
Wireless Line Sensor Network for Distributed Visual
Surveillance

Mangesh Chitnis
Scuola Superiore Sant’Anna, Italy
Indiana Univ. Purdue Univ., USA

m.chitnis@sssup.it

Yao Liang, Jiang Yu Zheng
Indiana University-Purdue University

Indianapolis, IN, USA

{yliang, jzheng}@cs.iupui.edu

Paolo Pagano, Giuseppe Lipari
Scuola Superiore Sant’Anna

Pisa, Italy

{p.pagano,g.lipari}@sssup.it

ABSTRACT
Wireless sensor networks (WSNs) play a crucial role in visual
surveillance for automatic object detection, such as real-time
traffic monitoring, vehicle parking control, intrusion detection,
and so on. These online surveillance applications require
efficient computation and distribution of complex image data
over the wireless camera network with high reliability and
detection rate in real time. Traditionally, such applications make
use of camera modules capturing a flow of two dimensional
images through time. The resulting huge amount of image data
impose severe requirements on the resource constrained WSN
nodes which need to store, process and deliver the image data or
results within a certain deadline. In this paper we present a WSN
framework based on line sensor architecture capable of
capturing a continuous stream of temporal one dimensional
image (line image). The associated one dimensional image
processing algorithms are able to achieve significantly faster
processing results with much less storage and bandwidth
requirement while conserving the node energy. Moreover, the
different operating modes offered by the proposed WSN
framework provide the end user with different tradeoff in terms
of node computation versus communication bandwidth
efficiency. Our framework is illustrated through a testbed using
IEEE 802.15.4 communication stack and a real-time operating
system along with one dimensional image processing. The
proposed line sensor based WSN architecture can also be a
desirable solution to broader multimedia based WSN systems.

Categories and Subject Descriptors
C.2.4 [Computer-Communication networks]: Distributed
Systems-Distributed Applications; C.3 [Special-Purpose and
Application-Based Systems]: Real-time and Embedded
Systems; D.2.11 [Software Engineering]: Software
Architectures-Domain Specific Architectures

General Terms
Algorithms, Design, Experimentation.

Keywords
Wireless Sensor Network, Line Sensor, IEEE 802.15.4, Real
time Operating System, Multimedia, Image Processing

1. INTRODUCTION
Distributed visual surveillance based on wireless sensor network
is of paramount importance. Its notable applications include
traffic monitoring, vehicle parking control, intrusion detection,
and so on, which requires to identify, recognize and classify the
objects in order to take appropriate action. These applications
need to continuously capture images in order to monitor certain
events. The goal of such applications is to capture images as fast
as possible, process these images with minimum amount of
computation and transfer the image information or image itself
in a bandwidth-limited distributed system to monitor and
identify the events with high reliability in real time.

In order to satisfy these requirements for visual surveillance
based on WSN, we present a novel wireless line sensor network
(WLSN) architecture in this paper. A line senor generates a
stream of one-dimensional images instead of a stream of the
traditional two-dimensional images [13]. That is, the line sensor
continuously captures data on a single line in the view. In effect,
this is similar to reading a single row or column of a two-
dimensional picture frame of a continuous movie stream, The
process of which produces a stream of temporal one-
dimensional image vectors separated by the frame sampling rate.
However we need to achieve a similar goal not for a stationary
object but for moving objects. In this case it is enough to keep
the line sensor stationary to capture the moving object. As shall
be shown in this paper, the use of line images generated by line
sensor over the traditional two-dimensional images has dramatic
advantages in bandwidth, memory, CPU speed and power
constrained WSN applications.

The rest of paper is organized as follows. Section 2 describes the
state of art in the field of wireless multimedia sensor networks
(WMSN). In Section 3, we present our WLSN
hardware/software architecture. In Section 4, we devise a suit of
algorithms for line image processing. In Section 5, we present
our testbed system developed to demonstrate our WLSN
architecture. Section 6 highlights performance advantages of
proposed WLSN architecture over the difficulty of the current
WMSN. Finally, Section 7 gives our conclusions and future
work.

