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ABSTRACT
Wireless sensor networks (WSNs) play a crucial role in visual 
surveillance for automatic object detection, such as real-time 
traffic monitoring, vehicle parking control, intrusion detection, 
and so on. These online surveillance applications require 
efficient computation and distribution of complex image data 
over the wireless camera network with high reliability and 
detection rate in real time. Traditionally, such applications make 
use of camera modules capturing a flow of two dimensional 
images through time. The resulting huge amount of image data 
impose severe requirements on the resource constrained WSN 
nodes which need to store, process and deliver the image data or 
results within a certain deadline. In this paper we present a WSN 
framework based on line sensor architecture capable of 
capturing a continuous stream of temporal one dimensional 
image (line image). The associated one dimensional image 
processing algorithms are able to achieve significantly faster 
processing results with much less storage and bandwidth 
requirement while conserving the node energy. Moreover, the 
different operating modes offered by the proposed WSN 
framework provide the end user with different tradeoff in terms 
of node computation versus communication bandwidth 
efficiency. Our framework is illustrated through a testbed using 
IEEE 802.15.4 communication stack and a real-time operating 
system along with one dimensional image processing. The 
proposed line sensor based WSN architecture can also be a 
desirable solution to broader multimedia based WSN systems. 

Categories and Subject Descriptors
C.2.4 [Computer-Communication networks]: Distributed 
Systems-Distributed Applications; C.3 [Special-Purpose and 
Application-Based Systems]: Real-time and Embedded 
Systems; D.2.11 [Software Engineering]: Software 
Architectures-Domain Specific Architectures

General Terms
Algorithms, Design, Experimentation.

Keywords
Wireless Sensor Network, Line Sensor, IEEE 802.15.4, Real 
time Operating System, Multimedia, Image Processing

1. INTRODUCTION
Distributed visual surveillance based on wireless sensor network 
is of paramount importance. Its notable applications include 
traffic monitoring, vehicle parking control, intrusion detection, 
and so on, which requires to identify, recognize and classify the 
objects in order to take appropriate action. These applications 
need to continuously capture images in order to monitor certain 
events. The goal of such applications is to capture images as fast 
as possible, process these images with minimum amount of 
computation and transfer the image information or image itself 
in a bandwidth-limited distributed system to monitor and 
identify the events with high reliability in real time.

In order to satisfy these requirements for visual surveillance 
based on WSN, we present a novel wireless line sensor network 
(WLSN) architecture in this paper. A line senor generates a 
stream of one-dimensional images instead of a stream of the 
traditional two-dimensional images [13]. That is, the line sensor 
continuously captures data on a single line in the view. In effect, 
this is similar to reading a single row or column of a two-
dimensional picture frame of a continuous movie stream, The 
process of which produces a stream of temporal one-
dimensional image vectors separated by the frame sampling rate. 
However we need to achieve a similar goal not for a stationary 
object but for moving objects. In this case it is enough to keep 
the line sensor stationary to capture the moving object. As shall 
be shown in this paper, the use of line images generated by line 
sensor over the traditional two-dimensional images has dramatic 
advantages in bandwidth, memory, CPU speed and power 
constrained WSN applications.

The rest of paper is organized as follows. Section 2 describes the 
state of art in the field of wireless multimedia sensor networks 
(WMSN). In Section 3, we present our WLSN 
hardware/software architecture. In Section 4, we devise a suit of 
algorithms for line image processing.  In Section 5, we present 
our testbed system developed to demonstrate our WLSN 
architecture. Section 6 highlights performance advantages of 
proposed WLSN architecture over the difficulty of the current 
WMSN. Finally, Section 7 gives our conclusions and future 
work. 

2. STATE OF ART
Many research labs have started exploring the use of multimedia 
in WSNs. Most of their work is related to variable bandwidth 
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allocation for video traffic, real time communication protocol to 
deliver quality of service, image data compression and 
middleware support for distributed imaging and database 
applications.

