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Abstract

In this paper, we address the problem of scheduling hybrid task sets consisting of hard periodic and soft aperiodic

tasks that may share resources in exclusive mode in a dynamic environment, where tasks are scheduled based on their

deadlines. Bounded blocking on exclusive resources is achieved by means of a dynamic resource access protocol which

also prevents deadlocks and chained blocking. Aperiodic responsiveness is enhanced by an e�cient servicing technique

which assigns each aperiodic request a suitable deadline. Feasibility conditions are extended to handle tasks with

deadlines di�erent from periods and a reclaiming technique is presented to deal with early completions. Ó 2000
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1. Introduction

Many real-world control applications are
characterized by tasks with di�erent timing char-
acteristics. For example, time-critical control ac-
tivities should be implemented as hard periodic
tasks and guaranteed in worst-case conditions.
Less critical activities (soft tasks) do not need to be
guaranteed; however, they should be executed as
soon as possible without jeopardizing the guar-
antee achieved on hard tasks. If soft activities in-
teract with hard tasks through shared resources,
such an interaction has to be taken into account in
the schedulability analysis. The problem becomes
more complex if periodic tasks are permitted to
have deadlines di�erent from their periods.

In the real-time literature, several algorithms
have been proposed for dealing with speci®c sub-
problems, but, from our point of view, not su�-

cient work has been done for integrating tasks with
di�erent types of constraints, especially in dynamic
environments.

Liu and Layland [15] found important results
for the schedulability of periodic task sets, but
under the assumption that tasks are independent.
After that ®rst fundamental contribution, much
work has been done for dealing with periodic tasks
with deadlines less than periods [1,26,3]. In par-
ticular, the ``processor demand approach'', pro-
posed in Ref. [3] for the feasibility analysis of a
sporadic task set, is general and can be easily ex-
tended to consider other types of constraints, as we
do in this paper.

Concurrency control protocols for handling
resource constraints have been proposed under the
®xed priority systems [17] and dynamic priority
systems [5,2,10], but without considering the
presence of aperiodic tasks.

On the other hand, several aperiodic service
mechanisms have been proposed under RM
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[12,13,1,26] and under EDF [20,9,22,23], but no
resource constraints have been taken into account.
In Ref. [19], a schedulability test is proposed for
task sets consisting of hard periodic and sporadic
tasks.

The problem of integrating resource and timing
constraints has been addressed in Ref. [7] using an
o�-line scheduling approach. In this context, many
types of constraints can be considered in a pre-
runtime analysis, and an optimal (or suboptimal)
solution can be found for the scheduling problem.
This method is very powerful, but it is not ¯exible
enough to be applied in dynamic environments,
where task arrivals are not known in advance.
Fohler [8] proposed a hybrid method for inte-
grating on-line service of aperiodic requests with
an o�-line schedule of periodic tasks, but hard and
soft tasks cannot share exclusive resources. The
same problem has also been considered by a heu-
ristic approach in the Spring kernel [18], but no
optimal solutions can be found.

In this work, we address the problem of
scheduling hard periodic and soft aperiodic tasks
that may share exclusive resources in a dynamic
environment, where tasks are scheduled based on
their deadlines. The analysis is performed to con-
sider periodic tasks with relative deadlines di�erent
from their periods. This problem is not trivial if we
want to schedule aperiodic tasks as soon as pos-
sible.

The paper is organized as follows. Section 2
introduces the terminology and the assumptions
used throughout the paper. Section 3 describes the
concurrency control protocol used to access shared
resources. Section 4 analyzes the general problem
of scheduling hybrid (hard periodic and soft
aperiodic) task sets and illustrates our integrated
approach. Section 5 reports the extension for the
case of deadlines di�erent from periods and Sec-
tion 6 presents our conclusions.

