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Elastic Scheduling for
Flexible Workload Management

Giorgio C. Buttazzo, Member, IEEE, Giuseppe Lipari, Marco Caccamo, and Luca Abeni

Abstract—An increasing number of real-time applications, related to multimedia and adaptive control systems, require greater
flexibility than classical real-time theory usually permits. In this paper, we present a novel scheduling framework in which tasks are
treated as springs with given elastic coefficients to better conform to the actual load conditions. Under this model, periodic tasks can
intentionally change their execution rate to provide different quality of service and the other tasks can automatically adapt their periods
to keep the system underloaded. The proposed model can also be used to handle overload conditions in a more flexible way and to
provide a simple and efficient mechanism for controlling a system’s performance as a function of the current load.

Index Terms—Real-time scheduling, overload management, rate adaptation.

1 INTRODUCTION

ERIODIC activities represent the major computational

demand in many real-time applications since they
provide a simple way to enforce timing constraints through
rate control. For instance, in digital control systems,
periodic tasks are associated with sensory data acquisition,
low-level servoing, control loops, action planning, and
system monitoring. In such applications, a necessary
condition for guaranteeing the stability of the controlled
system is that each periodic task is executed at a constant
rate whose value is computed at the design stage based on
the characteristics of the environment and on the required
performance. For critical control applications (i.e., those
whose failure may cause catastrophic consequences), the
feasibility of the schedule has to be guaranteed a priori and
no task can change its period while the system is running.

Such a rigid framework in which periodic tasks operate
is also determined by the schedulability analysis that must
be performed on the task set to guarantee its feasibility
under the imposed constraints. To simplify the analysis, in
fact, some feasibility tests for periodic tasks are based on
quite rigid assumptions. For example, in the original Liu
and Layland paper [13] on the Rate Monotonic (RM) and
the Earliest Deadline First (EDF) algorithms, a periodic task
7; is modeled as a cyclical processor activity characterized
by two parameters, the computation time C; and the period
T;, which are considered to be constant for all task
instances. This is a reasonable assumption for most real-
time control systems, but it can be too restrictive for other
applications.

For example, in multimedia systems, timing constraints
can be more flexible and dynamic than control theory
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usually permits. Activities such as voice sampling, image
acquisition, sound generation, data compression, and video
playing are performed periodically, but their execution
rates are not as rigid as in control applications. Missing a
deadline while displaying an MPEG video may decrease
the quality of service (QoS), but does not cause critical
system faults. Depending on the requested QoS, tasks may
increase or decrease their execution rate to accommodate
the requirements of other concurrent activities.

Even in some control applications, there are situations in
which periodic tasks could be executed at different rates in
different operating conditions. For example, in a flight
control system, the sampling rate of the altimeters is a
function of the current altitude of the aircraft: the lower the
altitude, the higher the sampling frequency. A similar need
arises in robotic applications in which robots have to work
in unknown environments where trajectories are planned
based on the current sensory information. If a robot is
equipped with proximity sensors, in order to maintain a
desired performance, the acquisition rate of the sensors
must increase whenever the robot is approaching an
obstacle.

In other situations, the possibility of varying tasks’ rates
increases the flexibility of the system in handling overload
conditions, providing a more general admission control
mechanism. For example, whenever a new task cannot be
guaranteed by the system, instead of rejecting the task, the
system can try to reduce the utilizations of the other tasks
(by increasing their periods in a controlled fashion) to
decrease the total load and accommodate the new request.

Unfortunately, there is no uniform approach for dealing
with these situations. For example, Kuo and Mok [10]
propose a load scaling technique to gracefully degrade the
workload of a system by adjusting the periods of processes.
In this work, tasks are assumed to be equally important and
the objective is to minimize the number of fundamental
frequencies to improve schedulability under static priority
assignments. In [18], Nakajima and Tezuka show how a
real-time system can be used to support an adaptive
application: Whenever a deadline miss is detected, the
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period of the failed task is increased. In [19], Seto et al.
change tasks’ periods within a specified range to minimize
a performance index defined over the task set. This
approach is effective at a design stage to optimize the
performance of a discrete control system, but cannot be
used for online load adjustment. In [12], Lee et al. propose a
number of policies to dynamically adjust the tasks’ rates in
overload conditions. In [1], Abdelzaher et al. present a
model for QoS negotiation to meet both predictability and
graceful degradation requirements during overloads. In this
model, the QoS is specified as a set of negotiation options, in
terms of rewards and rejection penalties. In [16], [17],
Nakajima shows how a multimedia activity can adapt its
requirements during transient overloads by scaling down
its rate or its computational demand. However, it is not
clear how the the QoS can be increased when the system is
underloaded. In [4], Beccari et al. propose several policies
for handling overload through period adjustment. The
authors, however, do not address the problem of increasing
the task rates when the processor is not fully utilized.

Although these approaches may lead to interesting
results in specific applications, we believe that a more
general framework can be used to avoid a proliferation of
policies and treat different applications in a uniform
fashion.

Driven by the idea originally introduced in [7], this work
presents a novel theoretical framework, the elastic task
model, aimed at providing flexible workload management
in real-time applications. In particular, the elastic approach
provides the following advantages with respect to the
classical “fixed-rate” approach:

e It allows tasks to intentionally change their execu-
tion rate to provide different quality of service;

e It can handle overload situations in a more flexible
fashion;

e It provides a simple and efficient method for
controlling the system’s performance as a function
of the current workload.

It is worth observing that the elastic approach is not
limited to task scheduling. Rather, it represents a general
resource allocation methodology which can be applied
whenever a resource has to be allocated to objects whose
constraints allow a certain degree of flexibility. For example,
in a distributed system, dynamic changes in node transmis-
sion rates over the network could be efficiently handled by
assigning each channel an elastic bandwidth, which could
be tuned based on the actual network traffic.

Another interesting application of the elastic approach is
to automatically adapt the task rates to the current load,
without specifying the worst-case execution times of the
tasks. If the system is able to monitor the actual execution
time of each job, such data can be used to compute the
actual processor utilization. If this is less than one, task rates
can be increased according to elastic coefficients to fully
utilize the processor. On the other hand, if the actual
processor utilization is a little grater than one and some
deadline misses are detected, task rates can easily be
reduced to bring the processor utilization to a desired safe
value.

