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Abstract. The primary goal for real-time kernel software for single and multiple-processor on a chip

systems is to support the design of timely and cost effective systems. The kernel must provide time

guarantees, in order to predict the timely behavior of the application, an extremely fast response time, in

order not to waste computing power outside of the application cycles and save as much RAM space as

possible in order to reduce the overall cost of the chip. The research on real-time software systems has

produced algorithms that allow to effectively schedule system resources while guaranteeing the deadlines

of the application and to group tasks in a very small number of non-preemptive sets which require much

less RAM memory for stack. Unfortunately, up to now the research focus has been on time guarantees

rather than on the optimization of RAM usage. Furthermore, these techniques do not apply to

multiprocessor architectures which are likely to be widely used in future microcontrollers. This paper

presents innovative scheduling and optimization algorithms that effectively solve the problem of

guaranteeing schedulability with an extremely little operating system overhead and minimizing RAM

usage. We developed a fast and simple algorithm for sharing resources in multiprocessor systems, together

with an innovative procedure for assigning a preemption threshold to tasks. These allow the use of a single

user stack. The experimental part shows the effectiveness of a simulated annealing-based tool that allows

to find a schedulable system configuration starting from the selection of a near-optimal task allocation.

When used in conjunction with our preemption threshold assignment algorithm, our tool further reduces

the RAM usage in multiprocessor systems.

Keywords: Multiprocessor scheduling, operating systems, real-time, stack size minimization.

1. Introduction

Many embedded systems are becoming increasingly complex in terms of functionality
to be supported. From an analysis of future applications in the context of automotive
systems [10] it is clear that a standard uniprocessor microcontroller architecture will
not be able to support the needed computing power even taking into account the IC
technology advances.
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There are two possible ways to increase the computational power in real-time sys-
tems: increase the processor speed or increase the parallelism of the architecture. The
first option requires the use of caching or deep pipelining which suffer from serious
drawbacks in the context of real-time embedded systems: caching makes it very hard
or impossible to determine the worst case execution times of programs; deep pipelin-
ing is not effective because of the large number of stalls caused by reactions to asyn-
chronous events. Parallelism at the instruction level (VLIW architectures) requires
large silicon areas and drastically increases code size. Therefore, the best option and
the future of many embedded applications seem to rely on the adoption of multiple-
processor-on-a-chip architectures.

The Janus system, (see the scheme of Figure 1) developed by ST Microelectronics in
cooperation with Parades [10], is an example of a dual-processor platform for power-
train applications featuring two 32-bit ARM processors connected by a crossbar
switch to 4 memory banks and two peripheral buses for I/O processing. The system
has been developed in the context of the MADESS1 project. The applications running
on the new single-chip platform require predictable and fast real-time kernel mechan-
isms. Furthermore, they must satisfy a very demanding requirement: in addition to
real-time predictability, the OS and the application must use the smallest possible
amount of RAM. RAM is extremely expensive in terms of chip space and impacts
heavily on the final cost (it is often necessary to re-design part of the application just
to save a few RAM bytes).

In the design of the kernel mechanisms for the ERIKA kernel [11], it had been clear
from the beginning that the choice of the real-time scheduling discipline influences
both the memory utilization and the system overhead: for example, selecting a non-
preemptive scheduling algorithm can greatly reduce the overall requirement of stack
memory, whereas using a preemptive algorithm can increase the processor utilization.

For this reason, we found very important to exploit the different combinations and
configurations of scheduling algorithms and services and to develop new ones in order
to find the best kernel mechanisms for minimizing the memory requirements without
jeopardizing the timing constraints.

Figure 1. The Janus Dual Processor system.
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The overall RAM requirement is the sum of many factors, global variables, dynami-
cally allocated memory (heap memory), operating system variables and stack space
requirements for local variables and function call parameters. Of all these factors, the
stack space requirements can be a significant factor and the only one that can be pos-
sibly reduced by a selection of operating system-level policies (dynamic memory allo-
cation should not be used in hard real-time systems and is explicitly forbidden by the
OSEK automotive standards).

The idea behind this work is based on the concept of non-interleaved execution. As
explained in Section 4.1, using a protocol called Stack Resource Policy (SRP) [2], task
executions are perfectly nested: if task A preempts task B, it cannot happen that B
executes again before the end of A. In this way, it is possible to use a single stack for
all the execution frames of the tasks. An example of this behavior is depicted in Figure
2(a) where three periodic tasks �0, �1 and �2 are scheduled by SRP. In the upper part
of the figure, the ascending arrows denote the task activations, whereas the descending
arrows denote the task deadlines. If the executions of tasks A and B were to be inter-
leaved (for example scheduling the tasks in the order B, A, B, A) then, upon resuming
its execution, task B would find the top of the stack occupied by the stack frame of
task A.Therefore, a single stack cannot be used when executions are interleaved. In the
lower part, the system stack size is plotted against the time.

Next, comes the following observation: if task preemption is limited to occur only
between selected task groups, it is possible to bound the maximum number of task
frames concurrently active in the stack, therefore reducing the maximum requirement
of RAM space for stack (which is the only way the OS can limit RAM requirements).
In the example of Figure 2(b), preemption is disabled between �2 and �1 and, conse-
quently, only two task frames can be active at the same time: thus we can decrease the
amount of memory to be reserved for the system stack.

Although this idea is not new (see [25], [22]), we extended it along many directions.
First, we consider dynamic priority scheduling instead of fixed priority. In particular,

Figure 2. Two different schedules for the same task set: (a) full-preemptive schedule; (b) preemption is disabled
between �1 and �2.

(a) (b)
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the algorithms presented in this paper are based on the Earliest Deadline First (EDF)
scheduling algorithm, which achieves better processor utilization with respect to fixed
priority schedulers. Second, the objective of our algorithm is not to find the smallest
number of non-preemptive groups that keep the set schedulable, but rather to assign
tasks to non-preemptive groups in such a way that the overall requirement of stack
space is minimized (which means introducing the stack requirements of each task as
a factor). Third, tasks are not considered independent but are allowed to interact
through mutually exclusive critical sections (i.e., shared memory) and finally, the above
methodology has been extended to multiprocessor systems, where tasks allocated on
different processors can interact through shared memory.

More specifically, a complete methodology for minimizing the memory utilization
of real-time task sets, communicating through shared memory, in uniprocessor and
multiprocessor systems is presented in this paper. First, the uniprocessor case is con-
sidered, and the following results are presented:

� a novel scheduling algorithm, called SRPT, that allows the use of one single stack
for all the real-time tasks under dynamic priority scheduling (Earliest Deadline)
schemes.

� an optimization procedure for assigning the scheduling parameters (preemption
thresholds and grouping of tasks in non-preemptive sets) so as to minimize the
maximum stack size without jeopardizing the schedulability of the task set.

Then, the previous results are extended to multiprocessor systems. In particular, we
developed:

� anovel scheduling algorithm calledMSRP,that allows real-time tasks,allocatedon
different processor,to communicate/interact through sharedmemory; each task is
statically allocated to one processor, and all tasks on one processor share the same
stack;

� an optimization procedure for assigning tasks to processors and for assigning the
scheduling parameters, so tominimize the overall stack size.

The remaining sections are organized as follows. Section 2 presents some previous
related work. Section 3 contains the definitions and the assumptions. Section 4 intro-
duces the SRP and Preemption Thresholds mechanisms on which our work is based.
Section 5 discusses our integration of SRP and Preemption Thresholds on top of an
EDF scheduler. Section 6 contains the discussion on how to optimize memory and
CPU resources in uniprocessor systems. Section 7 discusses the MSRP Scheduling Al-
gorithm. Section 8 contains the description of our Simulated Annealing approach to
the task allocation problem. Section 9 ends the paper with the discussion on the ex-
perimental results for single and multiprocessor systems.
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2. Related Work

The idea of assigning each task a preemption threshold and to group tasks in non-
preemptive sets has been formulated by Saksena and Wang [25], [22] in the context of
the fixed priority scheduling of independent tasks in uniprocessor systems. The me-
chanism has been implemented (in a proprietary form) in the SSX kernel from REAL-
OGY [7] and the ThreadX kernel from Express Logic [9], both targeted to embedded
system with small code requirements. In this paper, this idea is extended to dynamic
scheduling and to non-independent task sets. Moreover, the optimization algorithm
presented in [22] has been improved by considering the stack requirements of each
task in order to minimize the overall stack requirement rather than the number of task
groups.

