
A Resource Reservation Algorithm for
Power-Aware Scheduling of Periodic and

Aperiodic Real-Time Tasks
Claudio Scordino, Student Member, IEEE, and Giuseppe Lipari, Member, IEEE

Abstract—Power consumption is an important issue in the design of real-time embedded systems. As many embedded systems are

powered by batteries, the goal is to extend the autonomy of the system as much as possible. To reduce power consumption, modern

processors can change their voltage and frequency at runtime. A power-aware scheduling algorithm can exploit this capability to

reduce power consumption while preserving the timing constraints of real-time tasks. In this paper, we present GRUB-PA, a novel

power-aware scheduling algorithm based on a resource reservation technique. In addition to providing temporal isolation and time

guarantees and, unlike most of the power-aware algorithms proposed in the literature, GRUB-PA can efficiently handle systems

consisting of both hard and soft, aperiodic, sporadic, and periodic tasks. We compared our algorithm with existing power-aware

scheduling algorithms on an extensive set of simulation experiments on synthetic task sets. The results show that the performance of

our algorithm is in line with the state-of-the-art power-aware algorithms. We also present the implementation of our algorithm in the

Linux operating system and discuss practical implementation issues like switching overhead and power models. Finally, we show the

results of experiments performed on a real testbed application.

Index Terms—DVS, real-time, resource-reservation, scheduling, power-aware.
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1 INTRODUCTION

THE problem of reducing energy consumption is becom-
ing very important in the design and implementation of

embedded real-time systems. Many of these systems are
powered by rechargeable batteries and the goal is to extend
the autonomy of the system as much as possible. Battery
technology is improving rather slowly and cannot keep up
with the demands of modern digital systems. A wide range
of battery operated systems, like notebook computers,
smart phones, autonomous robots, sensor nodes, and PDAs
(Personal Digital Assistants), can only operate on a limited
battery supply. Battery life is one of the most important
parameters for such devices, directly influencing the system
size and weight.

Problems related to energy consumption can also be

found in high-end processors, like the ones used in normal

workstation PCs and in servers [1], [2]. The increases in

performance are obtained by increasing the clock frequency

and reducing the size of the transistors. The net effect is that

the power consumed by these processors is increasing due

to increases in the static leakage current and in the dynamic

switching frequency. As a side effect, dissipating the heat

generated becomes more difficult. Conventional computers

are currently air cooled and manufacturers are facing the

problem of building powerful systems without introducing

additional techniques such as liquid cooling. It has been
shown [1] that the fans driving the cooling system can
consume up to 50 percent of the total system power in small
commercial servers. To better understand the impact of
techniques for reducing power consumption in a high-end
server, consider the cost savings that can be obtained by
reducing the energy consumed in large Web server farms in
terms of air conditioning and cooling systems. However,
this reduction in power consumption must not affect the
performance of the applications.

One possible approach to reducing power consumption
is to selectively adjust the processor voltage. This technique
is called Dynamic Voltage Scaling (DVS) [3]. Many modern
processors can dynamically lower the voltage to reduce the
power consumption [4], [5], [6], [7]. However, by reducing
the voltage, the gate delay increases. Thus, in most cases, it
is necessary to lower the operating frequency and the
processor speed. As a consequence, all applications will
take more time to execute.

In real-time systems, a task may be assigned timing
constraints like deadlines. A real-time task must complete
before its deadline; otherwise, the results could be
produced too late to be useful. In safety critical applications,
a deadline miss could result in serious consequences for the
system. A hard real-time task is a critical activity whose
deadline can never be missed; otherwise, a critical system
failure can compromise the functionality of the system. This
kind of task is typically used to control or monitor some
physical device and a missed deadline may cause cata-
strophic consequences. Hard real-time tasks are needed in a
number of application domains, including air-traffic, in-
dustrial, chemical, nuclear, safety-critical, and military
controls. Examples of hard real-time systems operated by
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batteries or by solar cells are autonomous robots operating
in hazardous environments (e.g., the robots sent by NASA
for exploring the surface of Mars).

Soft real-time tasks are less critical. For these tasks, the
timing constraints are important but not critical and the
system tolerates some occasional deadline misses. Typi-
cally, the number of missed deadlines is related to the
Quality of Service (QoS) provided by the application. A
deadline miss does not compromise the correctness of the
system, but its QoS degrades. Typical examples of soft real-
time are multimedia and telecommunication applications.

In practice, many systems consist of a mixture of hard
and soft real-time tasks. The objective is to guarantee that all
hard tasks will always complete before their deadlines and,
at the same time, to maximize the quality of service
provided by soft real-time tasks.

When applying DVS techniques to a real-time embedded
system, it is necessary to identify the conditions under
which we can safely slow down the processor without
missing any deadline (for hard real-time systems) or
missing a limited number of deadlines (for soft real-time
tasks). If the frequency change is not done properly, the
timing requirements of the application cannot be respected.

A power-aware scheduling algorithm exploits DVS by
selecting, at each instant, both the task to be scheduled
and the processor’s operating frequency. The problem
becomes more difficult in systems with a combination of
hard and soft, periodic and aperiodic real-time tasks.
Recently, many power-aware algorithms have been pro-
posed in the literature. We discuss the previous work on
DVS in Section 2.

The problem of mixing hard and soft real-time tasks can
be efficiently solved by using the resource reservation
framework [8]. In such a framework, each task is assigned
a server characterized by a budget Q and a period P , the
interpretation being that the task is allowed to execute for at
least Q units of time every P . Many server algorithms have
been presented in the literature, for both fixed priority and
dynamic priority schedulers [9], [10], [11], [12]. If the tasks
execute less than expected, the remaining slack time can be
used to reduce the response time of soft aperiodic tasks.
Techniques for using this slack time are usually referred to
as reclamation techniques. Examples of such reclamation
techniques for resource reservation under dynamic sche-
duling have been proposed recently [13], [14].

Intuitively, the problem of reclaiming the spare band-
width is similar to the problem of power-aware scheduling.
We can divide both problems into two parts. The first part
consists of identifying the spare bandwidth (or the slack
time) in the system, whereas the second part consists of
deciding how to use the spare bandwidth. The first part of
the problem is common to both the bandwidth reclamation
and the power-aware scheduling problems. The second
part, instead, differs radically: In the reclamation problem,
the goal is to use the spare time to anticipate the execution
time of aperiodic tasks, whereas, in the power-aware
scheduling problem, the goal is to lower the processor
frequency as much as possible. We believe that many
reclamation algorithms can be used as power-aware
schedulers by modifying their “second” part.

In this paper, we present the GRUB-PA (Greedy Reclama-
tion of Unused Bandwidth—Power Aware) algorithm [15] that
follows the previous idea. It is based on the GRUB
algorithm, proposed by Lipari and Baruah [13], [16], which
in turn is based on the resource reservation framework.
Therefore, our algorithm can support both hard and soft
real-time tasks. Moreover, unlike many power-aware
algorithms, GRUB-PA is able to deal with periodic,
sporadic, and even aperiodic tasks.

