
SOFTWARE|PRACTICE AND EXPERIENCESoftw. Pra
t. Exper. 2000; 00:1{32 Prepared using speauth.
ls [Version: 2000/03/16 v2.12℄An obje
t oriented tool forsimulating distributedreal-time
ontrol systemsLuigi Palopoli1, Giuseppe Lipari1,�, Gerardo Lamastra2, Lu
a Abeni1, GabrieleBolognini1, Paolo An
ilotti11 S
uola Superiore Sant'Anna, piazza Martiri della Libert�a 33, 56127 Pisa (ITALY)2 Tele
om Italia LabSUMMARYThis paper presents an obje
t oriented software tool,
alled RTSIM, aimed atsimulating real-time embedded
ontrollers. The tool
onsists of a
olle
tion of C++libraries permitting a separate spe
i�
ation of the fun
tional behaviour of the
ontrollerand of the hardware/software ar
hite
ture to be used for its deployment. In parti
ular, itis possible to provide an a

urate modeling of the
on
urrent ar
hite
ture of the
ontroltasks and of the run-time support o�ered by the operating system for the real-times
heduling of the shared resour
es (CPU, memory bu�ers and network links). In thisway, it is possible to
ompare di�erent s
heduling solutions by evaluating their simulatedperforman
e dire
tly in the domain of the
ontrol appli
ation. Moreover, the tool
anbe utilized to tune up su
h design parameters as the a
tivation frequen
ies of the tasks.The appli
ation of the tool is shown on a meaningful
ase-study.key words: Simulation, Control systems, Real-Time systems, C++ libraryINTRODUCTIONDuring the last years, the appli
ation of embedded
ontrol systems has be
ome a dominantfa
tor governing the
ommer
ial su

ess of several engineering produ
ts. The best knownexample is represented by the automotive industry: from their seminal appli
ations torestri
ted ni
hes of produ
tion vehi
les, embedded devi
es are gradually be
oming ubiquitous
omponents of modern
ars. In other appli
ations, like avioni
s and fa
tory automation, the�Corresponden
e to: Giuseppe Lipari, S
uola Superiore Sant'Anna, piazza Martiri della Libert�a 33, 56127 Pisa(ITALY) - E-mail : lipari�sssup.itCopyright

 2000 John Wiley & Sons, Ltd.

2 L. PALOPOLI, GIUSEPPE LIPARI, ET AL.introdu
tion of embedded
ontrol devi
es began earlier, but newer and newer fun
tionalities,whi
h
ould not even be
on
eived only a few years ago, are making inroads.The integration of
ows of data from heterogenous sensors, having di�erent requirementsin terms of sampling rates and
omputation times, indu
es almost naturally
on
urrentimplementation s
hemes. The ability of the system designer to spe
ify, manage, and verifythe fun
tionality and performan
e of real-time
on
urrent pro
esses (tasks) turns out to be a
ru
ial su

ess fa
tor. Moreover, in the design of mass-produ
ed embedded systems, the
hoi
eof hardware has a strong in
uen
e on the e
onomy of the solution. Therefore, even in frontof in
reasingly
omplex problems, the push towards minimization of
omputing hardware
ostremains a dominant fa
tor. In this
ontext, an in
reasing emphasis is put on the e�e
tivenessand on the eÆ
ien
y of the produ
tion pro
ess of real-time software. Traditional development
y
les tend to separate \rigidly" the work of
ontrol engineers from that of software engineersbut the �nal out
ome is often far from optimal in terms of performan
e/
ost
riteria.In order to introdu
e a profound innovation in this �eld, the availability of
o-design toolsspanning over diverse engineering dis
iplines is of utmost importan
e.This paper fo
uses on one of the most familiar problems in real-time
ontrol softwaredesign, i.e. how the performan
e of a
ontroller is a�e
ted by ar
hite
tural and implementation
hoi
es (e.g. the de
omposition of feedba
k
ontrollers into tasks, the allo
ation of
omputationresour
es to tasks, the s
heduling of the shared resour
es, et
). Realisti
 and quantitativeanswers to this question during the early phases of the development are a pre
ious tool forprodu
t development.The
on
ept of performan
e evaluation for a real-time
ontroller
an be developed alongdi�erent dire
tions. Most of the resear
h in the area of real-time
omputing has studied theperforman
e of
on
urrent software systems under the viewpoint of their timing behaviour.Ever sin
e the seminal work of Liu and Layland [25℄, a fundamental performan
e metri
 is
onsidered to be the tasks' s
hedulability, i.e. the ability for a set of tasks to exe
ute respe
tingtheir assigned deadlines. For some
lasses of real-time appli
ations (quali�ed as soft real-time),a more useful performan
e metri
 is represented by the probability for ea
h task to exe
uterespe
ting its deadlines [1, 37, 18℄. At a higher level of abstra
tion, the \
olle
tive" timingperforman
e of a set of tasks has been evaluated in terms of end-to-end delay, output jitter,and other metri
s [11℄.The
omplian
e of a
ontroller's timing behaviour with some spe
i�ed requirements (e.g.s
hedulability) is not always suÆ
ient to
hara
terize performan
e at the system level. Classi
alperforman
e metri
s normally used during the
ontrol synthesis
onsider the step response(rise time, overshoot, et
.) or the
losed loop transfer fun
tion. Quadrati

ost fun
tions,or other metri
s su
h as H2=H1 norms, are the foundation of popular pro
edures foranalyti
al
ontrol synthesis. However, during the
ontrol synthesis phase, e�e
ts derivingfrom the implementation ar
hite
ture are not usually taken into a

ount. The diÆ
ulties in�nding tra
table analyti
al models for the sto
hasti
 delays deriving from data dependen
iesand s
heduling jitter and the la
k of adequate modeling and simulation tools, indu
e the
ontrol designers to synthesize
ontrol laws assuming null or �xed delays from the underlyingimplementation platform. As a
onsequen
e, even a software design
omplying with thedeadline
onstraints
an result into a poorly performing system. These problems are dete
tedonly during the late phases of the design
y
le, and the solution is often sought by
y
lingCopyright

 2000 John Wiley & Sons, Ltd. Softw. Pra
t. Exper. 2000; 00:1{32Prepared using speauth.
ls

AN OO TOOL FOR SIMULATING DISTRIBUTED REAL-TIME CONTROL SYSTEMS 3through a long series of
ostly trial-and-error iterations among the di�erent phases of thedevelopment
y
le.In this paper, we present a simulation tool,
alled RTSIM, whi
h alleviates these diÆ
ulties,permitting us to eÆ
iently deal with di�erent aspe
ts of the
ontrol synthesis. The main goal ofRTSIM is to permit the joint simulation of a real-time
ontroller and of the
ontrolled plant,
olle
ting performan
e measures either on the timing behaviour of the
ontroller or on thequality of the plant dynami
s. Spe
i�
ally, a designer is allowed to spe
ify:� a set of plants (spe
i�ed through their di�erential models)
onne
ted to a distributed
ontrol system by means of sensors and a
tuators,� the fun
tional behaviour of the
ontroller,� the ar
hite
tural
omponents of the implementation (real-time tasks, RTOS, sharedresour
es),� the mapping of fun
tional behaviours onto the ar
hite
tural
omponents.By leveraging a
omplete orthogonalization of the fun
tional and ar
hite
tural designs,RTSIM enables: 1) an easy
omparison of di�erent implementation approa
hes for the samefun
tionalities, 2) a performan
e based tuning of su
h design parameters as the tasks' a
tivationrates/s
heduling priorities. The tool is organized as a
olle
tion of C++ libraries that in
ludeprogramming fa
ilities for de�ning sto
hasti
 parameters (e.g. for tasks' exe
ution times,network pa
kets dimensions, et
), for
olle
ting performan
e statisti
 and for re
ording eventsof interest on exe
ution tra
es.A very important feature of the tool is that it en
ompasses the best known solutions forreal-time CPU s
heduling (either on single or on multipro
essor boards) and for boundeddelay sharing of resour
es, as prede�ned library
lasses. The fun
tional spe
i�
ation of thesystem is provided by inter
onne
ting a set of reusable
omponents, a

ording to a syntax
losely related to well-known data
ow paradigmsy Another important feature of the tool isthe presen
e of a well de�ned programming framework guiding users in developing their ownfun
tional and ar
hite
tural
omponents. On
e the design of the
ontroller has been settledand properly tuned, its implementation on a real-time operating system is straightforward.The �ne grained modeling of su
h software ar
hite
tural
omponents as real-time tasks,s
hedulers, syn
hronization proto
ols and so on, enables a very a

urate simulation of thesystem's performan
e.As far as the simulation of the plant is
on
erned, RTSIM exploits the fun
tionality of apowerful mathemati
al library,
alled OCTAVE [7℄, embodying state of the art solutions forthe integration of di�erential equations.yThe term \data
ow" generally denotes a sub
lass of Kahn pro
esses [13℄, introdu
ed by Dennis in 1975 [6℄.However, sin
e many software environments
laim variants of this model even if their semanti
s bear littleresemblan
e with that proposed by Davis, throughout this paper a loose meaning for this term will be used.Therefore, data
ow will intuitively denote a dire
ted sequen
e of transformations applied on data
owing frominputs to outputs.Copyright

