the job must finish; the relative deadline of a task is the interval of time between the
arrival time and the absolute deadline of each job.

A real-time task is modeled by the abstract interface AbsRTTask which derives from the
AbsTask (Figure 8). It comprises the getDeadline() and getRelDeadline() methods, which return
respectively the absolute and the relative deadline of a task.

Kernels. The Kernel family of classes models a computational resource, like single processor
or multi-processor nodes. As in the case of tasks, we found it useful to introduce an abstract
interface, AbsKernel, capturing the minimum set of services required to any type of kernel. In
particular we identified the following services:

e task insertion into a ready queue (method activate),

e task extraction from the ready queue (method suspend),

e task dispatch (method dispatch): the currently executing task is revoked use of the CPU,
which is assigned to the first task in the ready queue. In multiprocessor systems the
kernel performs this operation on each processor under its control.

The kernel interface also includes methods to handle the most important events a kernel
can receive: the arrival of a new task (method onArrival) and the termination of a task’s job
(method onEnd).

Notice that, at this point, we have not yet introduced any notion of “task priority”. In fact,
different scheduling policies compare tasks based on different parameters. For example, the
Rate Monotonic scheduler requires a static priority to be assigned to each task, whereas the
Earliest Deadline First scheduler uses the absolute deadline of a job to determine the task

§Thus far, this model has proven sufficiently expressive, since we restricted the application of the tool to
modeling classical “data-flow” oriented real-time control applications. In the future, we plan to model also
multimodal applications for which a direct support for branches will be necessary. The addition of this feature
requires slight modification to the structure of RTLIB and it is planned for future revisions.

Copyright © 2000 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2000; 00:1-32
Prepared using speauth.cls

18 L. PALOPOLI, GIUSEPPE LIPARI, ET AL. SP E
&

«nterface» «Interface»

AbsKernel Scheduler
+activate(t: AbsTask *) +Tnsert()
+suspend(t: AbsTask *) +extract () «Interface»
+di spat ch() +get Fi rst () TaskModel AbsTask
+onArrival (t: AbsTask *) A
+onEnd(t: AbsTask *) A

]
RTModel «Interface»
[RTKernel }———— RTScheduler | NN |—|AbSRTTaSk

! T) UML legend
[PrioScheduler || EDFScheduler | -)
[FaddTask(t: AbsRTTask . p.int) | [faddTask(t:AbsRiTask *) | EDFModel PrioModel [r inheritance, arrow

toward base class

A inheritance, arrow
interface
'
N public

abstract collection
f

<« 5> n
Interface>> ¢ ethod specifications

Figure 9. Class diagram representing the Kernel family of classes.

priority. Moreover, some scheduling policies (like Proportional Share or Round Robin) do not
use any priority at all.

Hence, the ordering of tasks in the ready queue depends on the scheduling policy,
which is implemented by the Scheduler family of classes. Each one implements a different
queuing policy: for example, EDFScheduler implements the Earliest Deadline First scheduling
algorithm, PrioScheduler implements a generic Fixed Priority scheduling algorithm, and
so on. The scheduling parameters are not stored in the task class, but in the wrapper class
TaskModel: thus, the task implementation is independent from the scheduling algorithm (as
in the Adapter Pattern [10]). The TaskModel hierarchy of classes is similar to the Scheduler
hierarchy: every scheduler corresponds to a task model. In Figure 9 the inheritance relationships
between these classes are summarized.

The current distribution of RTLIB provides single processor and multi-processor kernels
as predefined components, with any of the following scheduling policies: FIFO, EDF, fixed
priority (FP) and rate monotonic, and EEVDF [35]. For the multi-processor versions of EDF
and FP, it is possible to allow/disallow migration: in the latter case, tasks must be statically
allocated to processors.