IEEE TRANSACTIONS ON COMPUTERS, VOL. 51, NO. 3, MARCH 2002

TABLE 1
Task Set Parameters Used for the Example

| Task [ Ci [Ty | T | Ei ]
n |10[20] 25 |1
m [10[40 | 50 |1
7 | 1535 80 |1

The rest of the paper is organized as follows: Section 2
presents the elastic task model. Section 3 describes the
guarantee algorithm for a set of elastic tasks. Section 4
extends the elastic approach in the presence of resource
constraints. Section 5 presents some theoretical results
which validate the proposed model. Section 6 illustrates
some experimental results achieved on the HARTIK kernel.
Finally, Section 7 contains our conclusions and future work.

2 THE ELASTIC MODEL

The basic idea behind the elastic model proposed in this
paper is to consider each task to be as flexible as a spring
with a given rigidity coefficient and length constraints. In
particular, the utilization of a task is treated as an elastic
parameter whose value can be modified by changing the
period within a specified range.

Each task is characterized by four parameters: a
computation time C;, a nominal period T;, (considered as
the minimum period), a maximum period 7;,,, and an
elastic coefficient E; > 0, which specifies the flexibility of
the task to vary its utilization for adapting the system to a
new feasible rate configuration. The greater E;, the more
elastic the task. Thus, an elastic task is denoted as:

Ti(CuﬂmT'

tmazx )

In the following, T; will denote the actual period of task 7,
which is constrained to be in the range [T;,,T;,,.]- Any task
can vary its period according to its needs within the
specified range. Any variation, however, is subject to an
elastic guarantee and is accepted only if there exists a
feasible schedule in which all the other periods are within
their range. Consider, for example, a set of three tasks,
whose parameters are shown in Table 1. With periods
Ty =20, T5 = 40, and T3 = 70, the task set is schedulable by
EDF since
10 10 15

If task 73 reduces its period to 50, no feasible schedule exists
since the utilization would be greater than 1:

10 10 15
—20+40+50—1.05> 1.

However, notice that a feasible schedule exists (U, = 0.977)
for Ty =22, T, =45, and T3 = 50, hence, the system can
accept the higher request rate of 73 by slightly decreasing
the rates of 7 and m. Task 73 can even run with a period
T3 = 40 since a feasible schedule exists with periods 7} and
T, within their range. In fact, when T; = 24, T = 50, and
T3 =40, U, =0.992. Finally, notice that if 73 requires

Up
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running at its minimum period (73 = 35), there is no
feasible schedule with periods 77 and 75 within their range,
hence, the request of 73 to execute with a period T3 = 35
must be rejected.

Clearly, for a given value of T3, there can be many
different period configurations which lead to a feasible
schedule; thus, one of the possible feasible configurations
must be selected. The great advantage of using an elastic
model is that the policy for selecting a solution is implicitly
encoded in the elastic coefficients provided by the user (for
example, based on task importance). Thus, each task is
varied according to its current elastic status and a feasible
configuration is found, if there one exists.

As another example, consider the same set of three
tasks with the same initial periods (77 = 20, 75 = 40, and
T3 =70), but suppose that a new periodic task
74(5,30,30,0) enters the system at time ¢ In a rigid
scheduling framework, 74 (or some other task selected by
a more sophisticated rejection policy) must be rejected
because the new task set is not schedulable, being

10 10 15 5
Up=55+730 T 50 30 = 1131 > 1

Using an elastic model, however, 74 can be accepted if the
periods of the other tasks can be increased in such a way
that the total utilization is less than one and all the periods
are within their range. In our specific example, the period
configuration given by T} =23, 75 =50, 173 =80, T = 30
creates a total utilization U, = 0.989, hence, 74 can be
accepted.

The elastic model also works in the other direction.
Whenever a periodic task terminates or decreases its rate,
all the tasks that have been previously “compressed” (in
utilization) can increase their rates or even return to their
nominal periods, depending on the amount of released
bandwidth.

It is worth noting that the elastic model is more general
than the classical Liu and Layland task model, so it does not
prevent a user from defining hard real-time tasks. In fact, a
task having T; = T;, is equivalent to a hard real-time task
with fixed period, independent of its elastic coefficient. A
task with E; =0 can arbitrarily vary its period within its
specified range, but it cannot be varied by the system
during load reconfigurations.

2.1 Equivalence with a Spring System

To understand how an elastic guarantee is performed in
this model, it is convenient to compare an elastic task 7;
with a linear spring S;, characterized by a rigidity
coefficient k;, a nominal length z;, and a minimum
length z; . In the following, x; will denote the actual
length of spring S;, which is constrained to be greater
than or equal to z; .

In this comparison, the length z; of the spring is
equivalent to the task’s utilization factor U; = C;/T; and
the rigidity coefficient &; is equivalent to the inverse of the
task’s elasticity (k; = 1/E;). Hence, a set of n tasks with total
utilization factor U, = )"/ | U; can be viewed as a sequence
of n springs with total length L = >"" , ;.

Using the same notation introduced by Liu and Layland
[13], let U, be the least upper bound of the total utilization

X0 X 20 X 30 X 40
k, k, ks k,
T T L
Lo
max
(a)
X, X, Xy o X,
ky k, ki lky
<— F
T T T L
Ly L. Lo
(b)

Fig. 1. A linear spring system: (a) The total length is L, when springs are
uncompressed and (b) L, < L, when springs are compressed by
applying a force F.

factor for a given scheduling algorithm A (we recall that, for
n tasks, UM = n(2"/" — 1) and UZPT = 1). Hence, a task set
can be schedulable by A if U, < Uf},. Under EDF, such a
schedulability condition becomes necessary and sufficient.
Under the elastic model, given a scheduling algorithm A
and a set of n tasks with U, > Uj},, the objective of the
guarantee is to compress tasks’ utilization factors in order to
achieve a new desired utilization U, < U}, such that all the
periods are within their ranges. In the linear spring system,
this is equivalent of compressing the springs so that the new
total length L, is less than or equal to a given maximum
length L,,,,. More formally, in the spring system, the
problem can be stated as follows:
Given a set of n springs with known rigidity and length
constraints, if Ly =Y. %, > Ly, find a set of new
lengths z; such that z; > z;,,, and L = Lg, where L, is any
arbitrary desired length such that Ly < Ly,4,.
For the sake of clarity, we first solve the problem for a
spring system without length constraints, then we show
how the solution can be modified by introducing length
constraints, and, finally, we show how the solution can be
adapted to the case of a task set.