2. Assumptions and terminology

We consider a set R of r resources, a set TP of
n hard periodic tasks, and a set TA of m soft
aperiodic tasks, that have to be executed on a
uniprocessor system. Tasks are preemptable and

all the resources are accessed in exclusive mode
using critical sections. To simplify our presenta-
tion, only single-unit resources are considered.
However, the results can easily be extended to deal
with multi-unit resources, as described in Ref. [2].

Now we state our terminology and notation
used throughout the paper.
· Any task si (periodic and aperiodic) is an in®nite

sequence of instances Ji;k, called jobs; every job
has a worst-case execution time Ci, and a release
time ri;k.

· Any task si is allowed to access shared resources
through critical sections: a critical section nih is a
3-ple �qih;/ih; cih�, where

qih 2 R is the resource accessed by the critical
section;
/ih is the earliest time, relative to the release
time ri;k, that si can enter qih;
cih is the worst-case execution time of the crit-
ical section.

· Each instance of a hard task si has a relative
deadline Di; thus, its absolute deadline is given
by

di;k � ri;k � Di:

· A task si is periodic if

ri;k � ri;1 � �k ÿ 1�Ti;

where ri;1 is its initial phase and Ti is its period.
· A task si is aperiodic if ri;k�1 > ri;k, and is spo-

radic if

ri;k�1 P ri;k � Ti;

where ri;1 P 0, and Ti is the minimum interar-
rival time between two consecutive instances.
Summarizing, a hard periodic (or sporadic) task

is described as

si � �Ci; fnihg;Di; Ti�;
whereas a soft aperiodic task is described as

sj � �Cj; fnjhg�:
The task model presented here is slightly dif-

ferent from the classical model. In order to carry
out the feasibility analysis under resource con-
straints, we need to de®ne each critical section
used by a task for accessing a resource. In partic-
ular, we need to know the position and the duration
of each critical section.
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Note that, in our model, critical sections can be
properly nested in an arbitrary fashion. In other
words, it is not necessary to access resources in a
particular order, like in other concurrency control
protocols.

To simplify the discussion, in many of the the-
orems presented in this paper, we use the concept
of fully utilized interval which is de®ned as fol-
lows.

De®nition 1. An interval �t1; t2� is fully utilized if
and only if there does not exist a time t 2 �t1; t2�
such that all the active tasks complete their
execution at t.

Throughout the paper, we assume that all tasks
are scheduled based on their deadlines, according
to the Earliest Deadline First (EDF) algorithm.
Moreover, periodic tasks are synchronous (that is,
their initial phases are equal to zero). Finally, to
simplify the presentation of the analysis, we ne-
glect the overhead introduced by the operating
system.

3. Accounting for shared resources

To perform schedulability analysis under re-
source constraints in a dynamic priority environ-
ment, di�erent resource access protocols have been
proposed to bound the worst-case blocking of
tasks due to mutual exclusion. The most important
are the Dynamic Priority Ceiling (DPC) protocol
[5], the Stack Resource Policy (SRP) [2] and the
Dynamic Deadline Modi®cation (DDM) protocol
[10]. Although we base our discussion on SRP,
which has been selected for its simplicity and
generality, the feasibility analysis presented here is
valid under any of these protocols.

In the remainder of this section, we brie¯y
describe the SRP and then we extend the feasibility
test proposed by Baker [2] by considering the po-
sition and the duration of each individual critical
section. Moreover, we provide an algorithm for
calculating the blocking time of each task. The
resulting feasibility test is necessary and su�cient,
although pseudo-polynomial in complexity. We
®nally compare the SRP and the DDM and show

that they are equivalent from a scheduling point of
view.

3.1. The stack resource policy

According to this protocol, every hard (periodic
and sporadic) task si is assigned a dynamic priority
pi based on EDF and a static preemption level pi,
such that the following essential property holds:

Property 1. Task si is not allowed to preempt task
sj, unless pi > pj.