Reference [2], presents a multi-tier heterogeneous camera based 
surveillance network called SensEye. They make use of low 
fidelity camera sensors at the second tier to view an object and 
comparatively higher fidelity cameras at tier three to perform 
object tracking. IrisNet (Internet-scale Resource-Intensive 
Sensor Network Services) [3] is a heterogeneous wireless 
multimedia sensor network platform, which allows the user to 
perform queries over the video sensors distributed world wide. 
Another multi-tier wireless multimedia sensor testbed [4] is 
deployed at Broadband and Wireless Networking (BWN) 
Laboratory in Georgia Tech which makes use of scalar sensors, 
CMOS based camera nodes, medium-end video sensors are 
based on Logitech webcams interfaced with Stargate platforms 
and pan tilt cameras installed on a robotic platform.

Most of these multimedia wireless sensor network test-beds 
make use of CMOS based cameras such as Cyclops [5] and 
CMUcam3 [6] at a lower tier and Logitech webcams for high 
end image processing at the next higher tier. Stanford MeshEye 
[7] mote is smart camera architecture developed for distributed 
intelligent surveillance. It is used to determine the position, 
range and size of moving object. The platform is equipped with 
low resolution VGA camera module CC2420 transceiver for 
wireless communication. A new wireless camera vision system 
[8], is developed using two independent VGA color sensors on 
the same mote. The two cameras viewing the same scene from 
different view points can construct a high performance 
surveillance system using a onboard video analysis processor, 
8051 microcontroller and IEEE802.15.4 enabled transceiver. 
The paper [9], describes a tiny CMOS-based single chip sensor 
of size less than 5mm on a side. It consists of a 320 * 240 pixel 
array and a radio module for communication. This platform is 
designed for biomedical applications. 

A real time network simulator (RTNS)[10] based on NS2 
provides a multi vision simulation environment based on the 
models of the architecture components such as real time OS, 
IEEE 802.15.4 based communication stack and imaging tasks 
used in the framework presented in this paper. Wireless Image 
Sensor Network Application Platform [11] is provides 
MatlabTM based simulation library for image sensors and 
wireless motes to investigate applications and algorithms for 
wireless image sensor network.

However, all the image based wireless sensor network platforms 
mentioned above are based on traditional two-dimensional 
image processing for object detection and tracking. In [12], 
Pagano et al have mentioned the communication bottleneck 
problem in a two-dimensional image processing node. Zheng
and Sinha [13] have explored the use of line camera sensors in 
wired communication using high end video cameras. In contrast, 
in this paper, we will systematically investigate WLSN 
architecture with low end cameras in WSN under stringent 
resource limitations.

3. LINE SENSOR BASED 
ARCHITECTURE
3.1 Software-Based Line Sensor
A hardware-based line sensor capable of capturing one-
dimensional image for high end applications are typically very 
expensive. It is not suited for our embedded systems to be 
deployed in an ad hoc manner under harsh environment 
conditions. 
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Figure 1. Flex - Camera Interface.

Instead, we propose an idea of software-based line sensor and 
achieved this by using some popular and inexpensive two-
dimension image sensor such as HV7131GP. Our approach not 
only effectively realizes a software enabled line sensor for 
WLSN, but also provides us with the flexibility to obtain either 
a two or one dimensional image on demand and online
depending on the application requirement in the same 
framework.

Figure 1 displays the hardware setup for software-based line 
sensor. The CMOS camera module of HV7131GP is able to 
capture the image at the maximum resolution of 640*480 pixels. 
This image is however a two dimensional image. This image is 
stored within the internal memory of the camera. This camera 
module has a feature which allows the microcontroller to select 
the desired width and height of the image. The camera module 
only transfers the selected part of the image from its internal 
buffer. 

In order to obtain line image, the microcontroller selects the 
desired height of the image to be equal to one. This feature can 
be varied during the run time, thus enabling the application to 
run either in two- or one- dimensional mode of operation 
depending on the application requirement.

3.2 Principles in Generating Line Images
The proposed software-based line sensor extracts a line from the 
two dimensional image retrieved by the camera module. This is 
equivalent to focusing a sampling line (L) in the Field of View
(P). A continuous projection of this sampling line will result in 
capturing a single line over the focused plane. Any static object 
in (L) will appear as part of the background, hence it cannot be 
detected. The continuous projection of the sampling line will 
capture consecutive portions of an object at different instants 
when it moves across the plane of sight as shown in Figure 2.
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Figure 2. Line Sensor Image to Construct a Temporal View.

An effective scheme to capture all the details of the moving 
object depends on:

1. The projection of sampling line and the moving direction 
of the object.
The camera focus and the sampling line will form a plane 
of sight within the focal distance of the camera. In order to 
capture the shape of an object in the moving direction V, 
the moving direction, n, of the line must satisfy the 
following condition:

V · n ≠ 0; where n is a normal to the plane of sight in the 
3D space.