Example. The notification mechanism and the way events are handled in RTLIB are better
explained with a practical example. The sequence diagram shown in Figure 10 captures a
snapshot of the system described in Figure 3 when a preemption occurs: while Task 1 is
executing, Task 2 is activated (arrives) and, having a higher priority, preempts Task 1.
When Task 2 is activated, its arrival event is processed: as a consequence, the onArrival ()
method of Task 2 is invoked. After updating its internal status (for example recording the
arrival time and resetting the current instruction pointer to the first instruction), Task 2 calls
the onArrival() method of the kernel. The kernel, in turn, inserts the task in the ready
queue (calling s.insert()), and checks if this task is now the first element in the queue. If

Copyright © 2000 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2000; 00:1-32
Prepared using speauth.cls

AN 00 TOOL FOR SIMULATING DISTRIBUTED REAL-TIME CONTROL SYSTEMS 19

el: Execlnstr Task 1: RTTask Task 2: RTTask k: RTKernel s:EDFScheduler

onArrival() | |

onArrival()

insert()

«Q
[}
=
T
=
%]
4

f=

deschedule()

deschedule()

0
Q
=
[v]
Q.
c
[
=
(=

Figure 10. Sequence diagram: Task 2 preempts Task 1.

S0, a preemption must occur: the current executing Task 1 yields the processor and Task 2
becomes the current executing task.

Hence, Task 1 must be signaled calling its deschedule() method; in turn, it calls the
deschedule () method of its currently executing instruction. Finally, Task 2 is signaled calling
its schedule () method.

Servers. When soft real-time aperiodic tasks are to be scheduled together with hard real-
time periodic tasks, the goal is to improve the response time of the aperiodic tasks without
compromising the schedulability of the hard real-time tasks. A popular conceptual framework
for modeling the behaviour of such systems is to associate a server to the soft aperiodic tasks. A
server is characterized by certain parameters specifying exactly its performance expectations.
Several aperiodic service mechanisms have been proposed under RM [22, 21, 2, 38] and under
EDF [31, 12, 33, 32, 1, 24] scheduling.

The Server class models these algorithms.

We noticed that in almost all the aperiodic server mechanisms, a server is treated as a
particular kind of task and is inserted in the ready queue together with the other regular

Copyright © 2000 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2000; 00:1-32
Prepared using speauth.cls

20 L. PALOPOLI, GIUSEPPE LIPARI, ET AL. SPE
&

«Interface» WaitInstr
AbsResManager +get Task(): AbsTask *
+get Resource(): Resource *
«Interface» +l ock(r: Resource, t: AbsTask)
AbsKernel +unl ock(r: Resour ce, t : AbsTask) -
TactTvare() Signalinstr
+get Task(): AbsTask *
+suspend() T +get Resource(): Resource *
ResManager
Scheduler +addResour ce(r: Resour ce)
+set Ker nel (t: AbsKernel) Resource
+| ock(t: AbsTask)
[r +unl ock()
+i sLocked(): bool
+get Hol der (): AbsTask *

SemManager UML legend

inheritance, arrow
toward base class
SRPManager
|*declar eResUsage(t : AbsRTTask, r: Resource) | + public

abstract collection

<<| >> L
Interface of method specifications

Figure 11. Class diagram representing the Resource Manager family of classes.

tasks. For this reason, we decided to derive the server class from the AbsTask interface, so that
the scheduler does not need to distinguish a regular task from a server. The main advantage is
that, when implementing the server algorithm, the scheduler module can be reused without any
modification. On the other side, a server handles aperiodic tasks just as a kernel does: when
several aperiodic requests are pending, the server must choose which one must be serviced
next. For this reason, the server class also derives from the AbsKernel interface. In this way,
a task has not to distinguish whether it is served by a server or by a regular kernel, and we
can re-use the same code for the task class. In the current RTLIB distribution, the polling
server, deferrable server (DS), sporadic server (SS), total bandwidth server (TBS), and constant
bandwidth server (CBS) are provided as predefined components.