The algorithms presented in this paper are based on the Stack Resource Policy
(SRP), a synchronization protocol presented by Baker in [2]. It allows to share re-
sources in uniprocessor systems with a predictable worst case blocking time. The SRP
is similar to the Priority Ceiling Protocol of Sha, Lehoczky and Rajkumar (see [23]),
but has the additional property that a task is never blocked once it starts executing.
Moreover, SRP can be used on top of an Earliest Deadline scheduler and can be im-
plemented with very little overhead.

The problem of scheduling a set of real-time tasks with shared resources on a multi-
processor system is quite complex. One of the most common approaches is to statically
allocate tasks to processors and to define an algorithm for inter-processor communica-
tion. Following this approach, the problem can be divided into two sub-problems:

� Define a scheduling algorithmplus a synchronizationprotocol forglobal resources
(i.e., resources that are shared between different processors);

� Provide an off-line algorithm for allocating tasks to processors.

Solutions have been proposed in the literature for both sub-problems. The
Multiprocessor Priority Ceiling Protocol (MPCP) has been proposed by Rajkumar in
[21] in for scheduling a set of real-time tasks with shared resources on a multi-proces-
sor. It extends the Priority Ceiling Protocol [23] for global resources. However, it is
rather complex and does not guarantee that the execution of tasks will not be inter-
leaved (tasks cannot share the same stack). Moreover, no allocation algorithm
is proposed.

The problem of allocating a set of real-time tasks to m processors has been proved
NP-hard in [16] and [8], even when tasks are considered independent. Several heuristic
algorithms have been proposed in the literature [5], [13], [20], [15], but none of them
explicitly considers tasks that interact through mutually exclusive resources.

In this paper, we bring contributions to both sub-problems. In Section 7, we propose
an extension of the SRP protocol to multiprocessor systems. This solution allows tasks
to use local resources under the SRP policy and to access global resources with a
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predictable blocking time without interfering with the local execution order. This me-
chanism, when used in conjunction with preemption thresholds and the creation of
non-preemptive task groups allows to perform time guarantees minimizing the re-
quirement for RAM space.

In Section 8 we propose a simulated annealing based algorithm for allocating tasks
to processors. The algorithm tries to find an optimal task allocation, that is the alloca-
tion that keeps the task set schedulable and groups tasks in order to use the minimal
amount of RAM.

3. Basic Assumptions and Terminology

Our system consists of a set T ¼ f�1; �2; . . . ; �ng of real time tasks to be executed on
a set P ¼ fP1; . . . ; Pmg of processors. First, we consider the case of a uniprocessor,
and then we extend the results to the case of multi-processor systems. The subset of
tasks assigned to processor Pk will be denoted by TPk

� T .
A real time task �i is a infinite sequence of jobs (or instances) Ji; j. Every job is char-

acterized by a release time ri; j, an execution time ci; j and a deadline di; j.
A task can be periodic or sporadic. A task is periodic if the release times of two

consecutive jobs are separated by a constant period; a task is sporadic when the re-
lease times of two consecutive job are separated by a variable time interval, with a
lower bound, called minimum interarrival time.

Without loss of generality, we use the same symbol �i to indicate the period of a
periodic task and the minimum interarrival time of a sporadic task �i. In the following
a task will be characterized by the worst case execution time Ci ¼ maxfci; jg and its
period �i. We assume that the relative deadline of a task is equal to �i: thus,
di; j ¼ ri; j þ �i.

Tasks communicate through shared memory. A portion of memory shared by two
or more tasks is referred as a mutually exclusive resource (or simply resource). Tasks
can access mutually exclusive resources through critical sections. Let R ¼
f�1; . . . ; � pg be the set of shared resources. The kth critical section of task �i on re-
source � j is denoted by �

j
ik and its maximum duration is denoted by !

j
ik.

All memory is statically allocated and no dynamic memory allocation is permitted.
This is not a great limitation in embedded real-time systems, since typical general pur-
pose dynamic allocation schemes are not adequate for real-time system programming.

A scheduling algorithm is an algorithm that decides which task is to be executed at
each instant. In this paper we will consider the Earliest Deadline First scheduling al-
gorithm and its variants, which selects the task with the earliest deadline.The sequence
of execution of the tasks is called schedule. A schedule is feasible when all the jobs
finish before their deadlines. A task set is schedulable with a given scheduling algo-
rithm if every produced schedule is feasible. For a given scheduling algorithm, a
schedulability test is used to guarantee a-priori that a task set is schedulable.

58 GAI ETAL.



4. Background

4.1. Stack Resource Policy (SRP)

The Stack Resource Policy was proposed by Baker in [2] for scheduling a set of real-
time tasks on a uniprocessor system. It can be used together with the Rate Monotonic
(RM) scheduler or with the Earliest Deadline First (EDF) scheduler. According to the
SRP, every real-time (periodic and sporadic) task �i must be assigned a priority pi and
a static preemption level �i, such that the following essential property holds:

task �i is not allowed to preempt task �j; unless �i > �j:

Under EDF and RM, the previous property is verified if preemption levels are inver-
sely proportional to the periods of tasks:

8 �i �i /
1
�i
:

When the SRP is used together with the RM scheduler, each task is assigned a static
priority that is inversely proportional to its period. Hence, under RM, the priority
equals the preemption level. Instead, when the SRP is used with the EDF scheduler,
in addition to the static preemption level, each job has a priority that is inversely pro-
portional to its absolute deadline.

Every resource �k is assigned a static2 ceiling defined as:

ceilð�kÞ ¼ max
i

f�i j �i uses �kg:

Finally, a dynamic system ceiling is defined as

�sðtÞ ¼ max½fceilð�kÞ j �k is currently lockedg [ f0g�:

Then, the SRP scheduling rule states that:

‘‘a job is not allowed to start executing until its priority is the highest among the

active jobs and its preemption level is greater than the system ceiling.’’

The SRP ensures that once a job is started, it cannot be blocked until completion; it
can only be preempted by higher priority jobs. However, the execution of a job Ji; k
with the highest priority in the system could be delayed by a lower priority job, which
is locking some resource, and has raised the system ceiling to a value greater than or
equal to the preemption level �i. This delay is called blocking time and denoted by Bi.
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Given the maximum blocking time for each task, it is possible to perform a schedul-
ability test, depending on the scheduling algorithm.

In [2] Baker proposed the following schedulability condition for the EDF scheduler:

8 i; 1 � i � n
Xi
k¼1

Ck

�k
þ Bi

�i
� 1: (1)

A tighter condition, proposed in [17], is the following:

8 i; 1 � i � n 8 L; �i � L � �n L �
Xi
k¼1

L

�k

� �
Ck þ Bi: (2)

In all cases, the maximum local blocking time for each task �i can be calculated as
the longest critical section �kjh accessed by tasks with longer periods and with a ceiling
greater than or equal to the preemption level of �i.

Bi ¼ max
�j2T ; 8 h

f!k
jh j �i > �j ^ �i � ceilð�kÞg: (3)

The Stack Resource Policy has several interesting properties. It prevents deadlock,
bounds the maximum blocking times of tasks, reduces the number of context switches
and can easily be extended to multi-unit resources. From an implementation view-
point, it allows tasks to share a unique stack. In fact, a task never blocks its execution:
it simply cannot start executing if its preemption level is not high enough. Moreover,
the implementation of the SRP is straightforward as there is no need to implement
waiting queues.