 2000 John Wiley & Sons, Ltd. Softw. Pra
t. Exper. 2000; 00:1{32Prepared using speauth.
ls

4 L. PALOPOLI, GIUSEPPE LIPARI, ET AL.STATE OF THE ARTThe best known tool suite for simulating
ontrol systems is MATLAB. The MATLAB/Simulinkplatform is an ex
ellent
hoi
e to model and simulate a plant and a fun
tionally des
ribed
ontroller. Moreover, it permits one to automati
ally generate a prototype on a target real-time operating system (by the use of the Real-Time Workshop tool). However, it is not possibleto immediately to model generi
 Hardware/Software ar
hite
ture and s
heduling algorithms.To
ope with this short
oming, a MATLAB tool to simulate a real-time s
heduler in a Simulinkblo
k is proposed in [8℄. This allows, to a given degree, the simulation of timing propertiesand the assessment of the performan
e of real-time
ontrollers against
hanges in the timingattributes of the tasks. The most important feature of this tool is the good integration with theMATLAB/Simulink environment. On the other hand, the la
k of a
lear separation betweenfun
tional and ar
hite
tural spe
i�
ations hinders the appli
ation of the tool to
omplexsystems having event driven and/or time driven a
tivities.An interesting produ
t, mainly targeted to the automotive industry, is As
et-SD, by Etasengineering tools. The tool in
ludes an easy to use graphi
al interfa
e that permits modelingthe fun
tionalities of a
ontroller in a Simulink like environment. The main fo
us of As
et-3Dis the generation of high quality real-time
ode for prototyped or produ
tion hardware.In re
ent years many interesting tools have been proposed for the analysis and simulation of
omplex real-time systems, networks and kernels. One of the �rst softwares aimed at simulatingreal-time s
heduling was produ
ed by Audsley et al. [3℄. The tool permits modeling a systemof real-time periodi
 and aperiodi
 tasks through a s
ripting language.A well-known
ommer
ial produ
t in this
lass is TimeWiz, by Timesys
orp., whi
h ismostly aimed at the analysis of the timing behaviour of a real-time system with respe
t tos
hedulability
onstraints. The toolset is being integrated with a UML design framework whi
hallows one to des
ribe
omplex systems in a fairly general way. However, the tool does not allowone to perform hybrid simulations of a digital
ontroller along with the
ontinuous dynami
s ofthe
ontrolled plant; thus it is not possible to intera
tively evaluate the performan
e of
ontrolsystems against
hanges in the task ar
hite
ture and/or in the s
heduling poli
ies.The idea of separating fun
tional and ar
hite
tural spe
i�
ation is well supported bythe VCC tool, produ
ed by Caden
e
orp. Fun
tional behaviours
an be spe
i�ed usingdi�erent syntaxes (in
luding the C/C++ language) and the tool permits one to map a givenfun
tionality either on hardware
omponents (e.g. Asi
) or on software (e.g.
on
urrent tasks)in order to pursue di�erent performan
e/
ost tradeo�s. The performan
e assessment in VCCregards mainly the timing behaviour of the
omponents and the simulation of a
ontinuoustime plant is not dire
tly supported.The GIOTTO programming language [36℄ has been devised to develop hybrid
ontrolappli
ations
onsisting of periodi
 tasks. The model of
omputation is primarily aimedat the design and prototyping of time-predi
table
ontrol system by the usual paradigmof separating the fun
tional from the timing behaviour (hard s
hedulability requirements).Time predi
tability (s
hedulability) is obtained by restri
ting the design to a time-triggeredar
hite
ture [15℄. A remarkable advantage of this paradigm is the elimination of input andoutput jitters. However, the introdu
ed delays
an be a very pessimisti
 solution in many
ases. Moreover, the time triggered approa
h does not easily
ope with event-driven systems.Copyright

 2000 John Wiley & Sons, Ltd. Softw. Pra
t. Exper. 2000; 00:1{32Prepared using speauth.
ls

AN OO TOOL FOR SIMULATING DISTRIBUTED REAL-TIME CONTROL SYSTEMS 5
Design

Functional

Architectural

Design
Simulation

&
Performance
Assessment

Mapping

Time constraints

Plant

Figure 1. Typi
al design pro
ess for the spe
i�
ation and the simulation of a real-time
ontroller.An integrated design of real-time
ontrol systems en
ompassing performan
e ands
hedulability
on
erns was �rst proposed by Seto et al. [27℄. In this work an optimizationpro
edure for the a
tivation frequen
ies of
ontrol threads is proposed; the goal is maximizingthe
ontroller's performan
e under s
hedulability
onstraints. The paper is inspired to theevaluation approa
h for embedded
ontrollers suggested by Shin et al. [29℄. Other noteworthyresults on this problem are presented by Kim et al. [14℄; the authors �rst map the
lassi
al
ontrol design parameters onto the end-to-end requirements of the
ontroller and then applythe method of period
alibration [11℄ to derive the exe
ution parameters of ea
h thread sothat the end-to-end requirements are respe
ted. A tool like RTSIM may be a very useful aid tovalidate the assumptions and the result of these methods and of any other
o-design pro
edure.DESIGN PROCESS AND MODELING PRIMITIVESThe
onstru
tion of a simulation model for RTSIM is
arried out
onsidering two orthogonalviewpoints: the fun
tional behaviour of the
ontroller and the HW/SW ar
hite
ture of itsimplementation. In Figure 1, an overview on a typi
al design pro
ess based on RTSIM isdepi
ted.The fun
tional design, starting from the mathemati
al model of the plant and of itsintera
tions with the environment, produ
es a model of the fun
tional behaviour. Thefun
tional behaviour spe
i�es a sequen
e of operations to be performed on data
owingthrough the
ontroller. Su
h operations in
lude the
omputation of the feedba
k
ontrol law,the extra
tion of meaningful information from sensors and so on. The fun
tional design alsoprodu
es a set of timing
onstraints based on the dynami
s of the plant and on the physi
allimitations of sensors and a
tuators.The ar
hite
tural design
an be
arried out almost independently. This a
tivity leads to thede�nition of a model
onsisting of software tasks, s
hedulers, network proto
ols and so on.The fun
tional design is then mapped onto the ar
hite
tural design, wrapping up thefun
tional
omponents into
orresponding ar
hite
tural entities having spe
i�ed requirementsCopyright

 2000 John Wiley & Sons, Ltd. Softw. Pra
t. Exper. 2000; 00:1{32Prepared using speauth.
ls

6 L. PALOPOLI, GIUSEPPE LIPARI, ET AL.in terms of exe
ution time, length of messages and so on. In this phase, the timing
onstraintsare translated into real-time
onstraints on the pro
esses and on the messages on the network.The separation of the fun
tional and ar
hite
tural viewpoints permits us to easily test and
ompare di�erent implementations for the same fun
tional spe
i�
ation in order to identifythe solution whi
h best �ts the performan
e/
ost tradeo�s of the proje
t.Finally the system model,
omposed of its fun
tional and ar
hite
tural spe
i�
ation,
an besimulated obtaining di�erent types of results. A �rst possibility is to analyze the exe
utiontra
es (by an appropriate visual tool) to verify if the design meets the desired timing
onstraints. Moreover, statisti
s
an be
olle
ted on the o

urren
e of events measuringsu
h quantities as the average delay, the jitter and so forth. Most importantly, fundamentalinformation
an be derived on the
ontrol system's performan
e by using typi
al
ontroltheoreti
al metri
s (overshoot, rise time, integral
ost fun
tions). If the resulting performan
eis not satisfa
tory, it is easily possible to return ba
k to any of the previous phases and
hangethe system parameters, the system
omponents (s
hedulers,
ommuni
ation proto
ols) andeven the entire ar
hite
ture.In the rest of this se
tion, the most important modeling primitives of RTSIM for de�ningboth the fun
tional and the ar
hite
tural spe
i�
ation are introdu
ed. A simple example willshow how these primitives are applied to a pra
ti
al
ase.Modeling the fun
tional behaviourThe separation between the fun
tional and ar
hite
tural spe
i�
ation is aided, in the RTSIMtool, by the use of a data
ow approa
h for the fun
tional modeling of the system. Data
owmodels are a well-suited tool in the design of real-time software [34, 39℄ and they are provided,in di�erent
avours, by a variety of tools in
luding Simulink, Ptolemy [20℄, and GIOTTO [36℄.The fun
tional abstra
tions of RTSIM are essentially of two types:
omputing units andstorage units. Computing units are used to perform the
omputation while storage units areused to ex
hange data between di�erent
omputing units or between the
ontroller and theexternal environment.A
omputing unit is endowed with a set of input ports and output ports whi
h mustbe
onne
ted to storage units. Ea
h
omputing unit
an respond to three di�erent external
ommands. The �rst
ommand,
alled read is used to a
quire external data from the storageunits
onne
ted with its input ports. The se
ond one,
alled exe
ute,
omputes an output value,while the third one,
alled write, is used to write the output into the storage units
onne
tedwith the output ports. A
omputing unit
an have an internal state (i.e. state remainingbetween two
onse
utive invo
ation). Noti
e that no parti
ular model is required to spe
ifythe exe
ute method. Thus, a
omputing unit
an be a �nite state ma
hine, a digital �lter,a proportional integral derivative (PID)
ontroller, or whatever is needed in the
ontroller'sstru
ture. A set of
ommon use
omputing units su
h as matrix gains, digital �lters, dis
retetime systems are prede�ned library obje
ts and
an be used in
onstru
ting a model of thesystem without any further programming e�ort.Storage units are of three types: input bu�ers, memory bu�ers or output bu�ers. Inputbu�ers serve as an interfa
e between the environment and the
ontroller. From the point of viewof the environment they
an be thought of as sensors performing a measure on a
ontinuousCopyright

