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Abstract

In distributed real-time systems, an application is often modeled as a set of real-time transactions, where each transaction is a
chain of precedence-constrained tasks. Each task is statically allocated to a processor, and tasks allocated on the same processor
are handled by a single-processor scheduling algorithm. Precedence constraints among tasks of the same transaction are modeled
by properly assigning scheduling parameters as offsets, jitters and intermediate deadlines.

In this paper we address the problem of schedulability analysis of distributed real-time transactions under the earliest deadline
first scheduling algorithm. We propose a novel methodology that reduces the pessimism introduced by previous methods by ex-
plicitly taking into account the offsets of the tasks. Moreover, we extend the analysis to account for blocking time due to shared
resources. In particular, we propose two kinds of schedulability tests, CDO-TO and MDO-TO, and show, with an extensive set
of simulations, that they provides improved schedulability conditions with respect to classical algorithms. Finally, we apply the
methodology to an important class of systems: heterogeneous multiprocessor systems, with a general purpose processor and one
or more coprocessors (DSPs).
© 2006 Published by Elsevier Inc.
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1. Introduction

Distributed real-time systems are widely used in many industrial areas. Notable examples can be found in factory
automation, automotive systems, flight control, etc. Usually, a distributed real-time system is modeled as a set of real-
time periodic transactions. Each transaction is a sequence of tasks that are periodically activated, where each task is
statically allocated to one computational node. Tasks must execute in order, i.e. a task can start executing only after
the preceding task in the transaction has completed. Each transaction is assigned an end-to-end deadline: the time
between the activation of the transaction and the finishing time of the last task in the sequence must not exceed the
transaction deadline. A set of transactions is said to be schedulable if all transactions complete before their deadlines.
A schedulability tests is an algorithm that given the parameters of all transactions returns true if the set is schedulable.
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If a necessary and sufficient test returns false, the system is not schedulable (i.e. a transactions can miss its deadline
at some point). If a sufficient test returns false, the set may or may not be schedulable.

Schedulability analysis of distributed real-time systems is an important problem that has been studied for a long
time by the research community. Solutions have been proposed both for fixed priority scheduling [1,2] and for earliest
deadline first (EDF) [3,4]. Usually, the precedence constraints in the transaction are modeled by assigning each task
an initial offset and a maximum jitter [1]. The initial offset φij of a periodic task is the instant of the first activation of
the task. Every successive activation is a multiple of the task period plus the initial offset. However, even if a periodic
task is activated as some time t its release time (i.e. the time from which it can start executing) may be delayed due to
the precedence constraint. In fact, a task belonging to a transaction may start only after it has been activated and the
preceding task in the transaction has completed execution. Hence maximum jitter is the maximum time interval it can
occur from the task activation until the completion time of the preceding task in the transaction.

By introducing offsets and jitters to model precedence constraints, the schedulability problem for a distributed
system with P computational nodes is reduced to P single-node schedulability problems. On each node, we need
to test the schedulability of a set of independent periodic tasks. In this problem, a very important role is played by
task offsets. A set of periodic tasks is said to be synchronous if the first activation of every task is at the same time.
Conversely, a set of tasks is said to be asynchronous if each task has an initial offset. In the case of transactions, on
each computational node we must test the schedulability of an asynchronous task set. Unfortunately, any necessary
and sufficient feasibility test for asynchronous tasks requires an exponential time to run [5]. Therefore, one interesting
problem is to find an efficient yet tight schedulability condition for asynchronous task sets.

In a previous paper [6,7], we presented a new sufficient schedulability test for asynchronous task sets that we
showed to be much tighter than previous existing tests. In this paper, we apply such method to the problem of EDF-
schedulability analysis of distributed transactions. The goal is to obtain a less pessimistic analysis without losing
too much on efficiency. This extension is not trivial, as we will show in Section 3. Previous works on such problem
has been based on the holistic analysis, first proposed by Tindell and Clark [1] and later improved by Palencia and
Gonzàlez [2,4]. In such analysis, the worst-case response time of each task is used to set the offset and the jitter of
the successive task in the same transaction. Then, the computation of worst-case response times is iterated until a
stable solution is found. If response times are bounded, the holistic method is guaranteed to converge to a solution.
Unfortunately, as we will see in Section 3, by applying our method to the holistic analysis in a straightforward way,
the resulting algorithm does not converge. Therefore, in this paper we propose a modification of the holistic analysis
eliminating the jitter parameter. We propose two new algorithms, CDO and MDO, and prove their convergence.

To summarize, the main contribution of this paper are the following:

• First, in Section 3 we introduce a new methodology for worst-case response time analysis of distributed transac-
tions that takes into account task and transaction offsets.

• Second, in Section 4 we present CDO and MDO, two new iterative algorithms for holistic analysis that make full
use of our new methodology.

• In Section 5, we show that both algorithms are effective with an extensive set of simulations with synthetic
transactions.

• In Section 6 we show how our algorithms can be augmented to account for resources shared among tasks.
• Finally, in Section 7 we also show how to apply our methodology to a specific yet important real case: a het-

erogeneous multiprocessor system with one general purpose processor and one or more dedicated digital signal
processors (DSPs).

2. System model and notation

In this section, we introduce the notation and the model used throughout the paper. We consider the feasibility
problem of a transaction set consisting of M real-time periodic transactions T1, . . . ,TM and P processors p1, . . . , pP .

2.1. Transactions

A transaction Ti is a sequence of Ni tasks, τi1, . . . , τiNi
with precedence constraints: a task τij , j � 2, can start

executing only after the preceding task τi,j−1 has completed execution. We assume that all transaction and task
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parameters are expressed by natural numbers. Time is divided into slots, starting from 0: t ∈N . In what follows, we
will refer to a busy period [t1, t2) for a processor pi as an interval of time in which pi is always busy.

Each transaction Ti is characterized by period Ti and offset φi , such that the kth instance of each transaction is
activated at time ak

i = φi + (k − 1)Ti . Each transaction is further characterized by an end-to-end relative deadline Di ,
that is the maximum time between the activation of the transaction and the finishing time of the last task.

2.2. Tasks

Each task τij is characterized by its assigned processor pij ∈ p1, . . . , pP , a worst-case computation time Cij , an
offset φij and an activation delay δij . The task period is equal to the period of the transaction the task belongs to. The
offset φij is the time at which the task is activated by the periodic timer relative to the transaction activation time:
therefore, each task’s job τ k

ij has an activation time ak
ij = ak

i + φij . However, even if job τ k
ij has been activated at

time ak
ij it cannot start executing until after a certain delay δij from the completion time of the preceding job τ k

i,j−1.
If we denote with Rk

ij the response time of job τ k
ij relative to the transaction activation ak

i , we have the following

relationship for the release time sk
ij of τ k

ij :

sk
i1 = ak

i + δi1,

sk
ij = ak

i + Rk
i,j−1 + δij ∀1 < j � Ni. (1)

Since a job must be activated before being released, for all jobs τ k
ij it must clearly hold ak

ij � sk
ij . In practice, this is

easily verified if the offset φij is set to be equal to the minimum possible release time for jobs of τij .
Palencia and Gonzàlez [2] showed that this model is useful for systems where tasks suspend themselves and

for distributed or multiprocessor transactions; values δij are particularly useful as they can be used to model both
suspension times and transmission delays.

pij is the processor to which the task is statically bound; note that tasks pertaining to the same transaction may be
executed on different processors. Also note that since no task migration is allowed, we do not make any assumption
about the processors; in particular, they do not need to share a common memory architecture.