However, one problem with the SRP is the fact that it does not scale to multiproces-
sor systems. In Section 7 we propose an extension of the SRP to be used in multipro-
cessor systems.

4.2. Preemption Thresholds

Given a non-interleaved execution of the application tasks (obtained, for example, by
using the SRP), the use of a preemptive scheduling algorithm makes the maximum
number of task frames on the stack equal to the number of priority levels, whereas
using a non-preemptive algorithm there can be only one frame on the stack. However,
a non-preemptive algorithm in general is less responsive and could produce an infea-
sible schedule. Hence, the goal is to find an algorithm that selectively disables preemp-
tion in order to minimize the maximum stack size requirement while respecting the
schedulability of the task set.

60 GAI ETAL.



Based on this idea, Wang and Saksena, [22], [25], developed the concept of
Preemption Threshold: each task �i is assigned a nominal priority �i and a preemption
threshold �i with �i � �i. When the task is activated, it is inserted in the ready queue
using the nominal priority; when the task begins execution, its priority is raised to its
preemption threshold; in this way, all the tasks with priority less than or equal to the
preemption threshold of the executing task cannot make preemption. According to
[22], we introduce the following definitions:

DEFINITION 1 Two tasks �i and �j are mutually non-preemptive if ð�i � �jÞ ^
ð�j � �iÞ.

DEFINITION 2 A set of tasks G ¼ f�1; . . . ; �mg is a non-preemptive group if, for

every pair of tasks �j 2 G and �k 2 G, �j and �k are mutually non-preemptive.

By assigning each task the appropriate preemption threshold, we can reduce the
number of preemptions in the system without jeopardizing the schedulability of the
tasks set.

After assigning preemption thresholds, the task set can be partitioned into non–

preemptive groups. However notice that a given preemption threshold assignment may
correspond to more than one partition of non-preemptive groups. The maximum num-
ber of tasks that can be on the stack at the same time corresponds to the cardinality of
the partition of non-preemptive groups.

Obviously, a small number of groups results in a lower requirement for the stack
size.

In the following section, we will show how it is possible to efficiently implement the
Preemption Threshold mechanism using the SRP, and extend it to be used under EDF.
In Section 6 we will present an optimization algorithm for reducing the stack size in
single processor systems.

5. Integrating Preemption Thresholds with the SRP

Our approach is based on the observation that the threshold values used in the Pre-
emption Threshold mechanism are very similar to the resource ceilings of the SRP.
In the SRP, when a task accesses a critical section, the system ceiling is raised to the
maximum between the current system ceiling and the resource ceiling. In this way, an
arriving task cannot preempt the executing task unless its preemption level is greater
than the current system ceiling. This mechanism can be thought as another way of
limiting preemptability.

Thus, if we want to make task �i and task �j mutually non-preemptive, we can let
them share a pseudo-resource �k: the ceiling of resource �k is the maximum between
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the preemption levels of �i and �j. At run time, instances of �i or �j will lock �k when
they start executing and hold the lock until they finish.

Suppose task �i needs a set of pseudo-resources �1; . . . ; �h. When �i starts execu-
tion, it locks all of them: in the SRP, this corresponds to raising the system ceiling to
maxk ceilð�kÞ. We define this value as the preemption threshold �i of task �i. Now, the
problem of finding an optimal assignment of thresholds to tasks is equivalent to find-
ing the set of pseudo-resources for each task. In the remaining of this paper, we will
indicate this modification of the SRP as SRPT (SRP with Thresholds).

Since SRPT can be thought as an extension of the SRP that add pseudo-resources
compatible with the traditional SRP resources, it can be easily shown that SRPT re-
tains all the properties of SRP.

The feasibility test for SRPT is given by one of Equations (1) and (2), except for the
computation of the blocking time, that is:

Bi ¼ maxðBlocal
i ; B

pseudo
i Þ

where Blocal
i and B

pseudo
i are respectively the blocking time due to local resources and

the blocking time due to pseudo-resources.

5.1. Blocking Due to Local Resources

Assuming relative deadlines equal to periods, the maximum local blocking time for
each task �i can be calculated using Equation (3). This can be easily proved: supposing
the absence of pseudo-resources, the SRPT reduces to the SRP, and the blocking times
can be calculated using equation (2).

5.2. Blocking Due to Pseudo-Resources

A task �i may experience an additional blocking time due to the non-preemptability of
lower priority tasks. This blocking time can be computed as follows:

B
pseudo
i ¼ max

�j2TPi
fCj j �i > �j ^ �i � �jg:

The non-preemptability of lower task is due to the use of pseudo-resources. The for-
mula of (Bpseudo

i ) is another way of writing formula (3), because:

� �i ismaxk ceilð�kÞ ¼ ceilð�k 0 Þwhere k 0 2 fk : �i ¼ ceilð�kÞg
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� (Ci) is the critical section duration for resource k 0 (remember that pseudo-
resources are locked when an instance starts and is unlocked when an instance
finishes; moreover,we can consider only the k 0 critical section for each task since
they all have length equal to Ci and 8 k; ceilð�kÞ � ceilð�k 0 Þ ¼ �i).

EXAMPLE Consider the example of Figure 2(b). The three tasks �0, �1 and �2 are
sporadic, and their computation times and minimum interarrival times are respectively
C0 ¼ 3; �0 ¼ 12, C1 ¼ 3; �1 ¼ 8, C2 ¼ 2; �2 ¼ 6. By definition of preemption level, we
have �0 < �1 < �2. We want to make �1 and �2 mutually non preemptive, so we intro-
duce a pseudo-resource �o. Every time �1 (or �2) starts executing, it locks �o, and holds
the lock until it finishes. The ceiling of �o is maxð�1; �2Þ ¼ �2. By definition of pre-
emption threshold, �1 ¼ �2 ¼ ceilð�oÞ ¼ �2, whereas �0 ¼ �0.

In this way, we have two preemption groups, the first consists of tasks �1 and �2, the
second contains only �0. Hence, the blocking time of �2 is:

B2 ¼ B
pseudo

2 ¼ C1 ¼ 3

and, substituting in Equation (1), the system results schedulable.

The algorithm works as follows [see Figure 2(b)]:

� At time t ¼ 0, task �0 is activated and starts executing.The system ceiling �s is
equal to �0.

� At time t ¼ 2,task �1 arrives, and since its priority is the highest and�s ¼ �0 < �1,
it preempts task �0.Now the system ceiling is equal to�s ¼ �1.

� At time t ¼ 3, task �2 arrives, and even though it has the highest priority, its pre-
emption level �2 is not higher than the current system ceiling. Hence, according
to SRP it is blocked, and �1 continues to execute.

� At time t ¼ 5, task �1 finishes, and the system ceiling returns to the previous value
�0. At this point, task �2 can start executing.The system ceiling is raised to �2.

Notice that, if �0 is also included in the same preemption group as �1 and �2, the
system remains schedulable and the stack size can be further reduced. œ

The SRPT presents two main advantages:

� It seamlessly integrates access to mutually exclusive resources and preemption
thresholdswithavery little implementation effort andwith noadditionaloverhead;

� It permits to implement the preemption threshold mechanism on top of EDF.
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The last issue can lead to further optimizations: the EDF scheduling algorithm has
been proven optimal both in the preemptive [18], [3], [4] and in the non-preemptive3

version [14]; furthermore, in [17] the authors claim that EDFþSRP is an optimal algo-
rithm for scheduling sporadic task sets with shared resources. Since EDF is optimal, it
is more likely that a given assignment of preemption thresholds produces a feasible
schedule. Therefore, we expect a better chance to trade processor utilization with a re-
duction in the maximum stack space requirement by reducing preemption.

It is clear that in our methodology we are sacrificing task response time versus
memory size. However, the response time of some task could be critical and should
be maintained as low as possible. In this case, it is possible to reduce the relative dead-
line of that task to increase its responsiveness. For simplifying the presentation, we do
not consider here the case of tasks with deadline smaller than the period. For further
details, please refer to [12].

