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Abstract

When dealing with soft real-time tasks with highly vari-

able execution times in open systems, an approach that is

becoming popular is to use feedback scheduling techniques

to dynamically adapt the bandwidth reserved to each task.

According to this model, each task is assigned an adaptive

reservation, with a variable budget and a constant period.

The response times of the jobs of the task are monitored

and if different from expected (i.e. much larger or much

shorter than the task relative deadline), a feedback control

law adjusts the reservation budget accordingly. However,

when the feedback law algorithm demands an increase of

the reservation budget, the system must run a schedulability

test to check if there is enough spare bandwidth to accom-

modate such increase. The schedulability test must be very

efficient, as it may be performed at each budget update, i.e.

potentially at each instance of a task.

In this paper, we tackle the problem of performing an ef-

ficient on-line schedulability test for Resource Reservation

systems implemented through the Sporadic Server on Fixed

Priority scheduling. We propose five different tests with dif-

ferent complexity and performance. In particular, we pro-

pose a novel on-line test, called Spare Pot algorithm which

shows a good cost/performance ratio.

1 Introduction

A large class of embedded systems, including DVD

and media players, TVs, teleconferencing systems, video

servers, VoIP systems, etc. can be categorized as soft real-

time. A soft real-time system is usually defined as a real-

time system in which some of its deadlines can be missed

without compromising the correctness of the results [8].

However, the number and severity of deadline violations
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may have a negative impact on the the Quality of Service

(QoS) experienced by the user and on the amount of mem-

ory buffers that must be available. Using a large num-

ber of buffers implies a high end-to-end delay that may be

unacceptable in applications like teleconferencing or live

streaming. Also, a large amount of memory can increase

the cost of the system.

Another important characteristic of such applications is

the variability in resource requirements. In addition to well-

known unpredictabilities of modern hardware architectures,

designed for reducing average execution time, there are in-

herent variabilities due to the type of the application.

Finally, in this paper we address “open systems” in

which new applications (processes or threads) can be acti-

vated dynamically to provide additional services, or to per-

form specific activities.

Scheduling In order to keep under control the application

QoS under such a dynamic environment, it is important to

use appropriate scheduling mechanisms. In this paper we

propose to use the Resource Reservation Framework (RRF)

[21]. In this framework, each task is associated a reserva-

tion characterized by a budget Q and a period P . Roughly

speaking, a reservations transforms the soft real-time task

into a sporadic task with worst-case execution time no larger

than Q and minimum inter-arrival time equal to P , regard-

less of the actual task requirements. An admission control

algorithm checks that the activation of a new reservation

maintains the system schedulable. If the set of reservations

is schedulable, the RRF provides the important property

of temporal isolation: the ability of a task scheduled by a

reservation to meet its timing constraints depends only on

the reservation parameters and not on the presence of other

tasks in the system. The task executes approximately as it

were on a virtual dedicated processor of speed U = Q/P
times the speed of the real processor. Examples of such al-

gorithms are the Constant Bandwidth Server running on top

of Earliest Deadline First (CBS+EDF); the Sporadic Server
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running on top of Fixed Priority (SS+FP).

Budget assignment and feedback A correct budget as-

signment to reservations is critical for the good performance

of a task. The problem can be solved by accurately profil-

ing the computational requirements of the task. The budget

can then be set to an appropriate value depending on the

QoS requirements. However, in presence of soft real-time

tasks with large variations of computational requirements,

a static budget allocation may not be enough to guarantee a

good performance.

A solution to this problem is represented by the adaptive

resource reservations [2, 19]. In this approach, each reser-

vation is assigned a feedback control module that measures

the performance of the served task and tries to adjust the

budget according to a certain control law. The scheduling

error of a task [1] is defined as the difference between the

actual finishing time of an instance of the task and its dead-

line. When the error is positive, it means the task has missed

its deadline so the budget of its reservation was not suffi-

cient and needs to be incremented. The control law tries to

reduce the scheduling error to a value set by the user (usu-

ally equal to 0).