2.2 Springs with No Length Constraints

Consider a set I' of n springs with nominal length z;, and
rigidity coefficient k; positioned one after the other, as
depicted in Fig. 1. Let L be the total length of the array, that
is the sum of the nominal lengths: Ly = Y"1 | x;,. If the array
is compressed so that its total length is equal to a desired
length Ly (0 < Lg < Ly), the first problem we want to solve
is to find the new length x; of each spring, assuming that,
forall i, 0 < z; < zy, (i.e., z;,,, =0). L; being the total length
of the compressed array of springs, we have:

L, :Zx (1)

If F is the force that keeps a spring in its compressed state,
then, for the equilibrium of the system, it must be:
Vi F = k,(‘Lm — 17)7

from which we derive
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Vi Ty = Ty, —E. (2)
By summing (2) we have:
Ly=1Ly— Fii
d — 40 - kz .
Thus, force F' can be expressed as
F = Ky(Lo — La), ()
where
1
Ky =it (4)
DY EY
Substituting (3) into (2), we finally achieve:
K,
VZ Ty = Ty, — (Lo - Ld) J. (5)

Equation (5) allows us to compute how each spring has to
be compressed in order to have a desired total length L.

2.3 Introducing Length Constraints
If each spring has a length constraint, in the sense that its
length cannot be less than a minimum value z;,,,, then the
problem of finding the values x; requires an iterative
solution. In fact, if, during compression, one or more
springs reach their minimum length, the additional com-
pression force will only deform the remaining springs.
Thus, at each instant, the set I' can be divided into two
subsets: a set I'y of fixed springs having minimum length
and a set I', of variable springs that can still be compressed.
Applying (5) to the set I, of variable springs, we have

VSZ el

xTr; = ZZiU

K,
= (Lyy = La+ Ly) o (6)

where

ng = Z T, (7)

S;el’y,
Li= ) i, (8)
Slel‘/
1
K,=———. (9)
ZS,GF,, J}T

Whenever there exists some spring for which (6) gives
x; < z;,, the length of that spring has to be fixed at its
minimum value, sets I'y and I', must be updated, and (6),
(7), (8) and (9) recomputed for the new set I',. If there exists
a feasible solution, that is, if the desired final length L, is
greater than or equal to the minimum possible length of the
array Lyin = Y iy Tivis
each value computed by (6) is greater than or equal to its
corresponding minimum z; , . The complete algorithm for
compressing a set I' of n springs with length constraints up
to a desired length L, is shown in Fig. 2.

the iterative process ends when
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Algorithm Spring_compress(I', Ly) {

LU = Z?:] :Eiu;
Lin = Z?:] Ligins
if (Lg < L) return INFEASIBLE;

do {

I‘f = {SZ|.’17, — Iimin};
L,=T-Ty

L'Uo - ZSiEI‘v Tiys
Ly= Zsier, Lirins

K, = I S
Esierﬂ 1k

ok = 1;
for (each S; € I'y) {
Tp = Ty — (ng —Lg+ Lf)[(v/ki;
if (Tl < Iimm) {
Li = Tipins

ok = 0;

}

} while (ok == 0);
return FEASIBLE;

Fig. 2. Algorithm for compressing a set of springs with length
constraints.

3 COMPRESSING TASKS’ UTILIZATIONS

When dealing with a set of elastic tasks, (6), (7), (8), and (9)
can be rewritten by substituting all length parameters with
the corresponding utilization factors and the rigidity
coefficients k; and K, with the corresponding elastic
coefficients F; and E,. Similarly, at each instant, the set T’
of periodic tasks can be divided into two subsets: a set I'y of
fixed tasks having minimum utilization and a set I', of
variable tasks that can still be compressed. Let U;, = C;/T;,
be the nominal utilization of task 7, Uy =Y, U;, be the
nominal utilization of the task set, U,, be the sum of the
nominal utilizations of tasks in I',, and Uy be the total
utilization factor of tasks in I'y. Then, to achieve a desired
utilization Uy < U, each task has to be compressed up to
the following utilization:

E;
VTi € PL Ui = Ui() - (UUQ - Ud + Uf)Ev (10)
where
Uu) - UZ() (11)
el
Ur=3_ U, (12)
€Ty
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Algorithm Task_compress(I', Uy) {

Uy = ?:; Ci/Ty;
" Cy/Ts

Unnin =
min T mam ¥

if (Uy < Uppyn) return INFEASIBLE;
do {

U, =E,=0;
for (each 7;) {
if (B, ==0) or (T; ==
Uf = U/ =+ Ui;
elseE, = F,+ E;;

L))

}
Ui = Uo = Up;
ok = 1;

for (each 7; € T) {
if (B > 0) and (T; < T;,,.,)) {

Ui=Uy — Uy, —Ug + Up)E; /By
T, = C;/Us;
if (1; > T;,,.,.) {

Ti == TL'",“,;

ok = 0;

}

} while (ok == 0);
return FEASIBLE;

}

Fig. 3. Algorithm for compressing a set of elastic tasks.

el

(13)

If there exist tasks for which U; < U;

bmin 7

then the period of
those tasks has to be fixed at its maximum value T;
that Uz = Uz‘
and E, recomputed), and (10) applied again to the tasks in

(so
), sets I'y and I', must be updated (hence, Uy

maz

min

T',. If there exists a feasible solution, that is, if the desired
utilization U, is greater than or equal to the minimum
possible utilization U, = Y 1, TL, the iterative process
ends when each value computed by (10) is greater than or
The algorithm'

for compressing a set I' of n elastic tasks up to a desired

equal to its corresponding minimum U;

min *

utilization Uy is shown in Fig. 3.