2.3. Critical sections

Tasks that are allocated on the same processor (pertaining to the same or to different transactions) can access critical
sections of code on shared resources. The usage of critical sections ensures that all resources are accessed in exclusive
mode. To simplify our presentation, only single-unit resources are considered, although there are ways to consider the
case of multi-unit resources [8]. We assume that no resource is shared among tasks executed on different processors.
We consider a set R of R shared resources ρ1, . . . , ρR . Each task τij may access ηij different critical sections. Each
critical section ξijk is described by a 3-ple (ρijk,ψijk,Cijk), where:

1. ρijk ∈ R is the resource being accessed;
2. ψijk is the earliest time, relative to the activation time of job τijk , that the task can enter ξijk ;
3. Cijk is the worst-case computation time of the critical section.

Critical sections can be properly nested in any arbitrary way, as long as their earliest entry time and worst-case
computation time is known. Our model, first proposed in [9], is actually slightly different from the classic one used in
the literature in that it requires earliest entry time to be known. Note that if earliest entry times are unknown, they can
simply be set to zero, although this leads to increased pessimism in the analysis.

2.4. Scheduling algorithm

Our scheduling algorithm of choice is earliest deadline first (EDF). On each processor, EDF schedules the job with
the earliest absolute deadline.

Until now, we have defined deadline for transactions. To schedule a transaction-based system under EDF, we must
assign a relative deadline to each task. For each task τij , we define a global relative deadline Dij as the deadline
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relative to the activation time of Ti , i.e. the kth job of task τij is then assigned an absolute deadline dk
ij = ak

i + Dij .
For the sake of simplicity, we also define a deadline dij relative to the activation time of Ti : dij = Dij −φij . Obviously
DiNi

= Di .
The worst-case global relative response time Rij of task τij is the maximum possible response time Rk

ij for any
job τ k

ij , i.e. it is the greatest difference between the completion time of some job τ k
ij and the activation time ak

i of
its transaction. A real-time transaction system is thus schedulable if and only if for all tasks of all transactions, the
worst-case global relative response times are less than or equal to the corresponding global relative deadlines. Based
on offsets, we can also define for each task τij a worst-case response time rij relative to the activation time of the task:
rij = Rij − φij .

The deadline of the last task in the transaction is often called the end-to-end deadline and it is a physical constraint
given by the application. The deadline of the intermediate tasks are not proper constraints but free parameters used by
the scheduling algorithm and by the schedulability analysis. The designer can freely assign and modify such deadlines
in order to make schedulability easier or according to some global optimality function.1

Unfortunately, the problem of optimally assigning these intermediate deadlines can be proven to be NP-Hard. The
proof is a trivial reduction from 3-partition along the line of [10]. The best known heuristic so far is a modification
of the one used by Palencia and Gonzàlez [4], and consists of assigning each task a deadline proportional to its
computation time, subtracting from the end-to-end deadline the delay times:

Dij =
(

Di −
∑

1�k�Ni

δik

) ∑
1�k�j Cik∑

1�k�Ni
Cik

+
∑

1�k�j

δik. (2)

Note that since the deadline heuristic is not optimal, there are transaction sets that are schedulable for some deadline
assignments but not for the one given by Eq. (2). In this case, it could make sense to explore the space of the different
assignments trying to find one that guarantees schedulability. However, devising a good search algorithm over the
space of deadline assignments is difficult in the general case, since it is not easy to understand how a change in the
deadline of a task affects the response times of tasks of different transactions. Therefore, in the general case we will
only consider the heuristic provided by Eq. (2), while in Section 7.3 we will propose more sophisticated heuristics for
a specialized case.

3. Holistic analysis

The system model presented in Section 2 implies a precedence constraint among tasks pertaining to the same
transaction. However, precedence constraints are hard to consider in any schedulability analysis. Therefore, task jitters
are introduced in order to enforce the precedence constraints.

The release jitter Jij of τij is the maximum difference between the activation time ak
ij of a job τ k

ij and its release
time sk

ij . The model with offsets and jitters is exemplified in Fig. 1. Once release jitters have been defined, we can
enforce the precedence constraints by setting offsets and jitters so that a job τ k

ij suffering maximum jitter is always
released at least δij time units after the previous job τ k

i,j−1 has finished. Hence, we can apply one of the response
time analysis that are introduced in Sections 3.1 and 3.2 in order to compute the worst-case response times and thus

Fig. 1. Model of a transaction Ti consisting of 3 tasks τi1, τi2, τi3, with their parameters.

1 It is worth noticing that in EDF intermediate deadlines play the same role as the tasks priorities in fixed priority scheduling.



190 R. Pellizzoni, G. Lipari / Journal of Computer and System Sciences 73 (2007) 186–206
determine if the transaction set is feasible. Unfortunately, offsets and jitters depend on task response times. To solve
this problem, we use variations of the holistic analysis first developed by Tindell and Clark [1]. The main idea is to use
an iterative method that at each step, starting from some initial offsets and jitters, first computes the response times
and then updates offsets and jitters.

We proceed as follows. In the following Sections 3.1 and 3.2 we describe two different response time analyses for
transaction sets scheduled by EDF. The first one, called NTO, was introduced by Palencia and Gonzàlez [4], while the
second one (TO) is our original contribution to the problem. Both algorithms assume that tasks are independent, i.e.
no resources other than processors are shared among tasks. Afterward, in Section 4 we show how these response time
analyses can be used in holistic methods. In Section 6 we extend the TO analysis to account for shared resources.

3.1. Response time analysis under EDF

Given a set of periodic, independent tasks to be scheduled by EDF on a single processor, Spuri [3] proposed an
algorithm for computing an upper bound on the worst-case response time of a task. His algorithm, however, does not
consider task offsets. This means that the analysis proposed by Spuri is still valid even in the case of tasks with offsets,
but the results may be pessimistic.

A first approach to the problem of computation of worst-case relative response times for transaction-based systems
would be to apply Spuri’s method, considering each task to be independent from other tasks of the same transaction.
However, this approach is extremely pessimistic. Palencia and Gonzàlez [4] introduced a new method that is much
less pessimistic than Spuri’s one by taking into consideration the offsets among tasks of the same transaction. We now
briefly recall the fundamental ideas behind their method. In this section, we assume for simplicity of exposition that
each transaction set is scheduled on a single processor. However, results can be immediately extended to transactions
running on P different processors. In fact, when we compute the response time of a task τij , tasks executed on a
different processor than pij do not contribute in any way to its response time once the precedence constraints have
been enforced using offsets and jitters. We can thus adopt single processor analysis by simply considering a new set
of transactions T ′

1 , . . . ,T ′
M composed only of the tasks of T1, . . . ,TM , respectively, that run on the same processor

as τij .
Palencia and Gonzàlez’s analysis is based on the following theorem:

Theorem 1. [4] The worst-case relative response time rab of a task τab can be found in a busy period such that for
each transaction Ti , i �= a, there is a task τij , which we call the starting task for Ti , that is released exactly at the
beginning of the busy period after having experienced its maximum release jitter.

Note that releasing task τab at the beginning of the busy period may not lead to its worst-case response time. The
following theorem limits the complexity of the analysis by limiting the activation times that may lead to the worst-case
response time:

Theorem 2. [11] The worst-case relative response time rab of a task τab corresponds to the response time of some job
τ k
ab executed inside a busy period such that either the absolute deadline of τ k

ab corresponds to the absolute deadline of
a job of a task of another transaction (executed inside the busy period ) or a job of a task of transaction Ta (possibly
τab itself ) is released at the beginning of the busy period after having experienced maximum jitter.