The budget of a reservation can be increased by the con-

trol algorithm only if there is enough spare bandwidth in the

system to accommodate such increase. Suppose the feed-

back control modules dictates that the budget of a reserva-

tion must be increased by ∆Q. A schedulability test must be

run to ensure that incrementing the budget, the other reser-

vations remain schedulable. If this is not possible, the bud-

get can be saturated to the maximum feasible value. Such

test must be executed at each invocation of the control al-

gorithm, i.e. at the end of each task instance. Therefore,

the test must be as simple as it is possible, otherwise the

overhead of checking feasibility would be so high that it

will take a considerable portion of the processor bandwidth,

nullifying the benefits of adaptive reservations.

1.1 Contributions of this paper

In this paper, the problem of efficiently managing the

spare bandwidth in the system for adjusting the budgets of

adaptive reservations via the feedback control is addressed.

First, we propose a framework for implementing adaptive

reservations regardless of the underlying scheduling algo-

rithm. In particular, our framework will be valid for both

the CBS algorithm on top of EDF, and for the Sporadic

Server algorithm on top of FP. Then we concentrate on the

SS+FP case. We propose five schedulability test with dif-

ferent degree of complexity and efficiency. Finally, we run

comparative evaluation of all the five algorithms.

1.2 Related works

Many algorithms have been proposed in the past that

implement the concept of adaptive reservations. A feed-

back law consisting in switching two traditional Propor-

tional plus Integral (PI) controllers, based on a precise dy-

namical model of a resource reservation scheduler is intro-

duced in [3] A control strategy that adjusts the bandwidth

according to both the past execution time of the previous

job and a prediction of the possible range of variation of

the next execution time is given in [20]. New control ap-

proaches based on stochastic control are presented in [20].

The controllers are complemented by the use of a moving

average filter to predict the execution time. In general, the

prediction of the evolution of the execution times has shown

to be very useful to improve the QoS of the task. However,

the good response of the predictors used up to now depends

on the specific application. All these results assume an EDF

scheduler.

Many efforts have been made to apply traditional control

techniques to optimize the performance of real-time sched-

ulers. Some of the ideas focused on the sampling frequency

of variables or task’s periods, to cope with overruns on other

tasks, are introduced in [9]. In [19], an analytical framework

to map QoS requirements of adaptive real time systems into

feedback control theory is proposed for any scheduling pol-

icy. However, the controller operates on admission thresh-

olds and QoS discrete levels. The controller operates over

the whole system and not in a per task/application way.

Concerning the problem of reclaiming spare bandwidth

in resource reservation scheduling, many solutions have

been proposed both in dynamic priority [17, 12, 11] and in

fixed priority [5] reservation systems. However, it is impor-

tant to point out that our focus here is completely different

from the focus of the reclamation papers. In this paper we

look for an efficient method for permanently increasing the

budget of a reservation without affecting the other reserva-

tions. Reclamation algorithms try to greedily reclaim all

spare bandwidth in the system at a certain time. However,

this bandwidth is volatile, as it might not be available in the

future, depending on the behavior of the other tasks. In our

approach instead, we seek to permanently increase the bud-

get of a reservation. Other differences will be presented in

Section 2.1.

2 System model

We consider open systems where tasks may join or leave

dynamically. A reservation Si = (Qi, Pi) is thus charac-

terized by a budget Qi and a period Pi. The reservation

bandwidth is denoted by Ui = Qi

Pi

. Reservations are imple-

mented with appropriate aperiodic server algorithms. Many

alternative implementations have been proposed, both in
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Figure 1. Architecture of the system.

static priority and dynamic priority servers. In this pa-

per, we consider reservations implemented with the Spo-

radic Server [24] running on top of a FP scheduler (from

now on, SS+FP), described in the real-time profile of the

POSIX standard. Priorities are assigned according to the

Rate Monotonic ordering between reservation periods.

The negotiation procedure guarantees that the allocated

bandwidth does not exceed the schedulability bound. As

a consequence, it consists in a schedulability test, where

reservations are assimilated to sporadic tasks, with compu-

tation times equal to Qi and period equal to Pi. Negotiation

is a procedure that is seldom executed in the system, as the

rate at which tasks ask to join or leave the system is very

low. Also, the required deadline for a negotiation is often

quite relaxed with respect to the typical rates in the sys-

tem. For this reason, it is often implemented by an appro-

priate service task with its own reservation that can perform

a complex schedulability test, like Response Time Analy-

sis [4] or Sensitivity Analysis [7]. If the task is admitted

and the new reservation created, it is guaranteed to execute

Qi unites of its budget within the reservation period Pi.