3.1 Decompression

All tasks’ utilizations that have been compressed to cope
with an overload situation can return toward their nominal
values when the overload is over. Let I'. be the subset of
compressed tasks (that is, the set of tasks with T; > T;)), let

1. The actual implementation of the algorithm contains more checks on
tasks’ variables, which are not shown here to simplify its description.

', be the set of remaining tasks in I' (that is, the set of tasks
with T; = T;,), and let U; be the current processor utilization
of I'. Whenever a task in I', voluntarily increases its period,
all tasks in I'. can expand their utilizations according to
their elastic coefficients so that the processor utilization is
kept at the value of Uj,.

Now, let U, be the total utilization of T',, let U, be the total
utilization of I', after some task has increased its period,
and let U, be the total utilization of tasks in I'. at their
nominal periods. It can easily be seen that if U,, + U, < Uy,
all tasks in I'. can return to their nominal periods. On the
other hand, if U, + U, > Uy, then the release operation of
the tasks in I', can be viewed as a compression, where I'y =
I, and I', =T'.. Hence, it can still be performed by using
(10), (12), and (13) and the algorithm presented in Fig. 3.

3.2 Period Rescaling

If the elastic coefficients are set equal to task nominal
utilizations, elastic compression has the effect of a simple
rescaling, where all the periods are increased by the same
percentage. In order to work correctly, however, period
rescaling must be uniformly applied to all the tasks, without
restrictions on the maximum period. This means having

U; =0 and U, = Up. Under this assumption, by setting
E; = U, (10) becomes:

, Uiy U Ui
Vi Ui=U,— U — Ud)?{? :7(:[[]0 — (Uo — Ua)] :F:Ud

from which we have that

Uo
T=T,
This means that, in overload situations (U, > 1), the
compression algorithm causes all task periods to be

increased by a common scale factor

n= U,
Notice that, after compression is performed, the total
processor utilization becomes:

Z C; 1 Uy

U= ——Upy=—2Uy =T,
;77 T 0 U 0 d

as desired.

If a maximum period needs to be defined for some task,
an online guarantee test can easily be performed before
compression to check whether all the new periods are less
than or equal to the maximum value. This can be done in
O(n) by testing whether

Vi=1,...,n nT;, <T".

By deciding to apply period rescaling, we lose the
freedom of choosing the elastic coefficients since they must
be set equal to task nominal utilizations. However, this
technique has the advantage of leaving the task periods
ordered as in the nominal configuration, which simplifies
the compression algorithm in the presence of resource
constraints, as discussed in Section 4.3.
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4 HANDLING RESOURCE CONSTRAINTS

We now extend the elastic model to deal with resource
constraints, thus allowing tasks to interact through shared
memory buffers. In order to estimate maximum blocking
times due to mutual exclusion and analyze task schedul-
ability, we assume that critical sections are accessed
through the Stack Resource Policy [2]. For the sake of
completeness, the features and the main properties of this
protocol are briefly recalled below.

4.1 The Stack Resource Policy

The Stack Resource Policy (SRP) is a concurrency control
protocol proposed by Baker [2] to bound the priority
inversion phenomenon in static as well as dynamic priority
systems. Under the EDF scheduling algorithm, each task 7;
is assigned a dynamic priority p; inversely proportional to
its absolute deadline d; and a static preemption level ;, such
that the following property holds:

Property 1. Task 7; is not allowed to preempt task T; unless
T > T

Under EDF, Property 1 is verified if each periodic task is
assigned a preemption level inversely proportional to its
relative deadline D;. That is,

1
T X —.
2 DZ
In addition, every resource Ry, is assigned a static? ceiling,
defined as

ceil(Ry,) = max{m; | 7, needs Ry}, (14)

and a dynamic system ceiling is defined as
IL,(¢) = max[{ceil(Ry,) | Ry is currently busy} U {0}].
Then, the SRP scheduling rule states that:

a task is not allowed to preempt until its priority is the
highest among those of the active tasks and its preemption
level is greater than the system ceiling.

Such a protocol guarantees that each task can be blocked for
at most the duration of one critical section. Moreover, it
ensures that, once a task is started, it will never block until
completion; it can only be preempted by higher priority
tasks. As a consequence, the blocking time B; considered in
the schedulability analysis refers to the time during which
task 7; is kept in the ready queue by the preemption test,
waiting for tasks with lower preemption levels to free
shared resources. Blocking at preemption time also allows
tasks to share a single stack, so reducing the total stack size
when more tasks have the same preemption level. Finally,
the SRP implementation is straightforward and there is no
need to implement semaphore queues since a task never
blocks during execution, but simply cannot preempt if its
preemption level is not high enough.

Using the SRP, the maximum blocking time for a task 7;
is bounded by the duration of the longest critical section
among those that can block 7;, that is, those with a ceiling

2. In the case of multiunit resources, the ceiling of each resource is
dynamic as it depends on the number of units actually free.
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greater than or equal to m; belonging to tasks with a relative
deadline greater than D;:

Bi =max{sy | (Di < Dj) A m < ceil(pjn)}, (15)
where s, is the worst-case execution time of the hth critical
section of task 7; and pjj, is the resource used inside it. Then,
the feasibility of a task set with resource constraints can be
tested by the following sufficient condition [2]:

Vi, 1<i< iCk+Bi<1 (16)
i, 1<i<n — 4= < 1,
“~ D, D,

where it is assumed that tasks are sorted by decreasing
preemption levels so that 7; > 7; only if ¢ < j.

A simpler, but less tight, sufficient condition to verify the
schedulability of a task set in the presence of resource
constraints can be derived from condition (16):

e max| — .
— D; E \Dy) —

A tighter test can be performed (in pseudopolynomial
time) using a processor demand criterion [6]. However, in order
to keep the runtime overhead low, we decided to perform the
compression using the simplest test given by (17).