Proof. By contradiction, suppose that the absolute deadline of τ k
ab does not correspond to the absolute deadline of a

job of a task of another transaction (executed inside the busy period) nor a job of a task of transaction Ta (possibly τab

itself) is released at the beginning of the busy period after having experienced maximum jitter. If τ k
ab is not the first

task to be released in the busy period we can then increase its response time by moving its activation time ak
ab , and

thus the activation time of Ta , to occur earlier until one of the two conditions holds. Since moving ak
ab in such way

does not change the set of jobs with higher priority than τ k
ab executed inside the busy period, the finishing time of τ k

ab

does not change as well. Therefore, since ak
ab is moved to occur earlier, the relative response time of τ k

ab will increase,
which contradicts the hypothesis.
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If τ k
ab is the first task to be released in the busy period, we could obtain a worse response time by moving the

activation time of all other transactions to occur earlier so that τab is released at the beginning of the new busy period
after having experienced maximum jitter. �

To compute rab , we need to compute the worst-case response time for each possible activation time of a job τ k
ab ,

as explained in Theorem 2, and take the maximum. In particular, we must compute the maximum contribution of
every transaction Ti to the finishing time of τ k

ab. The contribution is the interference imposed by Ti on τ k
ab , and can be

computed as the sum of the execution times of all the jobs of the transaction that are released inside the busy period
with absolute deadline less than or equal to that of τ k

ab . Palencia and Gonzàlez showed how to compute the worst-case
contribution Wij (t,D) of Ti in a busy period of length t and greatest absolute deadline D, assuming that τij is the
starting task. Wij (t,D) can be computed as the sum of the contributions of all tasks in Ti :

Wij (t,D) =
∑

1�k�Ni

Wikj (t,D). (3)

To compute Wikj (t,D), we need the distance ρikj between the first activation time of a job of task τik inside the busy
period and the busy period itself, considering τij as the starting task. It can be shown [4] that:

ρikj = (
Ti − (φij + Jij − φik)

)
mod Ti.

Hence, Wikj (t,D) can be computed as follows:

Wikj (t,D) = max

(⌊
Jik + ρikj

Ti

⌋
+ min

(⌈
t − ρikj

Ti

⌉
,

⌊
D − ρikj − dik

Ti

⌋
+ 1

)
,0

)
Cik. (4)

Unfortunately, Theorem 1 does not tell us which task is effectively the starting task for Ti . Therefore, if we want
to run an exact analysis, we need to consider every possible task of each transaction as the starting task for that
transaction, and compute the response time of τ k

ab for every possible combination of starting tasks. Unfortunately, this

would lead to an intractable analysis since we would need to consider
∏M

i=1 Ni cases. In order to obtain a tractable
analysis some pessimism is introduced by considering an upper bound Wi(t,D) to the worst-case contribution of Ti

as the maximum among all possible starting tasks: Wi(t,D) = max1�j�Ni
Wij (t,D).

Given an activation time A for τ k
ab , relative to the beginning of the busy period, an upper bound to its finishing time

can be computed by iterating over the following recurrence until it converges to a fixed point, or wab > A + dab:

wab = WA
ab(wab,D) +

∑
1�i�M,i �=a

Wi(wab,D), (5)

where D = A + dab and WA
ab(t,D) is the contribution of transaction Ta , based on the activation at time A of τ k

ab;
WA

ab(t,D) can be computed similarly to Wij (t,D) (see [4,11] for complete equations). If (5) converges, an upper
bound to the relative response time is rab = wab − A.

3.2. Taking offsets into account

If the transaction offsets are known a priori, Theorem 1 gives us a pessimistic condition since there may be no time
in which M − 1 tasks are released simultaneously.

An improvement can be obtained by taking the transaction offsets explicitly into account. In [6,7], we showed how
to perform a schedulability analysis for EDF-scheduled task sets when tasks have offsets. We will now extend our
methodology to the response time analysis of transaction sets of the type analyzed in the previous section. For sim-
plicity, we will suppose that tasks experience no release jitter; this is not a major concern since our new response time
analysis will be used in Section 4.2 by iterative methods that do not use jitter to enforce the precedence constraints.
The main idea behind our methodology is that of minimum activation time distance. Whenever transaction offsets are
considered, it may be impossible for tasks pertaining to different transactions to be activated simultaneously. However,
we can always compute the minimum distance between activations of any two tasks, as the following lemma explains.

Lemma 3. The minimum time distance between any activation time of task τpq and the successive activation time of
task τij is equal to:

Δpqij = (φi + φij − φp − φpq) mod gcd(Tp,Ti).
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Proof. Note that for any two jobs τx
pq and τ

y
ij :

a
y
ij − ax

pq = φi + φij − φp − φpq + (y − 1)Ti − (x − 1)Tp.

This also implies:

∀x � 0, ∀y � 0, ∃z ∈ Z, a
y
ik − ax

pq = φi + φik − φp − φpq + zgcd(Ti, Tp)

thus the minimum difference corresponds to the thesis. �
Once Δpqij has been defined, we can modify Theorem 1 in order to obtain tighter worst-case response times.

Theorem 4. The worst-case relative response time rab of task τab corresponds to the response time of some job τ k
ab

activated inside a busy period where some task τpq ( possibly τab itself ), which we will call the starting task, is
activated at the beginning of the busy period and for each other transaction Ti , i �= a,p, there is a task τij that is
activated Δpqij time units after the beginning of the busy period.

Proof. If job τ k
ab is activated inside a busy period [t1, t2), we can always choose t1 such that the processor is not busy

at t1 − 1. Therefore, there is surely at least one task that is released at the beginning of the busy period, say τpq (note
that it can be a = p). The worst-case response time rab can be found when every transaction offers its worst-case
contribution to the finishing time of τ k

ab . Suppose that the worst-case contribution for transaction Ti , i �= a,p in any
busy period starting with the activation of a job of τpq can be found when some task τij is the first task of Ti to be
released inside the busy period. Now, if we move the activation pattern of transaction Ti so that the activation of the
first job of τij inside the busy period occurs earlier, but still inside the busy period, the contribution of Ti increases.
In fact, new jobs of tasks of Ti may now contribute to the finishing time of τ k

ab (either because their activation is
moved inside the busy period or because their absolute deadline becomes less than or equal to the one of τ k

ab). From
Lemma 3, Δpqij is the minimum possible distance between an activation of τpq , and thus the beginning of the busy
period, and any activation of τij . Hence, the theorem follows. �

By using Theorem 4, we can develop a new response time computation method along the line of Palencia and
Gonzàlez’s one. Once a starting task τpq and an activation time for a job τ k

ab have been fixed, we can compute a new
term W

pq
ij (t,D) for the contribution of transaction Ti , supposing that task τij is activated at its minimum time distance

Δpqij from τpq . In particular, the distance ρ
pq
ikj between the first activation of any task τik inside the busy period and

the busy period itself can be computed as follows:

ρ
pq
ikj = (Δpqij + φik − φij ) mod Ti.

W
pq
ikj (t,D) and W

pq
ij (t,D) can then be computed by applying equations similar to (4) and (3):

W
pq
ikj (t,D) = max

(⌊
Jik + ρ

pq
ikj

Ti

⌋
+ min

(⌈
t − ρ

pq
ikj

Ti

⌉
,

⌊
D − ρ

pq
ikj − dik

Ti

⌋
+ 1

)
,0

)
Cik,

Wij (t,D) =
∑

1�k�Ni

Wikj (t,D).

Since we do not know which task τij leads to the maximum contribution, we use an upper bound W
pq
i (t,D) =

max1�j�Ni
W

pq
ij (t,D) to obtain a tractable analysis.

As for the possible activation times of τab , it suffices to note that the first possible activation time lies at Δpqab

time units after the beginning of the busy period; successive activations are spaced out by gcd(Tp,Ta) time units.
An upper bound to the response time for task τab can then be computed by using a recurrence similar to the one in

Eq. (5):

w
pq
ab = WA

ab

(
w

pq
ab ,D

) +
∑

W
pq
i

(
w

pq
ab ,D

)

1�i�M,i �=a
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and considering the maximum w
pq
ab over all possible starting tasks τpq . The exact form of the final algorithm can

be easily derived from the previous equations. For space constraints, we omit the mathematical development of such
equations. A complete analysis can be found in [11].

In the remainder of the paper, NTO (Non-Transaction Offsets) will be used to refer to the original Palencia–
Gonzàlez method, while TO (Transaction Offsets) will be used for our new method. We conclude by formally proving
that TO provides tighter results than NTO.