2. STATE OF ART
Many research labs have started exploring the use of multimedia
in WSNs. Most of their work is related to variable bandwidth

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
Conference’09, October 26–30, 2009, Tenerife, Canary Islands, Spain.
Copyright 2009 ACM 1-58113-000-0/00/0004…$5.00.

allocation for video traffic, real time communication protocol to
deliver quality of service, image data compression and
middleware support for distributed imaging and database
applications.

Reference [2], presents a multi-tier heterogeneous camera based
surveillance network called SensEye. They make use of low
fidelity camera sensors at the second tier to view an object and
comparatively higher fidelity cameras at tier three to perform
object tracking. IrisNet (Internet-scale Resource-Intensive
Sensor Network Services) [3] is a heterogeneous wireless
multimedia sensor network platform, which allows the user to
perform queries over the video sensors distributed world wide.
Another multi-tier wireless multimedia sensor testbed [4] is
deployed at Broadband and Wireless Networking (BWN)
Laboratory in Georgia Tech which makes use of scalar sensors,
CMOS based camera nodes, medium-end video sensors are
based on Logitech webcams interfaced with Stargate platforms
and pan tilt cameras installed on a robotic platform.

Most of these multimedia wireless sensor network test-beds
make use of CMOS based cameras such as Cyclops [5] and
CMUcam3 [6] at a lower tier and Logitech webcams for high
end image processing at the next higher tier. Stanford MeshEye
[7] mote is smart camera architecture developed for distributed
intelligent surveillance. It is used to determine the position,
range and size of moving object. The platform is equipped with
low resolution VGA camera module CC2420 transceiver for
wireless communication. A new wireless camera vision system
[8], is developed using two independent VGA color sensors on
the same mote. The two cameras viewing the same scene from
different view points can construct a high performance
surveillance system using a onboard video analysis processor,
8051 microcontroller and IEEE802.15.4 enabled transceiver.
The paper [9], describes a tiny CMOS-based single chip sensor
of size less than 5mm on a side. It consists of a 320 * 240 pixel
array and a radio module for communication. This platform is
designed for biomedical applications.

A real time network simulator (RTNS)[10] based on NS2
provides a multi vision simulation environment based on the
models of the architecture components such as real time OS,
IEEE 802.15.4 based communication stack and imaging tasks
used in the framework presented in this paper. Wireless Image
Sensor Network Application Platform [11] is provides
MatlabTM based simulation library for image sensors and
wireless motes to investigate applications and algorithms for
wireless image sensor network.

However, all the image based wireless sensor network platforms
mentioned above are based on traditional two-dimensional
image processing for object detection and tracking. In [12],
Pagano et al have mentioned the communication bottleneck
problem in a two-dimensional image processing node. Zheng
and Sinha [13] have explored the use of line camera sensors in
wired communication using high end video cameras. In contrast,
in this paper, we will systematically investigate WLSN
architecture with low end cameras in WSN under stringent
resource limitations.

3. LINE SENSOR BASED
ARCHITECTURE
3.1 Software-Based Line Sensor
A hardware-based line sensor capable of capturing one-
dimensional image for high end applications are typically very
expensive. It is not suited for our embedded systems to be
deployed in an ad hoc manner under harsh environment
conditions.

Micro controller
Image Sensor

I2C interface

2-D pixel array

640
*

480

1-D pixel array

640 * 1

Soft Line Sensor

Figure 1. Flex - Camera Interface.

Instead, we propose an idea of software-based line sensor and
achieved this by using some popular and inexpensive two-
dimension image sensor such as HV7131GP. Our approach not
only effectively realizes a software enabled line sensor for
WLSN, but also provides us with the flexibility to obtain either
a two or one dimensional image on demand and online
depending on the application requirement in the same
framework.

Figure 1 displays the hardware setup for software-based line
sensor. The CMOS camera module of HV7131GP is able to
capture the image at the maximum resolution of 640*480 pixels.
This image is however a two dimensional image. This image is
stored within the internal memory of the camera. This camera
module has a feature which allows the microcontroller to select
the desired width and height of the image. The camera module
only transfers the selected part of the image from its internal
buffer.

In order to obtain line image, the microcontroller selects the
desired height of the image to be equal to one. This feature can
be varied during the run time, thus enabling the application to
run either in two- or one- dimensional mode of operation
depending on the application requirement.