(17)

4.2 The Compression Algorithm

In the presence of resource constraints, the compression
algorithm must be modified to take blocking terms into
account. Using the simplified schedulability test expressed
in (17) and, under the assumption that relative deadlines
are equal to actual periods, the utilizations of the
compressed tasks can be computed as follows:

B, E;
vr,el', U, = Uio — |:U() —Uy +m?X<?k> + Uf:| E (18)
It is worth noting that, even in this simple case,

performing compression using the actual blocking factors
would increase the worst-case complexity of the algorithm
since blocking times are not constant, but depend on the
reciprocal period relations. Thus, if, during compression,
the order of periods is not preserved, the blocking factor of
some task could increase significantly and make the new
task configuration infeasible. In this case, the algorithm
should perform an additional compression step by using
the actual blocking times computed under the new period
configuration, but the same problem could arise again.
Unfortunately, bounding the number of additional steps
required to get a feasible schedule in the presence of
resource constraints is not easy, so we decided to adopt an
approximate solution which allows us to keep the complex-
ity of the compression algorithm the same as without
resource constraints.

The key idea is to overestimate the maz;, (%") term with a
blocking utilization factor Uy, which is independent from the
period configuration. If B}"* denotes the worst-case blocking
time of 7;; for each possible periods’ combination, we have
that
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Bk- < B?]é/‘( C
max| — max .
k T,) = & Tk,

Hence, the compression can be performed according to the
following equation:

VTL' el’, U;,= Uio — (UU

m|m

Ud-l-Ub-f—Uf)

BIU(‘
U, = m]?x(TZU ) .

It is worth observing that, since U, is constant with respect
to period change, it can be computed offline, so it does not
affect the complexity of the compression algorithm. To
compute U, the worst-case blocking time B} must be
estimated as a function of the minimum relative deadline
D7 and the maximum relative deadline D**® of each task
7; (we have D" = T; and D@ =T, ). By fixing D’”m

can assign each task 7; a maximum preemption level 7"
1/D" that will be used to compute the maximum ceiling
ceil™*(Ry) of each resource offline. More formally,
ceil™ ™ (Ry,) can be defined as follows:

(19)

where

ceil™*(Ry) = max{n]"" | 7, needs Ry}. (20)
2
The maximum ceiling of a resource represents the
highest ceiling for any possible period combination; this
notion is used for computing the worst-case blocking time

B, which is defined as follows:

B;::(‘, — maX{th | (D;’nm < D;_na;r,) A ﬂ_;n'i,n S Ceilmauc(pjh)}7

(21)

min

where 7" = 1/D"* represents the lowest value of 7; for
any p0551b1e period combination. If D; is the actual relative
deadline of elastic task 7;, the following inequality holds:

1

< ﬂ_maz

vi, m < o
The consequence of overestimating the blocking factor U, is
that the compression algorithm cannot exploit all the
available bandwidth. However, if the feasibility test is
satisfied, the compression algorithm always gives a solution
which, in the worst case, consists of setting each task period
equal to its maximum value.

Finally, to take resource constraints into account, the
feasibility test in the original algorithm shown in Fig. 3 has
to be modified as follows:

)) return INFEASIBLE;

where Bj; is the maximum blocking time computed by (15)
assuming that each task has a period equal to T},

if (Uy < Upin + mazk(

max *

4.3 Rescaling with Resource Constraints

The compression algorithm can be greatly simplified if a
uniform rescaling policy is used to handle overloads. In
fact, as shown in Section 3.2, the rescaling algorithm
reduces the load by increasing all the periods by the same
scale factor

Y
S Us’
This means that the compression algorithm does not affect
the order of periods in the task set (and the order of
preemption levels). As a consequence, the blocking times do
not change during period adjustment and can be computed
offline without making overestimations. Hence, (18) can be
simplified as:
U

= (22)

B
vr Ui=U, — [Uo Ud—|—max< k)]
Uy’

In order to compute the new periods, we start resolving the
equation corresponding to task 7; such that

Notice that j can be computed offline. In fact, in the case of
rescaling, the relative order of the periods and the blocking
factors do not change at runtime; hence,
B; B
Vi <=L =
T T

0 Jo

B _B;
T

Thus, j can be computed offline as the index of that task 7;
such that

Once j has been identified, the jth equation can be
written as:

: 1U.
Sou, - |v-U, Zi
7—,]_ 0 d+ 11] l](] ;
and solved for T:
¢y Us BU
1; U TiUo
U; U
— | C;+ B; ===
T; ( " UO) Uy
T, — C] UU;)) 7
J Ud
After computing T}, the term max;(£) :%’ is known

and can be substituted in all the remaining equations to
compute the periods of the other tasks. Notice that, in this
case, the solution is not approximated, that is:

ZU —|—max< ) Uy.

In conclusion, in the presence of resource constraints, using
a rescaling method in place of the most general one has
some interesting advantages:

e It allows us to obtain an exact solution;

e  Since the relative order of the tasks’ periods does not
change during compression/decompression, a task
can only be preempted by the same set of tasks that
have a shorter period;
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Fig. 4. A task can miss its deadline if a period is decreased at arbitrary
time.

e Finally, since the order is preserved, it is possible to
perform some offline optimization. For example, we
can find an ordering such that the maximum
blocking time is minimized.

5 THEORETICAL VALIDATION OF THE MODEL

In this section, we derive some theoretical results which
validate the elastic approach. In particular, we show that, in
order to avoid transient overloads during a transition, a
period reconfiguration has to be performed at opportune
time instants to preserve the schedulability of the task set.

The amount of delay needed to perform a safe transition
depends on the particular state in which the system is
found when the reconfiguration is required. In the follow-
ing, we first address the problem in the case of independent
tasks and then we extend the results in the presence of
resource constraints.

5.1 The Case of Independent Tasks

Intuitively, when tasks do not share resources (except for
the processor), the period of those tasks decreasing their
rate can be changed immediately, without compromising
the schedulability. In fact, since constraints are being
relaxed, tasks that were schedulable before compression
will still be schedulable after their period is enlarged.