Theorem 5. Given a transaction set T where task jitters are zero and a task τab of Ta , the worst-case relative response
time rab computed by TO is less than or equal to the worst-case relative response time computed by NTO.

Proof. While checking the activation times for τab as described in Theorem 2 yields the same worst-case response
time as checking all possible activation times inside the busy period [4], the TO analysis limits the activation times
to be checked to a subset of the busy period. Therefore, it suffices to prove that once an activation time for a job τ k

ab

has been fixed, the response time of τ k
ab computed by TO is less than or equal to the one computed by NTO. It now

suffices to prove that for each transaction Ti , i �= a:

∀p, 1 � p � M, ∀q, 1 � q � Np, ∀t,D ∈ N: W
pq
i (t,D) � Wi(t,D). (6)

In fact, both TO and NTO compute the response time using a recurrence over the sum of the upper bounds to the
contributions; moreover, the contribution WA

ab(t,D) of Ta does not change between TO and NTO. Hence, the theorem
follows directly from (6).

It now remains to prove (6). Let us start by considering the contributions W
pq
ij (t,D) and Wij (t,D) of TO and

NTO, respectively. Since release jitters are equal to zero, the only difference in computing W
pq
ij (t,D) with re-

spect to Wij (t,D) is that the activation time of τij is deferred for a time Δpqij from the beginning of the busy
period. Therefore, both activation times and absolute deadlines of all jobs of Ti are deferred in W

pq
ij (t,D) and

thus W
pq
ij (t,D) � Wij (t,D), since some jobs may not be scheduled in the busy period due to a deferred activa-

tion time or may not count due to a deferred absolute deadline. But since Wi(t,D) = max1�j�Ni
Wij (t,D) and

W
pq
i (t,D) = max1�j�Ni

W
pq
ij (t,D), it follows that Wi(t,D)pq � Wi(t,D). �

4. Iterative algorithms

In the previous Section 3 we presented methods to compute task response times for transaction sets where task
offsets and jitters have been used to enforce precedence constraints. In this section we show how we can effectively
assign offsets and jitters based on the computed worst-case global response times, in order to obtain iterative algo-
rithms that converge to a stable solution that satisfies all precedence constraints. We will present three algorithms. The
first one, called WCDO and presented in Section 4.1, was proposed by Palencia and Gonzàlez. It updates task jitters
at each iteration step and is unable to take advantage of transaction offsets. The second and third one, algorithms
CDO and MDO, are our original contribution to the problem and are introduced in Sections 4.2 and 4.3. Both update
task offsets at each step and are specifically designed to use our TO response time analysis, which is able to exploit
transaction offsets to provide tighter worst-case response times.

4.1. Original holistic analysis

In this section we describe the holistic analysis proposed by Palencia and Gonzàlez in [2], algorithm WCDO
(Worst-Case Dynamic Offsets), which is an extension of the original analysis by Tindell and Clark [1]. In algorithm
WCDO, the offset of each task is initially set to the minimum possible completion time of the previous task plus the
transmission delay:

φij =
∑

1�k<j

(δik + Cik) + δij ∀1 � j � Ni. (7)

Task jitters are initially set to 0, and then the worst-case global response time Rij is computed for each task, using the
NTO analysis. At this point, jitters are modified as follows:



194 R. Pellizzoni, G. Lipari / Journal of Computer and System Sciences 73 (2007) 186–206
Ji1 = 0,

Jij = Ri,j−1 + δij − φij ∀1 < j � Ni, (8)

while offsets never change. Note that this basically means that at each step jitters are modified so that each task τij is
released at worst δij time units from the completion time of the immediately preceding task τi,j−1.

After setting the jitters, new worst-case response times are computed using NTO, jitters are modified again and so
on until the system converges to a stable result or diverges. In the latter case, it is usually possible to stop the iteration
after Rij > Dij for some task τij , since this means that we cannot prove that the system is schedulable.

More formally, we define Rk as the response time vector {Rk
11, . . . ,R

k
1N1

, . . . ,Rk
M1, . . . ,Rk

MNM
} of worst-case

global response times computed at some step k of the algorithm, and the � operator over the space of response time
vectors as follows:

R′ � R′′ ⇔ ∀1 � i � M, ∀1 � j � Ni : R′
ij � R′′

ij .

Note that the � operator is consequently defined as follows:

R′ � R′′ ⇔ ∃1 � i � M, ∃1 � j � Ni : R′
ij > R′′

ij .

We shall further introduce function wcdo(R) as the function that, given the worst-case global response times at some
step k, evaluates new response times by computing jitters as in Eqs. (8) and running the NTO analysis. Algorithm
WCDO can then be expressed as an iteration of the type Rk+1 = wcdo(Rk), starting from the best-case global response
time vector:

R0 =
{
Rij =

∑
1�k�j

(Cik + δik)

}
. (9)

If the response times do not diverge, algorithm WCDO is proven to converge to a fixed value because function
wcdo(R) is monotonic, as it follows from this theorem:

Theorem 6. [11] The worst-case global response times computed by NTO are monotonically non-decreasing in the
jitters.

4.2. Algorithm CDO

We now introduce algorithm CDO (Cycling Dynamic Offsets), our original contribution to the problem. The basic
idea is to modify Palencia and Gonzàlez algorithm to take into account offsets between tasks of different transactions.
However, such extension is not immediate, because our TO analysis does not consider jitters. Modifying TO for taking
jitters into account would unnecessarily increase the complexity of the analysis.

Instead, we believe that a way to simplify both the model and the problem is to eliminate the jitter variable from
the holistic analysis. As demonstrated in Theorem 7, this simplification leads to tighter global response times even if
when we use the NTO analysis.

The idea is the following. We use an iterative algorithm similar to WCDO, using the same starting offsets as in
Eq. (7) and zero jitters. However, instead of updating the jitters at each step, we update the offsets, based on the
worst-case global response times computed at the step before, as follows:

φi1 = δi1,

φij = Ri,j−1 + δij ∀1 < j � Ni, (10)

while jitters remains zero.
Since jitters are always zero, we can use either the NTO or the TO analysis to compute response times at each step.

We will initially use the NTO analysis to compare our approach with the WCDO algorithm; later in this section, we
will move to the TO analysis. We denote function fNTO as the function that, given the worst-case global response times
at some step k, evaluates new response times by computing offsets as in Eqs. (10) and running the NTO analysis. The
algorithm can then be expressed as an iteration over Rk+1 = fNTO(Rk), starting from R0 as defined in Eq. (9).

In order to help understand the differences between WCDO and CDO, Fig. 2 shows how offsets and jitters are
set in the two cases, given computed worst-case global response times (for the sake of simplicity, we show a single
transaction with δij = 0 for every task τij ). Note that the two models are not equivalent from a scheduling point of
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Fig. 2. Setting offsets and jitters.

view, in the sense that in our algorithm we are explicitly prohibiting a job τ k
ij to be released before its activation

times ak
ij = ak

i + Ri,j−1 + dij , while in the WCDO model job τ k
ij may be released before if the previous job τ k

i,j−1
experiences a response time less than the worst-case.

The programming model of our application changes as well. In standard holistic analysis, each task in the trans-
action (except the first one) is blocked waiting for an explicit activation from the preceding task, with a signal,
a semaphore or a message (in case of tasks located on different nodes). The first task in a transaction is periodi-
cally activated by a timer event. In our model, instead, all the tasks in a transaction are periodically activated at their
respective activations, that are spaced by their respective offsets.

One might think that our algorithm gives more pessimistic results than WCDO, because the release times of the
tasks are delayed most of the times. In fact, the contrary is effectively true: at each step, our algorithm provides tighter
worst-case global response times than WCDO, as the following theorem proves.

Theorem 7. Given a response time vector R, fNTO(R) � wcdo(R).