Sharing other resources. Sometimes, tasks access mutually exclusive resources: for example,
tasks can access the same memory block that is protected by a mutex semaphore. For example,
tasks can access the same memory block that is protected by a mutex semaphore.

In RTSIM, this can be simulated by means of a class Semaphore and of a Resource
Manager, which is the entity that manages the operations on a semaphore, holding the blocked
tasks in queues. Tasks can operate on semaphores by means of WaitInstr and SignalInstr
instructions.

In Figure 11 the relationship among the classes is shown while in Figure 12 we show a
possible scenario of execution.

When a task executes a WaitInstr instruction, the Resource Manager checks if the
semaphore is free by invoking lock (Semaphore *s). In the considered scenario, the semaphore

Copyright © 2000 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2000; 00:1-32
Prepared using speauth.cls

AN 00 TOOL FOR SIMULATING DISTRIBUTED REAL-TIME CONTROL SYSTEMS 21

Task 1: RTTask w: Waitlnstr res. SimpleResManager k: RTKernel Task 2: RTTask

schedule() |
lock(Semaphore *s)

suspend()

deschedule()

dispatch()

= schedule() !

L

L

Figure 12. Sequence diagram showing a locking operation on a semaphore.

is locked, thus the task must be blocked: the resource manager invokes the Kernel: : suspend ()
method to block the task and Kernel: :dispatch() methods, in order to schedule another task.

In the current implementation of RTLIB, a simple locking policy, the Priority Inheritance
protocol (PIP), the Priority Ceiling protocol (PCP), and the Stack Resource Policy (SRP)
are provided as predefined components. In the case where one of these protocols is used, the
corresponding resource manager has to interact with Scheduler component to change the task
priority according to the protocol. This justifies the relation between the Resource Manager
and the Scheduler component in Figure 11.

Networks. Every kernel may have one or more network interfaces, modeled by the
NetInterface family of classes, each one connected to a network link, modeled by the NetLink
family of classes. For each network link class, there is a corresponding network interface class.

A task can send a message, modeled by the Message class, to another task passing it to
the appropriate network interface of its kernel. The Message class implements the AbsTask
interface: in this way, it can be handled by a Scheduler. A network interface has a pointer to
a Scheduler object for implementing the message en-queuing policy. It realizes the medium
access protocol, such as the Ethernet or CAN bus protocol. In particular, the CANInterface

Copyright © 2000 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2000; 00:1-32
Prepared using speauth.cls

22 L. PALOPOLI, GIUSEPPE LIPARI, ET AL. SPE
&

GenericPlant

]ii nt egr at e(newTi me: Ti ck)
taddSensor (s: Sensor *)

+get State(): Col utmVect or L
+addAct uat or (posi tion:integer, a: Actuator *)
-Di ffEq()
«i nterface» «interface»
Sensor Actuator
+updat eSensor (p: Generi cPlant * p) +get Command()

Figure 13. Class diagram representing the components of the numerical package to be used for modeling
plants.

has a pointer to a function that transforms the message priority (or deadline) in a CAN
priority Y.
Two additional instructions have been defined:

e SendInstr instruction: takes as parameters the name of the destination task and a
function object for building new messages.

e Receivelnstr instruction: if a message has already arrived for the task, it gets the
message, otherwise it blocks the task waiting for a message from the network interface.

In the current distribution of RTLIB, the Ethernet network and the CAN bus are provided
as predefined components.

The Numerical Package

The main purpose of the numerical package is to provide programming models for continuous
time plants. A plant is described by means of its state variables, differential equations and so
on. From a structural viewpoint, the numerical package is a software layer built on the top
of a library which provides some services, such as differential equation integration and linear
algebra operations. The current implementation is based on the OCTAVE library, which is a
freely available tool encompassing the best known algorithms for numerical computation. The
presence of a software abstraction layer allows us to replace OCTAVE with any other similar
solution without affecting the structure of the simulator. As well as permitting the definition
of a plant, the numerical package also exports a set of useful classes for linear algebra, such as
Matrix, ColumnVector and so on.