 2000 John Wiley & Sons, Ltd. Softw. Pra
t. Exper. 2000; 00:1{32Prepared using speauth.
ls

AN OO TOOL FOR SIMULATING DISTRIBUTED REAL-TIME CONTROL SYSTEMS 7
Gain

Feedback

F_xdot

F_thdot

Der_x

Der_th

F_th

F_x Filt_x

Filt_th

In_thIn_x

���
���
���

���
���
�������

����
����
����

����
����
����
����

Out_u

Angle

Horizontal
position

Force

Plant

Output
Buffers

Memory

Buffers

Input

Buffers

Computing

Units

LEGEND

Figure 2. Fun
tional design of a simple
ontroller for an inverted pendulum.time quantity. RTSIM o�ers also the possibility of modeling sensors whose measurement area�e
ted by band-limited white noise. From the
ontroller's side, an input bu�er models anI/O
ard whose
ontent
hanges when a sampling
ommand is re
eived. Output bu�ers
anbe used to model a
tuators and
an only be
onne
ted to the output ports of a
omputingunit. They model digital to analog
onverters, i.e. when a
omputing unit writes new data intoan output bu�er, the value is held up to the next writing. Memory bu�ers
an be a

essedeither for reading or for writing operations and they realize
ommuni
ations among di�erent
omputing units.It is important to observe that when a fun
tional model is
onstru
ted no parti
ularassumption is made either on the hardware implementation of a storage unit, or on the way
on
urrent a

ess requests should be s
heduled.Example. An example of fun
tional design is reported in Figure 2. The addressed problemis the
ontrol of a simple physi
al devi
e (an inverted pendulum). The pendulum is mountedon a
art moving on a one-dimensional tra
k. The horizontal position x and the pendulumangle � are a
quired through a
ouple of sensors and their values are stored into two inputbu�ers (named In x and In th respe
tively). Data held in the input bu�ers are pro
essed bythe
omputing units Filt x and Filt th in order to extra
t the meaningful information andto �lter out the sensor noise: the results are stored into the F x and F th memory bu�ers. Twodigital �lters, namely Der x and Der th, are derivative blo
ks and are used to estimate thelinear and angular velo
ities. Finally the four estimated state variables are used by a
omputingunit (Feedba
kGain) to
ompute the for
e to be applied to the
art whi
h is stored into anCopyright

 2000 John Wiley & Sons, Ltd. Softw. Pra
t. Exper. 2000; 00:1{32Prepared using speauth.
ls

8 L. PALOPOLI, GIUSEPPE LIPARI, ET AL.output bu�er (Out u). It is worth observing that the
omputing units shown in this s
hemeare instan
es of library prede�ned obje
ts (four digital �lters and a matrix gain).Modeling the ar
hite
ture of the systemIn our model, a task (or pro
ess) is a �nite or in�nite sequen
e of requests for exe
ution,or jobs. Ea
h job exe
utes a pie
e of
ode (a sequen
e of instru
tions) implementing somefun
tional behaviour. When a job is a
tivated, we say that it arrives and the a
tivation timeis
alled arrival time. Depending on the pattern of arrival times, tasks
an be
lassi�ed as:Periodi
 : if the arrivals are separated by a
onstant interval of time,
alled \period";Sporadi
 : if the arrivals are separated by variable intervals of time with a lower bound,
alled minimum inter-arrival time;Aperiodi
 : if a lower bound is not known on the inter-arrival times.In real-time systems, tasks have time
onstraints, often expressed as deadlines: for example,a typi
al time
onstraint for a periodi
 task is that ea
h job must �nish before the nexta
tivation. Another typi
al
onstraint is on the
ompletion jitter (the interval of time betweentwo
onse
utive job
ompletions).The instru
tions of a task are used to model its timing behaviour. Basi
ally, an instru
tionis modeled by an exe
ution time (whi
h
an be deterministi
 or sto
hasti
) and
an beasso
iated with the read, write or exe
ute
ommand of a
omputing unit. In this way, oneor more
omputing units
an be easily mapped onto a task.Tasks are assigned to the
omputational resour
es (nodes) of the system. Ea
h node
onsistsof one or more pro
essors and a real-time operating system (kernel) endowed with a s
hedulingpoli
y and a syn
hronization proto
ol. The state of the art algorithms for CPU s
heduling(su
h as Fixed Priority, Rate Monotoni
 [25℄, Earliest Deadline First (EDF) [25℄, Proportionalshare [35℄) are provided as prede�ned obje
ts, both for single pro
essor and multi-pro
essorsystems. The performan
e of the s
hedulers
an be enhan
ed by using aperiodi
 servers (Pollingserver [22℄, Sporadi
 Server [30℄, Constant Bandwidth Server [1℄, et
). Priority inversion ina

essing mutually ex
lusive resour
es [28℄
an be avoided by using appropriate syn
hronizationproto
ols implemented in the tool, su
h as the Priority Ceiling Proto
ol [28℄ or the Sta
kResour
e Poli
y [4℄.Finally, the system
an be
omprised of several
omputational nodes
onne
ted by networklinks. Tasks on di�erent nodes
an
ommuni
ate by means of real-time messages. A
ommuni
ation resour
e is modeled by a shared physi
al link, an a

ess proto
ol and a real-time message s
heduler.Example. A better understanding of what is really meant in RTSIM by \ar
hite
ture of thesystem"
an be a
hieved by getting ba
k to the example shown in Figure 2.Suppose, in the
ase of the inverted pendulum, that the horizontal position is
omputedfrom the images grabbed by a
amera, whereas a potentiometer is used to a
quire the angle.In this
ase the
omputation workload ne
essary to
ompute x (asso
iated to
omputing unitCopyright

 2000 John Wiley & Sons, Ltd. Softw. Pra
t. Exper. 2000; 00:1{32Prepared using speauth.
ls

AN OO TOOL FOR SIMULATING DISTRIBUTED REAL-TIME CONTROL SYSTEMS 9

Single CPU Resource Manager

EDF Scheduler

Kernel

Shared
Buffer

Filt_x.read()

Filt_x.execute()

Shared.lock()

Filt_x.write()

Der_x.read()

Der_x.execute()

Der_x.write()

Shared.unlock()

Filt_th.read()

Filt_th.execute()

Filt_th.write()

Der_th.read()

Der_th.execute()

Der_th.write()

Shared.lock()

Shared.unlock()

FGain.write()

FGain.execute()

FGain.read()

Task 2Task 1

Application

Figure 3. Ar
hite
tural design for the example shown in Figure 2. The instru
tions inside ea
h taskare exe
uted sequentially at every a
tivation.
Copyright

 2000 John Wiley & Sons, Ltd. Softw. Pra
t. Exper. 2000; 00:1{32Prepared using speauth.
ls

10 L. PALOPOLI, GIUSEPPE LIPARI, ET AL.Filt x) is mu
h higher than the workload ne
essary to
ompute � (asso
iated to
omputingunit Filt th). Thus, a possible ar
hite
ture for the system
an be based on two periodi
 real-time tasks, Task 1 and Task 2. In parti
ular, Task 1 triggers the a
tions on
omputing unitFilt x and Der x in order to
ompute x and to estimate the _x horizontal velo
ity. Task 2triggers the same operations on
omputing units Filt th and Der th.The main ar
hite
tural
omponents for this example are depi
ted in Figure 3: ea
h taskis represented by a box
ontaining the list of instru
tions exe
uted every period. The twotasks
ommuni
ate by means of a shared bu�er a

essed in mutual ex
lusion (through theshared.lo
k() and shared.unlo
k() instru
tions). The
on
urrent exe
ution of the two tasksis possible using a s
heduler
omponent (named EDFS
heduler) endowed with the EarliestDeadline First s
heduling poli
y [25℄. A resour
e manager is used to sele
t the a