3.2 Principles in Generating Line Images
The proposed software-based line sensor extracts a line from the
two dimensional image retrieved by the camera module. This is
equivalent to focusing a sampling line (L) in the Field of View
(P). A continuous projection of this sampling line will result in
capturing a single line over the focused plane. Any static object
in (L) will appear as part of the background, hence it cannot be
detected. The continuous projection of the sampling line will
capture consecutive portions of an object at different instants
when it moves across the plane of sight as shown in Figure 2.

2 D Images Width * Height

Sampling line

1 D Images (Width * 1)

Soft Line
Sensor

Figure 2. Line Sensor Image to Construct a Temporal View.

An effective scheme to capture all the details of the moving
object depends on:

1. The projection of sampling line and the moving direction
of the object.
The camera focus and the sampling line will form a plane
of sight within the focal distance of the camera. In order to
capture the shape of an object in the moving direction V,
the moving direction, n, of the line must satisfy the
following condition:

V · n ≠ 0; where n is a normal to the plane of sight in the
3D space.

This means that the object should not move in a direction
parallel to the plane of sight or the direction of line. This
restriction shows that there is one specific direction of a
moving object which cannot be captured with a given
camera alignment. We can resolve this problem using a
WSN based multi vision system to align the camera along
the three basis orthogonal vectors in a 3D space.

2. A high sampling rate at which the sampling line is
projected .

The rate at which the sampling line is projected is very
important to capturing the moving object. If the sampling rate is
too low it might miss an object altogether. On the other hand a
fast sampling rate would replicate the same object portion. A
proper sampling rate depends on the length and the velocity of
the moving object assuming that the previous line sensor
alignment condition is satisfied.

v

Lf
L i

o 



60

where: Lo is the line sensor captured object length;

Li is object length project on image frame

f is the line sensor sampling rate

v is the object speed.

As it can be seen from the above equation there exists a
sampling rate for a particular object speed which will maintain
the object resolution.

This sampling rate places an additional timing constraint on the
application. The image processing and communication task
needs to be finished before the next sampling period. Otherwise
either the sampling line has to be skipped or the processing tasks
have to be terminated. We address this problem by proper

selection of periodic tasks with priorities using the services
provided by ERIKA.

4. LINE SENSOR BASED ONE
DIMENSIONAL IMAGE PROCESSING
ALGORITHMS
We devise a suit of low-complexity algorithms for processing
line images generated by our software enabled line sensor for
object detection in WLSN. Everything static appears as a
background and hence eliminated from the images. These
algorithms are only able to detect moving objects whose speed is
within the limits set by the sampling rate of line images. To
address the resource constraints in sensor nodes, we make the
assumption that a sensor node (i.e., end device) is only able to
store a single array of one dimensional line where as the base
station can store multiple lines.

Consider the image buffer at the base station, which is a
dynamic circular FIFO two-dimensional buffer, with the size of
640 (one dimensional image width) * 480(window buffer
height), for example. Every new line is added at top thus
overwriting the oldest line in the window of the buffer. This
window is continuously displayed giving an impression of a
scanned image.

4.1 Background Image
The first algorithm is to calculate the camera sight background
on every input line image (referred to as Algorithm 1). This
background one dimensional image is maintained in a separate
buffer of 640 bytes. In order to identify a line as a background
every pixel is compared with the buffered line. Every pixel in
the input line is matched with the corresponding pixel in the
buffered line. If each individual pixel difference is within the
specified threshold then the input line is considered to be a
background image. The new background buffer value is the
average of the two lines. The average value helps to maintain a
continuously updating background with an O(n) complexity.

Algorithm 1: Background image formation

Collect the input line input (i)

If i,: 0<i< WIDTH it follows:

|| bGavG (i) – input(i) || < threshold1

then:

bGavG(i) := (bGavG (i) + input(i))/2;

4.2 Foreground Image
The foreground image is computed by subtracting every input
image with the average background image.

The line is first compared against the background image to
identify it as a foreground or background line (as described in
Section 5.1). Once, it has been identified as belonging to the
foreground image, the difference image between input and
background is compared to a threshold. The pixel having
intensity greater than a threshold is projected as a foreground
object pixel with intensity set to 255 (the background is
assigned a null intensity). This threshold allows generating a
binary image with noise removal.