Reservations can be fixed or adaptive. In the first case,

the budget Qi never changes while the reservation is active.

In the second case, instead, budget can be adapted quite fre-

quently, even every reservation period, provided that there

is enough free bandwidth in the system to accommodate for

such a change. In particular, each reservation is associated

a feedback controller, which monitors the performance of

the task inside the reservation and measures its scheduling

error [1]. The architecture of the system is shown in Fig-

ure 1. The scheduling error is a measure of how late (or of

how early) a task completes with respect to its soft dead-

line [1]. Each request from a controller must be evaluated

by a supervisor that performs a quick schedulability analy-

sis to validate the request for change. If the request cannot

be accommodated, it is saturated or rejected.

The feedback control law and the schedulability analysis

performed by the supervisor must be extremely simple and

the implementation must be efficient. In fact, in the worst-

case, the feedback controller and the supervisor routine is

invoked at each instance of a reservation. At the same time,

they must be effective, as one of the requirements is to uti-

lize the computational resource at its best.

2.1 Motivation for feedback scheduling

Consider a system consisting of 4 tasks, as shown in Fig-

ure 1. For the sake of simplicity, suppose that all reservation

periods are equal. Thus, we can simply use Liu and Layland

[18] utilization test with 1 as utilization bound:
∑

Ui ≤ 1.

Two tasks require a constant bandwidth of 0.25, so they

negotiate two reservations S1 and S2 with the same band-

width. The other two tasks both require variable bandwidth.

The minimum, average and maximum requirements are 0.1,

0.2 and 0.4, respectively. The situation is summarized in the

table below (only the bandwidth requirements are reported

for simplicity).

Umin Uavg Umax

Task 1 0.25 0.25 0.25
Task 2 0.25 0.25 0.25
Task 3 0.1 0.2 0.4
Task 4 0.1 0.2 0.4
Total 0.7 0.9 1.3

Notice that, after the admission of the first two tasks,

there is only 0.5 of spare bandwidth left, so we cannot suc-

cessfully allocate 0.4 to both Task 3 and 4. Allocating band-

width based on minimum values is not sufficient to accom-

modate for the task requests. Also, allocating a fixed band-

width equal to the average values may not be a good solu-

tion: often, the reservation will not be able to satisfy the

soft real-time task requirements, and the task deadline will

probably be missed.

An alternative solution is to dynamically adapt the bud-

get of the reservations corresponding to tasks 3 and 4, to

take advantage of the statistical multiplexing property. If

computation requirements of Task 3 and Task 4 are statis-

tically independent, the probability that both require their

maximum bandwidth at the same time is low. Therefore,

the strategy consists in dynamically varying the budgets of

reservations 3 and 4 so that each one gets the budget that

needs when it most needs it. For example, it may be pos-

sible that when task 3 requires high bandwidth, task 4 re-

quires a low bandwidth, so it is possible to accommodate

for both.

Notice that there is an important difference between this

approach and other dynamic reclamation mechanisms. Ex-

isting reclamation mechanisms (like the GRUB algorithm
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[14], CASH [10], BASH [12]) try to reclaim spare capac-

ity stemming from tasks that execute less than expected or

by non-allocated bandwidth in the system. The reclaimed

bandwidth is assigned in a greedy manner to the executing

tasks, or divided among all active tasks according to some

static weight.

The framework described in this paper, instead, dynami-

cally assigns spare bandwidth to the task that most needs it

when it needs it. In addition, feedback scheduling is rooted

in control theory. As a consequence, under certain assump-

tions it is possible to analytically derive properties of the

system (like stability, convergence, etc.).

3 The supervisor

An important component of the framework is the super-

visor, that dynamically checks if the requests made by the

feedback controllers can be accommodated. Basically, the

supervisor must run a simple schedulability test which re-

turns yes if a specific request for increasing the budget can

be satisfied, or no if the request cannot be satisfied. In the

second case, the test may additionally return the maximum

allowed budget increase.

In this paper, we consider many different schedulabil-

ity tests for fixed priority scheduling, at different levels of

complexity. First, we consider tests based on utilization

bounds [18, 13, 15]. Then we consider more complex tests

based on the concept of Scheduling Points [16, 6]. Third,

we consider the Response Time Analysis (RTA) [4], which

provides the worst-case response time of each task in the

system, and propose a new approximate schedulability test

based on it specifically devised for the problem of feedback

scheduling. The tests we consider here have different per-

formance and different complexity. In Section 4, we com-

pare them from a performance point of view and propose a

trade-off between complexity and performance.