Proof. Let R′ = wcdo(R) and R′′ = fNTO(R). Furthermore, let φ′
ij and J ′

ij be the offset and jitter for each task τij as
computed by wcdo (using Eqs. (7) and (8) with response time R) and let φ′′

ij be the offset as computed by fNTO (using
Eqs. (10)). Then it suffices to prove that ∀1 � a � M , ∀1 � b � Ni : R′′

ab � R′
ab .

Using Eqs. (8) we easily obtain φ′′
ij = J ′

ij + φ′
ij for each task τij . This means that assuming the same activation

time ak
i , the activation time of any job τ k

ij in fNTO coincides with the release time of τ k
ij in wcdo after having ex-

perienced the maximum jitter. Therefore, once we select a starting task τij for a transaction Ti in order to compute
its contribution Wij (t,D) according to Theorem 1, the transaction activation time is the same for fNTO and wcdo.
Also note that while the activation times of τab to be considered as described in Theorem 2 do change, the associated
activation times of transaction Ta remain the same since the global relative deadlines of the tasks are modified by
neither fNTO nor wcdo.

Therefore, to show that R′′
ab � R′

ab , it suffices to prove that once the activation times of all transactions have been
set, the contribution Wij (t,D) of each transaction in fNTO is less than or equal to the one in wcdo. The only difference
in the contribution is that some jobs that are activated inside the busy period in wcdo may be activated outside the
busy period in fNTO due to a deferred activation time, and thus do not contribute to the response time of τab . Hence,
the theorem is proved. �

We just proved that, applying one step of the two algorithms on the same vector R, our algorithm gives tighter
response times. However, we have no guarantees, using either the TO or the NTO analysis, that response times are
monotonic in the offsets. In fact, we found transaction sets in which increasing the offsets leads to tighter response
times. This means that the iterative algorithm is not guaranteed to converge, even if the response times do not diverge,
since it could fall into a limit cycle.

Figure 3 illustrates the problem. It shows a possible evolution of the response times computed at each step.2

The response time vectors computed at each step are numbered from R0 to R8; arrows represent the application of

2 For the sake of simplicity, we show only two response times in the figure. However, the reader must consider that the response time vector is
defined over a multi-dimensional space.
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Fig. 3. A limit cycle.

1. Given Rk , compute fNTO(Rk).
2. If fNTO(Rk) � Rk , stop the algorithm with final response times Rk .
3. Otherwise compute k̄ = cycle(Rk).

(a) If k̄ = −1, then end the iteration step with Rk+1 = Rk .
(b) Otherwise compute R′k = max R(k̄, k) and k̄′ = cycle(R′k), then go back to step 3(a)

considering R′k and k̄′ instead of Rk and k̄, respectively.

Fig. 4. CDO iteration step.

function fNTO at each step. In the example, if we apply the algorithm described above, the iteration enters a limit cycle
at step 5.

We need to identify cycles and find a way of exiting. In Fig. 4 we report the final CDO algorithm. Each iteration
step k in algorithm CDO is done as follows. First, if fNTO(Rk) � Rk , we can immediately stop the algorithm with final
response times Rk . In fact, this means that using the offsets computed at step k we obtain response times Rk that are
compatible with the deadlines and the offsets, so we can stop the algorithm.

Otherwise, we must check if we incurred in a limit cycle. This can be done with the following function:

cycle
(
Rk

) = max
({

k̄ ∈ N | fNTO
(
Rk

) = Rk̄
} ∪ −1

)
. (11)

Cycle(Rk) returns −1 if no cycle can be found or k̄ if a limit cycle is found starting at step k̄. If cycle(Rk) = −1, then
we simply set Rk+1 = fNTO(Rk). If cycle(Rk) = k̄ � 0, we jump out of the limit cycle by selecting a new response
time vector as the maximum between all response times in the limit cycle. To this purpose, we define a function max R
as follows:

max R(k1, k2) =
⎛
⎝

maxk∈{k1...k2}(Rk
11)

...

maxk∈{k1...k2}(Rk
MNM

)

⎞
⎠ .

Then, the new response time vector can be computed as max R(k̄, k).
Unfortunately, when we jump out of a limit cycle we could incur in another cycle. An example is presented in

Fig. 3. Suppose we are at step k = 7. When we jump out of cycle {R5,R6,R7}, we find point R3 that has already
been visited. If we simply set R8 = max R(5,7), we incur in the new limit cycle {R3, . . . ,R7}. In order to prevent
this problem, each time we jump out of a cycle we must check again if we incur in a new limit cycle. This can
be done by using function (11) and possibly jump out of this new cycle too. Of course, the problem can be found
again, recursively. However, every time we jump out of a cycle, we can only incur in a cycle including more points.
Therefore, sooner or later we must find a point which is not part of any cycle.

The following theorem proves that algorithm CDO is indeed correct and that it provides tighter response times with
respect to WCDO.
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Theorem 8. Given a transaction set T , if WCDO converges to response times R̄, then CDO converges to response
times R′ � R̄ in a finite number of steps; furthermore, algorithm CDO is correct, in the sense that if offsets are set
according to Eqs. (10) with response times R′, R′ are upper bounds to the worst-case global response times for T
respecting task precedence constraints.

Proof. Since WCDO converges to R̄, wcdo(R̄) = R̄. Moreover, since wcdo is monotonic, ∀R � R̄,wcdo(R) � R̄.
From Theorem 7 we also obtain: ∀R � R̄, fNTO(R) � R̄. Clearly R0 � R̄. CDO can never reach at any step a point
R � R̄. If this was possible, we could surely find a step k so that ∀k′ � k, Rk′ � R̄ ∧ Rk+1 � R̄. However, this is im-
possible. In fact, Rk+1 can be obtained from Rk by application of either function fNTO(Rk) or function max R(k1, k2)

with k1, k2 � k, and neither of them can give a response time vector that is not less than or equal to R̄.
Since the number of points R � R̄ is finite, to prove the first part of the theorem it now suffices to show that CDO

never passes through the same point twice before stopping. It is impossible that, for any step k, ∃k′ � k, Rk = Rk′
,

since the iterative step of CDO only ends when function (11) returns −1, meaning that no such k′ can be found.
Therefore, algorithm CDO visits a new point at each step and thus must stop in a finite number of steps with response
times R′ � R̄.

Furthermore, if algorithm CDO converges to response times R′, R′′ = fNTO(R′) � R′; otherwise, applying the
iterative step described in Fig. 4 to R′ we would obtain a new response time vector R′′′ � R′. Therefore, if we set the
offsets of T according to Eqs. (10) with response times R′, we obtain ∀1 � i � M , 1 < j � Ni , R′′

i,j−1 + dij � φij

and therefore the precedence constraints are met. �
If we now want to use the TO analysis instead of the NTO one, we can simply define a new function fTO(R) that

computes the response times in the same way as fNTO(R) but using the TO analysis instead of the NTO one, and then
substitute fNTO with fTO in the iterative step described in Fig. 4. From Theorem 5 it is trivial to prove that Theorem 7
and consequently Theorem 8 still hold. To differentiate the two methods, we call them CDO-NTO and CDO-TO,
respectively.

4.3. Simplifying the algorithm

While Theorem 8 proves that CDO is always better than WCDO, the definition of CDO is actually quite complex.
We can define a simpler algorithm, that we call MDO (Maximum Dynamic Offsets). The idea is to get rid of the cycles
altogether by simplifying the iterative step using the following equation:

Rk+1 =
⎛
⎝

max(Rk
11, fNTO(Rk

11))

...

max(Rk
MNM

, fNTO(Rk
MNM

))

⎞
⎠ .

In other words, algorithm MDO always jumps out to the maximum between the previously computed response times
and the newly computed ones. By using algorithm MDO, the response time iteration clearly evolves monotonically.

Theorem 7 shows that at each step function fNTO gives us a tighter result with respect to WCDO. Since MDO is
using the same function, it can be easily proven that MDO converges to better response times then WCDO and that it
is correct along the line of Theorem 8.