The paper is organized as follows: In Section 2, we
present related work in the area of resource reservation and
power-aware scheduling. Section 3 introduces the models
and the notation that will be used throughout the paper. In
Sections 4 and 5, we present our algorithm and prove its
correctness. In Section 6, we present simulation experiments
that compare GRUB-PA with three state-of-the-art algo-
rithms: the DRA algorithm, proposed by Aydin et al. [17],
the RTDVS algorithm, proposed by Pillai and Shin [18], and
the DVSST algorithm, proposed by Qadi et al. [19].

Finally, in Section 7, we present the implementation of
our algorithm in the Linux operating system and some
experiments on a real test-bed system. In Section 8, we state
our conclusions.

2 RELATED WORK

Power-aware scheduling techniques can be divided into
static (offline) and dynamic (online) techniques. Static
techniques are typically applied to periodic tasks, and
make use of offline parameters (such as periods and worst-
case execution times) to select the appropriate processor
voltage/frequency to be used. These techniques can be
further divided into two classes: fixed system voltage and
fixed task voltage. In the former case, a single optimal speed
is computed and assigned to all tasks, without any
overhead for voltage switching at runtime. Pillai and Shin
[18] derived an optimal algorithm for computing the
minimal speed that can make a task set schedulable under
the Earliest Deadline First (EDF) scheduler [20], [21] and
proposed a near-optimal method under Rate Monotonic.
Saewong and Rajkumar [22] provided an algorithm to find
the optimal speed value for fixed priority assignments.

In the second class of static methods, the processor
voltage is not fixed but statically assigned before system
execution, based upon a task’s parameters [22], [23], [24]. In
other words, given a set of periodic tasks, the algorithm
assigns a possibly different voltage to each individual task.
The assignments are still computed offline and are fixed
until the task set changes. Shin and Kim [25] proposed a
static algorithm for real-time systems with both periodic
and aperiodic tasks. Aperiodic tasks are handled using a
dedicated server. Saewong and Rajkumar [26] proposed a
voltage-scaling algorithm (called PM-Clock) for hard real-
time systems using fixed-priority (i.e., Rate Monotonic or
Deadline Monotonic) schedulers.

Dynamic techniques have been the topic of much recent
research. In most applications, the probability of a task
taking an amount of runtime equal to its worst-case
execution time (WCET) is very low [27]. Hence, dynamic
techniques can exploit the slack time for reducing energy
consumption when tasks have a variable execution time.
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Pillai and Shin [18] proposed the RTDVS-Cycle Conser-
ving and RTDVS-Look Ahead algorithms to take into
account the slack time. Aydin et al. [17] proposed the
DRA algorithms based on EDF for reclaiming the spare
time. A power-aware algorithm for EDF scheduling has
been proposed also by Zhu and Mueller [28]. Similar
techniques have been proposed by Saewong and Rajkumar
[22] in the context of fixed priority scheduling. All these
techniques assume hard real-time periodic task sets.

Some work has been done in the context of soft real-time
tasks. For example, Pouwelse et al. [29], [3] presented a study
of power consumption and power-aware scheduling applied
to multimedia streaming. Lorch and Smith addressed
variable voltage scheduling of tasks with soft deadlines in
[30]. Kumar and Srivastava [31] proposed a prediction
mechanism for fixed-priority scheduling of soft periodic
tasks. However, these techniques are based on heuristics and
cannot provide guarantees to hard real-time tasks.

Recently, Qadi et al. [19] presented the DVSST algorithm
that schedules sporadic hard real-time tasks, reclaiming the
unused bandwidth to lower the processor frequency. The
basic idea is to keep track of the total bandwidth used by all
active sporadic tasks with a variable U : When a sporadic
task is activated, U is increased by Ui (the task’s utilization,
Ui ¼

Ci

Ti
) and, at task’s deadline, the bandwidth is decreased

by Ui. The processor frequency is changed depending on
the value of U . This approach resembles our algorithm
GRUB-PA. However, the DVSST algorithm is not able to
reclaim the spare bandwidth that is due to tasks with
variable execution time. Indeed, in the case of periodic
tasks, DVSST maintains a constant U . As we will see in the
remainder of the paper, our algorithm, GRUB-PA, instead,
explicitly reclaims the spare bandwidth of tasks that execute
less than the worst case and, therefore, is able to reclaim
spare time in the case of both periodic and sporadic tasks.

Shin and Kim [25] proposed dynamic algorithms for
power-aware scheduling, using both fixed priority or EDF
policies and a dedicated server (i.e., Deferrable Server [32]
or Total Bandwidth Server [11]) to handle aperiodic tasks.
Using some existing DVS algorithms (including a modified
version of DRA [17]), slack time is reclaimed for both
periodic and aperiodic tasks.

Our approach takes a more abstract view and, thus, is
more general than the approach by Shin and Kim. Our
algorithm is based on the resource reservation framework
[8]. All resource reservation algorithms provide the temporal
isolation property: The temporal behavior of one task (i.e., its
ability to meet its deadlines) is not affected by the behavior
of the other tasks. Thanks to the temporal isolation
property, each task executes as if it were on a slower
dedicated processor. Therefore, it is possible to provide
guarantees on a per-task basis.

3 SYSTEM MODEL AND NOTATION

In this section, we introduce the models and the notation
that will be used throughout the paper.

3.1 Task Model

Typically, a real-time system is implemented as a set of
concurrent tasks that are executed on a real-time operating

system (RTOS). The objective of an RTOS is to manage and
control the assignment of some resources (e.g., the
processor) to the tasks that need them in order to meet
predefined timing constraints. In this paper, we consider
the processor as the only resource shared by a set of real-
time tasks, reducing the scheduling problem to the choice of
a possible assignment of the processor to the tasks.

A real-time task can be modeled as a sequential stream of

jobs. The job is the unit of work, scheduled and executed by

the operating system. Each task �i generates a sequence of

jobs J1
i ; J

2
i ; J

3
i ; . . . , where Jj

i becomes ready for execution

(arrives) at time aji ða
j
i � ajþ1i 8i; jÞ and requires a computa-

tion time of cji . Jobs of the same task must be executed

sequentially (it is not possible to parallelize two jobs of the

same task) and are executed in FIFO order—i.e., Jj
i has to

finish before Jjþ1
i can start executing. Moreover, each job is

assigned an absolute deadline dji , which is the time by

which the job must complete (in the case of a hard real-time

task) or should complete (in the case of a soft real-time task).
Periodic tasks release their jobs at regular intervals of

time: aji ¼ aj�1i þ Ti, where Ti is the task period. Sporadic
tasks have a minimum interarrival time between consecu-
tive jobs: aji � aj�1i þ Ti, where Ti denotes the minimum
interarrival time. Usually, the job deadline dji is computed
based on the task relative deadline di: d

j
i ¼ aji þ di:

The scheduling algorithm presented in this paper is very
general and does not assume knowledge of tasks periodi-
city. More formally, the algorithm makes the following
assumptions:

. The arrival times of the jobs (the ajis) are not a priori
known, but are only revealed online during system
execution. Hence, our scheduling strategy cannot
require knowledge of future arrival times. Notice
that many power-aware algorithms for periodic task
sets (like DRA [17] or RTDVS [18]) exploit knowl-
edge of future arrival times to simplify the solution.