Under EDF, Property 1 is veri®ed if periodic
task si is assigned the following preemption level

pi � 1

Di
:

In addition, every resource Rk is assigned a static 1

ceiling de®ned as

ceil�Rk� � max
i
fpi j si needs Rkg:

Moreover, a dynamic system ceiling is de®ned as

Ps�t� � max�fceil�Rk� j Rk is currently busyg
[ f0g�:

Then, the SRP scheduling rule states that

a job is not allowed to start executing until its
priority is the highest among the active jobs
and its preemption level is greater than the
system ceiling.

The SRP ensures that once a task is started, it
will never block until completion; it can only be
preempted by higher priority tasks.

This protocol has several interesting properties.
For example, it applies to both static and dynamic
scheduling algorithms, prevents deadlocks, bounds
the maximum blocking times of tasks, reduces the
number of context switches, can be easily extended
to multi-unit resources, allows tasks to share

1 In the case of multi-units resources, the ceiling of each

resource is dynamic as it depends on the number of units

actually free.
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stack-based resources, and its implementation is
straightforward.

Under the SRP, there is no need to implement
waiting queues. In fact, a task never blocks its
execution: it simply cannot start executing if its
preemption level is not high enough.

As a consequence, the blocking time Bi con-
sidered in the schedulability analysis refers to the
time for which task si is kept in the ready queue by
the preemption test. Although the task never
blocks, Bi is considered as a ``blocking time'' be-
cause it is caused by tasks having lower preemp-
tion levels.

Assuming relative deadlines equal to periods,
the maximum blocking time for each task si can be
calculated as the longest critical section among
those with a ceiling greater than or equal to the
preemption level of si

Bi � maxfcjh j �Ti < Tj ÿ /jh� ^ pi6 ceil�qjh�g:
�1�

The meaning of condition Ti < Tj ÿ /jh is shown in
Fig. 1. If Ti is greater than Tj ÿ /jh, it is not pos-
sible for task si to preempt task sj when it is inside
critical section nh. In fact, if si arrives after sj en-
tered the critical section, then di > dj, so it cannot
preempt sj.

Given these de®nitions, in the Baker's original
paper (when only periodic and sporadic tasks are
considered), the feasibility of a task set with re-
source constraints is tested by the following su�-
cient condition

8i; 16 i6 n;
Xi

k�1

Ck

Tk
� Bi

Ti
6 1; �2�

which assumes that all the tasks are sorted by
decreasing preemption levels, so that pi P pj only
if i < j.

The following theorem extends this analysis by
providing a tighter schedulability test.

Theorem 1. Let TP be a set of n hard sporadic tasks
ordered by decreasing preemption level (so that
pi P pj only if i < j), such that Up �

Pn
i�1

Cn
Tn
6 1:

Then, TP is schedulable by EDF � SRP if and only
if

8j; 16 j6 n 8L; 0 < L6 Tj;

L P
Xj

i�1

L
Ti

� �
Ci �max�0;Bj ÿ 1�: �3�

Proof. Only if. Suppose that Eq. (3) is not veri®ed
for j � j and L � L and that task set TP is still
schedulable.

If Bj6 1, then suppose that all the tasks start at
time 0: the demand of processor utilization in �0; L�
is greater than L and the task set cannot be
schedulable.

If Bj > 1, then, for construction of Bj, exist sl

and h such that clh � Bj. Suppose that all the tasks
si, with i6 j, start at time x and that task sl starts
at time �xÿ /lh ÿ 1�: the situation is shown in
Fig. 2.

Fig. 1. cjh does not contribute to Bi.
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The processor demand in interval �x; x� L� is

Xj

i�1

L
Ti

� �
Ci � Bj > L:

Hence, the system is not feasible.
If. Suppose that Eq. (3) is veri®ed and that the

task set is not schedulable. Hence, there is a
deadline miss at time y. Let x be the last instant of
time such that there are no pending requests of
tasks arrived before x and with deadline not after
y. Let A be the set of tasks that execute in �x; y�
and with deadline not after y, and let B be the set
of tasks that execute in �x; y� and with deadline
after y. Notice that tasks in B are inside a critical
section at time t1. In fact, they begin executing and
enter the critical section before x; they continue
their execution until the end of the critical sec-
tions, and then they can be preempted. We now
show that B contains at most one task. Suppose
that B contains two tasks, sa; sb: both of these
must hold resources at time x. Since they block
jobs in A, they both hold resources with current
ceilings higher than pi for some i 2 A. However, a
task cannot wait for more than one critical sec-
tion. Hence, only one task can be in B. If
�y ÿ x�P Tn, then B is empty and, following the
same argument as in [15], it follows that Up > 1;
which contradicts the hypothesis. If �y ÿ x� < Tn,
then let sj be the task with the lowest preemption
level in A. Then,

y ÿ x

< CA � CB6
Xj

i�1

y ÿ x
Ti

� �
Ci �max�0;Bj ÿ 1�:

This is a contradiction, since there exists an
L � y ÿ x that does not satisfy Eq. (3). Note that
L < Th with sh 2 B, and hence L < Tn. �

It is worth making some consideration on the
proposed feasibility test. First of all, condition (3)
is necessary and su�cient only for sporadic tasks.
In fact, for periodic tasks, the problem of deciding
feasibility in the presence of resource constraints is
NP-hard [10]. In addition, since condition (3) is
necessary and su�cient, the SRP is optimal; that
is, every feasible task set can be scheduled by EDF
with the SRP.

The complexity of the proposed schedulability
test is pseudo-polynomial. As a consequence, for
large task sets, it might be too costly for providing
on-line guarantee. Rather, this method can be used
o�-line to guarantee the schedulability of all criti-
cal periodic and sporadic tasks in the presence of
resource constraints.

3.2. Comparison between SRP and DDM

The problem of scheduling sets of sporadic
tasks that share resources was also considered by
Je�ay in [10]. He considers a task as a sequence of
phases. In each phase, a task can only execute

Fig. 2. How a low priority task can delay high priority tasks.
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normally or entering a critical section at the be-
ginning of the phase and leave it at the end of the
phase. His algorithm, called DDM, is essentially
based on EDF: when a task is inside a critical
section, it dynamically modi®es the tasks' dead-
lines in order not to allow preemption by other
tasks that share that resource. A necessary and
su�cient condition is given and the algorithm is
optimal.

The model considered in Ref. [10], however,
does not take nested critical sections into account.
This is due to the fact that it is not possible (or
rather complicated) to express such constraints
with the phase model. Nevertheless, SRP and
EDF/DDM are equivalent (when we consider no
nesting), in the sense that given a task set, they
produce the same schedule. This can be seen with
the following considerations:
· the rule for dynamically modifying deadlines in

DDM is analogous to the use of preemption lev-
els and system ceiling in SRP;

· EDF/DDM and SRP use the same parameters
in di�erent ways, and with a di�erent notation;

· both algorithms are optimal.
In addition, our model has the following ad-

vantages with respect to DDM:
· it can express nested critical sections;
· SRP is very easy to implement with low over-

head;
· SRP can be applied to both dynamic priority

and ®xed priority scheduling algorithm (how-
ever, for ®xed priority algorithm, the schedu-
lability test is di�erent and it is not optimal).

4. Sharing resources between soft and hard tasks

When soft aperiodic tasks share resources with
periodic tasks, the duration of their critical sec-
tions must be taken into account in the feasibility
analysis, even if the aperiodic requests are sched-
uled in the background. The blocking factor in-
troduced by aperiodic tasks depends on the
duration of critical sections and on the policy
adopted for scheduling aperiodic jobs.

In order to bound the maximum blocking time
of each task and analyze the schedulability of hy-
brid task sets, we assume that the SRP is used to

access shared resource. Hence, each aperiodic re-
quest must be assigned a suitable preemption level
according to the SRP protocol.