Intuitively, we expect that algorithm CDO performs better than MDO. However, this does not always happen, in
the sense that in some rare cases MDO can actually give tighter results than CDO. In Section 5 we show by means of
experimental evaluation that the difference between the two is negligible.

Since MDO can also be applied using either fNTO or fTO, we will differentiate between algorithms MDO-NTO and
MDO-TO.

5. Evaluation

We now present performance comparison between the original holistic analysis and our methodology. The compar-
ison has been made by conducting a series of simulation experiments. For each experiment, we generated 1000 syn-
thetic sets of transactions, each one consisting of 5 transactions with either 5 or 10 tasks, executed on either 2 or
4 processors, respectively.
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Fig. 5. 5 transactions, 5 tasks per transaction, 2 processors. Fig. 6. 5 transactions, 10 tasks per transaction, 4 processors.

Table 1
Mean number of iteration steps, 5 transactions

MDO-TO MDO-NTO WCDO

5 tasks, 1 proc 5.19 5.34 5.18
5 tasks, 2 proc 6.16 7.58 7.78
10 tasks, 4 proc 10.97 15.77 16.11

Each transaction was generated in the following way. First, a transaction utilization Ui = 1
Ti

∑Ni

j=1 Cij was ran-

domly generated according to a uniform distribution, so that the total utilization U = ∑M
i=1 Ui summed up to a

desired value. Transaction periods were uniformly generated between 20 and 400. The total worst-case computation
time of each transaction Ci = ∑Ni

j=1 Ci was computed based on utilization and period. An end-to-end relative deadline
between half period and the period was assigned to each transaction, and the offset was randomly generated between 0
and the period. Afterward, computation times of tasks were also generated according to a uniform distribution, so that
their sum were equal to their transaction total computation time. No delay times among tasks were considered. Finally,
task deadlines were assigned as in Eq. (2), and each task was randomly assigned to a different processor.

We generated the transaction periods so that the greatest common divisor between any two periods were a multiple
of 20. The greater is the gcd between two transaction periods, the larger is the minimum time distance between two
successive activations of tasks of the two transactions and the smallest is the contribution of one transaction to finishing
time of the tasks of the other. In particular, we showed that if a period is prime with all others, then the TO analysis is
equivalent to the NTO one. Note that in real world applications, transaction periods are rarely prime with each other.

Figure 5 shows the percentage of tasks that are proved to be feasible by algorithm WCDO, MDO-NTO, MDO-TO,
CDO-NTO and CDO-TO for a system of 5 transactions with 5 tasks each, running on two processors, with total
utilizations ranging from 0.6 to 1.4. All 95% confidence intervals are within 5% of the mean. A first observation is that
algorithms MDO-NTO and MDO-TO perform basically the same as CDO-NTO and CDO-TO, respectively, and may
thus be preferable due to their simplicity. While algorithm MDO-NTO achieves a small gain over WCDO, MDO-TO
achieves an improvement up and beyond 20% for utilizations around 0.75. Also, the response times computed by
algorithm WCDO were 36% longer then those computed by algorithm MDO-TO on average.

Figure 6 shows the case with 5 transactions and 10 tasks per transaction, running on 4 processors. This time,
algorithm MDO-TO is able to prove feasible over 50% more total transaction sets than MDO-NTO at utilizations
around 1.1. The benefit of the TO approach seems to go up as the parallelism of the system increases.

Finally, Table 1 shows the mean number of iteration steps needed to achieve convergence by algorithms MDO-TO,
MDO-NTO and WCDO in the cases analyzed before. As you can see, the number of steps is low in all cases and
similar for the three algorithms, except for the fact that algorithm MDO-TO seems to perform better than the others
under increased parallelism.
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6. Shared resources

In this section, we will extend our TO analysis to cover the problem of blocking times and synchronization on
shared resources. To bound the maximum blocking time experienced by tasks due to mutual exclusion a resource
access protocol must be introduced. Many resource access protocols have been proposed in literature [12,13]; we
base our discussion on the Stack Resource Protocol (SRP) [8]. Note that SRP only works for uniprocessor systems
and considers no jitter. However, we assume that no resource is shared among tasks pertaining to different processors,
so we can safely extend it to our transaction model once task offsets have been fixed under the TO analysis.

In the remainder of this section, we briefly introduce the SRP and some related properties. We then present the
extension to the TO analysis.

6.1. SRP

Under SRP, each task is assigned a static preemption level πij = 1
Dij

in addition to its dynamic priority defined by
EDF. The following fundamental property holds:

Property 1. Task τij can preempt task τlk only if πij > πlk .

To ease further definitions, we also define an additional preemption level πs as a preemption level that is strictly
greater than the preemption level of every task.

Each resource ρp is assigned a static ceiling ceil(ρp) = maxij {πij | ∃ξijk, ρijk = ρp}. A dynamic system ceiling is
then defined as follows:

Πs(t) = max
({

ceil(ρp) | ρp is busy at time t
} ∪ 0

)
.

The scheduling rule is the following: a job is not allowed to start execution until its priority is the highest among
the active jobs and its preemption level is strictly higher then the system ceiling.

Among the many useful properties of SRP, we are mainly interested in two of them:

Property 2. [8] Under SRP, a job can only be blocked before it starts execution; once started, it can only be preempted
by higher priority jobs.

Property 3. [8] A job can be blocked only once by one lower priority job.

Property 3 can be extended to groups of tasks executing in a busy period as proved by the following lemma:

Lemma 9. Consider a busy period [t1, t2), where t3 is the greatest absolute deadline of any task that is completely
executed in [t1, t2) and t1 is the last instant prior to t2 such that either no jobs or a job with deadline greater than
t3 executes. Then tasks that are completely executed in [t1, t2) may be blocked only once by a single lower priority job.

Proof. Without blocking times, all jobs completely executed inside the busy period must be released at or after t1;
furthermore, one job must be activated exactly at t1. We will call A the set of such jobs. However, when blocking
times are introduced, it is possible for a job of some task τij with deadline greater than t3 to be executed inside the
busy period. For this to be possible, the job must be inside a critical section at time t1, since it must block some higher
priority job in A. However, there can only be one such job; otherwise, some job in A would be blocked by at least
two lower priority jobs, which is impossible due to Property 3. �
6.2. TO extension

We extend the TO analysis by considering an added term due to blocking time in the response time computation.
Due to Lemma 9, it makes sense to define a maximum dynamic blocking time Bpq(t,D) as the maximum blocking time
that can be experienced by any task inside a busy period of length t and maximum deadline D where τpq is activated at
the beginning of the busy period. In order to define Bpq(t,D) we first need to introduce some preliminary definitions.
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First of all, note that the blocking task τij must be activated at least ψijk + 1 time units before the beginning of the
busy period to be able to block any task in A; however, its activation time is further constrained by offsets relations.
In order to capture this behavior, we need to compute a new minimum activation time distance between tasks.

Lemma 10. Given two tasks τpq and τij , the minimum time distance between any activation time of task τpq and the
successive activation time of task τij that is greater or equal to some value k + 1 is equal to:

Δk
pqij = (φi + φij − φp − φpq − k − 1) mod gcd(Tp,Ti) + k + 1.

Proof. The proof is a simple extension of the one of Lemma 3. �
Second, we define a new minimum dynamic preemption level which is the minimum preemption level of any task

completely executed in the busy period.

Definition 1. Given an initial task τpq , we define the following minimum dynamic preemption level:

πpq(t,D) = min
ij

({
πij | Δpqij + dij � D ∧ Δpqij < t

} ∪ πs

)
.

We can finally define the maximum dynamic blocking time for transaction systems:

Definition 2. Given an initial task τpq , the maximum dynamic blocking time is defined as:

Bpq(t,D) = max
ijk

({
Cijk − 1 | dij > D + Δ

ψijk

ijpq ∧ ceil(ρijk) � πpq(t,D)
} ∪ 0

)
.