. The exact execution requirements, cji , are also not
known beforehand: They can only be determined by
actually executing Jj

i to completion.

Our algorithm can handle any kind of task—periodic,
sporadic, and aperiodic tasks. Of course, to be able to do
schedulability analysis, the designer must know the
minimum interarrival times and the worst-case execution
times of the tasks. However, since our algorithm provides
temporal protection, each task can be analyzed and
guaranteed in isolation—i.e., without making any assump-
tion on the other tasks in the system.

3.2 Processor Model

The tasks are executed on a single processor with a variable
operating frequency. Many power-aware algorithms make
the assumption of continuous frequency scaling, even
though no existing processor can vary its frequency with
continuity. In fact, all processors that support DVS provide
a set of operating modes, each one characterized by a value
of frequency and voltage [4], [5], [6], [7].

We assume that the processor can provide M frequen-
cies, �1; . . . ; �M , in increasing order. A supply voltage
VDD�1; . . . ; VDD�M and a normalized processor “speed”
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U1; . . . ; UM are associated to each frequency, again in
increasing order, with UM ¼ 1. The computation times of

the tasks are relative to the maximum operating speed,

UM ¼ 1, and vary linearly with the processor speed:
Therefore, if a job executes for eji units of time when the

processor speed is 1, it executes for eji=Uk when the

processor speed is set equal to Uk (in Section 7, this
assumption will be validated experimentally on a real

embedded system).

3.3 Power Consumption

Today, most digital devices are implemented using Com-
plementary Metal Oxide Semiconductor (CMOS) circuits.

The power consumption of this kind of circuit can be

modeled accurately with simple equations [33], [29], [34].
CMOS circuits have both static and dynamic power

consumption. In the ideal case, they do not dissipate static

power since, in steady state, there is no open path from

source to ground. In reality, bias and leakage currents
through the MOS transistors cause a static power consump-

tion which is a (usually) small portion of the total power

consumed by the circuit. Although the static power today is
about two orders of magnitude smaller than the total

power, as integration technology advances, it is expected
that the leakage power will significantly affect, if not

dominate, the overall energy consumption in integrated

circuits [34].
The dynamic power consumption in CMOS micropro-

cessors is dissipated during the transient behavior (i.e.,

during switches between logic levels). Every transition of a

digital circuit consumes power because every charge or
discharge of the digital circuit’s capacitance drains power.

If we assume that the dynamic component is the most

dominant one, we can associate a power consumption

Pk / �k � V
2
DD�k ð1Þ

to the frequency �k, as done in [34], [3], [33]. Notice that the
power consumption scales linearly with the frequency and

quadratically with the voltage—i.e., reducing frequency
and voltage together reduces energy per operation quad-

ratically, but only decreases performance linearly.

3.4 Overhead

One issue that must be taken into careful consideration is

the overhead of changing frequency. Changing frequency is
not “for free” as the processor needs some transitory time to

adjust to the new frequency. The duration of this transitory

is variable and varies a lot from processor to processor. For
example, on the Intel PXA250, it can go up to 500 �sec. Even

though, in many soft real-time applications, this can be
considered negligible, it should not be ignored. We will

show how to account for this delay in the GRUB-PA

algorithm in Section 5.4.
The presence of an energy overhead at every frequency

switch is also undeniable. This overhead depends on the

particular kind of processor the algorithm is running on and

it is quite difficult to estimate and measure. In this paper,
we do not explicitly take into account this energy overhead.

However, we devise a technique to limit the number of

switches in an interval of time, therefore limiting the
maximum amount of energy spent for switching frequency.

4 ALGORITHM GRUB

Weare interested in integrating our schedulingmethodology
with traditional real-time scheduling—in particular, wewish
to design a scheduler that is a minor variant of the classical
Earliest Deadline First (EDF) scheduling algorithm [21].

Since the GRUB-PA algorithm proposed in this paper is
based on the GRUB algorithm (Greedy Reclamation of
Unused Bandwidth) [13], [16], in this section we briefly
describe the original algorithm. The interested reader can
refer to the original paper for a more detailed presentation
of the algorithm.

In this section, we assume that the processor speed is set
to the maximum and is not changed. In Section 5, we will
show how it is possible to extend the GRUB algorithm to
exploit DVS.

GRUB is an algorithm belonging to the class of aperiodic
servers with dynamic priorities. This class of techniques
consists of creating an abstract entity for each task called
server. Several server-based schedulers (e.g., CBS [35]) can
offer performance guarantees somewhat similar to the one
made by algorithm GRUB. However, algorithm GRUB has
an added feature that is not to be found in many of the other
schedulers—an ability to reclaim unused processor capacity
(“bandwidth”) that is not used because some of the servers
may have no outstanding jobs awaiting execution.

4.1 Description of the GRUB Algorithm

4.1.1 Server Model

Each server is characterized by two parameters (Ui, Pi),
where Ui is the server bandwidth (or fraction of the
processor utilization) and Pi is the period.

We consider a system comprised of n servers,
S1; S2; . . . ; Sn, with each server Si characterized by the
parameters Ui and Pi as described above. We require the
sum of the processor shares of all the servers to be no more
than one, i.e.,

X

n

i¼1

Ui

 !

� 1:

4.1.2 Algorithm Variables

For each server Si in the system, algorithm GRUB maintains
two variables: a deadline, Di, and a virtual time, Vi. Initially,
these variables are both initialized to 0. The server deadline,
Di, is used to select which server is executing on the
processor—GRUB essentially implements the EDF algo-
rithm among all active servers. The virtual time, Vi, is a
measure of how much bandwidth the server has consumed.
The meaning of these variables will be clearer later.

At any instant in time during runtime, each server Si is
in one of three states: Inactive, Active Contending, or Active
Non Contending. The initial state of each server is Inactive.
Intuitively, at time to, a server is in the Active Contending
state if it has some jobs awaiting execution at that time, in
the Active Non Contending state if it has completed all the
jobs that arrived prior to to, but in doing so has “used up”
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its share of the processor until beyond to (i.e., its virtual time
is greater than to), and in the Inactive state if it has no jobs
awaiting execution at time to and it has not used up its
processor share beyond to.

At each instant in time, from among all servers that are in
the Active Contending state, algorithm GRUB chooses for
execution (the next job of) the server Si whose deadline
parameter Di is the smallest.

While (a job of) Si is executing, its virtual time Vi

increases (the exact rate of this increase will be specified
later); while Si is not executing, Vi does not change. If, at
any time, this virtual time becomes equal to the deadline
ðVi ¼¼ DiÞ, then the deadline parameter is incremented by
Pi ðDi  Di þ PiÞ. Notice that this may cause Si to no
longer be the earliest-deadline active server, in which case,
it may yield control of the processor to an earlier-deadline
server.

4.1.3 State Transitions

Certain (external and internal) events cause a server to
change its state (see Fig. 1).