ess poli
y:in this example we use a simple blo
king poli
y. Both the task s
heduler and the resour
emanager are
omponents of a software layer modeling a real-time operating system (Kernel).Of
ourse, this is only one of many possible
hoi
es for the hardware/software ar
hite
ture.This parti
ular
hoi
e aims at
omputational eÆ
ien
y by
on
entrating in one task alla
tivities that may be performed at the same rate. A potential drawba
k of this
hoi
e is thela
k of modularity. For example, Task 2
ould be repla
ed by two tasks, the �rst operating theF th and F thdot
omputing units, and the se
ond operating the gain unit (Feedba
kGain).In this way, it
ould be possible to
hange \on-line" the way x position is a
quired to
opewith a potential sensor fault or with a mode
hange. Another possibility, in
ase a very highloop rate was needed for stability reasons, is to use two di�erent CPU boards
onne
tedby a network link, one performing Task 1 (whi
h is
omputationally expensive), and theother one performing Task 2. More generally, this simple example shows that the
hoi
e ofthe hardware/software ar
hite
ture is the solution to a potentially
omplex problem involvingperforman
e issues,
ost limitations and physi
al
onstraints. This is the reason why de
ouplingar
hite
tural and fun
tional design turns out to be a
onvenient
hoi
e.Moreover, even with the ar
hite
ture shown in Figure 3, the developer has some degreeof freedom in setting the parameters. The
hoi
e of the s
heduling algorithm, the resour
emanager and the task a
tivation rates
an in
uen
e the delay of the two tasks and this in turnimpa
ts upon the stability of the system and the \quality" of the
ontrol. For this reason, it isdesirable to know in advan
e whi
h s
heduling strategy and whi
h
ombination of parametersmust be assigned in order to maximize the performan
e of the
ontrol strategy.Assessing performan
eOn
e a system has been modeled, a designer is provided with di�erent opportunities to simulatethe system and evaluate the quality of the design. A simulation
onsists of a sequen
e of eventsasso
iated with relevant situations in the ar
hite
tural model of the system (i.e. task arrivals,task terminations, deadline expirations et
.), whi
h may trigger a
tions in the fun
tional model.Therefore, events are the fundamental element of any simulation and they
an be used in avariety of ways to evaluate the system's performan
e. With this respe
t, the �rst possibilitya designer is o�ered, is to re
ord all events of a simulation, or a meaningful subset, into atra
e �le. The toolset
omprises a utility,
alled RTTra
er, whi
h interprets a tra
e �le andvisualizes events in a
lear form (see Figure 6). In order to fa
ilitate portability RTTra
er isCopyright

 2000 John Wiley & Sons, Ltd. Softw. Pra
t. Exper. 2000; 00:1{32Prepared using speauth.
ls

AN OO TOOL FOR SIMULATING DISTRIBUTED REAL-TIME CONTROL SYSTEMS 11entirely written in Java. The appli
ation of RTTra
er is parti
ularly useful for performing a\temporal" debugging of a
omplex system when simulations reveal a failure in respe
tingdeadlines for some task or network message. The se
ond important possibility is to de�nestatisti
al probes, whi
h
an be atta
hed to obje
ts to measure the o

urren
e of events.Statisti
s
an be
olle
ted over multiple runs when su
h parameters as
omputation timesare assigned to vary sto
hasti
ally a

ording to spe
i�ed distributions. The main use of thisfeature is to derive su
h measures of the system's performan
e as jitter, laten
y of data, end-to-end delays on pipelines of tasks and so forth. Finally, parti
ular types of input bu�ers
anbe used to measure the evolution of some quantities of interest in the plant (very mu
h likein Simulink). Su
h units
an be
onne
ted to �les in order to re
ord the time evolution of theobserved quantities. In a similar way it is possible to de�ne performan
e probes whi
h
an, forinstan
e, integrate over time the squared norm of the measured quantity.Example. In order to show some of the possibilities o�ered by RTSIM, we get ba
k to theexample of the inverted pendulum introdu
ed in the previous se
tions. The
ode for thisexample is in
luded in the oÆ
ial distribution of RTSIM (it
an be downloaded from the website http://rtsim.sssup.it), where the interested reader
an �nd the exa
t parameters ofthe simulation.The state spa
e of the pendulum is
omposed of four variables: [x; _x; �; _�℄T , where x is thelinear position, _x is the linear velo
ity, � is the pendulum angle and _� is the angular velo
ity. Inthe simulations presented in this se
tion, the pendulum starts from the state [�0:1; 0; 0; 0℄Tand has to be stabilized into the origin of the state spa
e [0 ; 0; 0; 0℄T .The fun
tional and the ar
hite
tural model of the
ontroller have been introdu
ed above.In order to provide an experimental validation for the use of the tool, we realized a physi
alimplementation of the system based on the SHARK [9℄ kernel (for details see the Web sitehttp://shark.sssup.it). The exe
ution times of the tasks were pro�led and imported intothe simulation model.A �rst element of information on the
orre
tness of the system's behaviour
an be obtainedby visually inspe
ting the exe
ution tra
es of the tasks. In Figure 6 the RTTra
er output fora simulation is shown. The assumed hard real-time algorithm is the
lassi
 Earliest DeadlineFirst. In order for the
omplian
e of the
ontrol design with some performan
e expe
tation tobe veri�ed, it is very important to show the evolution of state variables in time. In Figure 4, thedynami
s of x and � obtained from a simulation run are shown. In order to verify the quality ofthe simulation we report on the same plot also data obtained from an experimental realization.For both simulation and experimental dynami
s
onvergen
e to zero takes approximatively fourse
onds.In order to a
hieve a quantitative assessment of the in
uen
e of the s
heduling
hoi
es onthe
ontrol performan
e, it is ne
essary to introdu
e a performan
e index. A possible
hoi
e,as proposed by Shin et al. [29℄, is the use of a quadrati
 fun
tion:J = EfZ +0 1(~xTQ~x+Ru2g (1)where:� Ef.g denotes the expe
tation value (
al
ulated over sto
hasti
ally varying parameters),Copyright

 2000 John Wiley & Sons, Ltd. Softw. Pra
t. Exper. 2000; 00:1{32Prepared using speauth.
ls

12 L. PALOPOLI, GIUSEPPE LIPARI, ET AL.

0 1 2 3 4 5 6
−0.12

−0.1

−0.08

−0.06

−0.04

−0.02

0

0.02
Dynamics of the linear position

Time(sec)

X
 p

os
iti

on
 (

m
)

(a)

0 1 2 3 4 5 6
−0.05

−0.04

−0.03

−0.02

−0.01

0

0.01

0.02

0.03

0.04
Dynamics of the angle

Time (sec)

A
ng

le
 (

ra
d)

(b)Figure 4. Dynami
s of the x (a) and � (b) variables for a simulation run
ompared with an experimentalrealization.
Copyright

 2000 John Wiley & Sons, Ltd. Softw. Pra
t. Exper. 2000; 00:1{32Prepared using speauth.
ls

AN OO TOOL FOR SIMULATING DISTRIBUTED REAL-TIME CONTROL SYSTEMS 13

10 15 20 25 30 35 40
50

60

70

80

90

100

110

120

130
Performance index of the controller (simulation + experiment)

Period of task T1 (msec)

P
er

fo
rm

an
ce

 in
de

x

experiment

simulation

Figure 5. Performan
e index variations with respe
t to the a
tivation period of Task 1.� ~x denotes the state ve
tor,� u denotes the
ommand variable,� the Q matrix and the R
onstant are two weighting fa
tors.As said above, a parti
ular type of input bu�er
an be atta
hed to the state and to the inputvariables in order to
ompute R +0 1(~xTQ~x+Ru2 as the simulation takes pla
e. The expe
tationvalue
an easily be approximated by atta
hing a statisti
al probe to the storage unit and by
olle
ting the measures over a suÆ
ient number of runs.The simulations were aimed at evaluating the impa
t of the task frequen
ies. Thes
hedulability of tasks for this algorithm is ensured, provided that C1T1 + C2T2 � Ul, whereT1 and T2 are the a
tivation periods of the tasks, C1, C2 are the worst
ase exe
ution timesand Ul = 1. Residual
omputation a
tivities (for data logging and man/ma
hine interfa
es)where
onsidered by using a lower utilization bound: Ul = 0:8.The simulated and the experimental plots for the performan
e index are reported in Figure 5.In the horizontal axis period T1 is varied while T2 is
hose a

ordingly to the relationC1T1 + C2T2 = 0:8. The performan
e index for ea
h point was evaluated averaging the resultof twenty exe
ution and simulation runs. As a remark, the evaluation of ea
h point requiredapproximately forty se
onds on a PC with an Athlon 1.2 Ghz pro
essor running the Linuxoperating system.As it is possible to see, if high values are
hosen for T1, the system tends to instability andthe value of the performan
e index in
reases. Similarly, if T1 be
omes too small there is a steepCopyright

 2000 John Wiley & Sons, Ltd. Softw. Pra
t. Exper. 2000; 00:1{32Prepared using speauth.
ls

14 L. PALOPOLI, GIUSEPPE LIPARI, ET AL.

Figure 6. Graphi
al output of a tra
e of a RTSIM simulation.degradation of the performan
e. The latter phenomenon is due to the
orresponding value ofT2, whi
h tends to in
rease a

ording to the s
hedulability relation. The best performan
e isa
hieved by a trade-o�
hoi
e for the periods. The behaviour of the
ost fun
tion is prettysimilar in the two plots, ex
ept for the higher values of the experimental data. This di�eren
e,whi
h is also evident in the plots in Figure 4, is due to the adoption of a simpli�ed model forthe plant. As a matter of fa
t, su
h aspe
ts as the transfer fun
tion of the motor, the sensorsand pro
ess noise and the nonlinearities on the a
tuators were negle
ted in the
onstru
tionof the plant model, sin
e the a

ura
y level obtained with the simpli�ed model was deemedsatisfa
tory for the purposes of this work.DESCRIPTION OF THE TOOLSummarizing the illustration above, RTSIM
onsists of a
olle
tion of C++ libraries
ontainingthree types of obje
ts:�
ontinuous time plants,� fun
tional
omponents of
ontrol software, and� ar
hite
tural
omponents of
ontrol software.The distin
tion of these
on
eptual domains di
tated a de
omposition of the software intothree intera
ting pa
kages, as shown in Figure 7.The pa
kage denoted as \Numeri
al Pa
kage" is used to model and simulate plants. Obje
tsliving in this pa
kage evolve in
ontinuous time and they are des
ribed by means of di�erentialequations. The pa
kage
alled \CTRLIB" is used to
onstru
t the fun
tional model of thesystem. Obje
ts belonging to this pa
kage do not posses an intrinsi

on
ept of time evolution:their a
tions are triggered by obje
ts belonging to other pa
kages (in parti
ular to RTLIB).Copyright

 2000 John Wiley & Sons, Ltd. Softw. Pra
t. Exper. 2000; 00:1{32Prepared using speauth.
ls

AN OO TOOL FOR SIMULATING DISTRIBUTED REAL-TIME CONTROL SYSTEMS 15

+ ComputingUnit

+ ActuatorBuffer

+ SensorBuffer

+ PeriodicTimers

+ ContrInstr

+ GenericPlant

+ Sensor

+ ColumnVector

+ Matrix, ...