Lemma 11. Bpq(t2 − t1, t3 − t1) is an upper bound to the maximum blocking time experienced by tasks completely
scheduled in a busy period [t1, t2), where t3 is the maximum absolute deadline of such tasks and t1 corresponds to an
activation time of task τpq .

Proof. As in Lemma 9, let A be the set of jobs that are released at or after t1 and have deadline at or before t3. Since
jobs in A can only be blocked by a single lower priority job, the maximum blocking time can be no longer than the
length of some critical section Cijk − 1; in fact, the blocking job can enter ξijk at worst at t1 − 1.

Furthermore, since the job cannot enter ξijk before ψijk time units have elapsed since its activation, and its deadline
must be greater than t3, it must also hold dij + t1 − ψijk − 1 > t3. However, since we know that τpq is activated at
time t1, then the more restrictive condition dij > t3 − t1 + Δ

ψijk

ijpq must also hold. Finally, resource ρijk must be able to
block some job in A, thus ceil(ρijk) must be at least equal to the minimum preemption level of tasks in A.

To end the proof it now suffices to prove that the minimum dynamic preemption level πpq(t,D) is indeed a lower
bound to the minimum preemption level of tasks in A. However this is obvious since every task τij in A has a deadline
less than or equal to t3, therefore Δpqij + dij � t3 − t1, and must be activated before t2, therefore Δpqij < t2 − t1. �
Theorem 12. Given initial task τpq and release time A, an upper bound to the response time for τab can be computed
by using the following recursion:

w
pq
ab = WA

ab

(
w

pq
ab ,D

) +
∑

1�i�M,i �=a

W
pq
i

(
w

pq
ab ,D

) + Bpq(t,D).

Proof. Note that Theorem 1 still holds when blocking time by a single lower priority job is considered as long as a
job of τpq is released at the beginning of the busy period. Since we proved that Bpq(t,D) is an upper bound to the
blocking time experienced in any busy period of length t and maximum deadline D, the theorem follows. �
7. Schedulability analysis of heterogeneous multiprocessor system

The improved holistic analyses introduced in Section 4 can be used to provide better schedulability conditions for
multiprocessor and distributed systems. A special case that, in our opinion, is susceptible of further inquiry is that of
heterogeneous multiprocessor systems (also known as asymmetric multiprocessors).
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An heterogeneous multiprocessor system is composed by a general purpose CPU and one or more specialized CPUs
like, for example, a digital signal processor (DSP). The utility of DSPs as hardware accelerators has already been
investigated [14,15]. The Texas Instruments TM320C8x, for example, is a single-chip MIMD processor integrating a
32-bits RISC processor and four 32-bits floating point DSPs.

The specialized CPUs are typically used as hardware accelerators, or coprocessors: every task runs on the general
purpose CPU, and occasionally may request some computation to be performed on a coprocessor. Usually, this “com-
munication” is synchronized, in the sense that the task is suspended until the coprocessor returns the results. A task
that actually requests a coprocessor is called a DSP task. In this paper, for simplicity we will assume that each DSP
task requires a single fixed coprocessor.

We assume that each DSP task is composed by three computation chunks: the first and the third one are executed
on the general purpose processor, while the second one runs on a coprocessor. We assume that synchronization be-
tween the processor and the coprocessor is done in zero time; we could, however, account for transmission delays by
introducing suspension times between the first and the second chunk of a task and between the second and the third.

The scheduling problem for such a system has been fully analyzed under fixed priority [15,16]. However, to the
best of our knowledge, no convincing solution has been proposed so far for EDF. The holistic analysis offers a nice
solution to the problem, since it is possible to treat each DSP task as a transaction Ti with three different tasks τi1, τi2
and τi3 corresponding to the three computation chunks of the DSP task. We can thus refer to DSP transactions instead
of DSP tasks.

We discuss and show experimental results for three different cases. In the first one, we suppose that each trans-
action executes on a different exclusive DSP. In the second case, we assume a single preemptive DSP shared by all
transactions. In the third, most realistic case, all transactions share a single non-preemptive DSP.

For each experiment, we generated 1000 transaction sets with 5 or 10 DSP transactions each and periods within 20
and 400 in the same way as in Section 5, in the sense that the computation time of each DSP transaction was divided
according to a uniform distribution into its three tasks.

7.1. Multiple coprocessors

In this section, we discuss the case in which each DSP transaction executes on a different coprocessor. In this case,
the coprocessor execution can be simply treated as a suspension time; that is, each DSP transaction Ti consists of two
tasks τi1 and τi3 only, but a delay time δi3 = Ci2 is added.

Without using a transaction-based analysis there is no way to account for suspension times that do not occur before
a job starts execution. Gai [15] gives good reasons why accounting for suspension times in EDF scheduled tasks is
a difficult problem to solve. This means that if we want to use a task-based analysis, such as the processor demand
criterion introduced by Baruah in [17] for synchronous task sets or our improved 1-fixed test for asynchronous task sets
[6,7], we must consider each DSP transaction as a single task with worst-case execution time equal to Ci1 +Ci3 + δi3.

In the case of fixed priority scheduling, In-Guk Kim et al. in [16] proposed an effective schedulability analysis.
However, their test considers a synchronous task model, thus it fails to take task offsets into account.

Figures 7 and 8 show simulation results for the system, expressed as a percentage of schedulable transaction sets
in respect to the total system utilization, for transaction sets with 5 and 10 DSP transactions, respectively. Kim is the
analysis developed in [16] under deadline monotonic scheduling, MDO-TO is our transaction-based holistic analy-
sis and 1-fixed is the schedulability analysis for the EDF-scheduled task-based model described above. MDO-TO
achieves a dramatic performance increase over 1-fixed at utilization around 1.0: the schedulability percentage for
1-fixed quickly drops to 0, whereas with the transaction analysis we are able to guarantee almost every task. The
performance shown by Kim is much better than 1-fixed, but degrades around utilization 1.2, whereas the transac-
tion analysis has still a schedulability ratio of 50%. Finally, MDO-TO seems to work better as the number of tasks
increases, while the other tests remain unchanged.

7.2. Preemptive coprocessor

We now suppose that the system offers one single preemptive coprocessor. In this case, each DSP transaction Ti

consists of tasks τi1 and τi3 executed on the processor and of task τi2 executed on the coprocessor. Note that the Kim
analysis cannot be used in this case, since it does not consider the response time of the chunk executed on the DSP.
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Fig. 7. 5 DSP transactions, dedicated coprocessors. Fig. 8. 10 DSP transactions, dedicated coprocessors.

Fig. 9. 5 DSP transactions, shared preemptive coprocessor. Fig. 10. 10 DSP transactions, shared preemptive coprocessor.

If we want to use 1-fixed, we must do the same assumption as in the previous case: when some code is executed
on the coprocessor, the processor remains idle. Therefore, it is easy to see that in this case every DSP transaction can
be modeled as a single task with execution time Ci1 + Ci2 + Ci3.

Figures 9 and 10 show the simulation results for transaction sets with 5 and 10 DSP transactions, respectively.
Once again, the performance of MDO-TO is extremely superior for utilizations around 1.0.

7.3. Non-preemptive coprocessor

In this final case, the DSP is assumed to be non-preemptive. We can model this situation by supposing that each
computation chunk on the DSP is executed inside a mutually exclusive critical section of length Ci2. We must then
introduce blocking times to take care of the fact that a higher priority task can be blocked by a lower priority one
simply because the lower priority task has taken control of the coprocessor before the activation of the higher priority
one. Extensions to the 1-fixed test to account for blocking times have been introduced in [7].