THigh level protocols (like TCP/IP) have not been implemented for they are well beyond the scope of this
work.

Copyright © 2000 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2000; 00:1-32
Prepared using speauth.cls

P AN OO TOOL FOR SIMULATING DISTRIBUTED REAL-TIME CONTROL SYSTEMS 23
&

UML legend
[ContrReadinstr | [ContrExecutelnstr | [ContrWritelnstr |
[+onEnd()] [tonEnd()] [+onEnd() | inheritance, arrow
toward base class
4 inheritance, arrow
! interface
+ public
Operations on a .
conputing unit can <<Interface>> alf)stratchtc;uech_c;p tions
_ be triggered by a of method specifications
Contrinstr pseudoi nstruction

#onEnd()

ComputingUnit

Fread()

+execut e()

— |+write()

+at t achl nput (pos:int,in: Dat aSource *)
+at t achQut put (pos: i nt, o: Dat aSi nk)

< TierTaces «interface» «interface» «interface»
Actuator DataSink DataSource Sensor

N +put Dat a(dat a: Col unmVect or) +get Data() : Col unmVect or 7AN
1 1
1 1 1 1
1 1 1 1
| L | |
1 1 r 1 1
1 1 | 1 1
_______________ | Immm e

| ' |

I MemoryBuffer I

| |

I 1

InputBuffer OutputBuffer

-val ue: Col umVect or
- sanpl edVal ue: Col unmVect or

+sanpl e()

-val ue: Col unmVect or
+get Command()

The sensor may

be sanpled periodically
by a Timer (belonging
to the event generating
nodul e)

PeriodicTimer
+onTi neSt anp()

Figure 14. The most important classes used to model the functional behaviour of a controller.

User-defined plants are derived from an abstract class named GenericPlant (see Figure 13).
The inheritance mechanism permits us to add plant specific information by inserting new data
members in the derived class. The differential equations are specified by providing a definition
to the abstract method DiffEq.

The plant evolution can be observed by a set of objects implementing the Sensor interface.
Formally speaking, if the state of the plant is represented by the column vector x, a Sensor
realizes an output function y = h(x,t). The programmer is required to implement function h
by writing a virtual method, called updateSensor, which can read the plant state by issuing
a call to the getState method of the plant. The mechanism used to update the value of the
sensor is based on the observer pattern [10].

The evolution of a plant can be influenced by a set of actuators. An actuator is an object
implementing the Actuator interface. Each actuator is registered into a position, denoted by
an integer number. This convention is to simplify the writing of differential equations. The

Copyright © 2000 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2000; 00:1-32
Prepared using speauth.cls

24 L. PALOPOLI, GIUSEPPE LIPARI, ET AL. SPE
&

integration of the plant differential equations is performed by issuing a call to the integrate
method exported by the plant.

CTRLIB

The functional model of the system is expressed using the classes of the CTRLIB package.
CTRLIB offers two types of components: computing units and storage units. Both of these
components are framed within a hierarchy of classes. The structure of the basic classes of
CTRLIB is shown in Figure 14.

In order to specify a new type of computing unit, the programmer has to derive it from the
abstract class ComputingUnit and has to provide an implementation for three pure virtual
methods: read(), execute() and write(). Once the class is defined, the programmer can
instantiate objects from it to be used in different contexts. For example, a class implementing
a PID controller is likely to be a reusable component.

A ComputingUnit is connected to a set of inputs, which are objects implementing the
DataSource interface, and to a set of outputs which implement the DataSink interface. Each
computing unit can be associated with special instructions triggering the execution of the
read(), execute() and write() operation. Such instructions derive from the ContrInstr
class.

Input buffers are realized as classes implementing both the Sensor and DataSource
interfaces. A predefined method, called sample(), is used to sample the value of the sensor
upon the occurrence of certain events. A particular choice can be the use of a RTLIB object
implementing a periodic timer. Another possibility is to have the sample() method called
by an instruction of a task. The sampled value can be read by a computing unit calling the
getValue () method.