Event

Package

Generating

RTLIBNumerical
Package

CTRLIB

Package

Data

ProcessingFigure 7. Main
omponents involved in a RTSIM based simulation of a real-time
ontrollerThe \RTLIB" pa
kage is used to des
ribe the ar
hite
tural
omponents a fun
tional model ismapped onto. Obje
ts evolve a

ording to a dis
rete event model of
omputation [19℄: theyrea
t to events and are able to generate other events in their turn.When designing the
lass hierar
hies for the pa
kages, we wanted to a
hieve a high degreeof de
oupling so as to fa
ilitate an autonomous evolution of the tool along the three di�erentdimensions. For instan
e, in our intentions, a developer should be able to extend the libraryof
omputing units with new algorithms without
aring too mu
h for the stru
ture of kernelsor s
heduling algorithms and vi
e versa. In order to a
hieve this goal, stru
tural relationsbetween
omponents and their intera
tions had to be
aptured through a set of
lear interfa
es.Parti
ularly, for what
on
erns the intera
tion between the three pa
kages, we
ould leveragean important property of the addressed systems: meaningful intera
tions between plants and
ontrollers take pla
e only on the o

urren
e of a spe
i�
 set of events generated by RTLIB.On one hand, in the time interval separating two writings on the output bu�er, the di�erentialequations of a plant
an be integrated assuming
onstant values in the a
tuatorsz. On theother hand the plant state
an be observed through the obje
ts simulating the sensors onlywhen an event asso
iated with sampling is generated. Hen
e, a substantial role in the RTSIMsimulation environment is played by the generation of dis
rete events for RTLIB. This isa
hieved by using the Metasim library, whi
h is a small software layer developed at the RetiszMore sophisti
ated a
tuator s
hemes su
h as �rst order hold or analog loops
an easily be modeled in theplant des
ription.Copyright

 2000 John Wiley & Sons, Ltd. Softw. Pra
t. Exper. 2000; 00:1{32Prepared using speauth.
ls

16 L. PALOPOLI, GIUSEPPE LIPARI, ET AL.
«Interface»

AbsTask
+schedule()
+deschedule()
+onArrival()
+onEnd()

«Interface»
AbsRTTask

+getDeadline()
+getRelDeadline()

Task

RTTask

Entity

Instr
+schedule()
+deschedule()
+onEnd() *

ExecInstrWaitInstrContrInstr

UML legend

inheritance, arrow
toward base class

inheritance, arrow
interface

+ public

<<Interface>> abstract collection
of method specifications

Figure 8. Class diagram representing the Task family of
lasses.Lab of S
uola Superiore S. Anna. Metasim provides the basi

lasses for writing generi
 dis
reteevent simulations [5, 16, 17℄ and a
lear framework to use them.The remainder of this se
tion is devoted to a short des
ription of the three pa
kages (bothstru
tural and behavioural) and of their most important intera
tions. For obvious spa
e
onstraints, the des
ription is far from
omplete. The interested reader is referred to thete
hni
al do
umentation of the tool [23℄. The
omponents of the libraries and their behaviourare des
ribed by the UML graphi
al notation [26℄.The RTLIB Pa
kageRTLIB is a library designed to simulate the timing behaviour of a real-time software system.It models entities like real-time tasks, s
heduling algorithms, single and multi pro
essor nodes,and network links.Tasks. One of the most important entities needed to spe
ify a software ar
hite
ture is thetask. The family of
lasses for modeling tasks is shown in Figure 8 as a UML
lass diagram.In order to de-
ouple the interfa
e of a task from its internal implementation, we de
idedto provide an abstra
t interfa
e AbsTask that exposes the basi
 methods to handle a task(s
hedule, des
hedule, onArrival, onEnd). This same interfa
e is used by all entities that
an be s
heduled: for example, an aperiodi
 server will implement the AbsTask interfa
e (seethe server se
tion below).Copyright

 2000 John Wiley & Sons, Ltd. Softw. Pra
t. Exper. 2000; 00:1{32Prepared using speauth.
ls

AN OO TOOL FOR SIMULATING DISTRIBUTED REAL-TIME CONTROL SYSTEMS 17The Task
lass
ontains a list of instru
tions, whi
h are modeled by the Instr
lass.Examples of instru
tions are:� Exe
Instr that models a pie
e of sequential
ode with a
ertain exe
ution time; theexe
ution time is des
ribed by a RandomVar obje
t: hen
e it is possible to model aportion of
ode with an arbitrarily distributed random exe
ution time;� WaitInstr and SignalInstr that model the wait and signal system
alls for
on
urrenta

ess to shared resour
es using semaphores; and� the ControlInstr family of
lasses that model the exe
ution of
omputing units.A programmer inserts instru
tions into tasks, just as she/he would write a real implementation.Instru
tions are exe
uted sequentially x and have a duration, whi
h
an either be deterministi
or spe
i�ed as a random variable.In the types of appli
ations we want to model, tasks have timing requirements. The most
ommon
onstraint is the deadline: the absolute deadline of a job is the instant of time bywhi
h the job must �nish; the relative deadline of a task is the interval of time between thearrival time and the absolute deadline of ea
h job.A real-time task is modeled by the abstra
t interfa
e AbsRTTask whi
h derives from theAbsTask (Figure 8). It
omprises the getDeadline() and getRelDeadline()methods, whi
h returnrespe
tively the absolute and the relative deadline of a task.Kernels. The Kernel family of
lasses models a
omputational resour
e, like single pro
essoror multi-pro
essor nodes. As in the
ase of tasks, we found it useful to introdu
e an abstra
tinterfa
e, AbsKernel,
apturing the minimum set of servi
es required to any type of kernel. Inparti
ular we identi�ed the following servi
es:� task insertion into a ready queue (method a
tivate),� task extra
tion from the ready queue (method suspend),� task dispat
h (method dispat
h): the
urrently exe
uting task is revoked use of the CPU,whi
h is assigned to the �rst task in the ready queue. In multipro
essor systems thekernel performs this operation on ea
h pro
essor under its
ontrol.The kernel interfa
e also in
ludes methods to handle the most important events a kernel
an re
eive: the arrival of a new task (method onArrival) and the termination of a task's job(method onEnd).Noti
e that, at this point, we have not yet introdu
ed any notion of \task priority". In fa
t,di�erent s
heduling poli
ies
ompare tasks based on di�erent parameters. For example, theRate Monotoni
 s
heduler requires a stati
 priority to be assigned to ea
h task, whereas theEarliest Deadline First s
heduler uses the absolute deadline of a job to determine the taskxThus far, this model has proven suÆ
iently expressive, sin
e we restri
ted the appli
ation of the tool tomodeling
lassi
al \data-
ow" oriented real-time
ontrol appli
ations. In the future, we plan to model alsomultimodal appli
ations for whi
h a dire
t support for bran
hes will be ne
essary. The addition of this featurerequires slight modi�
ation to the stru
ture of RTLIB and it is planned for future revisions.Copyright

 2000 John Wiley & Sons, Ltd. Softw. Pra
t. Exper. 2000; 00:1{32Prepared using speauth.
ls

18 L. PALOPOLI, GIUSEPPE LIPARI, ET AL.
«Interface»
AbsKernel

+activate(t:AbsTask *)
+suspend(t:AbsTask *)
+dispatch()
+onArrival(t:AbsTask *)
+onEnd(t:AbsTask *)

RTKernel

«Interface»
Scheduler

+insert()
+extract()
+getFirst()

RTScheduler

PrioScheduler
+addTask(t:AbsRTTask *,p:int)

EDFScheduler
+addTask(t:AbsRTTask *)

PrioModel

RTModel
+getPriority()