6. Optimizing Stack Usage in Uniprocessors

In this section we present an algorithm that allows the optimization of the total stack
space requirement of a set of tasks using the SRPT protocol on uniprocessor systems.
The algorithm presented in this section implicitly uses pseudo resources to raise the
threshold of a task. To simplify the presentation, we do not consider here the use of
shared resources. Shared resources can be taken into account using the techniques pre-
sented in Section 4.2. The complete algorithm for multiprocessors will be presented in
Section 8.

The algorithm requires each task to be characterized by its worst case execution
time Ci, its period �i, its maximum stack requirement (in bytes) si and its preemption
level �i. At the end of the optimization algorithm, each task �i will be assigned a pre-
emption threshold �i and will be inserted in a non-preemptive group Gk. The goal of
the optimization algorithm is:

Step 1. To find an assignment of preemption thresholds to tasks, maintaining the fea-
sibility of the schedule; and

Step 2. To find the set of non-preemptive groups that minimizes the maximum re-
quired stack size.

Notice that unfortunately a preemption threshold assignment does not determine
univocally a set of non-preemptive groups. Hence, after assigning the preemption
threshold we still do not know the maximum number or tasks that can be on the stack
at the same time and how much memory must be allocated for the stack. For this
reason, we need to perform step 2.

Our optimization algorithm works as follows:
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� Tasks are ordered by decreasing preemption level;

� Step 1: We use the algorithm described in [22] to explore the space of possible
threshold assignments:4 starting with the task having the highest preemption level,
we try to raise the preemption threshold �i of each task �i, to the maximum level
that allows to preserve the schedulabilityofall tasks (i.e., incrementing the preemp-
tion threshold is allowed only if the task set remains schedulable).The algorithm
stops when a further increment on any task makes the system not schedulable.

� Step 2: Given a feasible assignmentofpreemption thresholds,we partition the task
set into non-preemptive groups and compute the maximum required stack size.

Our algorithm differs from the one in [22] in the final optimization objective: while
the algorithm in [22] tries to minimize the number of non-preemptive groups, our al-
gorithm accounts for the stack usage of each task and tries to minimize the total
amount of required stack. In fact, there are cases in [22] where the maximum overall
stack requirement does not correspond to the minimum number of groups, as shown
in the example of Figure 3. In this example there are 8 tasks, all having a stack frame
size of 1 except �5 and �7 which have a stack frame size of 100 [Figure 3(a)]. The par-
tition in non-preemptive groups provided by algorithm OPT-PARTITION in [22] is
(G1 ¼ f�1; �2g), (G2 ¼ f�3; �4; �5g), (G3 ¼ f�6; �7; �8g), which leads to a total stack
size of 201. However, note that task �7 and task �5 are mutually non-preemptive (in
fact, �5 < �7 and �7 < �5). If we consider groups (G1 ¼ f�1g), (G2 ¼ f�2; �3g),
(G3 ¼ f�4; �5; �7g), (G4 ¼ f�6; �8g) the total stack requirement is 103. Note that, in
this case, by using the solution with the minimum number of groups, we would have
overestimated the maximum stack requirement by a factor of 2.

Figure 3(b) shows the result of the preemption threshold assignment phase for our
example. The preemption thresholds of all tasks (except �1Þ are raised to the values in

Figure 3. An example:The minimum total stack size does not correspond to the minimum number of non-pre-
emptive groups: a) Initial task set,b) computationof the preemptionthresholds, c) reordering,andd) computation
of the maximal groups.

(a) (b) (c) (d)
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the column marked as �i. The algorithm used to partition the task set into preemption
groups (step 2) is described in the remaining of this section. First some definitions:

DEFINITION 3 A representative task for a non-preemptive group is the task having

the the smallest threshold among all the tasks in the group.
In the following, Gi will denote a non-preemptive group with representative task �i.

DEFINITION 4 A maximal group for �i is the biggest non-preemptive group that can

be created having �i as a representative task.
In the following, we denote with Mi the maximal group for task �i minus �i. For

example, if the maximal group for task �1 is f�1; �2; �3g, we denote M1 ¼ f�2; �3g.
With these definitions, the algorithms in step 2 is the following:

� Tasks are ordered by increasing preemption thresholds, ties are broken in order of
decreasing stack requirements. For clarifying the algorithm, after ordering we re-
name each task using an increasing index [see the example in Figure 3(c)]; this in-
dexwill be used fromnowon for identifying the tasks.Thus, if �i is assigned index j,
in the following it will be referred to as �j.Hence, according to the newordering,

i < j ) �i < �j _ �i ¼ �j ^ si � sj
� �

where si is the stack requirement for task �i

� The algorithm starts by finding the setMi for each task �i. In Figure 3(d),theMi are
computed for each task and are shown in the last column.

� Then, the algorithm calls a recursive function that allocates all tasks to non-
preemptive groups.

The function, called creategroup(), recursively computes all possible partitions of
the tasks into non-preemptive groups, and computes the maximum stack requirement
for each partition. The minimum among these requirements will be the maximum
memory for the stack that we need to allocate in our system.

Enumerating all possible partitions in non-preemptive groups clearly takes exponen-
tial time.We claim that the problem of finding the required stack memory size, given a
preemption threshold assignment, is NP-hard. This claim is supported by the observa-
tion that the problem is somewhat similar to a bin-packing problem, which is known to
be NP-hard.

Hence, a great effort has been devoted in trying to reduce the mean complexity of
Algorithm creategroup by pruning as soon as it is possible all the solutions that are
clearly non-optimal. In the following, we give a description of Algorithm creategroup,
and proof sketches of its correctness.
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The pseudo-code for creategroup is shown in Figure 6. The algorithm is recursive:
at each level of recursion a new non-preemptive group is created. The following global
variables are used: minstack contains the value of the candidate optimal solution and
is initialized to the sum of the stack requirements of all tasks; F is the set of tasks that
have not been allocated yet; G1; . . . ; Gn are the non-preemptive groups that will be
created by the function; M1; . . . ; Mn are the maximal groups. The parameters of

int ministack ¼
P

si;

F ¼ T ;

8i Gi ¼ fg;

1: creategroup ð�g , sumÞ {
2: int newsum;

3: Gg : insertð�gÞ;
4: �i ¼ Mg : queryFirstðÞ;
5: end ¼ false;

6: do {

7: 8�j 2 Mg if ð�j 2 F and j � iÞ {
8: Gg : insertð�jÞ
9: F : _removeremoveð�jÞ;
10: }

11: newsum ¼ sumþ stackUsageðGgÞ;
12: if ð!emptyðF ÞÞ {
13: if (condition1) {

14: �f ¼ F : removeFirstðÞ;
15: if (condition2) creategroupð�f ; newsumÞ;
16: else {

17: F :insertð�f Þ;
18: end ¼ true;

19: }

20: }

21: if ðGg 6¼ f�gg and !end {

22: while ðGg 6¼ �g and condition3Þ {
23: �h ¼ Gg : _removeLastremoveLastðÞ;
24: F : insertð�hÞ;
25: }

26: �i ¼ Mg : queryNextð�hÞ;
27: } else end ¼ true;

28: } else {

29: if ðnewsum < minstackÞ {
30: minstack ¼ newsum;

31: NewCandidateðÞ
32: }

33: end ¼ true

34: }

35: } while ð!endÞ;
36: F : _insertAllinsertAllðGgÞ;
37: Gg : _removeAllremoveAllðÞ;

Figure 4. The creategroup() recursive function.
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creategroup are �g, which is the representative task based on which a new group Gg

will to be created and sum that is the sum of the stack requirement of the already
created groups.