Output buffers are objects implementing both the Actuator and the DataSink interfaces.
Thus, they export the putValue() method to the computing units and the getCommand ()
method to the plant. Memory buffers implement both the DataSource and DataSink interfaces
and are used to exchange information between the different computing units. Output and
memory buffers can be used with no other efforts than defining the width of the data vector
when an object is instantiated. In order to simplify the simulation code, the creation of memory
buffers connecting different computing units can be made in a semi-automatic fashion by
appropriate programming facilities.

Some insight into the hybrid simulation

This section is devoted to showing the main interactions between the different components of
the RTSIM tool suite when the libraries are employed to perform a hybrid simulation between
a continuous time plant and a digital controller, whose timing evolution is simulated by a
RTLIB discrete event model.

In order to highlight the interactions between different components of RTSIM that take place
upon the occurrence of some meaningful events, consider the sequence diagram in Figure 15.
The boxes represent RTSIM objects involved in a simulation. The diagram is partitioned
according to the three different packages objects belong to. The diagram shows a sequence

Copyright © 2000 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2000; 00:1-32
Prepared using speauth.cls

SP AN OO TOOL FOR SIMULATING DISTRIBUTED REAL-TIME CONTROL SYSTEMS 25
&

rFilt_x: ContrReadInstr ‘ Filt_x: MyCompUnit ‘ F_x: MemoryBuffer ‘ ‘ invPend: LTIPlant ‘
onEnd()
integrate() i
read() ‘
getData()
RTLIB CTRLIB Numerical Package

Figure 15. Sequence diagram showing the interactions which take place when an end event for a
instruction is handled.

In_x: InputBuffer Out_u: OutputBuffer invPend: LTIPlant

integrate()

! : getCommand()

1 1 Ode.integrate()

CTRLIB Numerical Package

Figure 16. Sequence diagram showing how the integration is performed.

Copyright © 2000 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2000; 00:1-32
Prepared using speauth.cls

26 L. PALOPOLI, GIUSEPPE LIPARI, ET AL. SPE
&

of method calls that follows the termination event of the rFilt_x instruction. This event is
handled by the onEnd () method of the rFilt_x object. The first action performed by rFilt_x
calls the integrate () method on the invPendulum object, which determines the integration
of the differential equation up to the current instant of time. The second action is a call on
the read () method of the computing unit associated with the instruction, which, in its turn,
reads the data from the buffer.

It is also interesting to observe how the integration is performed by detailing the sequence
of operations performed by calling the integrate() method (diagram in Figure 16). At the
beginning of the integration the value of the command variables, contained in the output buffer,
are acquired through the getCommand() method. Then, the integration can be performed
(by calling the Ode.integrate () function of the OCTAVE library) assuming constant values
for the input throughout the integration interval. At the end of the integration, the values
contained in the input buffers, which model the sensors, are updated.

CONCLUSION AND FUTURE WORK

In this paper a tool for the joint simulation of a plant and of a real-time embedded controller
has been presented. By using hybrid techniques the tool supports realistic modeling for many
implementation related issues, which are not usually accounted for during controller design.
The tool consists of a complete set of C++ libraries for modeling, simulating and gathering
statistical profiles of performance metrics. The application of the tool is particularly useful
whenever a given control design is based on heterogeneous dataflows from the environment
inducing the use of a complex Hardware/Software implementation. In these cases, the tool
provides important guidelines in the choice of such parameters as the sampling rates of sensors
and, more generally, permits evaluation of different architectural alternatives. The future
activities of the RTSIM team will be concentrated on the integration of the tool in more
complex design environments, including visual modeling tools and automatic code generation
for real-time execution environments.

ACKNOWLEDGEMENTS

The authors would like to thank the anonymous reviewers for their precious suggestions, which
helped to improve the presentation of the material.