3.1 Scheduling Points algorithms

A schedulability test based on Scheduling Points consists

in the following equation

Theorem 1 (from [16]) A set of reservations {(Qi, Pi)} is

schedulable under FP if and only if

∀i = 1, . . . , n ∃t ∈ schedPi Qi+

i−1∑

j=1

⌈
t

Pj

⌉

Qj ≤ t (1)

where schedPi is the set of scheduling points [16, 6].

By introducing the logical AND (∧) and the logical OR

(∨) operators and a more compact vectorial notation U =

(U1, . . . , Un), the Eq. (1) can be rewritten as

∧

i=1,...,n

∨

t∈schedPi

α(i, t) · U ≤ 1 (2)

where α(i, t) is defined as

α(i, t) =








⌈
t

P1

⌉
P1

t
, . . . ,

⌈
t

Pi−1

⌉
Pi−1

t
︸ ︷︷ ︸

1,...,i−1

,
Pi

t
︸︷︷︸

i

, 0, . . . , 0
︸ ︷︷ ︸

i+1,...,n








The complexity of testing the schedulability by Eq. (2)

is essentially due to the number of scheduling points in

schedPi, which in the worst-case is 2i−1 [6].

The advantage of using this test is that Eq. (2) can be im-

mediately used to find the maximum admissible variation of

any reservation bandwidth which does not compromise the

feasibility. In fact, from the sensitivity analysis of FP sys-

tems [7] it follows that the amount of admissible variation

∆Uk to the bandwidth of the reservation Sk is

∆U exact
k = min

i=k,...,n
max

t∈schedPi

t − α(i, t) ·U

αk(i, t)
(3)

where αk(i, t) denotes the kth component of the vector of

coefficients α(i, t). We refer to the evaluation of ∆U exact
k

by means of the Eq. (3) as the exact method since it is de-

rived from a necessary and sufficient condition.

Below we propose a simple example with only two reser-

vations. Suppose we have Q1 = 2, P1 = 5 and Q2 = 1,

P2 = 8. By applying the definition of the scheduling

points [6], we find that schedP1 = {5} and schedP2 =
{5, 8}. Now it is possible to compute explicitly the inequal-

ities resulting from Eq. (2) which are

U1 +
8

5
U2 ≤ 1 from t = 5 (4)

5

4
U1 + U2 ≤ 1 from t = 8 (5)

and to represent them graphically (see Figure 2(a)). In the

figure the black dot at the point U1 = 2
5 , U2 = 1

8 denotes the

initial utilization requirement, whereas the dark gray area

denotes the region where the utilization will move into, dur-

ing the run-time of the system. Eq. (3) allows to compute

the maximum admissible variation to each utilization start-

ing from the initial point. For the values of this example we

have:

∆U exact
1 =

2

5
= 0.4 (6)

∆U exact
2 =

3

8
= 0.375 (7)

Although for the two tasks case the computation of the

maximum variation is very simple, as the number of tasks
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Figure 2. Scheduling Point based methods

grows the evaluation of Eq. (3) requires very long time. In

fact, the complexity of the exact method is O(n 2n) since it

depends on the number of points in the set schedPi. Hence

the evaluation of the amount of ∆Uk at run-time is imprac-

tical. For this reason we investigate also other methods to

trade accuracy for an efficient computation.

The simplification of the computation of the admissible

variation is enabled by the following result.

Corollary 1 Let {smallSeti}i=1,...,n be a family of subsets

of schedPi (meaning that ∀i smallSeti ⊆ schedPi), then the

task set is schedulable if:

∀i = 1, . . . , n ∃t ∈ smallSeti Qi +

i−1∑

j=1

⌈
t

Pj

⌉

Qj ≤ t (8)

The proof is ommited here for space reasons but can be

found in [22].

Corollary 1 suggests that as we find a smaller set of

scheduling points, the amount of admissible variation of the

utilization can be efficiently computed at the price of accu-

racy. The idea we will exploit next is to explore a neighbor-

hood of the initial point so that only the constraints which

are “close” to the starting point are considered.