The key point in understanding how creategroup works is that the space of candi-
date solutions is explored in a well defined order: in particular, all the task sets men-
tioned so far are ordered by increasing preemption thresholds (ties are broken in order
of increasing stack requirements).

creategroup is first invoked with �1 (that is the task with the lowest preemption
threshold) and sum ¼ 0. When invoked (at the k-th level of recursion), function

Figure 6. Structure of the example.

Figure 5. Mean number of cuts for different task set sizes.
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creategroup builds a non-preemptive group for task �g by inserting all tasks from Mg

that are not allocated yet (lines 3 1̂0).
Now, if there are still tasks to be allocated (line 12), creategroup tries to recursively

call itself in order to compute the next group. However, this recursion is not performed
if we are sure that no better solution can be found in this branch (Condition 1 at line 13
and Condition 2 at line 15).

Then, the algorithm does backtracking, by extracting tasks from Gg and inserting
them back in F, in order to explore all possible configurations for this branch (lines
21^26). Condition 3 at line 22 further reduces the number of solution to be checked by
pruning some configuration of Gg that cannot improve the optimal solution.

If this is the last level of recursion for this branch (it happens when F is empty), we
check whether the current candidate solution is optimal, and, if it is the case, we save
the value of this solution in minstack and the current group configuration by calling
function NewCandidateðÞ. Notice that, before returning to the previous recursion level,
all tasks are removed from Gg (lines 36^37).

Now we describe the conditions that allow creategroup to prune non-optimal
branches. Let us define the required tasks as the representative tasks of the non-
preemptive groups found by Algorithm OPT-PARTITION (described in [22]). These
tasks are important because in every possible partition, they will always be in different
non-preemptive groups. Hence, our solution is bounded from below by the sum of the
stack sizes of the required tasks.

Condition 1 is false if the sum of newsum and the size of the stack of the required
tasks that have not been allocated yet is greater than or equal to minstack.

The correctness of this condition is trivially proven.
Condition 2 is false when �g ¼ �f .

THEOREM1 If Condition 2 does not hold, (i.e., �g ¼ �f ), then any solution with �f as
representative task of a new non-preemptive group cannot achieve a solution with a

lower stack requirement than the already explored solutions.

Proof. First we will prove that Gf � Mg. Consider �i 2 Gf , it follows that �i � �f ,
�f � �i and �f � �i. Since �f ¼ �g, it follows that �i � �f � �g, and �g � �g ¼ �f
� �i. As a consequence, �i and �g are mutually non preemptive, and �i is in Mg. Hence,
Gf � Mg.

Since the current iteration that has �g as a representative task visits all the subsets of
Mg, and Gf � Mg it follows that any configuration produced by calling recursively the
creategroup algorithm with representative task �f leads to an overall stack usage that
is bounded from below by the following expression:

stackUsageðGgÞ þ stackUsageðGf Þ �
stackUsageðGg [ Gf Þ � stackUsageðMgÞ:
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However, Mg is a branch that has already been explored (it is the first branch that
algorithm creategroup explores). Hence, the theorem follows.

Condition 3 is true when the task with the maximum stack requirement in Gg has
been removed, that is when the stack usage of Gg has been reduced.

THEOREM2 All the branches in which the task with the maximum stack requirement

has not been removed from Gg cannot lead to a better solution than the already

explored ones.

Proof Sketch. The basic idea is based on the fact that solutions are explored in a gi-
ven order. In particular, the first solution is the greedy solution, where Gg is the biggest
non-preemptive group that can be built.

When considering the next configuration for Gg, it must have a lower stack require-
ment than the previous one. In fact, all solutions in which Gg has the same stack re-
quirement are bounded from below by the first solution explored. Hence, Condition 3
forces the removal of tasks from Gg until its stack requirement is reduced.

We do not report the complete proof of this theorem due to space constraints. The
interested reader can refer to [12] for the complete proof. œ

As an example, a typical run of the algorithm on the task set of Table 1 will work
as follows:

� To find the first solution, three recursive calls are needed, creating groups
G0 ¼ f�0; �1; �2g, G3 ¼ f�3; �4; �5g, and G6 ¼ f�6; �7g, with a total stack of 201.
This first solution is equal to that found by the algorithm OPT-PARTITION pro-
posed in [22].

� Then, groupG6 is rolled back.Task 5 is removed from groupG3, and �i is set to the
next task (�5 will notbe reconsidered for inclusion in the next group configuration).
The re curs ive cal l s produc e g roups G0 ¼ f�0; �1; �2g, G3 ¼ f�3; �4g,
G5 ¼ f�5; �6g,G7 ¼ f�7g.

� GroupG7 is rolled back and �6 is removed from group G5.The recursive calls pro-
duce groupsG0 ¼ f�0; �1; �2g,G3 ¼ f�3; �4g,G5 ¼ f�5g,G6 ¼ f�6; �7g.

� Then, groups G6 and G5 are rolled back, and �4 is removed from G3. Now �i is
moved past �4, and �5 is re-inserted intoG3.Next, �4 and �7 are chosen as represen-
tative tasks g iving groups G0 ¼ f�0; �1; �2g, G3 ¼ f�3; �5g, G4 ¼ f�4; �6g,
G7 ¼ f�7g.

� Again, G7 is emptied and �6 is removed from G4. Group G6 is created, giving
groupsG0 ¼ f�0; �1; �2g,G3 ¼ f�3; �5g,G4 ¼ f�4g,G6 ¼ f�6; �7g.
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� At this point, groups G6 and G4 are removed; �5 is also removed from G3.Then,
groups G4 and G7 will be created, giving groups G0 ¼ f�0; �1; �2g, G3 ¼ f�3g,
G4 ¼ f�4; �5; �6g,G7 ¼ f�7g.

� After some other non optimal solutions, the first recursive call of creategroup()
will remove �2 from G0, letting the creation of group G2 ¼ f�2; �3; �4g that will
bring the algorithm to the optimal solution.

As already mentioned, the complexity of the algorithm is exponential in the number
of tasks. However, since the number of groups in the optimal solution is often small,
the number of combinations to evaluate is limited. Thanks to the efficiency of the
pruning, the number of solutions is further reduced. In Figure 6 the average number
of explored solutions (leafs) is plotted against the load of the system and for different
number of tasks: the resulting average number is quite low even for large task sets.We
conclude that, for typical embedded systems in the domain of automotive applications
where the number of tasks is relatively small, the problem is tractable with modern
computers.

7. Sharing Resources in Multiprocessors

When considering multiprocessor symmetric architectures, we wish to keep the nice
properties of EDF and SRP, that is high processor utilization, predictability and per-
fectly nested task executions on local processors. Unfortunately, the SRP cannot be
directly applied to multiprocessor systems.

In this section, we first propose an extension of the SRP protocol to multi-processor
systems and a schedulability analysis for the new policy. In the next section, we pro-
pose a simulated annealing based algorithm for allocating tasks to processors that
minimizes the overall memory requirements.

7.1. Multiprocessor Stack Resource Policy (MSRP)

Suppose that tasks have already been allocated to processors. Depending on this allo-
cation, resources can be divided into local and global resources. A local resource is
used only by tasks belonging to the same processor, whereas a global resource is used
by task belonging to different processors.

We concentrate our efforts on the policy for accessing global resources. If a task
tries to access a global resource and the resource is already locked by some other task
on another processor, there are two possibilities:

� the task is suspended (as in theMPCPalgorithm);

� the task performs abusy wait (also called spin lock).
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We want to maintain the properties of the SRP: in particular, we want all tasks be-
longing to a processor to share the same stack. Hence, we choose the second solution.
However, the spin lock time is wasted time and should be reduced as much as possible
(the resource should be freed as soon as possible). For this reason, when a task exe-
cutes a critical section on a global resource, its priority is raised to the maximum
priority on that processor and the critical section becomes non-preemptable.

In order to simplify the implementation of the algorithm, the amount of information
shared between processors is minimal. For this reason, the priority assigned to a task
when accessing resources does not depend on the status of the tasks on other proces-
sors or on their priority.The only global information required is the status of the global
resources.