This means that the object should not move in a direction 
parallel to the plane of sight or the direction of line. This 
restriction shows that there is one specific direction of a 
moving object which cannot be captured with a given 
camera alignment. We can resolve this problem using a 
WSN based multi vision system to align the camera along 
the three basis orthogonal vectors in a 3D space.

2. A high sampling rate at which the sampling line is
projected .

The rate at which the sampling line is projected is very 
important to capturing the moving object. If the sampling rate is 
too low it might miss an object altogether. On the other hand a 
fast sampling rate would replicate the same object portion. A 
proper sampling rate depends on the length and the velocity of 
the moving object assuming that the previous line sensor 
alignment condition is satisfied.
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where: Lo is the line sensor captured object length;

Li is object length project on image frame

f is the line sensor sampling rate

v is the object speed.

As it can be seen from the above equation there exists a 
sampling rate for a particular object speed which will maintain 
the object resolution. 

This sampling rate places an additional timing constraint on the 
application. The image processing and communication task 
needs to be finished before the next sampling period. Otherwise 
either the sampling line has to be skipped or the processing tasks 
have to be terminated. We address this problem by proper 

selection of periodic tasks with priorities using the services 
provided by ERIKA.

4. LINE SENSOR BASED ONE 
DIMENSIONAL IMAGE PROCESSING 
ALGORITHMS
We devise a suit of low-complexity algorithms for processing
line images generated by our software enabled line sensor for 
object detection in WLSN. Everything static appears as a 
background and hence eliminated from the images. These 
algorithms are only able to detect moving objects whose speed is 
within the limits set by the sampling rate of line images. To 
address the resource constraints in sensor nodes, we make the  
assumption that a sensor node (i.e., end device) is only able to 
store a single array of one dimensional line where as the base 
station can store multiple lines.

Consider the image buffer at the base station, which is a 
dynamic circular FIFO two-dimensional buffer, with the size of 
640 (one dimensional image width) * 480(window buffer 
height), for example.  Every new line is added at top thus 
overwriting the oldest line in the window of the buffer. This 
window is continuously displayed giving an impression of a 
scanned image.

4.1 Background Image
The first algorithm is to calculate the camera sight background 
on every input line image (referred to as Algorithm 1). This 
background one dimensional image is maintained in a separate 
buffer of 640 bytes. In order to identify a line as a background 
every pixel is compared with the buffered line. Every pixel in 
the input line is matched with the corresponding pixel in the 
buffered line. If each individual pixel difference is within the 
specified threshold then the input line is considered to be a 
background image. The new background buffer value is the 
average of the two lines. The average value helps to maintain a 
continuously updating background with an O(n) complexity.

Algorithm 1: Background image formation

Collect the input line input (i)

If i,:  0<i< WIDTH it follows:

|| bGavG (i) – input(i) || < threshold1

then:

bGavG(i) := (bGavG (i) + input(i))/2;

4.2 Foreground Image
The foreground image is computed by subtracting every input 
image with the average background image.

The line is first compared against the background image to 
identify it as a foreground or background line (as described in 
Section 5.1). Once, it has been identified as belonging to the 
foreground image, the difference image between input and 
background is compared to a threshold. The pixel having 
intensity greater than a threshold is projected as a foreground 
object pixel with intensity set to 255 (the background is 
assigned a null intensity). This threshold allows generating a 
binary image with noise removal. 



Algorithm 2: Foreground image formation

Collect the input line input (i) recognized as “NOT” background 
in Algorithm 1

If i,:  0<i< WIDTH it follows:

|input(i)– bGavG(i)| > threshold2

then:

input(i) = 255;

else:

input(i) = 0.

The binary foreground image simplifies further processing of 
moving objects by eliminating unwanted data. It is also easier to 
compress the image data since most of the pixels have null 
intensity. Depending on the mode of operation the data 
transmission can be further reduced by transmitting only the 
foreground pixels.

4.3 Moving Object Boundary Extraction
The object boundary detection is a crucial step to detect and 
recognize the type of moving objects. The boundary extraction 
has not been implemented on the end device. Due to its memory 
limitation end device is able to store only one image line at a 
time. This makes the separation of the object boundary from the 
object body difficult since it uses global information spanning
multiple lines.