Algorithm 2: Foreground image formation

Collect the input line input (i) recognized as “NOT” background
in Algorithm 1

If i,: 0<i< WIDTH it follows:

|input(i)– bGavG(i)| > threshold2

then:

input(i) = 255;

else:

input(i) = 0.

The binary foreground image simplifies further processing of
moving objects by eliminating unwanted data. It is also easier to
compress the image data since most of the pixels have null
intensity. Depending on the mode of operation the data
transmission can be further reduced by transmitting only the
foreground pixels.

4.3 Moving Object Boundary Extraction
The object boundary detection is a crucial step to detect and
recognize the type of moving objects. The boundary extraction
has not been implemented on the end device. Due to its memory
limitation end device is able to store only one image line at a
time. This makes the separation of the object boundary from the
object body difficult since it uses global information spanning
multiple lines.

Since the base station is able to maintain a moving window of
image lines with a height of 480 lines, it is possible to process
multiple lines. However, this is different from a two dimensional
image processing where the image data does not change for the
duration of image processing, whereas in our implementation
the processing needs to be finished before a new line enters the
buffer. This imposes a real time deadline for the algorithm.
Because of this restriction, we limit our processing to portion of
moving window so as to finish the computation before its
deadline.

After the foreground is separated from the background in the
previous step, all the object pixels are assigned an intensity
value of 255. The boundary extraction algorithm uses a
connected labeling to identify 8 neighbor pixels. A pixel having
8 connected neighbors whose value is greater than 0 is identified
as an interior object pixel, whose intensity is changed to a lower
value. This process requires only three image lines at a time
from the moving buffer.

Thus the output of this process is a moving image window
having background pixels with intensity 0, boundary pixels with
intensity 255 and interior pixels with intensity greater than 0 and
less than 255.

4.4 Moving object detection and reporting
The moving object detection works both at the end device as
well as the base station. The algorithm at the base station is a
simple extension of boundary extraction. Once the boundary has
been extracted a new object is recognized and this datum is
maintained along with other important details to maintain a state
of all detected objects.

The algorithm at the end device is supposed to work on single
image lines, which requires it to maintain vector information
about the previously processed lines.

A line image after a certain number of background lines, which
is detected to have a foreground object, is identified as a start of
object. This line could have several connected segments. A set
of connect pixels with count greater than a segment threshold is
identified as a connected segment. The information vector
maintains knowledge on these segments. A set of lines having
consecutive connected segments aligned with the previous line
and having a set count greater than an object threshold is
identified as an object.

The segments and objects not fulfilling the threshold criteria are
discarded as noise. Thus, this simple algorithm with a single line
and vector information on previous lines is able to detect a
moving object.

Depending on the mode of operation the end device send either
a simple report on detected object or it can send the object lines
thus informing the base station not only about a detected object
but also its image.

5. TESTBED SYSTEM
We have developed a testbed including all hardware and
software components for our proposed WLSN architecture. This
system consists of a flexible hardware architecture designed to
adapt to users’ needs for constructing an embedded system. The
software components are suited for a distributed application
composing; a real time operating systems, device drivers and
wireless stack supporting IEEE 802.15.4 specifications.

5.1 Hardware Platforms
Figure 3 shows the overall hardware design for our line sensor
node.

Figure 3. Line Sensor End Device Setup.

The flexible design of this module allows the developer to add
components based on his choice. This setup consists of Flex
boards with a HV7131GP camera attached to a breakout board
and a serial to TTL converter. The board is connected to the
base station (personal computer) using a serial to USB
converter. The flex board uses UART to communicate with the
base station. Here we describe the selected hardware
components used in our implementation of software based line
sensor imaging.

5.1.1 Flex board
Flex [14] is an embedded board which can be used by all the
developers who want to fully exploit the potential of the latest

Microchip micro-controllers: the dsPic family. Flex is born as a
development board where to easily develop and test real-time
applications.

Figure 6. Flex Board.