1. If server Si is in the Inactive state and a job Jj
i arrives

(at time-instant aji), then the following code is
executed:

Vi  aji
Di  Vi þ Pi

and server Si enters the Active Contending state.
2. When a job Jj�1

i of Si completes (notice that Si must
then be in the Active Contending state), the action
taken depends upon whether the next job Jj

i of Si

has already arrived.

a. If so, then the deadline parameter Di is updated
as follows:

Di �Vi þ Pi

and the server remains in the Active Contending
state.

b. If there is no job of Si awaiting execution, then
server Si changes state and enters the Active Non
Contending state.

3. For a server Si in the Active Non Contending state, it
is required that Vi > t at any instant t. If this is not so

(either immediately upon transiting into this state or
because time has elapsed but Vi does not change for
servers in the Active Non Contending state), then the
server enters the Inactive state.

4. If a new job Jj
i arrives while server Si is in the Active

Non Contending state, then the deadline parameter
Di is updated as follows:

Di �Vi þ Pi

and server Si returns to the Active Contending state.
5. There is one additional possible state change—if the

processor is ever idle, then all servers in the system
return to their Inactive state.

Algorithm GRUB maintains a global variable total system
utilization that, at every instant, is equal to

U ¼
X

n

i¼1
Si 6¼ Inactive

Ui;

where n is the number of servers in the system. This
variable is initialized to 0 and it is updated every time a
server enters in or exits from state Inactive. In particular,
when Si exits from state Inactive, U is increased to Ui,
whereas, when Si enters state Inactive, it is decreased by Ui.

The rule for updating the virtual time of every server is
as follows:

d

dt
Vi ¼

U
Ui

if ða job ofÞ Si is executing;
0 otherwise:

�

ð2Þ

The rate of increaseof thevirtual time isproportional to the
current total bandwidth of the active servers and is auto-
matically adjusted depending on the current system load.

Observations. The virtual time is an important variable
as it gives a measure of the progress that the server task has
done. Let us make a simple example to explain the way the
algorithm updates the virtual time.

Consider a server S1 with bandwidth U1 ¼ 0:25 and
period P1 ¼ 20 msec. If the system is fully utilized (i.e., the
total system bandwidth U is equal to 1), then (2) tells us that
the virtual time is increased at a rate of 1=0:25 ¼ 4. By
looking at the algorithm rules, we see that the server
executes for P1=4 ¼ 5 msec before the server deadline is
postponed.

In general, the bandwidth U1 can be computed using
some rule of thumb or by performing a careful analysis of
the application code. For our purposes, in this example, we
assume that 5 msec are enough to complete task’s jobs in
most cases.

However, suppose that, for some interval of time, the
total system utilization U goes down to 0.75. Then, server S1

can execute more than 5 msec every period because we can
reclaim the spare bandwidth. According to (2), the virtual
time is increased at a rate of 0:75=0:25 ¼ 3. Therefore, if U is
equal to 0.75 for the entire duration of the period P1,
server S1 can execute for up to P1=3 ¼ 6:66 msec within the
period.

Thus, if our task sometimes requires more than 5 msec to
complete, it can take advantage of the reclaimed bandwidth
and still execute inside the period boundary. This property
can help us in setting the server bandwidth U1 to a lower
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value. For example, we can decide to set U1 equal to the
average bandwidth required by the task and try to exploit
the reclamation property of GRUB to dynamically get more
bandwidth.

4.2 Performance Guarantees

The following theorems formally state the performance
guarantee that can be made by algorithm GRUB vis à vis
the behavior of each server when executing on a dedicated
processor. For proofs of the following theorems, see [13], [16].

Theorem 1. Given a set of servers S1; . . . ; Sn, with
Pn

i¼1 Ui � 1, then all servers execute within their deadlines,
regardless of the served tasks. More formally, at each
instant t, 8i ¼ 1; . . . ; n Di � t.

Theorem 2. Suppose that job Jj
i would begin execution at time-

instant Aj
i , if all jobs of server Si were executed on a dedicated

processor of capacity Ui. In such a dedicated processor, Jj
i

would complete at time instant F j
i ¼

def
Aj

i þ ðe
j
i=UiÞ, where e

j
i

denotes the execution requirement of Jj
i . If Jj

i completes
execution by time-instant fji when our global scheduler is
used, then it is guaranteed that

fji � Aj
i þ

ðeji=UiÞ

Pi

& ’

� Pi: ð3Þ

From the previous inequality, it follows that fki < F k
i þ Pi.

Thus, the period Pi represents the granularity of the time
from the point of view of the server: By using algorithm
GRUB, every job finishes at most Pi time units later than the
completion time on a dedicated slower processor.

Moreover, the GRUB algorithm is able to serve hard real-
time periodic tasks without any deadline miss, as stated by
the following theorem:

Theorem 3 ([16]). Let �i be a hard real-time periodic task with
worst-case execution time Ci and period Ti. If task �i is
assigned a server Si with bandwidth Ui �

Ci

Ti
and period

Pi ¼ Ti, then no deadline of �i will be missed.

5 POWER-AWARE SCHEDULING

We now modify GRUB for power-aware scheduling. The
new resulting algorithm is called GRUB-PA (Power-
Aware). As the first step, let us assume that the processor
speed can be varied continuously, from a maximum speed
factor of 1 (i.e., the processor works at its maximum speed)
to a minimum of 0 (i.e., processor halted), and that the time
to change speed is negligible. We will relax these simplify-
ing assumptions in Sections 5.3 and 5.4.

As explained previously, GRUB maintains a global
variable U that is the sum of the bandwidths of all servers
that are not in the Inactive state. The key idea is that, if we
set the speed factor of the processor to be equal to U , no
server will miss its deadline. This idea is similar to the one
on which the DVSST algorithm [19] is based. However,
GRUB-PA updates the variable U in a more effective way,
allowing additional power saving also in the case of
periodic tasks, as shown in Section 5.1.

It is important to note that we are implicitly assuming
that the execution time of a task varies linearly with the

processor frequency. In Section 7, we will validate this
assumption.

The original GRUB algorithm can be divided into two
different parts: a set of rules for identifying the spare
bandwidth ð1� UÞ and a set of rules for reassigning the
spare bandwidth. The second part can be adapted for
power-aware scheduling. In practice, if the processor is not
fully utilized ðU < 1Þ, the exceeding bandwidth ð1� UÞ can
be used in two ways:

1. To execute the active servers for a longer time so that
they can execute faster and finish earlier. This is the
“reclamation” property and it is the original goal for
which the GRUB algorithm was designed.

2. To slow down the processor. Each active server will
execute for a longer time, but at a slower speed. The
net effect is that its performance is not degraded.

The reclamation rule in GRUB is given by (2), thus the
increment in the virtual time depends on the amount of
bandwidth actually used in the system. This rule can also be
used in the power-aware part to automatically adapt the
server bandwidth to the new frequency. Moreover, we need
an additional rule that sets the processor speed equal to U
whenever a server goes in (or leaves) the Inactive state.