Since the base station is able to maintain a moving window of 
image lines with a height of 480 lines, it is possible to process 
multiple lines. However, this is different from a two dimensional 
image processing where the image data does not change for the 
duration of image processing, whereas in our implementation 
the processing needs to be finished before a new line enters the 
buffer. This imposes a real time deadline for the algorithm. 
Because of this restriction, we limit our processing to portion of 
moving window so as to finish the computation before its 
deadline.

After the foreground is separated from the background in the 
previous step, all the object pixels are assigned an intensity 
value of 255. The boundary extraction algorithm uses a 
connected labeling to identify 8 neighbor pixels. A pixel having 
8 connected neighbors whose value is greater than 0 is identified 
as an interior object pixel, whose intensity is changed to a lower 
value. This process requires only three image lines at a time 
from the moving buffer.

Thus the output of this process is a moving image window 
having background pixels with intensity 0, boundary pixels with 
intensity 255 and interior pixels with intensity greater than 0 and 
less than 255.

4.4 Moving object detection and reporting
The moving object detection works both at the end device as 
well as the base station. The algorithm at the base station is a 
simple extension of boundary extraction. Once the boundary has 
been extracted a new object is recognized and this datum is 
maintained along with other important details to maintain a state 
of all detected objects.

The algorithm at the end device is supposed to work on single 
image lines, which requires it to maintain vector information 
about the previously processed lines.

A line image after a certain number of background lines, which 
is detected to have a foreground object, is identified as a start of 
object. This line could have several connected segments. A set 
of connect pixels with count greater than a segment threshold is 
identified as a connected segment. The information vector 
maintains knowledge on these segments. A set of lines having 
consecutive connected segments aligned with the previous line 
and having a set count greater than an object threshold is 
identified as an object.

The segments and objects not fulfilling the threshold criteria are 
discarded as noise. Thus, this simple algorithm with a single line 
and vector information on previous lines is able to detect a 
moving object. 

Depending on the mode of operation the end device send either 
a simple report on detected object or it can send the object lines 
thus informing the base station not only about a detected object 
but also its image.

5. TESTBED SYSTEM
We have developed a testbed including all hardware and 
software components for our proposed WLSN architecture. This 
system consists of a flexible hardware architecture designed to 
adapt to users’ needs for constructing an embedded system. The 
software components are suited for a distributed application 
composing; a real time operating systems, device drivers and 
wireless stack supporting IEEE 802.15.4 specifications.

5.1 Hardware Platforms
Figure 3 shows the overall hardware design for our line sensor 
node.

Figure 3. Line Sensor End Device Setup.

The flexible design of this module allows the developer to add 
components based on his choice. This setup consists of Flex 
boards with a HV7131GP camera attached to a breakout board 
and a serial to TTL converter. The board is connected to the 
base station (personal computer) using a serial to USB 
converter. The flex board uses UART to communicate with the 
base station. Here we describe the selected hardware 
components used in our implementation of software based line 
sensor imaging.

5.1.1 Flex board
Flex [14] is an embedded board which can be used by all the 
developers who want to fully exploit the potential of the latest 



Microchip micro-controllers: the dsPic family. Flex is born as a 
development board where to easily develop and test real-time 
applications.

Figure 6. Flex Board.

The basic configuration of a flex device is made by the Base 
Board only. The flex Base Board mounts a Microchip dsPic 
micro-controller, and exports almost all the pins of the micro-
controller. The user can easily connect the desired components 
to the dsPic ports in order to build the specific application. As 
depicted in Figure 6, several daughter boards can be connected 
in piggyback to the Flex Base Board. The daughter boards have 
different features and they can be easily combined to obtain 
complex devices.
This architecture includes dsPic33F from 16 bit family of dsPic 
microcontrollers. The CPU operates at a 40 MIPS (i.e. 40 
million instructions per second) internal clock frequency and 30 
KB of internal RAM memory. This CPU speed and memory 
limitation imposes severe constraints on the line sensor based 
imaging application which demands heavy computation and 
storage requirements.

5.1.2 HV7131GP Camera Module
HV7131GP [15] (Figure 5) is an integrated single chip CMOS 
image sensor with certain image processing capabilities such as 
gamma correction, color interpolation, auto exposure control 
and auto white balance. It provides different levels of resolution 
with maximum achievable being 640*480 pixels. This feature 
allows setting the resolution depending on the desired sampling 
rate and available memory on the end device. 