The intersect method In this method we select a sub-

set intersectSeti of the scheduling points. To build the set

intersectSeti, we analyze the maximum admissible varia-

tion of the utilization Uk for k = 1, . . . , i so that the task

τi is schedulable. For every pair (i, k) we add to the set

intersectSeti the scheduling point which originates an in-

equality which holds with the equal sign in Eq. (2). Fol-

lowing this procedure the number of points in intersectSeti
never exceeds i. Since we have to consider all tasks, then

the total number of constraints is no more that
∑n

i=1 i =
n(n+1)

2 . Therefore, the complexity of this test is O(n2).
The selection procedure is also depicted in Figure 2(b).

Starting from the initial assigned values (the black dot), it

is computed the maximum variation along both the direc-

tions and the hit constraints are stored in the set of reduced

number of scheduling points.

The scaling method In this method, we select only one

scheduling point for each task, which results in a total of

n constraints to be checked at run-time. As shown in Fig-

ure 2(c) we select the constraint which is hit when we scale

linearly all the utilizations.

In the proposed example the constraint corresponding to

the scheduling point t = 5 is selected, so that scalingSet2 =
{5} ⊂ schedP2. If we compute the maximum admissible

variation by this method we find

∆U scaling
1 =

2

5
= 0.4 (9)

∆U scaling
2 =

1

4
= 0.25 < ∆U exact

2 (10)

The complexity of this method is linear O(n).

The upBound method The final method we propose is

not based on the scheduling points, but on the idea of uti-

lization upper bound [18, 13]. We remind that the utilization

upper bound for level-i tasks, is the maximum U
(i)
ub such

that the condition

i∑

j=1

Uj ≤ U
(i)
ub (11)

implies that the task τi is schedulable.

In the proposed example of two tasks, the utilization up-

per bound is U
(2)
ub = 17

20 = 0.85 and the resulting maximum

admissible variation of the utilizations are

∆UupBound
1 = 0.325 (12)

∆UupBound
2 = 0.325 (13)

This method has constant complexity O(1).

3.2 RTA-based mechanism

In this section we present the Spare Pot algorithm

for managing the spare bandwidth in SS+FP. It is an ap-

proximation of the RTA schedulability test for the purpose
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of checking the schedulability in the neighborhood of a

schedulability working point.

The basic idea is the following. Suppose the system con-

sists of a number n of adaptive reservations S1, S2, . . . , Sn,

in decreasing order of priority. Other non-adaptive reser-

vations can be present in the system with arbitrary priority

levels. The schedulability of such reservations is checked

by using the RTA. Once again, each reservation is consid-

ered as a sporadic task with worst-case computation time Q
and minimum inter-arrival time P . By using the RTA, we

can compute the worst-case response time of each reserva-

tion (notice that this is only indirectly related to the response

time of the task).

In addition, the user initially negotiates an additional

fake reservation S0 with higher priority than all adaptive

reservations. This reservation is called spare pot: its only

purpose is to reserve a bandwidth that can be collectively

reclaimed by any of the adaptive reservations. Notice that

this bandwidth is reserved: the on-line negotiation algo-

rithm cannot reclaim it to make space for newly incoming

reservations.

At run time, an adaptive reservation can ask the supervi-

sor to decrease or increase its budget. In the first case, we

say that the reservation donates part of its budget, while in

the second case we say that the reservation borrows a part

of its future budget.

A reservation at priority level i can only donate budget

to lower priority reservations, and can only borrow from

higher priority reservations. A data structure is maintained

by the algorithm to keep track of how much budget each

reservation Si has donated to each other reservation Sj . The

algorithm consists of a preparation phase, to be done at ne-

gotiation time, and of an on-line phase. The main steps of

the algorithm are detailed in the following.

Preparation phase This phase is composed by the fol-

lowing steps.

§1 Reserve a budget for the spare pot. This reservation

will not directly execute any task; it is used mainly for

preventing the admission control from allocating all spare

bandwidth to newly incoming reservations. We denote this

reservation with S0, and its budget and period are Q0 and

P0, respectively.

§2 Perform RTA for admission control of new reserva-

tions. The equation to be checked is:

∀i min Ri|Ri =

i−1∑

j=0

⌈
Ri

Pj

⌉

Qj + Qi (14)

where (Qj , Pj) are the parameters of the j-th reservation.