Hence, in the newGRUB-PA algorithm, state transitions 1
and 3 (see Fig. 1) are modified as follows:

1. When a job Jj
i arrives at time instant aji , update the

following variables:

Vi  aji ;

Di  Vi þ Pi;

U  U þ Ui:

Moreover, the processor speed is set equal to U .
2. When a server is in the Active Non Contending state

and Vi ¼ t, then the server goes into the Inactive state
and the system utilization is updated as follows:

U  U � Ui:

Moreover, the processor speed is set equal to U .

5.1 Example

In this section, we present a complete example showing how
the GRUB-PA algorithm updates the processor speed
depending on the bandwidth of the active servers. Consider
a system consisting of two tasks. Task �1 is a sporadic task
with minimum interarrival time T1 ¼ 8 and computation
timeC1 varyingbetween2and4.This task is assigneda server
with U1 ¼ 0:5 and P1 ¼ 8. The second task, �2, is a periodic
task with period T2 ¼ 10 and constant execution timeC2 ¼ 5.
�2 is assigned a server with U2 ¼ 0:5 and P2 ¼ 10.

Suppose that the first job of task �1 arrives at time t ¼ 0

requesting two units of computation time; the second job of
�1 arrives at time t ¼ 12 with computation time equal to 3.
The resulting schedule is shown in Fig. 2. The upward
arrows denote an arrival time, while the downward arrows
denote a deadline. The plot under the schedule reports the
variations of variable U during system evolution. In this
case, we assume that deadline ties are broken in favor of the
task with a lower index. However, in general, ties can be
broken arbitrarily.
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Initially, all servers are active, so U ¼ 1 and the processor
speed U is set equal to 1. At time t ¼ 0, task �1 is selected to
execute since the deadline of the serverD1 ¼ 8 is the earliest
server deadline. The task executes until t ¼ 2, when it
completes. At this time, the virtual time is V1 ¼ 2=U1 ¼ 4, so
the server goes into the Active Non Contending state. Then,
task �2 starts executing and it executes for two time units
until t ¼ 4. At this time, the first server changes state from
Active Non Contending to Inactive: The total bandwidth of
all active servers is decreased to U ¼ U � U1 ¼ 0:5, so the
processor speed can be slowed down to U ¼ 0:5. Then,
task �2 can continue executing at half the speed. However,
its virtual time, V2, is also increased at half the speed: For
each unit of execution, the virtual time will now increase at
a rate of dV2 ¼ dt U

U2
¼ dt. Therefore, task �2 can now execute

for six units of time, which corresponds to three more units
of the execution time at maximum speed, and complete just
by the deadline at 10. However, at time t ¼ 10, another job
of task �2 arrives, so the second server remains in the Active
Contending state and �2 resumes execution at half the speed.

At time t ¼ 12, the second job of �1 is activated. The
server becomes Active Contending and U ¼ U þ U1 ¼ 1.
Therefore, the processor speed is again raised to U ¼ 1 and
task �1 can start executing (as it is the one with the earliest
server’s deadline).

Notice that the mechanism used by the GRUB-PA
algorithm is very similar to the one used by the DVSST
algorithm [19]: They both use variable U to set the processor
speed. However, there is a difference in the instant when the
variable is updated. The DVSST algorithm does not keep
track of the actual execution time of the tasks. Therefore, it
can only subtract the bandwidth of a completed task at the
task’s deadline. In the example above, even if task �1
completes by time t ¼ 2, the DVSST algorithm must wait
until time t ¼ 8 to lower the processor speed. Instead,
algorithm GRUB-PA can anticipate this time at t ¼ 4 as it
explicitly takes into account the fact that task �1 has
executed less than expected. The difference between the
speeds set by the two algorithms is shown in Fig. 2. The
GRUB-PA algorithm always anticipates this time with
respect to algorithm DVSST, resulting in a larger amount
of saved energy.

5.2 Properties of GRUB-PA

In this section, we formally prove that Theorem 1 is valid
for the GRUB-PA algorithm as well. First, we define an
ideal algorithm GPS-PA (Generalized Processor Sharing-
Power Aware) that allocates the processor in proportion to
the bandwidths Ui of the active tasks.

Definition 1. Algorithm GPS-PA is a fluid algorithm that
adjusts the processor frequency and allocates the processor to
tasks according to the following rules:

. The processor speed is set equal to the sum of the
utilization of all active tasks.

. For every interval �t, the processor is allocated to all
active tasks in proportion to their utilization.

Clearly, GPS-PA is an ideal algorithm and cannot be
implemented in practice since it is impossible to allocate
any infinitesimally small interval �t to different tasks in
proportion to their utilizations. GPS-PA will be used only as
a reference algorithm for GRUB-PA.

GPS-PA has the following interesting properties:

Lemma 4. Under algorithm GPS-PA, under the constraint that

the sum of the utilization of all tasks is upper bounded by 1, all

jobs will complete exactly at time F j
i ¼ maxðAj

i ; F
j�1
i Þ þ

eji
Ui
.

Proof. At all times, GPS-PA sets the processor speed equal
to the sum of the bandwidths of all active tasks U . Thus,
the processor is allocated to each task in proportion to its
bandwidth. The rate of execution of task �i is constant
and equal to

Ri ¼
U � Ui

U
¼ Ui:

Therefore, the finishing time F j
i of job Jj

i does not

depend on the presence of other tasks in the system and

each task executes as if it were on a slower dedicated

processor of constant speed Ui. The finishing time of the

first job of task �i is F 0
i ¼

e0i
Ui
. Any successive job of �i

starts at the latest time between the finishing time of the

previous job and its arrival time. Hence, the lemma is

proved. tu

Now, we divide every job in one or more subjobs, each
one of maximum length Ui � Pi.

. A job Jj
i with eji � Ui � Pi is transformed into a subjob

Jj
i ð1Þ with the same execution time, the same arrival

time, and deadline Dj
ið1Þ ¼ aji þ Pi.

. A job Jj
i with eji > Ui � Pi is divided into K ¼ d

eji
UiPi
e

subjobs Jj
i ð1Þ; . . . ; J

j
i ðKÞ. All subjobs have execution

time ejiðkÞ ¼ Ui � Pi, except the last one, which can be
shorter. Each one of these subjobs is assigned an
arrival time and a deadline: The first subjob is
assigned an arrival time equal to the arrival time of
the original job and a deadline Dj

ið1Þ ¼ aji þ Pi. The
following ones are assigned arrival times and dead-
lines as follows:

ajiðkÞ ¼ Dj
iðk� 1Þ Dj

iðkÞ ¼ ajiðkÞ þ Pi:

Corollary 5. For each subjob, F j
i ðkÞ � Dj

iðkÞ.

Proof. This splitting operation does not influence the
behavior of algorithm GPS-PA. Therefore, the corollary
trivially follows from Lemma 4. tu

At this point, we will show that the schedule generated
by algorithm GPS-PA can be “transformed” into the
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schedule generated by GRUB-PA maintaining certain
important properties. The transformation is done by
following a well-known technique described by Coffman
and Denning [36, Chapter 3]. First we transform the
schedule generated by GPS-PA into a nonfluid schedule.
Then, we transform this second schedule into the schedule
generated by GRUB-PA.