EDFModel

TaskModel
«Interface»
AbsTask

«Interface»
AbsRTTask

 * *

UML legend

inheritance, arrow
toward base class

inheritance, arrow
interface

+ public

<<Interface>> abstract collection
of method specificationsFigure 9. Class diagram representing the Kernel family of
lasses.priority. Moreover, some s
heduling poli
ies (like Proportional Share or Round Robin) do notuse any priority at all.Hen
e, the ordering of tasks in the ready queue depends on the s
heduling poli
y,whi
h is implemented by the S
heduler family of
lasses. Ea
h one implements a di�erentqueuing poli
y: for example, EDFS
heduler implements the Earliest Deadline First s
hedulingalgorithm, PrioS
heduler implements a generi
 Fixed Priority s
heduling algorithm, andso on. The s
heduling parameters are not stored in the task
lass, but in the wrapper
lassTaskModel: thus, the task implementation is independent from the s
heduling algorithm (asin the Adapter Pattern [10℄). The TaskModel hierar
hy of
lasses is similar to the S
hedulerhierar
hy: every s
heduler
orresponds to a task model. In Figure 9 the inheritan
e relationshipsbetween these
lasses are summarized.The
urrent distribution of RTLIB provides single pro
essor and multi-pro
essor kernelsas prede�ned
omponents, with any of the following s
heduling poli
ies: FIFO, EDF, �xedpriority (FP) and rate monotoni
, and EEVDF [35℄. For the multi-pro
essor versions of EDFand FP, it is possible to allow/disallow migration: in the latter
ase, tasks must be stati
allyallo
ated to pro
essors.Example. The noti�
ation me
hanism and the way events are handled in RTLIB are betterexplained with a pra
ti
al example. The sequen
e diagram shown in Figure 10
aptures asnapshot of the system des
ribed in Figure 3 when a preemption o

urs: while Task 1 isexe
uting, Task 2 is a
tivated (arrives) and, having a higher priority, preempts Task 1.When Task 2 is a
tivated, its arrival event is pro
essed: as a
onsequen
e, the onArrival()method of Task 2 is invoked. After updating its internal status (for example re
ording thearrival time and resetting the
urrent instru
tion pointer to the �rst instru
tion), Task 2
allsthe onArrival() method of the kernel. The kernel, in turn, inserts the task in the readyqueue (
alling s.insert()), and
he
ks if this task is now the �rst element in the queue. IfCopyright

 2000 John Wiley & Sons, Ltd. Softw. Pra
t. Exper. 2000; 00:1{32Prepared using speauth.
ls

AN OO TOOL FOR SIMULATING DISTRIBUTED REAL-TIME CONTROL SYSTEMS 19
e1: ExecInstr k: RTKernel s:EDFScheduler

deschedule()
deschedule()

getFirst()

insert()

schedule()

onArrival()

Task 1: RTTask Task 2: RTTask

onArrival()

Figure 10. Sequen
e diagram: Task 2 preempts Task 1.so, a preemption must o

ur: the
urrent exe
uting Task 1 yields the pro
essor and Task 2be
omes the
urrent exe
uting task.Hen
e, Task 1 must be signaled
alling its des
hedule() method; in turn, it
alls thedes
hedule()method of its
urrently exe
uting instru
tion. Finally, Task 2 is signaled
allingits s
hedule() method.Servers. When soft real-time aperiodi
 tasks are to be s
heduled together with hard real-time periodi
 tasks, the goal is to improve the response time of the aperiodi
 tasks without
ompromising the s
hedulability of the hard real-time tasks. A popular
on
eptual frameworkfor modeling the behaviour of su
h systems is to asso
iate a server to the soft aperiodi
 tasks. Aserver is
hara
terized by
ertain parameters spe
ifying exa
tly its performan
e expe
tations.Several aperiodi
 servi
e me
hanisms have been proposed under RM [22, 21, 2, 38℄ and underEDF [31, 12, 33, 32, 1, 24℄ s
heduling.The Server
lass models these algorithms.We noti
ed that in almost all the aperiodi
 server me
hanisms, a server is treated as aparti
ular kind of task and is inserted in the ready queue together with the other regularCopyright

 2000 John Wiley & Sons, Ltd. Softw. Pra
t. Exper. 2000; 00:1{32Prepared using speauth.
ls

20 L. PALOPOLI, GIUSEPPE LIPARI, ET AL.
«Interface»
AbsKernel
+activate()
+suspend()

«Interface»
AbsResManager

+lock(r:Resource,t:AbsTask)
+unlock(r:Resource,t:AbsTask)

Resource
+lock(t:AbsTask)
+unlock()
+isLocked(): bool
+getHolder(): AbsTask *

WaitInstr
+getTask(): AbsTask *
+getResource(): Resource *

SignalInstr
+getTask(): AbsTask *
+getResource(): Resource *

ResManager
+addResource(r:Resource)
+setKernel(t:AbsKernel)

SRPManager
+declareResUsage(t:AbsRTTask,r:Resource)

SemManager

Scheduler

UML legend

inheritance, arrow
toward base class

+ public

<<Interface>> abstract collection
of method specificationsFigure 11. Class diagram representing the Resour
e Manager family of
lasses.tasks. For this reason, we de
ided to derive the server
lass from the AbsTask interfa
e, so thatthe s
heduler does not need to distinguish a regular task from a server. The main advantage isthat, when implementing the server algorithm, the s
heduler module
an be reused without anymodi�
ation. On the other side, a server handles aperiodi
 tasks just as a kernel does: whenseveral aperiodi
 requests are pending, the server must
hoose whi
h one must be servi
ednext. For this reason, the server
lass also derives from the AbsKernel interfa
e. In this way,a task has not to distinguish whether it is served by a server or by a regular kernel, and we
an re-use the same
ode for the task
lass. In the
urrent RTLIB distribution, the pollingserver, deferrable server (DS), sporadi
 server (SS), total bandwidth server (TBS), and
onstantbandwidth server (CBS) are provided as prede�ned
omponents.Sharing other resour
es. Sometimes, tasks a

ess mutually ex
lusive resour
es: for example,tasks
an a

ess the same memory blo
k that is prote
ted by a mutex semaphore. For example,tasks
an a

ess the same memory blo
k that is prote
ted by a mutex semaphore.In RTSIM, this
an be simulated by means of a
lass Semaphore and of a Resour
eManager, whi
h is the entity that manages the operations on a semaphore, holding the blo
kedtasks in queues. Tasks
an operate on semaphores by means of WaitInstr and SignalInstrinstru
tions.In Figure 11 the relationship among the
lasses is shown while in Figure 12 we show apossible s
enario of exe
ution.When a task exe
utes a WaitInstr instru
tion, the Resour
e Manager
he
ks if thesemaphore is free by invoking lo
k(Semaphore *s). In the
onsidered s
enario, the semaphoreCopyright

 2000 John Wiley & Sons, Ltd. Softw. Pra
t. Exper. 2000; 00:1{32Prepared using speauth.
ls

AN OO TOOL FOR SIMULATING DISTRIBUTED REAL-TIME CONTROL SYSTEMS 21
Task 1: RTTask Task 2: RTTaskWaitInstrw: k: RTKernel

schedule()
lock(Semaphore *s)

suspend()

SimpleResManagerres:

deschedule()

dispatch()
schedule()

Figure 12. Sequen
e diagram showing a lo
king operation on a semaphore.
is lo
ked, thus the task must be blo
ked: the resour
e manager invokes the Kernel::suspend()method to blo
k the task and Kernel::dispat
h()methods, in order to s
hedule another task.In the
urrent implementation of RTLIB, a simple lo
king poli
y, the Priority Inheritan
eproto
ol (PIP), the Priority Ceiling proto
ol (PCP), and the Sta
k Resour
e Poli
y (SRP)are provided as prede�ned
omponents. In the
ase where one of these proto
ols is used, the
orresponding resour
e manager has to intera
t with S
heduler
omponent to
hange the taskpriority a

ording to the proto
ol. This justi�es the relation between the Resour
e Managerand the S
heduler
omponent in Figure 11.Networks. Every kernel may have one or more network interfa
es, modeled by theNetInterfa
e family of
lasses, ea
h one
onne
ted to a network link, modeled by the NetLinkfamily of
lasses. For ea
h network link
lass, there is a
orresponding network interfa
e
lass.A task
an send a message, modeled by the Message
lass, to another task passing it tothe appropriate network interfa
e of its kernel. The Message
lass implements the AbsTaskinterfa
e: in this way, it
an be handled by a S
heduler. A network interfa
e has a pointer toa S
heduler obje
t for implementing the message en-queuing poli
y. It realizes the mediuma

ess proto
ol, su
h as the Ethernet or CAN bus proto
ol. In parti
ular, the CANInterfa
eCopyright

 2000 John Wiley & Sons, Ltd. Softw. Pra
t. Exper. 2000; 00:1{32Prepared using speauth.
ls

22 L. PALOPOLI, GIUSEPPE LIPARI, ET AL.
GenericPlant

+integrate(newTime:Tick)
+addSensor(s:Sensor *)
+getState(): ColumnVector
+addActuator(position:integer,a:Actuator *)
-DiffEq()

*

1

«interface»
Sensor

+updateSensor(p:GenericPlant * p)

«interface»
Actuator

+getCommand()