The chip allows for a maximum adjustable frame rate of 30 f/s. 
In our application we have used 8 bit gray scale image, although
the chip provides 8bit and 16 bit RGB and YCbCr output format. 
The camera module allows capturing the image by setting its 
width and height along with its frame coordinates. This feature 
enabled us to implement one dimensional line sensor based 
feature using a traditional two dimensional image senor. The 

sensor uses I2C based communication channel to send and 
receive commands and transfer bit map image to the end device.

5.1.3 Chipcon CC2420
The CC2420 [16] (Figure 4) is a single chip IEEE 802.15.4 
compliant RF transceiver operating in the 2.4 GHz band with an 
effective data rate of 250 kbps. 

The transceiver hardware supports many of the features required 
to implement an IEEE 802.15.4 protocol stack. These features 
include: clear channel assessment, link quality indication and 
support for buffered packet handling. The configuration, 
command and data communication is accesses via a SPI 
interface between the microcontroller and the transceiver. 

5.2 Software Components
This section describes the layered architecture consisting of the 
drivers, operating systems, wireless communication stack, 
imaging component and the line sensor based application for 
object detection. 

Figure 7. Layered Architecture.

The above figure shows the interaction among different 
subsystems of this software architecture. The Hardware 
Adaptation Layer (HAL) provides a hardware independent 
interface for using the transceiver and camera module. In our 
design we make use of CC2420 and HV7131GP device drivers 
to implement the features requested by radio and camera HAL 
interface. 

The services required from the kernel are related to external 
event handling and multi-thread programming. We namely want 
to run periodic and aperiodic activities by means of timers, 
alarms, events and tasks instantiated in the service and user 
layers.

In the following subsection the adoption of ERIKA, a multi 
threaded real time Operating System suited for time critical 
image processing based distributed application, will be 
described in details.

5.2.1 Erika
Erika provides an abstraction of the machine hardware and is in 
charge of reacting to events and handling access to memory, 
CPU, and hardware peripherals. Especially in constrained 
hardware devices like those of sensor boards, the effectiveness 

Figure 4.

CC2420 Transciever.

Figure 5. 

HV7131GP CMOS Camera.



in the OS paradigms largely affects the response in the target 
application. The execution model is the key factor 
differentiating the many solutions in existing OS for WSN. 
ERIKA Enterprise [17] RTOS is a multi-processor real-time 
operating system kernel, implementing a collection of 
Application Programming Interfaces (APIs) similar to those of 
OSEK/VDX standard for automotive embedded controllers. 
ERIKA is available for several hardware platforms and it 
introduces innovative concepts, mechanisms and programming 
features to support micro-controllers and multicore systems-on-
a-chip. ERIKA features a real-time scheduler and resource 
managers, allowing the full exploitation of the power of new 
generation micro-controllers and multicore platforms. Tasks in 
ERIKA are scheduled according to fixed and dynamic priorities, 
and share resources using the Immediate Priority Ceiling 
protocol. Interrupts always pre-empt the running task to execute 
urgent operations required by peripherals. The wireless 
communication protocol makes use of the radio interface HAL 
and OSAL. Our current design makes use of ERIKA and cc2420 
as the underlying implementation for the radio and OS modules.

5.2.2 OpenZB
OpenZB[18] is an implementation of IEEE 802.15.4 protocol 
stack.  This implementation can operate both in unslotted  and 
slotted CSMA/CA mode described in the standard 
specifications. Since the software design is developed over 
ERIKA operating system, the protocol stack makes use of the 
software abstractions such as alarms for effectively providing 
the timing behavior in slotted mode of operation; the kernel 
scheduling policy (driven by static priority settings) handles the 
time critical services of the wireless stack. The libraries support 
the generation of the MAC superframe and provide the slotted 
CSMA/CA access mechanisms. The protocol services have been 
mapped to tasks having reserved a set of priorities for network-
related use only. OpenZB is able to provide timing guarantees 
over the network by allocating slots to different nodes in 
Guaranteed Time Slots. This behavior is crucial for distributed 
vision applications which need to detect and track any desired 
object.