Definition 2 (Job Transformation). Let �fðtÞ be the schedule
generated by GPS-PA. It is a function with multiple values:
For every time t, �fðtÞ is the set of executing subjobs that
coincides with the set of active subjobs.

Now, we generate a function �IðtÞ in the following way:
For every t, let ½t1; t2� be a maximal interval containing t in
which �fðtÞ is constant and no subjob completes in ðt1; t2Þ.

1

It follows that either a subjob completes in t2 or a subjob is
activated in t2. Let x be the number of jobs active in ðt1; t2Þ.

Then, we divide interval ½t1; t2� into x subintervals, one
for each active subjob Jj

i ðkÞ, each one of length ðt2 � t1Þ � Ui.
Then, function �IðtÞ assumes value Jj

i ðkÞ in the correspond-
ing subinterval.

Moreover, in the new schedule, the processor frequency
is changed at the same instants as in schedule �fðtÞ.

By construction, the finishing times of any subjob in �IðtÞ
is not greater than the finishing times of the same subjob in
�fðtÞ. Therefore, the following corollary is trivially proven.

Corollary 6. No subjob misses its deadline in schedule �IðtÞ.

Lemma 7. GRUB-PA changes frequency at the same instants of
time as GPS-PA.

Proof. In GPS-PA, frequency is updated at the arrival times
of the jobs Aj

i or at the finishing times F j
i . At each

instant t, the virtual time ViðtÞ in GRUB-PA corresponds
to the instant of time in the GPS-PA in which the task has
received the same amount of service as in the GRUB-PA.

GRUB-PA changes the U (and possibly the frequency)
when the task arrives (i.e., V ðtÞ ¼ t) or when the task
goes into the Inactive state (again, V ðtÞ ¼ t). In the first
case, we have V ðtÞ ¼ Aj

i ¼ t. In the second case, we have
V ðtÞ ¼ t ¼ F j

i . Hence, the lemma is proven. tu

Finally, the last step of our demonstration is to transform
the schedule �IðtÞ into the schedule generated by GRUB-PA.

Theorem 8. Server Si never misses its deadline. In other words,
at any instant t, the server deadline is always greater than t.

Proof. We use a well-known technique by Dertouzos [20],
originally used for proving the optimality of EDF. Given
a feasible schedule �IðtÞ as obtained by the technique
described in Definition 2, by the optimality of EDF, with
an exchange procedure, we can obtain a feasible
schedule �ðtÞ in which the subjobs are scheduled in
EDF order. Notice that the deadlines of the subjobs are
equal to the deadlines of the servers as assigned by
GRUB-PA. Therefore, the schedule is the same as
obtained by GRUB-PA as GRUB essentially performs
EDF on the subjobs.

Since �ðtÞ is feasible, the theorem follows. tu

5.3 Processor Model

No existing processor can vary its frequencywith continuity.
All processors that support DVS provide a discrete set of
frequencies [4], [5], [6], [7]. Correspondingly,we can set some
“thresholds” on the values of the total system bandwidth.
Suppose that the processor supportsM different frequencies
�1; . . . ; �M . We can compute U1; . . . ; UM different values of
the bandwidth. If UðtÞ is comprised in ðUk; Ukþ1� for some k,
then the processor frequency is set equal to �kþ1.

It is easy to see that, by using this simple approach, the
properties of the GRUB-PA algorithm continue to hold. In
fact, the actual speed of the processor is always set to a
value Ukþ1 greater than or equal to the theoretical desired
bandwidth U .

Unfortunately, the net effect of this approach is that some
energy is wasted as the desired frequency is always
approximated by a higher frequency. One possibility would
be to alternate the two frequencies, �k and �kþ1, so that the
average utilization is equal to the desired utilization. This
idea has been recently proposed by Bini et al. [37] in the
context of static DVS. Their methodology consists of
computing the minimum theoretical processor speed that,
if constantly applied to the system, makes the task set
schedulable. Then, if the corresponding frequency is not
available in the set of processor frequencies, the methodol-
ogy selects two available frequencies that will be alternated
in a duty cycle.

Applying such a methodology to our GRUB-PA algo-
rithm is not trivial. In GRUB-PA, the system dynamically
varies the value of U at instants of times that cannot be
predicted a priori. In particular, it is not possible to know
how long the system will maintain a certain value of U .
Therefore, only a clairvoyant algorithm can find the optimal
way of alternating the two frequencies �k and �kþ1. We are
currently investigating the possibility of finding a sub-
optimal algorithm for the above problem.

From a practical point of view, observe that the waste of
energy is less evident as the number of available processor
frequencies increases. Modern processors provide a large
number of combinations voltage/frequencies and, there-
fore, the difference between desired frequency and actual
frequency is often very little.

As a final consideration, GRUB-PA maintains the ability

to reclaim spare capacity for soft real-time tasks. In fact, the

difference Ukþ1 � U is automatically accounted for by the

algorithm as spare bandwidth and reclaimed for the tasks

that need to execute more than their assigned bandwidth.

5.4 Overhead

Since every processor needs some transitory time to adjust
to a new frequency, it is important to avoid limit situations
in which the processor keeps changing its frequency up and
down because this would completely trash the system.

For example, suppose that a task with a very low
bandwidth is activated and deactivated very often. If the
total utilization is close to one threshold value, Uk, every
activation would cause an increase of the frequency and
every deactivation would cause a decrease in the frequency.

To avoid these situations, when the total system

bandwidth U goes over one of the thresholds Uk, we
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immediately increase the processor frequency because we

do not want to risk a hard task missing its deadline. When a

decrease of the total system bandwidth U goes below one of

the thresholds Uk, instead, we do not change the frequency

immediately, but we set a timer. If the timer expires and U

is still below the threshold, we lower the frequency. If U

goes above the threshold again, we cancel the timer. In this

way, we limit the number of frequency switches.
We now explain how it is possible to account for the

delay of frequency/voltage switching through a proper
tuning of the system’s parameters. Let � be the maximum
time it takes to switch frequency and let � be the timer
expiration interval. We can have a maximum of two
frequency switches every �, one to go down and another
one to go up. In the worst case, this accounts for a
bandwidth reduction of 2�

�
. Therefore, we can admit new

servers up to a total bandwidth of 1� 2�
�

and set the
processor speed to U þ 2�

�
.

As anticipated in the previous sections, we decided to
not consider the energy spent during a frequency switch. In
particular, we do not account for this energy overhead in
the simulation model presented in the next section. Instead,
the presence of this overhead has been automatically
accounted for in our experimental results (see Section 7).
In fact, the total energy consumed by our testbed also
comprises the energy due to frequency changes.

6 EVALUATION OF THE ALGORITHM

We evaluated our algorithm through comparisons with
different power-aware algorithms proposed in the literature.
We chose to compare our algorithmwith the DRA algorithm,
proposed by Aydin et al. [17], with the EDF version of the
RTDVSalgorithms,proposedbyPillai andShin [18], andwith
the DVSST algorithm, proposed by Qadi et al. [19].