On the other hand, if a new task has to be accepted in the
system (or a task rate has to be increased), the mode change
cannot occur immediately, but it must be delayed until the
required utilization is fully available. The problem will be
presented through the following examples.

5.1.1 Example A: Shortening a Period

Consider the example shown in Fig. 4, where two tasks, with
computation times C; = 3 and C; = 2 and periods 7} = 10
and 7, = 3, startat time 0. The processor utilizationis U, = % ,
thus the task set is schedulable by EDF. Suppose that, at time
t = 14, 71 wants to change its period from T} = 10to T} = 5s0
that the compression algorithm increases the period of
from T, =3 to T; = 6 to keep the system schedulable. The
new processor utilization is U?’7 = %, so the task set is still
schedulable; however, if periods are changed immediately
(i.e., at time t = 14), task 7; misses its deadline at time ¢ = 15.

In general, although the periods of the tasks that
decrease their rate can be changed immediately, the periods
of the tasks that increase their rate can be changed only at

their next release time.
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TABLE 2
Task Set Parameters for Example B

| Task | Ci | Ty | Th | B |
T 5 | 10 20 1
10 10 0
4 4 0

[

T2
73

= ot

5.1.2 Example B: New Task Arrival
Consider the periodic task set reported in Table 2 and
suppose that 7, and m, start at time ¢ = 0, whereas 73 arrives
at time ¢ = 5. Since the three tasks cannot be scheduled with
their nominal periods, the compression algorithm is
invoked at time ¢t = 5 to accommodate the execution of 73.
As can easily be verified, a feasible solution exists if the
period of 7y is increased at the value 77 = 20, in fact:

|4 |

U= 2l

Although the new task set is schedulable (U, = 1), Fig. 5a
shows that, if 73 is started at time ¢t =05, 7 misses its
deadline. Why does it happen?

The reason for the deadline miss can be explained as
follows: At time ¢t =5, when the period of 7 is increased
from T; = 10 to T} = 20, its utilization decreases from U; =
0.5 to Uj = 0.25, creating the required bandwidth for 73.
However, such a bandwidth is not available immediately
because 7, already executed in its period, consuming all the
bandwidth allocated to it until time ¢ = 10. As a conse-
quence, the freed utilization will be available for 73 from
time ¢ = 10 on. Indeed, Fig. 5b shows that if the activation of
73 is delayed till time ¢ = 10, no deadline is missed and the
new task set is schedulable.

In general, if, at time ¢, a task 7; increases its period from
T; to T}, its execution can be split into two pieces: a portion
ei(t) already executed up to ¢ and a portion ¢;(t) = C; — €;(t)
to be executed with the new period. If r; is the release time
of the current instance of 7;, the portion e;(t) is executed
with deadline d; = r; + T;, whereas the remaining portion
¢i(t) will be executed with deadline d; = r; + T/. Since, in
the interval [r;, ] only e;(¢) units of time (out of C;) have
been used by 7;, the bandwidth U; was consumed up to time
6; such that:

_ €; (f)
U; = 51,
from which we derive that
_ 6;;(15) _ C, — C,;(t) _ C, Ci(t) _ C;;(t)
b =1+ U =r + i 77“,,+Ui U =d; U

Hence, only from time §; on, the freed utilization (U; — U)) is
available to the system and can be allocated to other tasks.
In general, if 7. is the set of tasks that decrease their rates at
time ¢, the total bandwidth (U, —U,) created by the
compression algorithm will be available at time:

Omax = max(6;). (23)

€T,
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Fig. 5. (a) Task set schedulability is jeopardized if a task is started when compression is performed, (b) but no deadline is missed if the creation of the

new task is postponed at an opportune time.

Note that the residual computation time ¢;(t) = C; — ¢;(t) of
the current instance of 7; can also be scheduled with a
deadline d} such that, in [6;, d}], a bandwidth U] = C;/T] is
consumed. That is,

C; (t)

i =6+ U

In the following, we use the processor demand criterion [6],
originally proposed in [3], to formally prove that, if all the
deadlines of the compressed tasks are postponed from d; to
di, then, from 6,,4, on, the bandwidth of the system will be
no greater than U, = Y- U].

Definition 1. The processor demand of task 7; in any interval
[t1,t2], denoted as D;(t1,t2), is the sum of the computation
times of all the instances of T; with arrival time greater than or
equal to t, and deadline less than or equal to t,.

The following theorem, proven in [9], will be used to verify
the schedulability of a task set under the EDF algorithm.

Theorem 1 (Jeffay and Stone, 93). A task set T is schedulable
by EDF if and only if, in every interval, the total demand of the
task set is less than or equal to the length of the interval, that
is, if and only if

th,tg it <1y D(tl,tg) = ZDi(t17t2) < (tQ — tl).

We now bound the demand of a compressed task with

the following lemma.

Lemma 1. For any task 7, € T, its demand D;(t,,t;) in every
interval [ty,to] such that t; < &; and ty > 6; can be bounded as
follows:

D;(t1,t2) < (6; — t1)U; + (2 — 6;)U;. (24)

Proof. The demand of task 7; can be written as the sum of
two components, D¢ and D?**. The D?? component
takes into account the instances of 7; with deadline less
than or equal to d;, that is, the instances executing before
the period change. The D! component takes into
account the instances of 7; with a deadline greater than
or equal to d, that is, those instances executing after the
period change. Notice that the instance of 7; executing at
the compression time ¢ contributes to both components.

Hence, Vi, < 6;, to > 6,
Di(ty,ts) = D' (t1,t2) + DIU(ty, o).

Considering the first component, we have that
Vit <1y, t2 > d;,
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D;’ld(th 1) < {%J Ci — (1)

< (dj — t)U; — ¢5(t) = (di _ 7
= (6; — t1)U;.
Viy, 1<ty <6, Vi, 6 <ty <d;
D(t1,t) =0 < (8 —t1)U;
Now, considering the second component, we have that

Vit <1y, t2 > d,

ty — d!
D?ew(tl,tg) < Ci(t) + \‘!J Cz <

K3

to — (6; + C'[}?))
- C; <

1

=)+

< c(t) + (ta — 6)U;

th, r <t < 6,j, Vtg, 6i <ty < d?