The simplest way to service aperiodic requests is
to schedule them in the background: soft aperiodic
tasks are served FIFO and with the lowest priority
in the system. For our purpose, we assign each
aperiodic request a deadline equal to in®nity and a
preemption level equal to 0. With this method, an
aperiodic task can never preempt a hard periodic
task, and Property 1 is veri®ed, so guaranteeing
the correctness of the protocol. To perform the
schedulability test, the critical sections of soft
aperiodic tasks have to be considered in the
blocking factor de®ned in Eq. (1), just as done for
periodic tasks. Using background service, how-
ever, aperiodic tasks can experience high response
times and it is not easy to calculate their worst case
completion time.

A better approach that can be followed in dy-
namic environments is to assign suitable deadlines
to aperiodic requests, and schedule them as hard
tasks. An e�cient method for assigning deadlines
to soft aperiodic requests has been proposed by
Spuri and Buttazzo in Ref. [23]. In this work the
authors describe an algorithm, the Total Band-
width Server (TBS) for enhancing the response
time of soft aperiodic tasks in hard real-time en-
vironments. Although not optimal, this approach
has three great advantages: it exhibits a good
performance/cost ratio, it can easily be extended to
deal with tasks with ®rm deadlines [22], and it al-
lows aperiodic tasks to share resources with hard
periodic tasks, as described below.

In the rest of this section, we ®rst show a
method for assigning ``safe'' deadlines to aperiodic
tasks, so that the whole hybrid task set can be
guaranteed even under resource constraints. We
then illustrate how to reclaim processor utilization
for enhancing aperiodic response time in the case
of early completions. Finally, we show that ca-
pacity- based servers are not suited in the presence
of resource constraints.

4.1. Assigning deadlines to soft tasks

Each time an aperiodic request enters the sys-
tem, a ``®ctitious'' deadline is assigned to it based
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on the available processor bandwidth. 2 In par-
ticular, when the kth aperiodic request arrives at
time t � rk, it receives an eligible time

ek � max�rk; dkÿ1�; �4�
where dkÿ1 is the deadline assigned to the previous
aperiodic job. By de®nition, d0 � 0. At time ek, the
aperiodic job Jk enters the ready queue and re-
ceives the following deadline

dk � ek � Ck

Us

; �5�

where Ck is the worst-case execution time of the
request and Us is the server utilization factor (i.e.,
its bandwidth), whose value is provided at design
stage. Thus, at time rk, request Jk is temporarily
inserted in a queue of pending jobs and, at time ek,
it is inserted into the ready queue together with the
other hard tasks.

Note that the bandwidth already assigned to
previous requests is taken into account by simply
considering the maximum between rk and dkÿ1.
The following theorem states an important result
for the TBS.

Theorem 2. In every interval of time �t1; t2�, the total
computational demand of aperiodic tasks scheduled
by a TBS with utilization Us never exceeds
�t2 ÿ t1�Us.

Based on this result, proved in Ref. [23], a set of
periodic tasks with utilization factor Up �Pn

i�1�Ci=Ti� and a TBS with a bandwidth Us is
schedulable by EDF (without resource con-
straints) if and only if

Up � Us6 1: �6�

4.2. Integration

To allow soft aperiodic tasks to be scheduled
with hard tasks under the SRP protocol, each
aperiodic request must be assigned the following
preemption level

pk � Us

Ck
: �7�

Notice that �Ck=Us� � �dk ÿ ek� is the interval be-
tween the time ek at which the aperiodic request
becomes eligible to execute and the absolute
deadline assigned to it by the TBS. Since this is
equivalent to a relative deadline, the preemption
level de®ned by Eq. (7) is consistent with Property
1.

Once a preemption level is assigned to each
aperiodic task, and a ceiling is associated with each
resource, the maximum blocking time of periodic
task si can still be calculated using Eq. (1)

Bi � maxfcj;h j Ti < Tj ÿ /jh ^ pi6 ceil�qjh�g;
where now j ranges over the whole task set, in-
cluding both periodic and aperiodic tasks, and, if
sj is an aperiodic task, Tj � �Cj=Us�. Then, the
schedulability of the hybrid task set can be guar-
anteed based on the following theorem.