The basic configuration of a flex device is made by the Base
Board only. The flex Base Board mounts a Microchip dsPic
micro-controller, and exports almost all the pins of the micro-
controller. The user can easily connect the desired components
to the dsPic ports in order to build the specific application. As
depicted in Figure 6, several daughter boards can be connected
in piggyback to the Flex Base Board. The daughter boards have
different features and they can be easily combined to obtain
complex devices.
This architecture includes dsPic33F from 16 bit family of dsPic
microcontrollers. The CPU operates at a 40 MIPS (i.e. 40
million instructions per second) internal clock frequency and 30
KB of internal RAM memory. This CPU speed and memory
limitation imposes severe constraints on the line sensor based
imaging application which demands heavy computation and
storage requirements.

5.1.2 HV7131GP Camera Module
HV7131GP [15] (Figure 5) is an integrated single chip CMOS
image sensor with certain image processing capabilities such as
gamma correction, color interpolation, auto exposure control
and auto white balance. It provides different levels of resolution
with maximum achievable being 640*480 pixels. This feature
allows setting the resolution depending on the desired sampling
rate and available memory on the end device.

The chip allows for a maximum adjustable frame rate of 30 f/s.
In our application we have used 8 bit gray scale image, although
the chip provides 8bit and 16 bit RGB and YCbCr output format.
The camera module allows capturing the image by setting its
width and height along with its frame coordinates. This feature
enabled us to implement one dimensional line sensor based
feature using a traditional two dimensional image senor. The

sensor uses I2C based communication channel to send and
receive commands and transfer bit map image to the end device.

5.1.3 Chipcon CC2420
The CC2420 [16] (Figure 4) is a single chip IEEE 802.15.4
compliant RF transceiver operating in the 2.4 GHz band with an
effective data rate of 250 kbps.

The transceiver hardware supports many of the features required
to implement an IEEE 802.15.4 protocol stack. These features
include: clear channel assessment, link quality indication and
support for buffered packet handling. The configuration,
command and data communication is accesses via a SPI
interface between the microcontroller and the transceiver.

5.2 Software Components
This section describes the layered architecture consisting of the
drivers, operating systems, wireless communication stack,
imaging component and the line sensor based application for
object detection.

Figure 7. Layered Architecture.

The above figure shows the interaction among different
subsystems of this software architecture. The Hardware
Adaptation Layer (HAL) provides a hardware independent
interface for using the transceiver and camera module. In our
design we make use of CC2420 and HV7131GP device drivers
to implement the features requested by radio and camera HAL
interface.

The services required from the kernel are related to external
event handling and multi-thread programming. We namely want
to run periodic and aperiodic activities by means of timers,
alarms, events and tasks instantiated in the service and user
layers.

In the following subsection the adoption of ERIKA, a multi
threaded real time Operating System suited for time critical
image processing based distributed application, will be
described in details.

5.2.1 Erika
Erika provides an abstraction of the machine hardware and is in
charge of reacting to events and handling access to memory,
CPU, and hardware peripherals. Especially in constrained
hardware devices like those of sensor boards, the effectiveness

Figure 4.

CC2420 Transciever.

Figure 5.

HV7131GP CMOS Camera.

in the OS paradigms largely affects the response in the target
application. The execution model is the key factor
differentiating the many solutions in existing OS for WSN.
ERIKA Enterprise [17] RTOS is a multi-processor real-time
operating system kernel, implementing a collection of
Application Programming Interfaces (APIs) similar to those of
OSEK/VDX standard for automotive embedded controllers.
ERIKA is available for several hardware platforms and it
introduces innovative concepts, mechanisms and programming
features to support micro-controllers and multicore systems-on-
a-chip. ERIKA features a real-time scheduler and resource
managers, allowing the full exploitation of the power of new
generation micro-controllers and multicore platforms. Tasks in
ERIKA are scheduled according to fixed and dynamic priorities,
and share resources using the Immediate Priority Ceiling
protocol. Interrupts always pre-empt the running task to execute
urgent operations required by peripherals. The wireless
communication protocol makes use of the radio interface HAL
and OSAL. Our current design makes use of ERIKA and cc2420
as the underlying implementation for the radio and OS modules.