The MSRP algorithm works as follows:

� For local resources, the algorithm is the same as the SRP algorithm. In particular,
we define a preemption level for every task, a ceiling for every local resource, and a
system ceiling�k for every processor Pk.

� Tasks are allowed to access local resource through nested critical sections. It is pos-
sible to nest local and global resources.However, it is possible to nest global critical
sections only if they are accessed in a particular order, otherwise a deadlock can
occur. For simplifying the presentation we did not consider nested global critical
sections: however, this improvement can be done with little effort.

� For each global resource, every processor Pk defines a ceiling greater than or equal
to the maximum preemption level of the tasks on Pk.

� When a task �i, allocated to processor Pk accesses a global resource � j, the system
ceiling �k is raised to ceilð� jÞ making the task non-preemptable.Then, the task
checks if the resource is free: in this case, it locks the resource and executes the
critical section. Otherwise, the task is inserted in a FCFS queue on the global re-
source, and then performs abusy wait.

� When a task �i, allocated to processor Pk, releases a global resource � j, the algo-
rithm checks the corresponding FCFS queue, and, in case some other task �j is
waiting, it grants access to the resource, otherwise the resource is unlocked.Then,
the system ceiling�k is restored to the previous value.

EXAMPLE Consider a system consisting of two processors and five tasks as shown in
Figure 7. Tasks �1, �2 and �3 are allocated to processor P1: task �3 uses local resource
�1, task �2 uses resources �1 and �2 through nested critical sections, and �1 does not
use any resource. Tasks �4 and �5 are allocated to processor P2: task �4 uses the global
resource �2 and �5 does not uses resources.The parameters of the tasks are reported in
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Table 1. The ceiling for resource �1 is 2. The ceiling for resource �2 on processor P1 is
3, and on processor P2 is 2. A possible schedule is shown in Figure 7. Notice that:

� At time t ¼ 3, task �2 is blocked because its preemption level �2 ¼ 2 is equal to the
current system ceiling�1 ¼ 2 on processor P1.

� At time t ¼ 5, task �3 locks resource �2 and raises the system ceiling�1 to 3.

� At time t ¼ 6,task �4 tries to access the global resource �2 which is currently locked
by �2. Thus, it raises the system ceiling of processor P2 to 2 and performs a
busy wait.

� At time t ¼ 7, both �1 and �5 are blocked, because the system ceilings of the two
processors are set to the maximum.

Figure 7. An example of schedule produce by theMSRPon two processors.

Table 1. The ExampleTask Set

Ci �i !1
ij !2

ij tsi C0
i Blocal

i Blocal
i

�1 2 3 0 0 0 2 0 7
�2 6 2 2 0 0 6 9 7
�3 11 1 9 4 3 14 0 0
�4 7 1 0 3 4 11 0 0
�5 2 2 0 0 0 2 0 7
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� At time t ¼ 8, task �3 releases the global resource �2 and task �4 can enter the cri-
tical section on �2. At the same time, the system ceiling of processor P1 is set back
to 2, and task �1 can make preemption.

7.2. Schedulability Analysis of the MSRP

First, we give an upper bound on the time that task �i, allocated to processor Pk, can
spend waiting for a global resource � j. In the following, we refer to this time as spin

lock time and denote it as spinð� j; PkÞ.

LEMMA1 The spin lock time that every task allocated to processor Pk needs to spend

for accessing a global resource � j 2 R is bounded from above by:

spinð� j; PkÞ ¼
X

p2fP�Pkg
max

�i2Tp; 8 h
!j
ih:

Proof. On each processor, only one task can be inside a global critical section or wait-
ing for a global resource. In fact, when a task tries to access a critical section on a
global resource, it first raises the system ceiling to the maximum possible value, be-
coming non-preemptable. Tasks that are waiting on a global critical section are served
in a FCFS order: hence, a task allocated to Pk that tries to access �j, has to wait for at
most the duration of the longest global critical section on �j for each processor p 6¼ Pk.
This condition does not depend on the particular task on processor Pk. Hence, the
lemma follows.

Basically, the spin lock time increments the duration !
j
ih of every global critical sec-

tion �jih, and, consequently, the worst case execution time Ci of �i. Moreover, it also
increments the blocking time of the tasks allocated to the same processor with a pre-
emption level greater than �i.

We define totalspini as the maximum total spin lock time experienced by task �i.
From the previous lemma,

totalspini ¼
X
�
j

ih

spinð� j; PiÞ:

We also define the actual worst case computation time C0
i for task �i as the worst

case computation time plus the total spin lock time:

C0
i ¼ Ci þ totalspini:
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Now, we demonstrate that the MSRP maintains the same basic properties of the
SRP, as shown by the following theorems.

LEMMA 2 When task �j starts executing:

1. All the local resources required by the �j are unlocked;

2. All the local resources required by every task that can preempt �j are unlocked.

Proof. By contradiction.

1. Suppose that, after �j starts executing, it needs resource �k which is locked by some
other task.Since �j is executing, �j > �s.Moreover, since �j needs �k, ceilð�kÞ � �j.
But �k is locked, so�s � ceilð�kÞ � �j, and this is a contradiction.

2. Suppose that at time t a task �H preempts �j, and that it needs a local resource �k

which is locked. By hypothesis, �H > �j > �s (because �H can preempt �j) and
�s � ceilð�kÞ (because �k is locked).The lemma follows because �H uses �k, that
implies ceilð�kÞ � �H.

THEOREM3 Once a job starts executing it cannot be blocked, but only preempted by

higher priority jobs.

Proof. We prove the theorem by induction. Suppose there are n tasks that can pre-
empt �j.

If (n ¼ 0), no task can preempt �j. Since when �j started executing �j > �sðtÞ, Lem-
ma 2 guarantees that all the resources required by task �j are free, so it can run to
completion without blocking.

If (n > 0), suppose that a task �H preempt �j. By induction hypothesis �H cannot be
blocked, so when it finishes it will release all the resources that it locked, and the task
�j will continue until the end since it has all the resources free.

Note that a job can be delayed before starting execution by the fact that the system
ceiling is greater than or equal to its preemption level. This delay is called blocking

time. The following theorem gives an upper bound to the blocking time of a task.

THEOREM 4 A job can experience a blocking time at most equal to the duration of

one critical section (plus the spin lock time, if the resource is global) of a task with

lower preemption level.
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Proof. By contradiction. Suppose that a task �j is blocked for the duration of at least
2 critical sections corresponding to resources �1 and �2. First, suppose that �1 is a
local resource (�2 can be either local or global). It must be the case that there are
two lower priority tasks �L1 and �L2. The first task locked a resource �1 and, while in
critical section, it is preempted by �L2 that locked another resource �2.While �L2 is still
in critical section, �j arrives, and it has to wait for �1 and �2 to be free. This scenario
cannot happen, because we have that ceilð�1Þ � �j > �L2 (since �j uses �1 and pre-
empted �L2, and �L2 > ceilð�1) (since �L2 preempted �L1, when �L1 locked �1).

Now suppose �1 is a global resource and consider the previous scenario. When �L1
locked �1, �L1 become non-preemptable, so �L2 cannot preempt �L1.

Finally, note that the length of every global critical section consists of the critical
section itself, plus the spin-lock time due to the access to global resources.

It is noteworthy that the execution of all the tasks allocated on a processor is per-
fectly nested (because once a task starts executing it cannot be blocked), therefore all
tasks can share the same stack.