The transaction-based analysis needs some in-depth considerations. If we use critical sections as detailed above,
only the second task of each transaction may experience blocking. Since all such tasks execute on the same processor,
the extension to the TO analysis detailed in Section 6 can be used to account for blocking times. We would like,
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however, to stress an important fact. The blocking time analysis assumes that task offsets have been fixed. Since the
offset based holistic analyses (CDO and MDO) change the offsets at each step, it follows that the blocking times can
change at each step too. Therefore, Theorem 7 does not hold anymore and thus we cannot prove that CDO performs
better than WCDO. However, we can say that algorithm MDO is correct along the line of Theorem 8 since it is still
monotonic.

A second issue consists in deadline assignment. Using Eq. (2) to assign deadlines Di1 and Di2 does not constitute a
good heuristic anymore, since we must take into account the blocking time. This means that if we were to use Eq. (2),
the probability of τi2 missing its deadline would be much higher then τi1 and τi3. A simple yet much more efficient
heuristic is the following:

Di1 = Ci1

Ci1 + Ci2 + Ci3
Di,

Di2 =
(

Ci1 + Ci2

Ci1 + Ci2 + Ci3
+

(
1.0 − Ci1 + Ci2

Ci1 + Ci2 + Ci3

)
p

)
Di.

This modified heuristic increases Di2 proportionally to a factor p; in particular, for p = 0 the above equation is equal
to Eq. (2). We found through synthetic simulations that p = 0.8 tends to provide good results and will be consequently
used in the following experiments, but even the case where p = 1.0 performs much better than p = 0.

We also designed a deadline search algorithm that, starting from the above heuristic, searches the deadline space
to find an assignment that makes the task set feasible. The algorithm is detailed in Appendix A. Estimating its per-
formance with respect to optimal assignment is difficult, due to the complexity of an optimal algorithm for practical
transaction sets. However, from results obtained applying the methodology to very small transaction sets, we feel that
our search algorithm could be able to find a solution in most cases in which a feasible deadline assignment exists.

Figures 11 and 12 show simulation results for transaction sets with 5 and 10 DSP tasks, respectively, where
MDO-TO, search stands for the transaction analysis performed using the deadline search algorithm, and MDO-TO,

heuristic for the transaction analysis performed using the improved heuristic. Once again, results for the transaction
analysis are much better as the number of tasks increases. Under low utilization values, 1-fixed actually performs
better than both MDO-TO, search and MDO-TO, heuristic, although the difference is negligible. This is because the
effect of blocking time is worst for the transaction analysis than for plain EDF processor demand criterion. As uti-
lization rises, the benefit of being able to reuse the coprocessor time becomes more significant and the transaction
analysis becomes better than 1-fixed. The search algorithm also becomes beneficial, being able to schedule up to 10%
more task sets compared to the heuristic.

Fig. 11. 5 DSP transactions, shared preemptive coprocessor. Fig. 12. 10 DSP transactions, shared preemptive coprocessor.
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8. Conclusions and future work

In this paper we presented a set of algorithms for schedulability analysis of a set of distributed real-time transac-
tions. By taking into account the offsets of the transactions and of the tasks in an efficient way, we improved over
existing schedulability tests, in the sense that our algorithms provide much higher acceptance ratios and tighter worst-
case response times. We also applied our algorithm MDO-TO to heterogeneous multiprocessor systems, with one
general purpose processor and one or more coprocessors (DSPs). We showed that our methodology, based on the
transaction model, provides better results than existing schedulability tests.

Deadline assignment remains a major problem. Although we have provided some insights on how deadline vari-
ations affect schedulability for the specific case of DSP transactions in Section 7.3, we plan to further research the
issue as part of our future work.

A second unresolved issue regards offset free systems, i.e. systems in which the designer is free to choose the
transaction offsets. Although the problem of optimally selecting offsets has been proven to be NP-hard [18], little
work exists on finding suitable heuristics. We also feel that more work is needed in this direction, in order to provide
designers with efficient methodologies and tools.

Appendix A. Deadline search algorithm

In this section we detail the deadline search algorithm used in Section 7.3. Starting from the heuristic of Eq. (12),
the deadline search algorithm tries to find an assignment for each deadline Di1,Di2 that guarantees the schedulability
of the transaction set using algorithm MDO-TO modified as in Section 6 to take blocking times into consideration.

The algorithm iterates over the space of possible deadline assignments, choosing a new assignment at each step.
Note that using a general optimum search algorithm such as simulated annealing is possible but inconvenient because
at each step we can choose the next assignment based on simple yet good heuristics, while designing a suitable cost
function does not seem easy. Algorithm MDO-TO is then run until one of the following occurs:

1. MDO-TO converges to a feasible solution;
2. at some step ∃1 � i � M , Ri1 > Di1 ∨ Ri2 > Di2 ∨ Ri3 > Di3.

In the first case, the algorithm ends returning the current assignment. In the second, the algorithm first checks which
deadlines are missed in the last step by MDO-TO and then updates all deadlines using heuristics that try to make the
tasks that missed their deadlines schedulable. The heuristics used are detailed below in decreasing order of importance:

1. If τi2 is not feasible, increase Di2 to give it more time to finish execution. Also, decrease Di1, in order to have τi1
finish earlier decreasing φi2 as well.

2. If τi1 is not feasible, increase its deadline Di1.
3. If τi3 is not feasible, decrease Di1, so that both τi1 and τi2 should finish earlier. Also decrease Di2, but of a value

less than the one for Di1, since τi2 is more sensible to deadline variations due to the experienced blocking time.
4. If τi2 is not feasible, increase of a small amount the deadline Dj2 of every task τj2, j �= i, as this helps τi2 finish

earlier.
5. If τi1 is not feasible, increase of a small amount the deadline Dj1 of every task τj2, j �= i.

In order to better search the solution space, a random factor is applied to the update of each deadline. Also, the
update value is scaled by a temperature which is decreased over time, helping achieving convergence. The final pseudo
code is given below:

double temperature=initTemp;
double deadlines[NumTrans][2];
initialHeuristic(deadlines); //set deadlines to initial heuristic
bool fail[NumTrans][3]; //if true, the corresponding

//task missed its deadline
while(temperature>finalTemp) {
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updateModel(deadlines); //update model to current deadlines
if(MDOTOBlocking(failed)) //executes MDO-TO, update failed

return true; //return true if task set is feasible
int numFailed[3]=0,0,0; //counts the number of failed tasks
for(int i=0;i<numTrans;i++)

for(int c=0;c<3;c++)
if(fail[i][c]) numFailed[c]++;

for(int i=0;i<numTrans;i++) //update deadlines
//according to heuristics

if(fail[i][1]) {
deadlines[i][0]-=deadlines[i][0]*N(temperature);
deadlines[i][1]+=deadlines[i][1]*N(temperature*(1.0+p));

}
else if(fail[i][0])

deadlines[i][0]+=deadlines[i][0]*N(temperature);
else if(fail[i][2]) {

deadlines[i][0]-=deadlines[i][0]*N(temperature);
deadlines[i][1]-=deadlines[i][1]*N(temperature*(1.0-p));

}
else {

deadlines[i][1]+=deadlines[i][1]
*N(temperature*(1.0+p)*numFailed[1]/numTrans);

deadlines[i][0]+=deadlines[i][1]
*N(temperature*numFailed[0]/numTrans);

}
boundAbove(deadlines); //ensures that task deadlines do

//not exceed the transaction one
temperature*=coolrate; //update temperature

}
return false;

In the pseudo code, N(ε) stands for the normal distribution with mean ε and standard deviation σ = 0.5ε. Note that
both the mean and the standard deviation are always scaled by the temperature, therefore as the algorithm progresses
the updates become smaller and more predictable. Factor p is used to differentiate the size of the update among
different heuristics. We used the value p = 0.4.

Finally, initTemp, finalTemp and coolrate are used to control the temperature and thus the maximum number of
steps, which is equal to �logcoolrate

finalTemp
initTemp 
. We found by simulation that the algorithm gives good results even with

a low number of steps. In the experiments we used values initTemp = 0.5, coolrate = 0.94, finalTemp = 0.08, which
correspond to 30 maximum steps.
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