5.2.2 OpenZB
OpenZB[18] is an implementation of IEEE 802.15.4 protocol
stack. This implementation can operate both in unslotted and
slotted CSMA/CA mode described in the standard
specifications. Since the software design is developed over
ERIKA operating system, the protocol stack makes use of the
software abstractions such as alarms for effectively providing
the timing behavior in slotted mode of operation; the kernel
scheduling policy (driven by static priority settings) handles the
time critical services of the wireless stack. The libraries support
the generation of the MAC superframe and provide the slotted
CSMA/CA access mechanisms. The protocol services have been
mapped to tasks having reserved a set of priorities for network-
related use only. OpenZB is able to provide timing guarantees
over the network by allocating slots to different nodes in
Guaranteed Time Slots. This behavior is crucial for distributed
vision applications which need to detect and track any desired
object.

The application support (APS) provides utilities to handle
communication, PC display, string handling and memory
management. The imaging component provides the necessary
functionalities to configure and retrieve one- or two-
dimensional images using I2C interface between the
microcontroller and image sensor. The component can handle
the configuration at the run time. The configuration features
include: adjusting the resolution, setting image height and
width, changing the frame rate, sampling rate and additional
commands to enable different operation modes of line sensor in
the WLSN applications for line imaging processing to detect
moving objects.

5.2.3 Base Station Application for user interaction
This is a GUI based application for the end user to configure the
camera setting and keep track of the objects. The user can adjust
the image mode to either two dimension image or line sensor
based images. When used under line sensor mode the user can
select to handle the image processing features either at the end
device or at the base station. This application also enables to
visualize lines with or without background elimination, to view

only the images where an object is being detected or only a
report on the detected object. These different modes of
operations along with the image processing algorithms are
explained in the next section.

The base station uses a RS 232 – TTL interface to communicate
with the device using a serial to USB converter. The device
sends the images to the base station depending on the
configuration set by the base station. These configuration
parameters could be changed by the end user at the run time via
the GUI.

Figure 8. Base Station User Interface.

6. PERFORMANCE OF WLSN

6.1 Traditional Architecture Bottlenecks
The computation, communication and storage limitations of
embedded devices present various limitations in current wireless
multimedia sensor networks. The WLSN is designed to
overcome those bottlenecks.

Figure 9. Communication Interfaces.

Figure 9 depicts various bottlenecks in the senor network
architecture along the image data flow from the point of its
sensing to its final destination (i.e., base station). The camera
module (having a maximum frame rate of 30 f/s) transfers the
image (either one or two dimensional) over an I2C interface with
its maximum bandwidth of 1 MHz. This bottleneck restricts the
sampling rate of the images. The sampling rate of the image is
important to capture the details of a moving object. This
relationship between the speed of the object and sampling rate
will be described in the next section. The dsPIC microcontroller
operating at 40MHz with a 30KB RAM size forces to use

variations of image processing algorithms operating on one
dimensional image buffer, i.e. the algorithms need to remember
the information present in the previous lines while maintaining
only one line in the buffer at a time.

The microcontroller communicates to a remote master node
(playing the role of network coordinator) the processes or
unprocessed image (depending on the selected mode of
operation) over a wireless medium using the IEEE802.15.4
based transceiver having a maximum bandwidth of 250 kbps.
Since this medium is shared among many nodes it restricts the
amount of information which can be transferred over the
medium.

In order or transfer less information, the end device needs to
implement complex image processing algorithms to extract
useful information. This computation/bandwidth tradeoff is
handled by the end user by selecting the appropriate mode of
operation. Finally, the received information is transferred to the
base station via a RS232 interface with a maximum bandwidth
of 115200 kbps. Usually, the base station is a comparatively
high end machine (e.g. a PC) capable of storing multiple images
and executing complex image processing algorithms.

6.2 Operation Modes of Line Sensor
To optimize the performance of WLSN with given resource
limits on sensor nodes and network bandwidth for a particular
application at hand, we exploit different trade-offs between
bandwidth and computation in the WLSN by the means of
different operation modes of line sensor. The table below lists
five different modes we investigated and their comparative
performances with respect to storage and computation on
different line sensor operation modes.