For simplicity, the blocking time of a task can be divided into blocking time due to
local and global resources. In addition, if we consider also the preemption threshold
mechanism, we have to take into account the blocking time due to the pseudo-
resources:

Bi ¼ maxðBlocal
i ; B

global
i ; B

pseudo
i Þ

where Blocal
i , Bglobal

i and B
pseudo
i are:

7.3. Blocking Time Due to Local Resources

This blocking time is equal to the longest critical section �kjh among those (of a task �j)
with a ceiling greater than or equal to the preemption level of �i:

Blocal
i ¼max

j;h;k
f!k

jh j ð�j 2 TPi
Þ ^ ð�k is local to PiÞ

^ ð�i > �jÞ ^ ð�i � ceilð�kÞÞg:

7.4. Blocking Time Due to Global Resources

Assume the task �i, assigned to processor Pi, is blocked by a task �j (�j < �i) which is
assigned to the same processor Pi, and which is waiting for, or it is inside, a global
critical section �kjh. In this case, the blocking time for task �i is,

B
global
i ¼max

j; h; k
f!k

jh þ spinð�k ; PiÞ j ð�j 2 TPi
Þ ^

ð�k is globalÞ ^ ð�i > �jÞg:
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7.5. Blocking Time Due to Pseudo Resources

As explained in the previous sections, this blocking time is due to the fact that a task �i
can be mutually non-preemptive with other tasks on the same processor: here, the only
difference with the SRPT is that we have to consider the actual worst case execution

time instead of the worst case execution time.

B
pseudo
i ¼ max

�j2TPi
fC0

j j �i > �j ^ �i � �jg:

THEOREM 5 Suppose that tasks on processor Pk are ordered by decreasing

preemption level. The schedulability test is as follows:

8 Pk 2 P TPk
¼ f�1; �2; . . . ; �nkg 8 i ¼ 1; . . . ; nk

Xi
l¼1

C0
l

�l
þ Bi

�i
� 1: (4)

Proof. Consider a generic task �i on processor Pi. To be schedulable under MSRP
with preemption thresholds, it must be schedulable under EDF considering all the
blocking times and the spin locks. Hence, a guarantee formula for task �i can be writ-
ten as

Xi�1

l¼1

C0
l

�l
þ C0

i

�i
þ Bi

�i
� 1

where the first part is the bandwidth stolen by tasks that preempt �i, C0
l takes into

account the wasted bandwidth for the spin-lock time of each preempter task. The sec-
ond part accounts for the execution time and the spin-lock time of the task to be guar-
anteed. The third part accounts for the largest blocking time experienced by �i due to
the use of resources by lower priority tasks.

In the same way, we can rewrite Equation (2) as follows:

8 Pk 2 P TPk
¼ f�1; �2; . . . ; �nkg 8 i; 1 � i � nk

8 L; �i � L � �nk L �
Xi
l¼1

L

�l

� �
C0
l þ Bi:

(5)

Please note that the blocking factor influences only one element of the guarantee
formula, whereas the spin lock time influences both the blocking time and the worst
case execution time. This implies that, when designing an allocation algorithm, one of
the goals is to reduce the spin lock time as much as possible. Another noteworthy

STACKSIZEMINIMIZATION FOREMBEDDEDREAL-TIMESYSTEMS-ON-A-CHIP 77



observation is that, using the MSRP, each processor works almost independently from
the others. In particular, it is possible to easily apply this algorithm to non-
homogeneous multiprocessor systems.

EXAMPLE For the task set of the previous example, the total spin lock time tsi, the
actual worst case execution time C0

i, the local and global blocking times are reported in
Table 1. œ

The main differences between the MSRP and the MPCP are the following:

� UnlikeMPCP,with theMSRP it is possible to use one single stack for all the tasks
allocated to the same processor.

� TheMPCP ismore complex anddifficult to implement than theMSRP. In fact,the
MSRP does not need semaphores or blocking queues for local resources,whereas
global resources need only a FIFO queue (an efficient implementation can be
found in [6]).

� TheMSRP, like the SRP,tends to reduce the numberof preemptions in the system,
hence there is less overhead. However, this comes at the cost of a potentially large
spin lock time.

In general, there are situations in which, given an allocation of tasks to processors
with resource sharing, MSRP performs better than MPCP, and vice versa. this fact
mainly depends on the different blocking time formulas that are used.We are currently
investigating a better characterization of the two algorithms. The comparison in fact is
made difficult by the fact that there are more than 8 parameters that can vary in an
independent way. That comparison is outside the scope of this paper, and will be pre-
sented as a future work.

8. Optimizing Stack Usage in Multiprocessors

Sections 5 and 7 provide the basis for the implementation of run-time mechanisms for
global and local resource sharing in multiprocessor systems. Given a task allocation,
the policies and algorithms presented in this paper allow to search for the optimal
assignment of preemption thresholds to tasks and to selectively group tasks in order
to reduce RAM consumption. However, the final outcome depends on the quality of
the decisions taken in the task allocation phase. Moving one task from one processor
to another can change the placement of (some of) the shared resources accessed by it
(some global resources become local and vice versa) and the final composition of the
non-preemptive groups on each processor. Unfortunately, the task allocation problem
has exponential complexity even if we limit ourselves to the simple case of deadline-
constrained scheduling.
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A simulated annealing algorithm is a well-known solution approach to this class of
problems. Simulated annealing techniques (SA for short) have been used in [24], [22],
to find the optimal processor binding for real-time tasks to be scheduled according to
fixed-priority policies, in [19] to solve the problem of scheduling with minimum jitter
in complex distributed systems and in [25] to assign preemption thresholds when sche-
duling real-time tasks with fixed priorities on a uniprocessor. In the following we show
how to transform the allocation and scheduling problem which is the subject of this
paper into a form that is amenable to the application of simulated annealing. Our so-
lution space S (all possible assignments of tasks to processors) has dimension pn where
p is the number of processors and n is the number of tasks.We are interested in those
task assignments that produce a feasible schedule and, among those, we seek the as-
signment that has minimum RAM requirements. Therefore we need to define an ob-
jective function to be minimized and the space over which the function is defined.

The SA algorithm searches the solution space for the optimal solution as follows: a
transition function TR is defined between any pair of task allocation solutions
ðAi; AjÞ 2 S and a neighborhood structure Si is defined for each solution Ai containing
all the solutions that are reachable from Ai by means of TR. A starting solution A0 is
defined and its cost (the value of the objective function) is evaluated. The algorithm
randomly selects a neighbor solution and evaluates its cost. If the new solution has
lower cost, then it is accepted as the current solution. If it has higher cost, then it is
accepted with a probability exponentially decreasing with the cost difference and
slowly lowered with time according to a parameter which is called temperature.

Due to space constraints, we will not explain in detail the SA mechanism and why it
works in many combinatorial optimization problems. Please refer to [1] for more
details.

Our transition function consists in the random selection of a number of tasks and in
changing the binding of the selected tasks to randomly selected processors. This simple
function allows to generate new solutions (bindings) at each round starting from a se-
lected solution. Some of the solutions generated in this way may be non schedulable,
and therefore should be eventually rejected. Unfortunately, if non-schedulable solutions
are rejected before the optimization procedure is finished, there is no guarantee that
our transition function can approach a global optimum. In fact, it is possible that every
possible path from the starting solution to the optimal solution requires going through
intermediate non-schedulable solutions (see Figure 8).

If non-schedulable solutions are acceptable as intermediate steps, then they should
be evaluated very poorly. Therefore, we define a cost function with the following
properties:

� Schedulable solutions must always have energy lower than non-schedulable solu-
tions;

� The energy of schedulable solution is proportional to the worst case overall RAM
requirements for stack usage;
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� The energy of non schedulable solutions is proportional to the maximum excess
utilization resulting from the evaluation of formula (4) for non-schedulable tasks.

The purpose of the last requirement is to rank non-schedulable solutions. We feel
that solutions that are close to schedulability should be preferred to solutions which
are definitely non schedulable. If all non schedulable solutions would be evaluated as
equal there is an (albeit small) chance that the algorithm keeps jumping from one non
schedulable solution to the other (the transition cost always being 0) endlessly.

If TotalStack is the overall stack requirement, obtained by adding up the stack re-
quirements of all tasks, and OptStack is the overall stack requirement, evaluated for
schedulable sets after the computation of optimal preemption thresholds and task
groups (see Section 6), then our cost function is the following:

max8 �i
Xn
k¼i

C0
k

�k
þ Bi

�i

 !
� TotalStack non schedulable assignment

TotalStack þ� � ðOptStack � TotalStackÞ schedulable assignment.