All reservations are ordered by decreasing priority. Ri is

the smallest solution of the fixed point equation. Assume all

response times are less than or equal to the servers’s relative

deadlines Ri ≤ Pi.

§3 The algorithm stores the number of instances of adap-

tive reservation Sj that preempt reservation Si in the worst

case, in variable ηi,j :

ηi,j =

⌈
Ri

Pj

⌉

(15)

In addition, it computes the following variable:

mi,j = min

{

ηi,j , min
h

(
ηh,j

ηh,i

)

}

(16)

§4 Let n be the number of reservations currently in the

system. The algorithm builds a square matrix Π = (πi,j) of

size n + 1, with rows and columns numbered from 0 to n.

Each element πi,j of the matrix has the following meaning:

• if i < j, element πi,j represents the units of budget

that reservation Si has donated to Sj (can only be non-

negative).

• if i = j, element πi,i can only be negative or 0. Quan-

tity −πi,i is the amount of budget that Si has made

available to others. The value of π0,0 is constant and

equal to π0,0 = −Q0 (the budget of the Spare Pot

reservation).

• if i > j, element πi,j represents the amount of bud-

get that Si has borrowed from Sj . Can only be non-

negative.

Initially, all elements of the matrix are set to 0, except

for π0,0 that contains the negative of the Spare Pot budget.

We define δi = −
∑n

j=0 πi,j as the amount of borrowed

budget (if negative) or the amount of budget still available

(if positive) at priority level i. Notice that, for the spare pot

S0, the available budget at any instant is δ = −
∑n

j=0 π0,j .

On-line phase During execution, whenever a feedback

controller requires a change in the budget of reservation Si,

the matrix is updated as follows.

• Suppose that the feedback controller needs to increase

the budget of reservation Si by ∆Qi > 0. The algo-

rithm looks at δj , with j = i, i− 1, . . . , 1, 0. If δj ≤ 0,

then it is not possible to borrow from this priority level,

and we look at the next level j − 1. If δj > 0, then the

maximum amount of budget it is possible to borrow
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from this level is δjmj,i. Let xj = min{∆Qi, δjmj,i}.

Then the matrix is updated as follows:

πi,j = πi,j + xj

πj,i = πj,i +
xj

mj,i

If xj < ∆Qi, then ∆Qi = ∆Qi − xj and we look

at the next higher priority level. If we reach the last

priority level j = 0 and ∆Qi > 0, then the remaining

is discarded (saturation). The algorithm returns the

cumulative sum of allocated budget.

• Suppose that the feedback controller requires to de-

crease the budget of reservation Si by ∆Qi < 0. First,

the algorithm tries to give back the budgets that Si had

borrowed from higher priority levels to their respec-

tive owners. Hence, select j = 0, 1, . . . , i − 1, and let

xj = min{πi,j ,−∆Qi}. Then the matrix is updated

as follows:

πi,j = πi,j − xj

πj,i = πj,i −
xj

mj,i

Then ∆Qi = ∆Qi + xj . If ∆Qi is 0, then the algo-

rithm stops. Otherwise, we continue with the next j.

If after j = i − 1 we still have ∆Qi < 0, then we

update πi,i = ∆Qi, making the extra budget available

to lower priority levels.

The following example shows how the algorithm works.

Consider again the example of Section 3.1, consisting of

two tasks τ1 and τ2, with C1 = 2, T1 = 5 and C2 = 1,

T2 = 8. The spare pot consists in a reservation with Qs = 2
and Ps = 5. The response times of the two reservations are

R1 = 4 and R2 = 5, respectively. Finally, m0,1 = m0,2 =
m1,2 = 1.

The initial value of the matrix are shown in Figure 3(a).

Suppose that reservation S1 releases 0.3 units of budget.

The corresponding matrix after the update is shown in Fig-

ure 3(b). Now, suppose that reservation S2 asks to increase

its budget by 0.5. In Figure 3(c), the values after the in-

crement are shown. Notice that in this particular example

πi,j = πj,i. However, this is not always the case, as it de-

pends on the fact that all mi,j are equal to 1.

3.2.1 Formal analysis of correctness

To demonstrate the correctness of the algorithm, it must be

shown that the worst-case response times of all reservations

do not change when changing the budget of any adaptive

reservation. Let’s start by discussing some properties of the

matrix data structure.