Table 1. Operating Modes

Operation Mode Storage

(No. of bytes)

Computation
complexity

A: (2-D) Images Width * Height NA

B: 1D Images
without processing

Width * 1
(grayscale

image)

NA

C: 1-D Images with
background update

Width * 1 (binary
image)

O (Width)

D: 1-D Images for
detected parts

Width * 1 O (Width)

E: Object Report Boolean (1 byte) O (Width)

The simplest mode (A) is to receive a 2-D image from the
camera module. Due to the RAM limitations, the maximum size
of 2-D image that can be stored is 160 * 120 bytes. In this mode
the image is retrieved and displayed at the base station with a
constant frame rate. This mode of operation requires a large
storage and bandwidth capacity. Since the image processing is
performed at the base station computation limitation is ignored.
The other operation modes work on one dimensional image
captured from the camera module. The basic mode of operation
on line images (B) is just to receive the image by setting
appropriate width and height equal to one. The end device
transmits this image without any processing, leaving it for the
base station. Because of the size reduction, the (microcontroller)

can receive the 1-D images at a higher rate and (within some
limitations) can store them in main memory: with 640 pixel
resolution, a grayscale line image with 8 bits per pixel (0 to 255
intensity levels) occupies less than 1Kbyte in RAM so that it is
feasible to store a sequence of 20 lines..

The next mode (C) involves some processing on the line images
at the end device before transmitting it over the wireless
medium. This image processing although involves minimal
amount of computation on end devices reduces the bandwidth
requirement of wireless channel. This is significant in WSN
where multiple nodes need to exchange information on the
environment over the limited bandwidth.

The simplest of this computation involves separating foreground
from background and representing the foreground as intensity
255 while background as 0, thus creating a binary image
displaying only moving objects. The next mode of operation (D)
sends the line sensor data only when an object is detected, i.e.
the data segments displaying the object and finally in mode (E)
the end device runs the object detection algorithm locally and
sends a “binary” report only when an object is detected. The
following section describes the algorithms involved both at end
device and base station while operating in different line sensor
modes As we move to a higher operation mode, the bandwidth
requirement is significantly reduced at the expense of more
computation on each end device. The operation mode selection
can be delegated to the final user or dynamically automated
depending on the object speed, available bandwidth, processing
speed, etc to operate at the optimal level.

a) b) c)

d) e) f)

Figure 10. Line Sensor Images under different operation
modes.

Figure 10 shows the output images when operating under
different line sensor modes. Figure 10 (a) is a 160 * 120 byte
grayscale image. (b) is a one dimensional grayscale image of a
moving car. Figure 10 (c) shows a background updates binary
image. This is obtained by subtracting the average background
image from the current line to display only a binary foreground
moving object. Figure 10 (d) shows only the moving object
boundary. Figure 10 (e) shows the result of background
updating performed at the end device. It shows the result of two
cars passing after one another with background lines in between

them carrying no information. Figure 10 (f) displays the result of
image processing at end device. In this case only detected lines
are transmitted to the end device. The background lines which
do not carry any information are not transmitted, thus saving the
wireless bandwidth. Operation mode (E) of object detection
does not display any image. It only sends a report of the center
of mass of the detected object, thus maintaining the count, time
and position of the detected object at the base station. The end
devices do not maintain any state or past history about the
images.

6.3 Advantages of WLSN Architecture
The proposed WLSN architecture with the line imaging has
several advantages over the traditional two-dimensional imaging
based WSN.The smaller image data size significantly saves the
node memory as well as the network bandwidth. Since the
amount of data to transmitted and received is reduced this also
greatly helps conserve energy spent on communication. Most of
the simple algorithms on line sensors devised try to achieve the
goal of object detection with a linear complexity. The minimal
image data and commutation thus reduce the end-to-end delay
between the end devices and the base station as well.

The line images are able to work efficiently under the hardware
bottlenecks described earlier. Because of this the end device is
able to sample the image at a much higher rate than the two
dimensional image. This enables WLSN based applications to
capture important events which could have been missed
otherwise because of the lower sampling rate with two-
dimensional images in the current WSN for visual surveillance.

7. CONCLUSIONS AND FUTURE WORK
In this paper we have presented a novel wireless line sensor
network architecture with software-based line sensors for visual
surveillance. We have also devised a suit of algorithms for line
image processing. To verify our idea, a testbed is developed on a
real time operating system working on a customizable board
design installed with a camera module and transceiver. The
OpenZB protocol stack is used to achieve a distributed
multivision system in the WLSN testbed. Furthermore, the
proposed WLSN enables to operate in different modes of line
sensors to achieve an optimal tradeoff between communication
and computation for any given application situation.