8>><
>>:

When the assignment is non schedulable, we use the result of the guarantee test
[Equation (1)] as an index of schedulability. In fact, as the system load, blocking time
or spin-lock time increase, the system becomes less schedulable. When the assignment
is schedulable, the cost function does not depend on processor load but returns a value

Figure 8. Non feasible solutions must be accepted in order to reach the optimal solution.
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that is proportional to the reduction of stack with respect to the total stack
requirement.

The � factor estimates the average ratio between the stack requirements before task
grouping and the stack requirements after optimization and is defined as:

� ¼ ncpu � meangroups
ntask

where ncpu is the number of CPU in the system, meanstack is the mean stack value of
all tasks, meangroups estimates the typical number of preemption groups on a unipro-
cessor. The latter value should be chosen to be near to the results obtained in the si-
mulation experiments done for uniprocessors. In our experiments, for example, we
chose a value of 4, that is near the double of the mean value obtained from the simula-
tion results (see Section 9).

The � factor has been introduced to smooth the steep increase in the cost function
when going from schedulable solutions to non-schedulable assignments. This improves
the chances for the simulated annealing algorithm to escape from local minima (which
might require accepting a non-schedulable solution).

The experimental results (next section) show the effectiveness of our SA-based bind-
ing algorithm when simulating task sets scheduled on 4-processor system-on-a-chip
architectures.

9. Experimental Evaluation

We extensively evaluated the performance of our optimization algorithms on a wide
range of task set configurations.

Uniprocessor experiments In every experiment, tasks’ periods are randomly chosen
between 2 and 100. The total system load U ranges from 0.5 to 0.99, with a step of 0.01:
the worst case execution time of every task is randomly chosen such that the utiliza-
tion factors sum up to U.The number of tasks in the task set ranges from 1 to 100, and
the stack frame size is a random variable chosen between 10 and 100 bytes except for
the experiments of Figures 11 and 12 in which the stack size ranges between 10 and
400 bytes.

In Figure 9 the average number of preemption groups is shown. Figure 10 is a cross-
cut section of Figure 9.

Note that:

� The figure has a maximum forNTASK¼ 4 andU ¼ 0.99. As the number of tasks
increases, the number of preemption groups tends to 2; this can be explainedwith
the fact that,when the number of tasks grows, each task has a smaller worst case
execution time; hence, the schedule produced by a non-preemptive scheduler does
not differ significantly from the schedule produced by a preemptive scheduler.On
the contrary,with a small number of tasks, the worst case execution time of each
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task is comparable with the period; hence it is more difficult to find a feasible non-
preemptive schedule.

� Figure 9 shows how the average number of preemption groups is almost indepen-
dent of the utilization factor and of the number of tasks, except for a very limited
number of tasks (<10) and a high utilization factor (>0:8).

� The average number of groups is not only constant but also very close to 2.This
means that the application of Preemption Threshold techniques, together with
EDF,allows agreat reduction in the numberof preemption levels andgreat savings
in the amountof RAMneeded for saving the task stack frames.RAMreduction in
the order of 3 to 16 times less the original requirements can easily be obtained.

In Figure 11, we compare the optimization algorithm presented in [22] (which does
not take into account the stack frame size of the tasks) and our algorithm, to show the
improvement in the optimization results. The figure shows the fraction of experiments
where the optimal solution has been found by the original algorithm.The ratio appears
as a function of the system load and for different stack sizes. In most cases (from 60%
to 80%), the algorithm proposed in [22] finds the optimal partition of the task set in
preemption groups. This ratio decreases as the load increases and as the range of the
stack size requirements is widened. In Figure 12, we plot the average and maximum
improvement given by our approach, and its variance varying the spread of the
task size.

Multiprocessor Experiments. In the first set of experiments, we consider 4 CPU, 40
resources, and 40 tasks. Tasks’ periods are randomly chosen between 1 and 1000. The
total system load U ranges from 2.76 to 3.96, with a step of 0.2. The stack frame size of

Figure 9. Average number of preemption groups.
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Figure 10. Average number of preemption groups for different task set sizes.

Figure 11. Ratio of improvement given by our optimization algorithm.
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Figure 12. Average, maximum and variance of improvement given by our optimization algorithm when ran-
domly varying the tasks stack size from 1 to f20; 50; 100; 200; 400g.

Figure 13. Ratio of improvement given by our multiprocessor optimization algorithmwhenvarying the utiliza-
tion of shared resources.
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each task is a random variable chosen between 10 and 100 bytes. Each task has 0 to 4
critical sections that lock randomly selected resources; the sum of the worst case ex-
ecution times of the critical section accessed by each single task is in the range of 0^
20%, 5^25%, 10^30%, 15^35%, 20^40% of the task worst case execution time (depend-
ing on the simulation, see Figure 13).

In Figure 13 we plot the stack gain ratio between the overall stack requirement be-
fore optimization and the stack memory requirement of the solution found by our SA
algorithm. In all the experimental runs the solution found by our SA routine saves a
considerable amount of RAM even when compared to the first schedulable (and opti-
mized for RAM consumption) solution found. The average improvement between the
first schedulable solution found and the final optimized result in 58 runs is 34.6% (min
18%, max 49%).

Running times can be a concern when using a simulated annealing solution. Our
algorithm can be run in a few hours on modern computers (Figure 14 shows typical
computation times as a function of the task set size). The execution of the simulated
annealing routine takes 6 to 30 hours on an Intel Pentium III 700Mhz to complete the
cooling. For example, a typical execution (Total U ¼ 2.76, critical section ratio 0.10 to
0.30) visited 15,900,000 assignments (one every 4 ms) and found 6,855,560 schedulable
solutions. These results are quite acceptable considered that task allocation is a typical
design time activity.

Figure 14. Average computation times for the simulated annealing algorithm as a function of the problem size.
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10. Conclusions and Future Works

This paper has been strongly motivated by the arrival of the new generation of multi-
ple-processor on-a-chip systems for embedded applications. These platforms not only
require real-time executives, but also ask for kernel mechanism that save as much
RAM space as possible, RAM memory being one of the most expensive components
in those systems.

In this paper, we present a solution for scheduling real-time tasks in single and mul-
tiple processor systems with minimal RAM requirements. In uniprocessor systems,
our solution seamlessly integrates Earliest Deadline scheduling techniques, the Stack
Resource Policy for accessing shared resources, plus an innovative algorithm for the
assignment of preemption thresholds and the grouping of tasks in non-preemptive sets.
Our methodology allows to evaluate the schedulability of task sets and to find the
schedulable solution (the task groups) that minimize the RAM requirements for stack.

We also provide an extension of the SRP policy to multiprocessor systems and glo-
bal shared resources (MSRP) and a task allocation algorithm based on simulated an-
nealing. The main contribution of our work consists in realizing that real-time
schedulability and the minimization of the required RAM space are tightly coupled
problems and can be efficiently solved only by devising innovative solutions.The objec-
tive of RAM minimization guides the selection of all scheduling parameters and is a
factor in all our algorithms. The experimental runs show an extremely effective reduc-
tion in the occupation of RAM space when compared to conventional algorithms.We
plan to implement the algorithms described in this paper in a new version of our ERI-
KA kernel5 for the JANUS architecture (2-processors in a single chip).

Notes

1. http://www.madess.cnr.it/Summary.htm
2. In the case ofmulti-units resources,the ceiling of each resource is dynamic as it depends on the current num-

ber of free units.
3. The non-preemptive version of the EDFalgorithm is optimal for sporadic task sets among all the non-idle

(work conserving) non-preemptive scheduling algorithms.
4. Since EDF is optimal, there is no need to find an initial priority assignment for the task set.
5. http://erika.sssup.it
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