Property 1 Consider a reservation Si. At any instant t, let

Qi be its current budget. Then, Qi = Qi +
∑i−1

j=0 πi,j +
πi,i. More specifically, if Si borrowed budget from higher

priority levels, then πi,i = 0 and
∑i−1

j=0 πi,j ≥ 0. On the

contrary, if Si has made available some budget for lower

priority levels, then
∑i−1

j=0 πi,j = 0 and πi,i ≤ 0.

Lemma 1 For each row i of the matrix, one of the two fol-

lowing cases is true: either the first i − 1 elements are all

0; or if a positive element exist, then the following i + 1
elements must all be zero.

Proof. Follows directly from Property 1. �

Property 2 Since a reservation cannot lend more than it

has made available, then
∑n

j=i+1 πi,j ≤ −πi,i.

For the sole purpose of demonstrating the theorem, the

matrix is extended to include fixed adaptive reservations. A

row is added for each fixed reservation at the appropriate

position. The additional rows will have all elements equal

to 0, and those elements will never change. Let n be the

total number of reservations in the system (excluding the

Spare Pot).

Theorem 2 For any reservation Si, let Qi be its budget at

time t, as modified by one or more iterations of the Spare Pot

algorithm. If the reservation is fixed, then Qi = Qi. Let Ri

be the worst-case response time of reservation Si computed

considering each reservation Sj , with j = 0, . . . , i to have

a budget Qj . Then Ri ≤ Ri, where Ri is the response

time of reservation Si, as computed during the preparation

phase.

The proof is ommited for space reasons. The interested

reader can find it in [22].

3.2.2 Complexity of the method

In the first phase (during admission control) the complex-

ity of this method is the same as of RTA, that is pseudo-

polynomial (O(n2Tmax)). This can be very large, however,

some techniques exists for reducing the average case behav-

ior of RTA [23].

The on-line phase has complexity linear in the number of

adaptive reservations (O(n)), as in the worst-case the lowest

priority adaptive reservation has to check all δi of the higher

priority reservations. However, the average-case behavior

of the algorithm can be much lower for two reasons: first,

the higher priority reservations have to check for less rows

of the matrix in the worst-case; second, in the best case the

reservation with priority immediately above the reservation

under analysis may already be able to provide the needed
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S0 S1 S2 δi Qi(t)
S0 -2 0 0 2 2

S1 0 0 0 0 2

S2 0 0 0 0 1

S0 S1 S2 δi Qi(t)
S0 -2 0 0 2 2

S1 0 -0.3 0 0.3 1.7

S2 0 0 0 0 1

S0 S1 S2 δi Qi(t)
S0 -2 0 0.2 1.8 1.8

S1 0 -0.3 0.3 0 1.7

S2 0.2 0.3 0 -0.5 1.5

(a) (b) (c)

Figure 3. Matrix for the example task set: (a) initial values, (b) after S1 releases 0.3, (c) after S2 asks
for 0.5.

budget. Therefore, we expect that in the average case the

algorithm has a much better behavior than the worst-case

(less than linear).

4 Simulation experiments

4.1 Experiments setup

In order to validate the approaches presented in this pa-

per, we have prepared two groups of experiments. In the

first one, we created 5000 systems of 10 tasks each, with

uniform random periods in [50, 800] and average execution

times randomly selected to achieve a system utilization in

[0.65, 0.85]. We assigned each task a reservation with pe-

riod equal to the task period, and budget equal to its average

execution time. The schedulability of the system was ver-

ified and a Spare Pot Sporadic Server with period equal to

the lowest period among all reservations was created. The

budget of the Spare Pot server has been maximized keeping

the entire system schedulable, according to Equation (2).

We assume clairvoyant feedback algorithm, i.e. it knows

in advance the execution time of the task, and asks the su-

pervisor for the correct budget. The supervisor checks if

the request can be satisfied, and updates the corresponding

reservation budget. If the request cannot be satisfied, the

supervisor increments a counter of the number of satura-

tions. We run each experiment using all five algorithms as

supervisor.

In the second set of experiments, we modeled a system

consisting of 4 tasks, each one executes a MPEG II decoder.