The application support (APS) provides utilities to handle 
communication, PC display, string handling and memory 
management. The imaging component provides the necessary 
functionalities to configure and retrieve one- or two-
dimensional images using I2C interface between the 
microcontroller and image sensor. The component can handle 
the configuration at the run time. The configuration features 
include: adjusting the resolution, setting image height and 
width, changing the frame rate, sampling rate and additional 
commands to enable different operation modes of  line sensor in 
the WLSN applications for line imaging processing to detect 
moving objects.

5.2.3 Base Station Application for user interaction
This is a GUI based application for the end user to configure the 
camera setting and keep track of the objects. The user can adjust 
the image mode to either two dimension image or line sensor 
based images. When used under line sensor mode the user can 
select to handle the image processing features either at the end 
device or at the base station. This application also enables to 
visualize lines with or without background elimination, to view 

only the images where an object is being detected or only a 
report on the detected object. These different modes of 
operations along with the image processing algorithms are 
explained in the next section.

The base station uses a RS 232 – TTL interface to communicate 
with the device using a serial to USB converter. The device 
sends the images to the base station depending on the 
configuration set by the base station. These configuration 
parameters could be changed by the end user at the run time via 
the GUI.

Figure 8. Base Station User Interface.

6. PERFORMANCE OF WLSN

6.1 Traditional Architecture Bottlenecks
The computation, communication and storage limitations of 
embedded devices present various limitations in current wireless 
multimedia sensor networks. The WLSN is designed to 
overcome those bottlenecks.

Figure 9. Communication Interfaces.

Figure 9 depicts various bottlenecks in the senor network 
architecture along the image data flow from the point of its 
sensing to its final destination (i.e., base station). The camera 
module (having a maximum frame rate of 30 f/s) transfers the 
image (either one or two dimensional) over an I2C interface with 
its maximum bandwidth of 1 MHz. This bottleneck restricts the 
sampling rate of the images. The sampling rate of the image is 
important to capture the details of a moving object. This 
relationship between the speed of the object and sampling rate 
will be described in the next section. The dsPIC microcontroller 
operating at 40MHz with a 30KB RAM size forces to use 



variations of image processing algorithms operating on one 
dimensional image buffer, i.e. the algorithms need to remember 
the information present in the previous lines while maintaining 
only one line in the buffer at a time.

The microcontroller communicates to a remote master node 
(playing the role of network coordinator) the processes or 
unprocessed image (depending on the selected mode of 
operation) over a wireless medium using the IEEE802.15.4 
based transceiver having a maximum bandwidth of 250 kbps.  
Since this medium is shared among many nodes it restricts the 
amount of information which can be transferred over the 
medium.

In order or transfer less information, the end device needs to 
implement complex image processing algorithms to extract 
useful information. This computation/bandwidth tradeoff is 
handled by the end user by selecting the appropriate mode of 
operation. Finally, the received information is transferred to the 
base station via a RS232 interface with a maximum bandwidth 
of 115200 kbps. Usually, the base station is a comparatively 
high end machine (e.g. a PC) capable of storing multiple images 
and executing complex image processing algorithms.

6.2 Operation Modes of Line Sensor 
To optimize the performance of WLSN with given resource 
limits on sensor nodes and network bandwidth for a particular 
application at hand, we exploit different trade-offs between 
bandwidth and computation in the WLSN by the means of 
different operation modes of line sensor. The table below lists 
five different modes we investigated and their comparative 
performances with respect to storage and computation on 
different line sensor operation modes. 

Table 1. Operating Modes

Operation Mode Storage 

(No. of bytes)

Computation 
complexity

A: (2-D) Images Width * Height NA

B: 1D Images 
without processing

Width * 1 
(grayscale

image)

NA

C: 1-D Images with 
background update

Width * 1 (binary 
image)

O (Width)

D: 1-D Images for 
detected parts

Width * 1 O (Width)

E: Object Report Boolean (1 byte) O (Width)

The simplest mode (A) is to receive a 2-D image from the 
camera module. Due to the RAM limitations, the maximum size 
of 2-D image that can be stored is 160 * 120 bytes. In this mode 
the image is retrieved and displayed at the base station with a 
constant frame rate.  This mode of operation requires a large 
storage and bandwidth capacity. Since the image processing is 
performed at the base station computation limitation is ignored. 
The other operation modes work on one dimensional image 
captured from the camera module.  The basic mode of operation 
on line images (B) is just to receive the image by setting 
appropriate width and height equal to one. The end device 
transmits this image without any processing, leaving it for the 
base station. Because of the size reduction, the (microcontroller) 

can receive the 1-D images at a higher rate and (within some 
limitations) can store them in main memory: with 640 pixel 
resolution, a grayscale line image with 8 bits per pixel (0 to 255 
intensity levels) occupies less than 1Kbyte in RAM so that it is 
feasible to store a sequence of 20 lines.. 