REFERENCES

1. L. Abeni and G.Buttazzo. Integrating multimedia applications in hard real-time systems. In Proceedings
of the 19th IEEE Real-Time Systems Symposium, Madrid, Spain, december 1998. IEEE.

2. N.C. Audsley, A. Burns, M. Richardson, K. Tindell, and A. Wellings. Applying new scheduling theory to
static priority preemptive scheduling. Software Engineering Journal, 8(8):284-292, Sep 1993.

3. N.C. Audsley, A. Burns, M.F. Richardson, K. Tindell, and A.J. Wellings. Stress: A simulator for hard
real-time systems. Software: Practice and Ezperience, 6(24), 1994.

4. T.P. Baker. Stack-based scheduling of real-time processes. Journal of Real-Time Systems, 3, 1991.

Copyright © 2000 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2000; 00:1-32
Prepared using speauth.cls

SP AN OO TOOL FOR SIMULATING DISTRIBUTED REAL-TIME CONTROL SYSTEMS 27
&

5.

6.

10.

11.

12.

13.

14.

15.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

G. Booch. Object oriented design with applications. Benjamin/Cummings Publishing Company, Inc.,
1991.

J.B. Dennis. First version dataflow procedure language. Technical report, Massachusetts In. of Tecnology,
Lab. Comp. Sc., 1975.

. John Eaton et al. http://bevo.che.wisc.edu/octave.
. J. Eker and A. Cervin. A matlab toolbox for real-time and control systems co-design. In Proc. of The

Real-Time Computiong Systems and Applications, Hong Kong, China, December 1999.

. Paolo Gai, Luca Abeni, Massimiliano Giorgi, and Giorgio Buttazzo. A new kernel approach for modular

real-time systems development. In Proceedings of the 13th IEEE Euromicro Conference on Real-Time
Systems, June 2001.

E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design Patterns - Elements of Reusable Object-
Oriented Software. Addison Wesley, 1997.

R. Gerber, S. Hong, and M. Saksena. Guaranteeing real-time requirements with resource-based calibration
of periodic processes. IEEE Transaction on Software Engineering, 21(27), 1995.

T.M. Ghazalie and T.P. Baker. Aperiodic servers in a deadline scheduling environment. Journal of
Real-Time System, 9, 1995.

G. Kahn. The semantics of a simple language for parallel programming. In Proceedings of the IFIP
Congress 74, Amstrdam, 1974.

N. Kim, M. Ryu, S. Hong, M. Saksena, C. Choi, and H. Shin. Visual asessment of a real-time system
design: a case study on a cnc controller. In Proceedings of the IEEE Real-time Systems Symposium, 1996.
H. Kopetz, A. Damm, C. Koza, M. Mulazzani, W. Schwabla, C. Senft, and R. Zainlinger. Distributed
fault-tolerant real-time systems: The mars approach. IEEE Micro, 9(1), February 1989.

. W. Kreutzer. Systems Simulation - Programming Styles and Languages. Addison-Wesley, 1986.
. A.M. Law and W.D. Kelton. Simulation modeling and analysis. McGraw-Hill Book Company., 1991.
. Chen Lee, Raj Rajkumar, John Lehoczky, and Dan Siewiorek. Pratical solutions for qos-based resource

allocation. In IEEFE Real Time System Symposium, Madrid, Spain, December 1998.

E. Lee and A. Sangiovanni-Vincentelli. A unified framework for comparing models of computation.
Transaction on Computer aided Design of Integrated Circuits and Systems, 17(12):1217-1229, 1998.
Edward A. Lee. Computing for embedded systems. In IEEFE Instrumentation and Measurement
Technology Conference, Budapest, Hungary, May 2001.