In the future, we will study our WLSN in distributed
applications over several nodes in a multihop network with
CSMA v/s GTS based medium access communication using our
network stack. We also plan to develop an analytical model to
represent the communication, computation usage considering
the node power and environment interference to operate the
system in the most appropriate line sensor mode.

ACKNOWLEDGMENTS
We thank Claudio Salvadori and Christian Nastasi on providing
the initial version on camera driver and application.

REFERENCES
[1] IEEE 802.15.4 Standard-2003, “Part 15.4: Wireless

Medium Access Control (MAC) and Physical Layer (PHY)
Specifications for Low-Rate Wireless Personal Area

Networks (LR-WPANs)”, IEEE-SA Standards Board,
2003.

[2] P. Kulkarni, D. Ganesan, P. Shenoy, Q. Lu, SensEye: a
multi-tier camera sensor network, in: Proc. of ACM
Multimedia, Singapore, November 2005.

[3] S. Nath, Y. Ke, P.B. Gibbons, B. Karp, S. Seshan, A
distributed filtering architecture for multimedia sensors,
Intel Research Technical Report IRP-TR-04-16, August

[4] Wireless Multimedia Sensor Testbed.
http://www.ece.gatech.edu/research/labs/bwn/WMSN/testb
ed.html

[5] M. Rahimi, R. Baer, O. Iroezi, J. Garcia, J. Warrior, D.
Estrin, M. Srivastava, Cyclops: in situ image sensing and
interpretation in wireless sensor networks, in: Proc. of the
ACM Conf. on Embedded Networked Sensor Systems
(SenSys), San Diego, CA, November 2005.

[6] Carnegie Mellon Univ., CMUcam3 datasheet version 1.02,
Pittsburgh, PA, Sep. 2007.

[7] S. Hengstler, D. Prashanth, S. Fong, and H. Aghajan,
MeshEye: A hybrid-resolution smart camera mote for
applications in distributed intelligent surveillance, in Proc.
Int. Conf. Inf. Process. Sensor Netw. (IPSN), Cambridge,
MA, 2007, pp. 360–369.

[8] R. Kleihorst, B. Schueler, A. Danilin, and M. Heijligers,
Smart camera mote with high performance vision system,
in Proc. ACM SenSys Workshop Distrib. Smart Cameras
(DSC), Boulder, CO, Oct. 2006.

[9] S. Itoh, S. Kawahito, and S. Terakawa, A 2.6 mW 2 fps
QVGA CMOS one-chip wireless camera with digital image
transmission function for capsule endoscopes,[in Proc.
IEEE Int. Symp. Circuits Syst. (ISCAS), May 2006.

[10] Real Time Network Simulator.
http://rtns.sssup.it/RTNSWebSite/RTNS.html

[11] WiSNAP: A Wireless Image Sensor Network Application
Platform. S. Hengstler and H. Aghajan, 2nd Int. Conf. on
Testbeds and Research Infrastructures for the Development
of Networks and Communities (TridentCom), March 2006.

[12] P.Pagano, C.Nastasi, Y.Liang, The Multivision problem for
Wireless Sensor Networks: a discussion about Node and
Network architecture. In International Workshop on Cyber-
Physical Systems Challenges and Applications (CPS-
CA08). Proc. of the DCOSS 2008 conference., Santorini
island, Greece, June 2008. Invited talk.

[13] J. Y. Zheng, S. Sinha, Line cameras for monitoring and
surveillance sensor networks, ACM Conf. Multimedia 07,
433-442, Augsburg, Germany, 2007

[14] The Flex board. http://www.evidence.eu.com/.

[15] CMOS Image Sensor with Image Processing. HV7131GP
www.globaltec.com.hk/databook/hynix/Hyca3_V20.pdf

[16] Low Power RF Transceiver CC2420.
http://focus.ti.com/docs/prod/folders/print/cc2420.html

[17] E.R.I.K.A. http://erika.sssup.it/.

[18] P.Pagano et al, ERIKA and open-ZB: an implementation
for real-time wireless networking. SAC 2009, 1687-1688.