Theorem 3. Let TP be a set of n hard periodic tasks
ordered by decreasing preemption level (so that
pi P pj only if i < j), and let TA be a set of
aperiodic tasks scheduled by a TBS with utilization
Us, such that Up � Us6 1. Also, let p� be the
maximum preemption level among those assigned to
aperiodic tasks. Then, TP is schedulable by
EDF � SRP � TBS if

8 i; 16 i6 n 8L; 0 < L < Ti

L P
Xi

j�1

L
Tj

� �
Cj �maxf0;Bi ÿ 1g � S�i�UsL

where S�i� is a select function de®ned as

S�i� � 0 if pi P p�;
1 if pi < p�:

�
�8�

Proof. The proof is a straightforward extension of
the proof of Theorem 1 and is not reported here. It
can be found in Ref. [16]. �

4.3. Reclaiming processor utilization

Using TBS, any unused computation time can
easily be reclaimed to enhance responsiveness of

2 The formal de®nition of the TBS presented here is slightly

di�erent from the original formulation.
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aperiodic tasks. This is a very useful feature since,
in practice, tasks often execute less than their
worst case computation time. To reclaim spare
time is su�cient to advance the aperiodic ®ctitious
deadline by an opportune value. We distinguish
the case of early completion of periodic and
aperiodic tasks. The former case is considered by
the following Lemma.

Lemma 4. Given a hybrid set T schedulable by
EDF+TBS, let t0 be the time at which all the active
tasks completed their execution and let Jk be a
pending aperiodic job not eligible (i.e., with ek > t0).
If the eligible time and the deadline assigned to Jk

are modified as

e0k � t0

d 0k � e0k �
Ck

Us

then, in each fully utilized interval �t1; t2�, the aper-
iodic execution demand never exceeds �t2 ÿ t1�Us

and set T remains schedulable.

Proof. By contradiction, suppose that there is a
time-over¯ow (i.e., a deadline miss) at time t2, and
let t1 be the last instant of time before t2 such that
all the active tasks with deadline less than t2

completed their execution. Thus, �t1; t2� is fully
utilized (see de®nition 1). Let Jk1

be the ®rst
aperiodic job with ek1

P t1 and let Jk2
be the last

aperiodic job with dk2
6 t2. Clearly, by de®nition,

t1 P t0 and k1 P k. The total demand of aperiodic
execution in �t1; t2� is

Ca �
Xk2

j�k1

Cj �
Xk2

j�k1

�dj ÿ ej�Us P �t2 ÿ t1�Us:

Since a time-over¯ow has occurred,

t2 ÿ t1 <
Xn

i�1

t2 ÿ t1

Ti

� �
Ci � Ca6 �t2 ÿ t1��Up � Us�

and hence,

Up � Us > 1;

which is a contradiction. �

Whenever an aperiodic job is completed earlier,
again we can advance the eligible time and the
deadline of the next aperiodic request, as shown by
the following Lemma.

Lemma 5. Given a hybrid set T schedulable by
EDF+TBS, if aperiodic job Jkÿ1 saves D units of
computation time, the eligible time and the deadline
of job Jk can be advanced as follows

e0k � max rk; fkÿ1; dkÿ1

�
ÿ D

Us

�
d 0k � e0k �

Ck

Us

then, in each fully utilized interval �t1; t2�, the aper-
iodic execution demand never exceeds �t2 ÿ t1�Us

and set T remains schedulable.