J.P. Lehoczky and S. Ramos-Thuel. An optimal algorithm for scheduling soft-aperiodic tasks in fixed-
priority preemptive systems. In Proceedings of the IEEE Real-Time Systems Symposium, December 1992.
J.P. Lehoczky, L. Sha, and J.K. Strosnider. Enhanced aperiodic responsiveness in hard real-time
environments. In Proceedings of the IEEE Real-Time Systems Symposium, December 1987.

G. Lipari and L. Palopoli. A framework for simulationg distributed embedded real-time controllers.
Technical report, RETIS-LAB, Scuola Superiore S.Anna, 2002.

Giuseppe Lipari and Giorgio Buttazzo. Schedulability analysis of periodic and aperiodic tasks with
resource constraints. Journal of Systems Architecture, 46:327-338, 2000.

C.L. Liu and J.W. Layland. Scheduling algorithms for multiprogramming in a hard-real-time environment.
Journal of the Association for Computing Machinery, 20(1), 1973.

James Rumbaugh, Ivar Jacobson, and Grady Booch. The Unified Modeling Language Reference Manual.
Addison-Wesley, 1999.

D. Seto, J.P. Lehoczky, L. Sha, and K.G. Shin. On task schedulability in real-time control systems. In
IEEE Real Time System Symposium, December 1996.

Lui Sha, Ragunathan Rajkumar, and john P. Lehoczky. Priority inheritance protocols: An approach to
real-time synchronization. TEEE transaction on computers, 39(9), September 1990.

K.G. Shin, C.M. Krishna, and Y. Lee. A unified method for evaluationg real-time computer controllers
and its application. IEEE Transactions on Automatic Control, AC30(4):357-366, April 1985.

B. Sprunt, L. Sha, and J. Lehoczky. Aperiodic task scheduling for hard-real-time systems. Journal of
Real-Time Systems, 1, July 1989.

M. Spuri and G. Buttazzo. Efficient aperiodic service under earliest deadline scheduling. In Proceedings
of the IEEE Real-Time Systems Symposium, December 1994.

M. Spuri and G.C. Buttazzo. Scheduling aperiodic tasks in dynamic priority systems. Journal of Real-
Time Systems, 10(2), 1996.

M. Spuri, G.C. Buttazzo, and F. Sensini. Robust aperiodic scheduling under dynamic priority systems.
In Proceedings of the IEEE Real-Time Systems Symposium, December 1995.

D.B. Stewart, R.A. Volpe, and P.K. Khosla. Design of dynamically reconfigurable real-time software using
port-based objects. IEEE trans. on Software Engineering, 23(12), 1997.

Copyright © 2000 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2000; 00:1-32
Prepared using speauth.cls

28

L. PALOPOLI, GIUSEPPE LIPARI, ET AL. SP E
&

35.

36.

37.

38.

39.

Tan Stoica, Hussein Abdel-Wahab, Kevin Jeffay, Sanjoy K. Baruah, Johannes E. Gehrke, and C. Greg
Plaxton. A proportional share resource allocation algorithm for real-time, time-shared systems. In IEEE
Real Time System Symposium, 1996.

C.M. Kirsch T. Henzinger, B. Horowitzm. Embedded control systems development with giotto. In
Proc. of ACM SIGPLAN 2001 Workshop on Languages, Compilers, and Tools for Embedded Systems
(LCTES’2001), June 2001.

T.-S. Tia, Z. Deng, M. Shankar, M. Storch, J. Sun, L.-C. Wu, and J. W.-S. Liu. Probabilistic performance
guarantee for real-time tasks with varying computation times. In Real-Time Technology and Applications
Symposium, pages 164-173, Chicago,Illinois, January 1995.

K. Tindell, A. Burns, and A. Wellings. An extendible approach for analysing fixed priority hard real-time
tasks. Journal of Real Time Systems, 6(2):133-151, Mar 1994.

M. Térngren. Fundamentals of implementing real-time control applications in distributed computer
systems. J. of Real-time systems, 14:219-250, 1998.

Copyright © 2000 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2000; 00:1-32
Prepared using speauth.cls