*

1

Figure 13. Class diagram representing the
omponents of the numeri
al pa
kage to be used for modelingplants.has a pointer to a fun
tion that transforms the message priority (or deadline) in a CANpriority{.Two additional instru
tions have been de�ned:� SendInstr instru
tion: takes as parameters the name of the destination task and afun
tion obje
t for building new messages.� Re
eiveInstr instru
tion: if a message has already arrived for the task, it gets themessage, otherwise it blo
ks the task waiting for a message from the network interfa
e.In the
urrent distribution of RTLIB, the Ethernet network and the CAN bus are providedas prede�ned
omponents.The Numeri
al Pa
kageThe main purpose of the numeri
al pa
kage is to provide programming models for
ontinuoustime plants. A plant is des
ribed by means of its state variables, di�erential equations and soon. From a stru
tural viewpoint, the numeri
al pa
kage is a software layer built on the topof a library whi
h provides some servi
es, su
h as di�erential equation integration and linearalgebra operations. The
urrent implementation is based on the OCTAVE library, whi
h is afreely available tool en
ompassing the best known algorithms for numeri
al
omputation. Thepresen
e of a software abstra
tion layer allows us to repla
e OCTAVE with any other similarsolution without a�e
ting the stru
ture of the simulator. As well as permitting the de�nitionof a plant, the numeri
al pa
kage also exports a set of useful
lasses for linear algebra, su
h asMatrix, ColumnVe
tor and so on.{High level proto
ols (like TCP/IP) have not been implemented for they are well beyond the s
ope of thiswork.Copyright

 2000 John Wiley & Sons, Ltd. Softw. Pra
t. Exper. 2000; 00:1{32Prepared using speauth.
ls

AN OO TOOL FOR SIMULATING DISTRIBUTED REAL-TIME CONTROL SYSTEMS 23

ComputingUnit
+read()
+execute()
+write()
+attachInput(pos:int,in:DataSource *)
+attachOutput(pos:int,o:DataSink)

«interface»
DataSource

+getData(): ColumnVector

«interface»
DataSink

+putData(data:ColumnVector)

OutputBuffer
-value: ColumnVector
-sampledValue: ColumnVector
+sample()

InputBuffer
-value: ColumnVector
+getCommand()

MemoryBuffer

ContrInstr
#onEnd()

PeriodicTimer
+onTimeStamp()

«interface»
Sensor

The sensor may
be sampled periodically
by a Timer (belonging
to the event generating
module)

Operations on a
computing unit can
be triggered by a
pseudoinstruction

ContrReadInstr
+onEnd()

ContrWriteInstr
+onEnd()

ContrExecuteInstr
+onEnd()

«interface»
Actuator

UML legend

inheritance, arrow
toward base class

inheritance, arrow
interface

+ public

<<Interface>> abstract collection
of method specifications

Figure 14. The most important
lasses used to model the fun
tional behaviour of a
ontroller.User-de�ned plants are derived from an abstra
t
lass named Generi
Plant (see Figure 13).The inheritan
e me
hanism permits us to add plant spe
i�
 information by inserting new datamembers in the derived
lass. The di�erential equations are spe
i�ed by providing a de�nitionto the abstra
t method DiffEq.The plant evolution
an be observed by a set of obje
ts implementing the Sensor interfa
e.Formally speaking, if the state of the plant is represented by the
olumn ve
tor x, a Sensorrealizes an output fun
tion y = h(x; t). The programmer is required to implement fun
tion hby writing a virtual method,
alled updateSensor, whi
h
an read the plant state by issuinga
all to the getState method of the plant. The me
hanism used to update the value of thesensor is based on the observer pattern [10℄.The evolution of a plant
an be in
uen
ed by a set of a
tuators. An a
tuator is an obje
timplementing the A
tuator interfa
e. Ea
h a
tuator is registered into a position, denoted byan integer number. This
onvention is to simplify the writing of di�erential equations. TheCopyright

 2000 John Wiley & Sons, Ltd. Softw. Pra
t. Exper. 2000; 00:1{32Prepared using speauth.
ls

24 L. PALOPOLI, GIUSEPPE LIPARI, ET AL.integration of the plant di�erential equations is performed by issuing a
all to the integratemethod exported by the plant.CTRLIBThe fun
tional model of the system is expressed using the
lasses of the CTRLIB pa
kage.CTRLIB o�ers two types of
omponents:
omputing units and storage units. Both of these
omponents are framed within a hierar
hy of
lasses. The stru
ture of the basi

lasses ofCTRLIB is shown in Figure 14.In order to spe
ify a new type of
omputing unit, the programmer has to derive it from theabstra
t
lass ComputingUnit and has to provide an implementation for three pure virtualmethods: read(), exe
ute() and write(). On
e the
lass is de�ned, the programmer
aninstantiate obje
ts from it to be used in di�erent
ontexts. For example, a
lass implementinga PID
ontroller is likely to be a reusable
omponent.A ComputingUnit is
onne
ted to a set of inputs, whi
h are obje
ts implementing theDataSour
e interfa
e, and to a set of outputs whi
h implement the DataSink interfa
e. Ea
h
omputing unit
an be asso
iated with spe
ial instru
tions triggering the exe
ution of theread(), exe
ute() and write() operation. Su
h instru
tions derive from the ContrInstr
lass.Input bu�ers are realized as
lasses implementing both the Sensor and DataSour
einterfa
es. A prede�ned method,
alled sample(), is used to sample the value of the sensorupon the o

urren
e of
ertain events. A parti
ular
hoi
e
an be the use of a RTLIB obje
timplementing a periodi
 timer. Another possibility is to have the sample() method
alledby an instru
tion of a task. The sampled value
an be read by a
omputing unit
alling thegetValue() method.Output bu�ers are obje
ts implementing both the A
tuator and the DataSink interfa
es.Thus, they export the putValue() method to the
omputing units and the getCommand()method to the plant. Memory bu�ers implement both the DataSour
e and DataSink interfa
esand are used to ex
hange information between the di�erent
omputing units. Output andmemory bu�ers
an be used with no other e�orts than de�ning the width of the data ve
torwhen an obje
t is instantiated. In order to simplify the simulation
ode, the
reation of memorybu�ers
onne
ting di�erent
omputing units
an be made in a semi-automati
 fashion byappropriate programming fa
ilities.Some insight into the hybrid simulationThis se
tion is devoted to showing the main intera
tions between the di�erent
omponents ofthe RTSIM tool suite when the libraries are employed to perform a hybrid simulation betweena
ontinuous time plant and a digital
ontroller, whose timing evolution is simulated by aRTLIB dis
rete event model.In order to highlight the intera
tions between di�erent
omponents of RTSIM that take pla
eupon the o

urren
e of some meaningful events,
onsider the sequen
e diagram in Figure 15.The boxes represent RTSIM obje
ts involved in a simulation. The diagram is partitioneda

ording to the three di�erent pa
kages obje
ts belong to. The diagram shows a sequen
eCopyright

 2000 John Wiley & Sons, Ltd. Softw. Pra
t. Exper. 2000; 00:1{32Prepared using speauth.
ls

AN OO TOOL FOR SIMULATING DISTRIBUTED REAL-TIME CONTROL SYSTEMS 25
rFilt_x: ContrReadInstr Filt_x: MyCompUnit F_x: MemoryBuffer invPend: LTIPlant

onEnd()
integrate()

getData()

read()

RTLIB CTRLIB Numerical PackageFigure 15. Sequen
e diagram showing the intera
tions whi
h take pla
e when an end event for ainstru
tion is handled.
integrate()

Ode.integrate()

updateSensor()

getCommand()

CTRLIB Numerical Package

In_x: invPend: LTIPlantOut_u: OutputBufferInputBuffer

Figure 16. Sequen
e diagram showing how the integration is performed.Copyright

 2000 John Wiley & Sons, Ltd. Softw. Pra
t. Exper. 2000; 00:1{32Prepared using speauth.
ls

26 L. PALOPOLI, GIUSEPPE LIPARI, ET AL.of method
alls that follows the termination event of the rFilt x instru
tion. This event ishandled by the onEnd() method of the rFilt x obje
t. The �rst a
tion performed by rFilt x
alls the integrate()method on the invPendulum obje
t, whi
h determines the integrationof the di�erential equation up to the
urrent instant of time. The se
ond a
tion is a
all onthe read() method of the
omputing unit asso
iated with the instru
tion, whi
h, in its turn,reads the data from the bu�er.It is also interesting to observe how the integration is performed by detailing the sequen
eof operations performed by
alling the integrate() method (diagram in Figure 16). At thebeginning of the integration the value of the
ommand variables,
ontained in the output bu�er,are a
quired through the getCommand() method. Then, the integration
an be performed(by
alling the Ode.integrate() fun
tion of the OCTAVE library) assuming
onstant valuesfor the input throughout the integration interval. At the end of the integration, the values
ontained in the input bu�ers, whi
h model the sensors, are updated.CONCLUSION AND FUTURE WORKIn this paper a tool for the joint simulation of a plant and of a real-time embedded
ontrollerhas been presented. By using hybrid te
hniques the tool supports realisti
 modeling for manyimplementation related issues, whi
h are not usually a