Proof. For the sake of clarity, we restrict to the
interval �ekÿ1; dk�. The total aperiodic execution
demand in this interval is

Ckÿ1 ÿ D� Ck � Us�dkÿ1 ÿ ekÿ1� ÿ D� Us�dk ÿ ek�

6Us dkÿ1

�
ÿ D

Us

�
ÿ Usekÿ1 � Usdk ÿ Us dkÿ1

�
ÿ D

Us

�
� Us�dk ÿ ekÿ1�:

From Theorem 2 and Lemma 4, it follows that in
every interval of length L that contains �ekÿ1; dk�,
the total aperiodic execution demand never ex-
ceeds LUs. Hence, T remains schedulable and the
lemma follows. �

Why such a complicated rule for resource re-
claiming? The reason descends from the fact that,
under the SRP, a task must be executed with a
deadline which is consistent with the preemption
level assigned statically. In the original formula-
tion of the TBS algorithm, an aperiodic request is
immediately inserted in the ready queue with the
suitable deadline. In this way, the reclaiming of
processor utilization is performed automatically.
But an aperiodic task could execute with a relative
deadline greater than �Ck=US�, and this fact is not
consistent with Property 1 on preemption levels.
With our reclaiming rule, this problem does not
arise since �dk ÿ ek� is constant.
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4.4. Other server mechanisms

What about using other aperiodic server
mechanisms in the presence of resource con-
straints? Except for the TBS, dynamic aperiodic
servers can mainly be divided into two classes:
®xed capacity servers (e.g., Polling, Deferrable [9]
or Sporadic Server [23]), and slack stealing tech-
niques (e.g., EDL and IPE [23]).

Using slack stealing methods, resource con-
straints could be taken into account by computing
slack intervals based on preemption of periodic
tasks. However, extending this kind of servers is
out of the scope of this paper.

If a ®xed capacity server is used to handle
aperiodic requests, under the SRP protocol, a
suitable preemption level must be assigned to the
server, even though aperiodic tasks do not share
resources with hard tasks. For example, to verify
Property 1, we could assign the server a preemp-
tion level inversely proportional to its period. In
this case, however, if aperiodic tasks share re-

sources with hard tasks, the blocking factors of
hard periodic tasks cannot easily be bounded. For
example, if an aperiodic job is executed within two
instances of the server, it could enter a critical
section during the ®rst instance and release the
semaphore during the second instance. As a result,
the estimation of the maximum preemption times
would be too pessimistic. Such a situation is de-
picted in Fig. 3, where two periodic tasks, s1 �C �
2; T � 8� and s2 �C � 3; T � 12�, interact with two
aperiodic jobs, J1 and J2, both having execution
time Ca � 2 and release times r1 � 0 and r2 � 1. In
particular, s1 and J2 use the same resource during
all their execution (they are dark shaded). Fig. 3(a)
shows the schedule produced by a polling server
with Cs � 3 and Ts � 6, for a total utilization of
�Cs=Ts� � 0:5. Note that task s1 could experience a
blocking time of B1 � 5. Fig. 3(b) shows the
schedule obtained by a TBS with Us � 0:5. In this
case, s1 cannot be blocked on the resource, since its
preemption level is less than the preemption level
assigned to job J2. Thus, under the TBS, the

Fig. 3. Example of a periodic task which shares a resource with an aperiodic task scheduled by a polling server (a) and by a TBS (b).
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blocking factor of s1 is B1 � 0; under the polling
server it is B1 � 5, whereas with background it is
B1 � 2.

5. Deadlines di�erent than periods

The schedulability analysis presented above can
be extended to the case of periodic task sets with
deadlines less than periods. To do that, we use the
``processor demand criterion'' adopted in Refs.
[3,10] for testing the feasibility of periodic or
sporadic task sets.

Theorem 6. Let T � T P [ T A be a hybrid set of
tasks, where TP is a set of n hard sporadic tasks,
and TA is a set of soft aperiodic tasks scheduled by
a TBS with utilization Us, that share resources
under the SRP. Then, T is schedulable if, for all
L > 0 and for all i, 16 i6 n,

L P
Xi

j�1

Lÿ Dj

Tj

� ��
� 1

�
Cj �maxf0;Bi ÿ 1g

� S�i�LUs: �9�

Proof. The proof is an extension of proof of
Theorem 1 and it is not reported here. It can be
found in Ref. [16]. �

Although Eq. (9) should be tested for all L > 0,
we can restrict the number of points in which they
have to be veri®ed to a ®nite set of elements. It is
easy to show that Eq. (9) can be checked only for L
equal to the deadlines of the jobs in TP. Assuming
that tasks in TP are ordered by decreasing pre-
emption levels, let Ui be

Ui �
Xi

j�1

Cj

Tj
:

Note that, if Ui � Us > 1, there is an overload and
task set is not schedulable. In the following, we
assume that, for all i, 16 i6 n, Ui � Us < 1. This is
a realistic assumption in practical systems. Let Hi

be de®ned as follows

Hi � Ui maxk�1;...;i�Tk ÿ Dk� �maxf0;Bi ÿ 1g
1ÿ Ui ÿ S�i�Us

;

where S�i� is de®ned as in Eq. (8). Finally, we now
prove that for all L > Hi, the ith Eq. (9) is veri®ed.

Theorem 7. Let T � T P [ T A be a hybrid set of
tasks, where TP is a set of n hard sporadic tasks,
and TA is a set of soft aperiodic tasks scheduled by
a TBS with utilization Us, that share resources
under the SRP. Let Pi be

Pi � fdj;k j dj;k � kTj � Dj; dj;k 6Hi; k P 0;

16 j6 ig:
Then, T is schedulable if and only if, for all i,
16 i6 n, and for all L 2 PiXi

k�1

Lÿ Dk

Tk

� ��
� 1

�
Ck �maxf0;Bi ÿ 1g

� S�i�LUs6 L: �10�

Proof. The ith equation can be rewritten as

g�L� �
Xi

k�1

Lÿ Dk

Tk

� ��
� 1

�
Ck �maxf0;Bi ÿ 1g

� S�i�LUs ÿ L6 0

and we note that

g�L�6L
Xi

k�1

Ck

Tk
ÿ
Xi

k�1

Dk ÿ Tk

Tk
Ck �maxf0;Bi ÿ 1g

� S�i�LUs ÿ L6 L�Ui � S�i�Us ÿ 1�
� max

k�1;...;i
�Tk ÿ Dk�Ui �maxf0;Bi ÿ 1g:

Thus, when g�L� 6 0, that is, when

L P
Ui maxk�1;...;i�Tk ÿ Dk� �maxf0;Bi ÿ 1g

1ÿ Ui ÿ S�i�Us

� Hi

Eq. (10) is automatically veri®ed. �

What about the computational complexity of
test Eq. (10)? Baruah et al. [3] proved that the
problem of deciding the feasibility of synchronous
periodic or sporadic task sets with arbitrary
deadlines is NP-hard in the weak sense. They
found an algorithm which tests feasibility in
pseudo±polynomial time. Our test is based on the
same result, and has complexity O�n max�Hi��
which is pseudo-polynomial in the input size.
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6. Conclusions

In this paper, we have addressed the problem of
integrating resource constraints in the execution of
hybrid task sets including hard periodic and soft
aperiodic tasks. Schedulability conditions have
been derived for the Earliest Deadline First algo-
rithm, which has been extended to handle periodic
tasks with deadlines less than periods which share
resources with soft aperiodic tasks. The analysis
has been carried out by considering that resources
are accessed through the Stack Resource Policy
and aperiodic tasks are serviced by the Total
Bandwidth Server.

The complexity of the analysis proposed in this
paper, when hard task have deadlines di�erent
than periods, is pseudo-polynomial, because the
problem has been shown to be NP-hard [3]. As a
consequence, the resulting schedulability tests
might be too costly for providing an on-line
guarantee. Nevertheless, this method can be used
to perform o�-line guarantee of critical periodic
and sporadic tasks and to reserve su�cient band-
width to serve aperiodic tasks on line.

Finally, this approach permits the de®nition of
timing and resource constraints, without explicitly
imposing the release times, as typically done in o�-
line scheduling approaches. In this way, we take
advantage of dynamic scheduling for handling
aperiodic requests on-line and automatically re-
claiming resources whenever possible.

7. For further reading

Refs. [4,6,11,14,21,24,25].
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