To compare the algorithms, we used a simulation
environment called RTSim (which stands for “Real-Time
system SIMulator”) [38], [39]. It is a collection of program-
ming libraries written in C++ for simulating and analyzing
real-time control systems. In this tool, a simulation is a C++
program that must be linked to an appropriate library of
components that includes schedulers, task models, etc.
RTSim started as an academic project, and it has been used
primarily for experimenting with new scheduling algo-
rithms and solutions. For this reason, it contains, already
implemented, many scheduling algorithms proposed in the
literature. The tool is released as Open Source (under the
GNU General Public License (GPL)) to give researchers a

common simulation platform for comparing the perfor-
mance of new scheduling algorithms. For our purposes, we
extended the processor components of RTSim to include
models of processors with varying speed. Moreover, we
implemented the new power-aware schedulers.

We modeled the power consumption of both an Intel
PXA250 [5] processor, using four different operating
frequencies, and a Transmeta Crusoe TM5800 [4] processor,
using seven operating frequencies. Tables 1 and 2 show the
operating parameters for these models of processors. The
values of power consumption have been obtained accord-
ing to (1).

The power consumptionmodel chosen in the simulation is
very simple but effective. In fact, we are not interested in
accurate simulations of the real consumed power, but, rather,
in a comparative analysis among different algorithms.

6.1 Comparison with DRA and RTDVS

The DRA algorithm permits us to schedule periodic tasks in
a hard real-time environment, reducing the energy con-
sumption without missing any deadline. In particular, the
DRA scheme consists of a basic algorithm and of two
extensions.

The basic algorithm (DRA-Standard) uses a queue of
tasks (called �-queue) ordered by earliest deadline. The
queue is used to compute the earliness of tasks when they
are dispatched. At any time, it contains information about
tasks that would be active (i.e., running or ready) at that
time in the canonical schedule Scan, which is the static
optimal schedule in which every instance presents its
worst-case workload and the processor runs at the constant
speed S ¼ maxfSmin; Utotg. At time t, this queue contains
information about all instances T j

i such that rji � t � dji and
whose remaining execution time is greater than 0. At
dispatch time, the algorithm computes the earliness of tasks
and adjusts the processor speed according to this value.

The “One Task” extension (DRA-OTE) further slows
down the processor speed when there is only one task in the
ready queue and its worst-case execution time (under the
current speed) does not extend beyond the next event.

The “Aggressive” extension (DRA-AGGR) speculatively
assumes that current and future instances of tasks will most
probably present a computational demand lower than the
worst case. Hence, it tries to reduce the speed of the running
task to a level even lower than the one suggested by DRA-
OTE. However, when the worst-case scenario happens, this
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algorithm has to increase the processor speed later to
guarantee the feasibility of future tasks.

We compared GRUB-PA with the DRA algorithm and
with both its extensions (for the aggressive one, we chose
the AGGR1 policy described in [17]).

We also compared our algorithm with the algorithms

proposed by Pillai and Shin [18]. They proposed three

different algorithms for hard periodic real-time tasks. The

first one is a static (offline) algorithm which selects the

lowest possible operating frequency that allows us to meet

all the deadlines for the given task set. In the rest of the

paper, we will refer to this static algorithm using the name

RTDVS-Static. The second algorithm (RTDVS-Cycle Con-

serving) assumes the worst case at release time and

executes at a high frequency until the task completes and

only then reduces operating frequency and voltage. This

algorithm may need to dynamically reduce frequency on

each task completion and increase frequency on each task

release. The last algorithm (RTDVS-Look Ahead) tries to

defer as much work as possible and sets the operating

frequency to meet the minimum work that must be done

now to ensure that all future deadlines will be met. This

may require running at higher frequencies later to complete

all the deferred work in time. However, if tasks tend to use

much less than their worst-case execution times, the peak

execution rates for deferred work may never be needed.

These algorithms have been proposed for both Rate

Monotonic and Earliest Deadline First schedulers. For the

comparison, we chose the EDF versions since they are more

similar to the GRUB-PA algorithm.

To compare the algorithms, we performed two different

kinds of simulations. We followed the same methodology

as Aydin et al. [17]. Let WCET and BCET indicate the worst-

case and the best-case execution times, respectively. In the

simulations with GRUB-PA, we generated a server for each

task, with Pi equal to the task period and Ui equal to the

ratio WCET/period so that, according to Theorem 3, no task

ever misses its deadline.

In the first set of simulations, we fixed a constant WCET/

BCET ratio for each task while using different values for the

average workload. For each value of the workload, we

simulated 100 different task sets, each one consisting of

15 different periodic tasks with randomly generated

periods. The results are shown in Fig. 3 for a WCET/BCET

ratio equal to 2 and in Fig. 4 for a ratio equal to 4. The

simulations have been performed for both the PXA250

(Fig. 3a and 4a) and the TM5800 (Fig. 3b and 4b) processors.
The second test measured the amount of power con-

sumption with a constant average workload (50 percent)
and a variable WCET/BCET ratio. For each value of the
WCET/BCET ratio, we ran 100 simulations using different
task sets, again with each set consisting of 15 tasks. Since the
convexity of the power/speed curve suggests using a
uniform speed to obtain a lower power consumption [33],
we expected to see a greater energy saving using a WCET/
BCET ratio close to 1 (that is, a small variation in the
execution times). Our results (see Fig. 5a and Fig. 5b)
confirm this assumption.

The confidence intervals obtained during the simulations

have not been shown since they were very small (in all

simulations, all algorithms presented a 99 percent con-

fidence interval less than one unit of the normalized value

of the energy consumption).
From all simulations, it is possible to conclude that

GRUB-PA shows better performance than most of the

algorithms. Among all algorithms, RTDVS-Look Ahead,

proposed by Pillai and Shin [18], presented the lowest

average power consumption. However, GRUB-PA has very

similar performance compared to RTDVS-Look Ahead.

Moreover, it is important to point out that, unlike DRA

and RTDVS, GRUB-PA does not assume a hard real-time

periodic task model, and it can be applied to both hard and

soft, periodic, sporadic, or even aperiodic tasks.

6.2 Comparison with DVSST

We also compared GRUB-PA against the DVSST algorithm

proposed by Qadi et al. [19] since it is an algorithm that

assumes a sporadic task model.

In each simulation run, we generated eight sporadic

tasks with minimum interarrival times Ti randomly chosen
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between 1,000 and 10,000 and with actual interarrival time

uniformly distributed between Ti and Ti � 1:1. Each task has

a variable computation time, with a 20 percent of variation

over the central value. In each experiment, the sum Umax of

the maximum bandwidth requested by all tasks is constant.

Finally, Umax is varied between 10 percent and 90 percent.

The results for the PXA250 and the TM5800 processors are

shown in Fig. 6.
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Fig. 5. Energy consumption with constant average workload (a) on a PXA250 and (b) on a TM5800.

Fig. 4. Energy consumption with WCET/BCET ratio equal to 4 (a) on a PXA250 and (b) on a TM5800.