- C7(t) = (tQ — 6,)U’

2

Di(t,t) =0 < (ty — 6;)U..

7
Hence, the thesis follows. a

We now prove that §; is the earliest time after which the
bandwidth created by the compression algorithm is fully
available. To do that, we illustrate a counterexample which
shows that Lemma 1 is no longer valid for any 6" < ¢;.
Suppose that a task 7 with bandwidth U=1, period and
execution time equal to six units of time, starts at time zero
and executes until ¢t = 3. At this time, its period is changed
in order to decrease the utilization from 1 to 0.5. Clearly,
6 =3 and the residual computation time is ¢(t) = 3. By
setting 0" = 3 — ¢, then d* = §" + ) — 9 _ ¢. Hence, the
processor demand of 7 in [0, d*] is six units of time, whereas
(24) gives

(gn(eu: _ tl)a =+ (tg _ gncw)UZ/

<
<B-6+9—-€—-3+605=6—c

We now formally prove that, after time 6,,4,, the bandwidth
of the task set is not greater than U,

Theorem 2. Let T be a task set with utilization U, and let T . be
the subset of tasks that, at time t, increase their period so that
the total processor utilization is compressed down to U, < U,
Let us define time Opqy as in (23). Then, from time 6,4, 01, the
bandwidth used by the task set is not greater than U,

Proof. The thesis is proven by showing that, for every
possible task 7, arriving at time 6,,,, with bandwidth
Upew <1 — U;, the system remains schedulable. By using
the processor demand criterion, it is sufficient to show that,
in every interval of time [t1,t,], the demand of the task
set, including the new task, does not exceed the length of
the interval. We distinguish three cases:

o Vi, tg, t1 < ts < 4, the new task is not included
in these intervals and, for ¢y € [6;,0mae:), the
demand of 7; can be bounded using Lemma 1.
Hence:
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D(t1,t) < Z(tz - t)U;
to<b;
+ Z {(51 —t)U; + (t2 — &)U}
8 <ty <bmazx
<Yty — 1)U < (ty — 1)U, < (o — 1),
€T

o Vi1 < bpmaz, t2 > Opmas, the demand in these inter-
vals is the sum of the old and the new instances of
the compressed tasks and the instances of 7ye,.
Hence:

t17t2

> {6 —t)Ui + (t2 — 8)U/}

1 <6;

p>

8i <t1 <Omax

S Z(émaz -

neT €T
+ (t2 — Omaz) Unew
< (Bmaz — 1)Uy + (t2 — bmaa)U,
+ (t2 = 6maz ) Unew < (t2 — t1).

(ta — t1) U + (L2

DU + Y (2

- 6maz ) Unmu

- maz

o Vi, ty, Opmar < t1 < ty, only new instances must be
considered in these intervals. Hence:

< Z(tg — tl)Ui, + (tZ - tl)Unew < (tZ - tl)-
€T

l)(tlth)

Hence, if a new task is created at 6,,,, with bandwidth
Upew <1 — UZ’7 and arbitrary period, the system remains
schedulable. This implies that, from time 6,,, on, the
bandwidth of the task set is no greater than U, O
It is worth observing that, in order to simplify the
implementation of the compression algorithm, each current
compressed instance can be scheduled with a deadline
d, = r; + T}, rather than with d;. Changing d! with d; does
not jeopardize the task set schedulability since df < d;, as
proven by the following lemma.
Lemma 2. For every task 7; € T . whose period is increased from
T; to T} > T;, the minimum deadline d} that can be used to
schedule its residual computation time c¢;(t) is such that

d; <d,.

Proof. From the definition of d; we have:

. (?) a(t)\ | al?)
G=t = (d”'_ Ui)+ U
t) ! A ! U
=d, - . (T, -T)) <di =T, + T, =r; + T, = d;.
Thus, the lemma follows. O

5.2 The Case of Resource Constrained Tasks

In the presence of resources constraints, additional care
must be taken before applying the compression algorithm
in order to preserve the main properties of the SRP. The
following example illustrates a problem which can arise if
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TABLE 3
Parameters of the Task Set
[Hask [ Ci [ Ty | Toe | Bi | Ri | B |
A [[1]1w] 10 Jo] -7 -
T 4 111 16 1|2 -
T3 2 110 14 1 1 1
T4 4 120 20 0] 2 2

periods are
section.

Consider a task set consisting of four periodic tasks 71, 72,
73, and 74, which share two resources R; and R», as shown
in Table 3. The numbers reported in the R; columns
represent the time that each task needs to execute the
critical section corresponding to resource R;.

Suppose 73 wants to increase its rate at time ¢ = 6: The
compression algorithm computes a new period equal to 14
for task 7. Fig. 6 shows what happens: At time ¢, task 7 is
inside the critical section on resource R;; if its period is
increased immediately, the current instance of 73 cannot
make preemption, so task 73 is blocked twice: by 74 at time
t =1 and by 7, at time ¢t = 6. Note that, when 73 is blocked
by 7, task 71 contributes to the blocking time of 73, whose
execution is further delayed. Hence, performing a compres-
sion when a task is using a shared resource may break a
fundamental property of SRP according to which each task
can be blocked at most for the duration of one critical
section. However, Fig. 7 shows that, if task 7 increases its
period at time ¢ =7, after exiting the critical section, and
task 73 decreases its period at the next release time (¢ = 15),
the SRP properties are preserved. This example helps to
better understand that, in the presence of resource con-
straints, task compression has to be performed according to
the following rule.

changed while some task is inside a critical

General compression rule. Whenever a period change is
required at time t, the compression algorithm can be executed
only when the system ceiling is equal to zero (i.e., when no task
is inside a critical section). Let t, be such a time and let b,,,, be
the time after t, defined in (23). At this time, if the new

299

configuration is feasible, the new periods, preemption levels,
and resource ceilings can be computed. Then,

e the compressed tasks can immediately increase their
period at time t,

e a new task can be activated at time 6,,q,, and

e the periods of the tasks increasing their rate can be

changed at their next release time after time 6,4z

Some considerations must be done to show that nothing
wrong will happen using the previous rule:

e Since, at time ¢y, the system ceiling is zero, no task is
inside a critical section, hence, all instances active at
ty cannot be blocked until completion. It follows that
preemption levels can be safely changed without
invalidating the SRP properties.