The decoding times were experimentally measured by play-

ing four different MPEG movies with mplayer. Each task

is assigned an adaptive reservation, with initial budget equal

to the average decoding time, and with the Stochastic Dead-

beat feedback control algorithm [1]. A Spare Pot with bud-

get equal to the maximum average execution time of the

previous four was added at the highest priority. Also, three

additional tasks with fixed parameters were incorporated

with a lower priority. The difference with the previous ex-

periment is that the reservations holding the varying exe-

cution time tasks should minimize the scheduling error and

the increment in the requirement may be forced by the con-

troller loop keeping the execution time higher for longer pe-

riods. The system was simulated with all five algorithms.

In all cases, the amount of saturations were counted. The

scheduling error was also measured for each method.

4.2 Results obtained

Figure 4 shows the results of the first set of experiments.

As can be seen, the exact method has always the lower

amount of saturation points, as expected. It is important

to note that the intersect method has a very similar perfor-

mance. Scaling and UpBound have both a good perfor-

mance at low utilization factors (below 0.75) but degrade

for higher ones. The Spare Pot is near the last two methods

but with a higher amount of saturation points at low utiliza-

tion factors and a significant improvement in the upper part.

Figure 5 shows in a bar graph the number of saturations

the five different algorithms have for the second experiment.

The numbers were normalized to the exact method, as it

is the reference. Except for the UpBound method, all the

others have the same performance. The fact that the system

saturates more frequently, means that the scheduling error

may be higher and this means a lower QoS, or equivalently

a higher number of missed deadlines.

Figure 6 shows the behavior of the scheduling error of

each method. As can be seen, all of them have a very similar

performance, except the UpBound one. In 7 the amount of

missed deadlines normalized to the exact method is repre-

sented with a bar graph. Again, it is clear that the UpBound
method has the poorest performance.

Finally, Figure 8 shows the total utilization factor of the

system for each method. The minimum, average, maximum

and the actual one for each frame of the movies is repre-

sented for each method. As can be seen, all of them behave

similarly except the UpBound method.

4.3 Results explained

The results obtained show clearly the performance of the

different methods.

In these experiments, the exact method acts as a ref-

erence optimal algorithm. Therefore, we are interested in

evaluating the performance of the other four methods with

respect to the exact. The intersect method shows very
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Figure 4. Saturation in random variations.
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Figure 5. Saturation with feedback control

good results in both experiments. Especially in the first

experiment, it is clear that its performance cannot clearly

be distinguished from the exact method. This means that

the algorithms selects almost all important scheduling point

from the complete (exponential) set of points. However, it

has quite an high complexity of O(n2), which makes it not

the best choice for an on-line check.

The upBound algorithm shows the worst results in both

experiments. Although it has constant complexity O(1), in

many cases its performance may not be considered enough

good for the job. By looking at the scheduling error of Fig-

ure 6, it is possible to graphically evaluate the bad behavior

of the algorithm.

Finally, the Spare Pot method and the scaling show

good results in both experiments. In the second experiment,

the performance of these algorithms are the same as the ex-

act and intersect methods, however they have linear (or

sub-linear) complexity. In the first experiment, the Spare

Pot is the best of the two.

Which method to choose? Probably, the answer depends

on the specific application/system. If overhead is not a con-

cern (for example because of a low number of reservations

in the system), then the intersect method is the preferred

choice. When a trade-off must be made between cost and
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Figure 6. Scheduling error for the five meth-

ods compared
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Figure 7. Missed deadlines

performance, the Spare Pot or the Scaling methods are

good candidates. Finally, if the overhead is critical (for in-

stance, when a task has a very short period), then we must

sacrifice performance and select the UpBound method.

5 Conclusion and future work

In this paper the problem of managing the spare band-

width in the system to handle the budgets of adaptive

reservations through feedback control under fixed priority

scheduling has been addressed. Five different solutions

to this problem have been presented and compared. The

solutions have different performances and complexities in

their implementations. Four of them are simplification of

the exact schedulability test based on the Scheduling Points

method. The fifth algorithm is a novel algorithm presented

in this paper, the Spare Pot, which has been proved cor-

rect. The experiments conducted over random varying sets

of tasks and on a particular application like MPEG decod-

ing, show that this solution is quite robust specially at high

utilization factors.

The proper choice of the method depends on the kind of
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system to be controlled and the computational power of the

hardware platform.

As future work, these algorithms will be implemented

in the FRESCOR framework to evaluate them under real

loads. Also, a careful evaluation of the real computational

requirements should be done because the theoretical bounds

are rarely meet in actual implementations.
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