Fig. 6. Energy consumption with constant average workload varying between 0.1 and 0.9 (a) on a PXA250 and (b) on a TM5800.
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As is possible to see, the DVSST algorithm is much more
sensitive to the discretization of frequencies with respect to
GRUB-PA due to the lack of reclamation of early tasks’
completions. The irregularity of the pattern for DVSST
decreases as the number of available discrete frequencies
increases as can be noticed by comparing Fig. 6a with
Fig. 6b. As expected, GRUB-PA presents an improvement
up to 40 percent with respect to DVSST.

7 IMPLEMENTATION AND EXPERIMENTAL RESULTS

The implementation of the GRUB-PA algorithm in the
Linux operating system has been done in the context of the
OCERA project (IST-35102), funded by the European
Commission in the fifth framework program. The main
objective of this project was the design and implementation
of a library of free software components for embedded real-
time systems. These components have been used to create
flexible (supporting a wide variety of applications), config-
urable (scalable from a small to a fully featured system),
robust (fault-tolerant and with high performance), and
portable (adaptable to several hardware and software
configurations) systems.

We modified the scheduling policy of Linux 2.4.18. Since
we wanted to limit, as much as possible, the modifications
to the standard Linux scheduler, we decided to apply a
small patch (called Generic Scheduler Patch) that exports the
necessary kernel events. Then, we implemented our
scheduler as a loadable kernel module.

Our scheduler needs to “intercept” the job arrival (i.e.,
tasks that are unblocked) and the job finishing (i.e., tasks
that are blocked). Moreover, the scheduler must know
when tasks are created and when tasks terminate.

We decided to export an interface to the scheduler
through the standard sched setschedulerðÞ system call,
adding a new scheduling policy, and extending the
structure sched param.

Moreover, the Generic Scheduler Patch exports the
following hooks that can be used to intercept the interesting
scheduling events:

. block_hook is invoked when a task is blocked such
that the scheduler understands that the current job
has finished.

. unblock_hook is invoked when a task is unblocked
such that the scheduler is informed of the arrival of a
new job.

. fork_hook is invoked when a new task is created by a
forkðÞ and a pointer to the task is passed as
parameter.

. cleanup_hook is invoked when a task is terminated,
such that the scheduler can free the internal
resources.

. setsched_hook is invoked when the system calls
sched setschedulerðÞ o r sched setparamðÞ a r e
called by the user.

All the hooks, except setsched hook, have a parameter
that is a pointer to the structure task struct of the
corresponding task.

The patch inserts a new field called private data in the
task struct of type void�. It is a pointer used by our

scheduler to access the private real-time data of every task.
In our case, it is a pointer to the server that handles the task.
If necessary, the scheduler must set this field to the
appropriate data structure during the fork hook. When
the module is removed, it must ensure that all tasks have
their private data set to NULL.

Our dynamically loadable scheduler modifies the task
priority, raising the selected task to the maximum priority,
and then calls the standard Linux scheduler. Based on the
information received by the hooks, our scheduler selects
which task has to be executed and sets its policy to
SCHED FIFO or SCHED RR and the rt priority to the
maximum real-time priority þ 1. Then, it invokes the Linux
scheduler. In practice, the Linux scheduler acts as a
dispatcher for our scheduler. Thus, the modifications to
the standard Linux scheduler are minimal.

Notice that, in this implementation, the scheduling
algorithm does not assume any periodic behavior of the
task. As a matter of fact, the scheduler only intercepts the
blocking/unblocking events of a task and it is the task’s
responsibility to implement a periodic behavior, if required.
Thus, our scheduler is able to serve any kind of task, from
nonperiodic legacy Linux processes to periodic soft real-
time tasks. An in-depth description of the implementation
can be found in [40].

We tested GRUB-PA on an Intrinsyc CerfCube 250
architecture. It consists of 32 MB Flash ROM, 64 MB
SDRAM, and a Ethernet 10/100 Mbps. The processor is an
Intel PXA250 [5]. It is a superpipelined 32 bits RISC
processor based on the Intel Xscale microarchitecture. This
processor permits an on-the-fly switch of the clock
frequency and a sophisticated power consumption manage-
ment. We configured the system to support three different
frequencies—i.e., 100 MHz, 200 MHz, and 400 MHz. By
using these three levels, we were able to use the minimum
possible frequency (100 MHz) and the maximum one
(400 MHz). Therefore, we had two thresholds, Uth1 ¼ 1=4
and Uth2 ¼ 1=2.

Our study was particularly focused on multimedia
applications. Therefore, we decided to evaluate the perfor-
mance of our system using a multimedia application.
However, our approach can be used for a large range of
different applications because it is completely transparent
to the application characteristics. Unfortunately, our testbed
system, the Intrinsyc CerfCube, does not present a video
output. Hence, we decided to focus our attention on an
audio decoder.

One may argue that varying the processor frequency
only, without touching the peripherals frequencies (like
memory, for example) does not bring appreciable advan-
tages. We performed some experiments showing that, in the
considered testbed, this is not the case. To execute the first
test, we decompressed a set of audio streams at 44100 Hz
and two channels, measuring the time necessary to
decompress every stream under different fixed clock
frequencies.

From the obtained values, we extracted how much the
speed of decompression is related to the speed of the
processor. The result is shown in Fig. 7, where we show, on
the x-axis, the frequency of the processor and, on the y-axis,
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the decompression speed. As the reader can see, the
relationship is almost linear. This justifies our assumption
that, by doubling the processor frequency, the computation
time of one task’s job halves. In Fig. 7, we also show the
99 percent confidence interval.

Then, we evaluated the power consumed by our system
under different conditions, with and without GRUB-PA. We
inserted a dedicated electronic circuit between the Cerf-
Cube board and the power supply to measure the input
current to the board. The circuit is powered by a separate
9V battery: It puts a very small resistor in series with the
CerfCube board and measures the voltage at the ends of the
resistor. The resulting data are sampled and sent through a
serial link to a PC that collects the data.

By using our algorithm, we measured the temporal
evolution of the current under different workloads. We
computed the average values of the input current, reported
in Table 3.

We did many experiments using the multimedia
application and we observed that, using our frequency
scaling mechanism, we saved up to 38.4 percent of the total
power consumed by the system. Notice that this is the
percentage of energy saved with respect to the total energy
consumed by the board, although our algorithm acts only
on the processor voltage and frequency.

8 CONCLUSIONS

In this paper, we presented the GRUB-PA algorithm, a
novel power-aware scheduling algorithm suitable for
systems consisting of hard periodic and soft aperiodic
real-time tasks. The algorithm is based on the resource
reservation framework, so it does not make any restrictive
assumption on the characteristics of the tasks.

Our simulations show that GRUB-PA, besides giving
guarantees about the temporal execution of tasks, presents
performance similar to those provided by other power-
aware scheduling algorithms presented in the literature.
However, GRUB-PA can also be applied to hard and soft,
and periodic, sporadic, or even aperiodic tasks.

Moreover, we presented an implementation of the
GRUB-PA in the Linux operating system. The experimental

results on a real testbed system show that, by using GRUB-

PA, we save up to 38.4 percent of the total power consumed

by the system with respect to the unmodified one.
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