The next mode (C) involves some processing on the line images 
at the end device before transmitting it over the wireless 
medium. This image processing although involves minimal 
amount of computation on end devices reduces the bandwidth 
requirement of wireless channel. This is significant in WSN 
where multiple nodes need to exchange information on the 
environment over the limited bandwidth.

The simplest of this computation involves separating foreground 
from background and representing the foreground as intensity 
255 while background as 0, thus creating a binary image 
displaying only moving objects. The next mode of operation (D) 
sends the line sensor data only when an object is detected, i.e. 
the data segments displaying the object and finally in mode (E) 
the end device runs the object detection algorithm locally and 
sends a “binary” report only when an object is detected. The 
following section describes the algorithms involved both at end 
device and base station while operating in different line sensor 
modes As we move to a higher operation mode, the bandwidth 
requirement is significantly reduced at the expense of more 
computation on each end device. The operation mode selection 
can be delegated to the final user or dynamically automated 
depending on the object speed, available bandwidth, processing 
speed, etc to operate at the optimal level.

a) b) c)

d) e) f)

Figure 10. Line Sensor Images under different operation 
modes.

Figure 10 shows the output images when operating under 
different line sensor modes. Figure 10  (a) is a 160 * 120 byte 
grayscale image. (b) is a one dimensional grayscale image of a 
moving car. Figure 10 (c) shows a background updates binary 
image. This is obtained by subtracting the average background 
image from the current line to display only a binary foreground 
moving object. Figure 10 (d) shows only the moving object 
boundary. Figure 10 (e) shows the result of background 
updating performed at the end device. It shows the result of two 
cars passing after one another with background lines in between 



them carrying no information. Figure 10 (f) displays the result of 
image processing at end device. In this case only detected lines 
are transmitted to the end device. The background lines which 
do not carry any information are not transmitted, thus saving the 
wireless bandwidth. Operation mode (E) of object detection 
does not display any image. It only sends a report of the center 
of mass of the detected object, thus maintaining the count, time 
and position of the detected object at the base station. The end 
devices do not maintain any state or past history about the 
images.

6.3 Advantages of WLSN Architecture 
The proposed WLSN architecture with the line imaging has 
several advantages over the traditional two-dimensional imaging 
based WSN.The smaller image data size significantly saves the 
node memory as well as the network bandwidth. Since the 
amount of data to transmitted and received is reduced this also 
greatly helps conserve energy spent on communication. Most of 
the simple algorithms on line sensors devised try to achieve the 
goal of object detection with a linear complexity. The minimal 
image data and commutation thus reduce the end-to-end delay 
between the end devices and the base station as well.

The line images are able to work efficiently under the hardware 
bottlenecks described earlier. Because of this the end device is 
able to sample the image at a much higher rate than the two 
dimensional image. This enables WLSN based applications to 
capture important events which could have been missed 
otherwise because of the lower sampling rate with two-
dimensional images in the current WSN for visual surveillance.

7. CONCLUSIONS AND FUTURE WORK
In this paper we have presented a novel wireless line sensor 
network architecture with software-based line sensors for visual 
surveillance. We have also devised a suit of algorithms for line 
image processing. To verify our idea, a testbed is developed on a 
real time operating system working on a customizable board 
design installed with a camera module and transceiver. The 
OpenZB protocol stack is used to achieve a distributed 
multivision system in the WLSN testbed. Furthermore, the 
proposed WLSN enables to operate in different modes of line 
sensors to achieve an optimal tradeoff between communication 
and computation for any given application situation.

In the future, we will study our WLSN in distributed 
applications over several nodes in a multihop network with 
CSMA v/s GTS based medium access communication using our 
network stack. We also plan to develop an analytical model to 
represent the communication, computation usage considering 
the node power and environment interference to operate the 
system in the most appropriate line sensor mode. 
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