ounted for during
ontroller design.The tool
onsists of a
omplete set of C++ libraries for modeling, simulating and gatheringstatisti
al pro�les of performan
e metri
s. The appli
ation of the tool is parti
ularly usefulwhenever a given
ontrol design is based on heterogeneous data
ows from the environmentindu
ing the use of a
omplex Hardware/Software implementation. In these
ases, the toolprovides important guidelines in the
hoi
e of su
h parameters as the sampling rates of sensorsand, more generally, permits evaluation of di�erent ar
hite
tural alternatives. The futurea
tivities of the RTSIM team will be
on
entrated on the integration of the tool in more
omplex design environments, in
luding visual modeling tools and automati

ode generationfor real-time exe
ution environments.ACKNOWLEDGEMENTSThe authors would like to thank the anonymous reviewers for their pre
ious suggestions, whi
hhelped to improve the presentation of the material.REFERENCES1. L. Abeni and G.Buttazzo. Integrating multimedia appli
ations in hard real-time systems. In Pro
eedingsof the 19th IEEE Real-Time Systems Symposium, Madrid, Spain, de
ember 1998. IEEE.2. N.C. Audsley, A. Burns, M. Ri
hardson, K. Tindell, and A. Wellings. Applying new s
heduling theory tostati
 priority preemptive s
heduling. Software Engineering Journal, 8(8):284{292, Sep 1993.3. N.C. Audsley, A. Burns, M.F. Ri
hardson, K. Tindell, and A.J. Wellings. Stress: A simulator for hardreal-time systems. Software: Pra
ti
e and Experien
e, 6(24), 1994.4. T.P. Baker. Sta
k-based s
heduling of real-time pro
esses. Journal of Real-Time Systems, 3, 1991.Copyright

 2000 John Wiley & Sons, Ltd. Softw. Pra
t. Exper. 2000; 00:1{32Prepared using speauth.
ls

AN OO TOOL FOR SIMULATING DISTRIBUTED REAL-TIME CONTROL SYSTEMS 275. G. Boo
h. Obje
t oriented design with appli
ations. Benjamin/Cummings Publishing Company, In
.,1991.6. J.B. Dennis. First version data
ow pro
edure language. Te
hni
al report, Massa
husetts In. of Te
nology,Lab. Comp. S
., 1975.7. John Eaton et al. http://bevo.
he.wis
.edu/o
tave.8. J. Eker and A. Cervin. A matlab toolbox for real-time and
ontrol systems
o-design. In Pro
. of TheReal-Time Computiong Systems and Appli
ations, Hong Kong, China, De
ember 1999.9. Paolo Gai, Lu
a Abeni, Massimiliano Giorgi, and Giorgio Buttazzo. A new kernel approa
h for modularreal-time systems development. In Pro
eedings of the 13th IEEE Euromi
ro Conferen
e on Real-TimeSystems, June 2001.10. E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design Patterns - Elements of Reusable Obje
t-Oriented Software. Addison Wesley, 1997.11. R. Gerber, S. Hong, and M. Saksena. Guaranteeing real-time requirements with resour
e-based
alibrationof periodi
 pro
esses. IEEE Transa
tion on Software Engineering, 21(27), 1995.12. T.M. Ghazalie and T.P. Baker. Aperiodi
 servers in a deadline s
heduling environment. Journal ofReal-Time System, 9, 1995.13. G. Kahn. The semanti
s of a simple language for parallel programming. In Pro
eedings of the IFIPCongress 74, Amstrdam, 1974.14. N. Kim, M. Ryu, S. Hong, M. Saksena, C. Choi, and H. Shin. Visual asessment of a real-time systemdesign: a
ase study on a
n

ontroller. In Pro
eedings of the IEEE Real-time Systems Symposium, 1996.15. H. Kopetz, A. Damm, C. Koza, M. Mulazzani, W. S
hwabla, C. Senft, and R. Zainlinger. Distributedfault-tolerant real-time systems: The mars approa
h. IEEE Mi
ro, 9(1), February 1989.16. W. Kreutzer. Systems Simulation - Programming Styles and Languages. Addison-Wesley, 1986.17. A.M. Law and W.D. Kelton. Simulation modeling and analysis. M
Graw-Hill Book Company., 1991.18. Chen Lee, Raj Rajkumar, John Leho
zky, and Dan Siewiorek. Prati
al solutions for qos-based resour
eallo
ation. In IEEE Real Time System Symposium, Madrid, Spain, De
ember 1998.19. E. Lee and A. Sangiovanni-Vin
entelli. A uni�ed framework for
omparing models of
omputation.Transa
tion on Computer aided Design of Integrated Cir
uits and Systems, 17(12):1217{1229, 1998.20. Edward A. Lee. Computing for embedded systems. In IEEE Instrumentation and MeasurementTe
hnology Conferen
e, Budapest, Hungary, May 2001.21. J.P. Leho
zky and S. Ramos-Thuel. An optimal algorithm for s
heduling soft-aperiodi
 tasks in �xed-priority preemptive systems. In Pro
eedings of the IEEE Real-Time Systems Symposium, De
ember 1992.22. J.P. Leho
zky, L. Sha, and J.K. Strosnider. Enhan
ed aperiodi
 responsiveness in hard real-timeenvironments. In Pro
eedings of the IEEE Real-Time Systems Symposium, De
ember 1987.23. G. Lipari and L. Palopoli. A framework for simulationg distributed embedded real-time
ontrollers.Te
hni
al report, RETIS-LAB, S
uola Superiore S.Anna, 2002.24. Giuseppe Lipari and Giorgio Buttazzo. S
hedulability analysis of periodi
 and aperiodi
 tasks withresour
e
onstraints. Journal of Systems Ar
hite
ture, 46:327{338, 2000.25. C.L. Liu and J.W. Layland. S
heduling algorithms for multiprogramming in a hard-real-time environment.Journal of the Asso
iation for Computing Ma
hinery, 20(1), 1973.26. James Rumbaugh, Ivar Ja
obson, and Grady Boo
h. The Uni�ed Modeling Language Referen
e Manual.Addison-Wesley, 1999.27. D. Seto, J.P. Leho
zky, L. Sha, and K.G. Shin. On task s
hedulability in real-time
ontrol systems. InIEEE Real Time System Symposium, De
ember 1996.28. Lui Sha, Ragunathan Rajkumar, and john P. Leho
zky. Priority inheritan
e proto
ols: An approa
h toreal-time syn
hronization. IEEE transa
tion on
omputers, 39(9), September 1990.29. K.G. Shin, C.M. Krishna, and Y. Lee. A uni�ed method for evaluationg real-time
omputer
ontrollersand its appli
ation. IEEE Transa
tions on Automati
 Control, AC30(4):357{366, April 1985.30. B. Sprunt, L. Sha, and J. Leho
zky. Aperiodi
 task s
heduling for hard-real-time systems. Journal ofReal-Time Systems, 1, July 1989.31. M. Spuri and G. Buttazzo. EÆ
ient aperiodi
 servi
e under earliest deadline s
heduling. In Pro
eedingsof the IEEE Real-Time Systems Symposium, De
ember 1994.32. M. Spuri and G.C. Buttazzo. S
heduling aperiodi
 tasks in dynami
 priority systems. Journal of Real-Time Systems, 10(2), 1996.33. M. Spuri, G.C. Buttazzo, and F. Sensini. Robust aperiodi
 s
heduling under dynami
 priority systems.In Pro
eedings of the IEEE Real-Time Systems Symposium, De
ember 1995.34. D.B. Stewart, R.A. Volpe, and P.K. Khosla. Design of dynami
ally re
on�gurable real-time software usingport-based obje
ts. IEEE trans. on Software Engineering, 23(12), 1997.Copyright

 2000 John Wiley & Sons, Ltd. Softw. Pra
t. Exper. 2000; 00:1{32Prepared using speauth.
ls

28 L. PALOPOLI, GIUSEPPE LIPARI, ET AL.35. Ian Stoi
a, Hussein Abdel-Wahab, Kevin Je�ay, Sanjoy K. Baruah, Johannes E. Gehrke, and C. GregPlaxton. A proportional share resour
e allo
ation algorithm for real-time, time-shared systems. In IEEEReal Time System Symposium, 1996.36. C.M. Kirs
h T. Henzinger, B. Horowitzm. Embedded
ontrol systems development with giotto. InPro
. of ACM SIGPLAN 2001 Workshop on Languages, Compilers, and Tools for Embedded Systems(LCTES'2001), June 2001.37. T.-S. Tia, Z. Deng, M. Shankar, M. Stor
h, J. Sun, L.-C. Wu, and J. W.-S. Liu. Probabilisti
 performan
eguarantee for real-time tasks with varying
omputation times. In Real-Time Te
hnology and Appli
ationsSymposium, pages 164{173, Chi
ago,Illinois, January 1995.38. K. Tindell, A. Burns, and A. Wellings. An extendible approa
h for analysing �xed priority hard real-timetasks. Journal of Real Time Systems, 6(2):133{151, Mar 1994.39. M. T�orngren. Fundamentals of implementing real-time
ontrol appli
ations in distributed
omputersystems. J. of Real-time systems, 14:219{250, 1998.

Copyright

 2000 John Wiley & Sons, Ltd. Softw. Pra
t. Exper. 2000; 00:1{32Prepared using speauth.
ls