Since, according to the previous rule, no new tasks
can be activated before 6,,,, and active tasks do not
increase their utilization, the system remains sche-
dulable in [ty, bmaz]-

From time 6,,,, on, the utilization of the new task set
(including the newly arrived tasks) can be computed
by (19) and guaranteed by Theorem 2.

As a final remark, we notice that the worst-case delay
between the time at which a compression is required and
the time at which the ceiling becomes zero is bounded by
max;(T;), the longest period in the system. In fact, if the
system is feasible, each task must exit every critical section
before its deadline. In the worst case, we have to wait for
the task with the longest period to exit its outer critical
section.

6 EXPERIMENTAL RESULTS

The elastic task model has been implemented on top of the
HARTIK kernel [5], [11] to perform some experiments on
multimedia applications and verify the results predicted by
the theory. In particular, the elastic guarantee mechanism
has been implemented as a high priority task, the QoS
manager, activated by the other tasks when they are created
or when they want to change their period. Whenever
activated, the QoS manager calculates the new periods and

critical section on resource R1 E

.. . B
critical section on resource R2 K

“ 'O T
26
14
|
i ] %ﬁ /\T
15 29
20 i

Fig. 6. Example of tasks’ compression with resource constraints.
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Fig. 7. Example of tasks’ compression with resource constraints.

changes them atomically. According to the results pre-
sented in Section 5, periods are changed at the next release
time of the task whose period is decreased. If more tasks ask
to decrease their period, the QoS manager will change them,
if possible, at their next release time.

In the first experiment, four periodic tasks are created at
time ¢t = 0. The tasks’ parameters are shown in Table 4,
while the actual number of instances executed by each task
as a function of time is shown in Fig. 8. All the tasks start
executing at their nominal period and, at time ¢; = 10sec, 7
decreases its period to T] = 33msec. We recall that a task
cannot decrease its period by itself, but must perform a
request to the QoS manager, which checks the feasibility of
the request and calculates the new periods for all the tasks
in the system. So, at time ¢;, since the schedule is found to
be feasible, the period of 7 is decreased and the periods of
T», 73, and 74 are increased according to their elastic
coefficients. The values of all the periods are indicated in
the graph.

At time ¢, = 20sec, 7 returns to its nominal period, so the
QoS manager can change the periods of the other tasks to
their initial values, as shown in the graph. In this manner,
the QoS manager ensures that, when a task needs to change
its period, the task set remains schedulable and the
variation of each task period can be controlled by the
elastic factor.

In the second experiment, we tested the elastic model as
an admission control policy. Three tasks start executing at
time ¢ = 0 at their nominal period, while a fourth task starts
at time ¢; = 10sec. The tasks’ parameters are shown in
Table 5. When 74 is started, the task set is not schedulable

TABLE 4
Task Set Parameters Used for the First Experiment

(Tl [ O] Ty [T [T [ B

7 | 241100 30 500 1
T2 | 24]100 | 30 500 1
T3 | 241100 | 30 500 | 1.5
T4 | 24]100 | 30 500 | 2

Periods and computation times are expressed in milliseconds.

with the current periods, thus the QoS manager, in order to
accommodate the request of 74, increases the periods of the
other tasks according to the elastic model. The actual
execution rates of the tasks are shown in Fig. 9. Notice that,
although the first three tasks have the same elastic
coefficients, their periods are changed by a different amount
because tasks have different utilization factors.

7 CONCLUSIONS

In this paper, we presented a flexible scheduling theory in
which periodic tasks are treated as springs, with given
elastic coefficients. Under this framework, periodic tasks
can intentionally change their execution rate to provide
different quality of service and the other tasks can
automatically adapt their periods to keep the system
underloaded. The proposed model can also be used to
handle overload situations in a more flexible way. In fact,
whenever a new task cannot be guaranteed by the system,
instead of rejecting the task, the system can try to reduce the
utilizations of the other tasks (by increasing their periods in
a controlled fashion) to decrease the total load and
accommodate the new request. As soon as a transient
overload condition is over (because a task terminates or
voluntarily increases its period), all the compressed tasks
may expand up to their original utilization, eventually
recovering their nominal periods.

The major advantage of the proposed method is that the
policy for selecting a solution is implicitly encoded in the
elastic coefficients provided by the user. Each task is varied
based on its current elastic status and a feasible configura-
tion is found, if one exists.

TABLE 5
Task Set Parameters Used for the Second Experiment
Task Cl T; Imin e Ez
71 | 30| 100 30| 500| 1
Ty | 60 | 200 30 500 1
73 | 90 | 300 30| 500 1
T4 | 24| 50 30 500 1

Periods and computation times are expressed in milliseconds.
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First experiment
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Fig. 8. Dynamic period change.
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Fig. 9. Dynamic task activation.

The elastic model is extremely useful for supporting both
multimedia systems and control applications in which the
execution rates of some computational activities have to be
dynamically tuned as a function of the current system state.
Furthermore, the elastic mechanism can easily be imple-
mented on top of classical real-time kernels and can be used
under fixed or dynamic priority scheduling algorithms. The
experimental results shown in this paper have been
conducted by implementing the elastic mechanism on the
HARTIK kernel [5], [11].

As future work, we are investigating the possibility of
using the elastic scheduling methodology with an execution
time estimator embedded in the kernel for developing an
adaptive mechanism which automatically allocates the
requested bandwidth to each task without forcing the user
to specify worst-case execution times. In this way, the user
would specify, for each task, only a desired activation rate
and an importance value (related to the elastic coefficient),
while the system would work to satisfy the specification as
closely as possible, using the importance values as metrics.
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