Giuseppe Lipari and Sanjoy Baruah. Efficient scheduling of real-time multi-task applications in dynamic systems. Proceedings of the
Real-Time Technology and Applications Symposium, pp 166-175, Washington, DC. May 2000. IEEE Computer Society Press.

Efficient Scheduling of Real-Time Multi-Task Applications in
Dynamic Systems*

Giuseppe Lipari, Sanjoy K. Baruah
lipari@sssup.it, baruah@cs.unc.edu

Abstract

The Bandwidth Sharing Server (BSS) is a schedul-
ing strategqy for multi-task real-time applications that
provides the dual properties of performance guarantees
and inter-application isolation. We describe here the
BSS-I algorithm, an evolution of the BSS, aimed at (i)
improving the run-time performance and (ii) general-

izing the kinds of performance guarantees that can be
offered.

1 Introduction

The thread model of concurrent programming is
very popular and it is supported by most of the op-
erating systems. In this model, each application (or
process) has its own address space and applications
communicate by means of operating system primitives.
Context switch among applications is often an expen-
sive operation. An application can be multi-threaded,
i.e. it can consist of several concurrent tasks: different
tasks belonging to the same application share address
space and other resources. Context switch among tasks
of the same application is faster and the communica-
tion easier.

In many cases, applications may require timing con-
straints to exhibit the desired performance. Such con-
strains can be hard (as in control systems) or soft (as
in multimedia systems). In order to provide a prede-
fined Quality of Service (QoS) to soft real-time appli-
cations and guarantee hard timing constrains, operat-
ing systems should support suitable resource reserva-
tion mechanisms and scheduling algorithms. Unfortu-
nately, traditional operating systems do not meet this
goal because scheduling decisions are not based on real-
time parameters, like deadlines or periods. As a conse-
quence, applications may have an unpredictable timing

*Supported in part by the National Science Foundation
(Grant Nos. 9704206 and 9972105).

behavior and experience discontinuity under peak load
situations.

On the other hand, using a traditional real-time sys-
tem is not always appropriate. In fact, many of these
systems were designed for guaranteeing execution to
one single real-time application composed of hard real-
time tasks. Everything is pre-determined and every
constraint guaranteed a-priori under worst-case condi-
tions.

Our interest is in being able to provide scheduling
support in highly-dynamic systems where new applica-
tions may join the system at any instant, and currently
active applications may leave the system. Furthermore,
the behavior of each application cannot be completely
a-priori characterized. In such systems, our scheduling
goals are to provide:

e some kind of concrete performance guarantee to
each admitted application, and

e inter-application isolation — each application
should be protected from the potential misbehav-
ior of other applications.

In [8], the Bandwidth Sharing Server (BSS) algo-
rithm has been proposed to provide isolation and pre-
cise real-time execution to hard and soft applications.
In this paper we will describe the BSS-I algorithm, an
evolution of the BSS, that improves it in two ways:

e extending the local selection mechanism in order
to handle different schedulers at the task level (sec-
tion 5);

e introducing a new data structure called Incremen-
tal AVL tree to store the BSS internal status, in
order to lower complexity (section 7).

2 Previous work

The problem of scheduling hard and soft multi-task
applications in dynamic systems has already been ad-
dressed. A classic methodology for providing isolation

Sanjoy Baruah
Giuseppe Lipari and Sanjoy Baruah. Efficient scheduling of real-time multi-task applications in dynamic systems. Proceedings of the Real-Time Technology and Applications Symposium, pp 166-175, Washington, DC. May 2000. IEEE Computer Society Press.

and real-time execution is to assign each application
a server with certain parameters which specify its de-
sired performance. Each time a new application is acti-
vated in the system, an acceptance test is run: whether
the application is accepted in the system or not de-
pends on the server parameters and on the available
system resources. The server parameters represent a
contract between the application and the system: the
goal of the system-wide scheduler is to provide each
application the expected level of service. However, it
is incumbent upon the server, and not the system-wide
scheduler, to ensure that the tasks that comprise the
application performs as expected and do not request
more than specified.

Several service mechanisms have been proposed un-
der RM [6, 5, 1, 12] and under EDF [9, 3, 11, 10], but
each of them can handle only one single aperiodic task.

A very interesting approach to our problem can be
found in [4]: the application level scheduler is EDF,
whereas it is possible to select the most appropriate
scheduling strategy at the task level. With this method
it is possible to guarantee real-time execution for each
application independently from the others, but an ac-
curate guarantee test must be performed on each ap-
plication as a misbehaved task can affect the schedula-
bility of all the system.

In [2], Liu and Deng describe a two level scheduling
hierarchy which allows hard real-time, soft real-time
and non real-time applications to coexist in the same
system and to be created dynamically. According to
this approach, which uses the EDF scheduling algo-
rithm as a global scheduler, each application is handled
by a dedicated TBS server [10] and it is also possible
to choose more appropriate local scheduling strategies.
The algorithm makes a distinction between predictable
and non-predictable applications: an application is said
to be predictable if it consists of periodic tasks or non-
preemptable tasks. For non-predictable applications,
it is necessary to specify a scheduling quantum, that is
the minimum amount of time between two successive
events in the application. Due to this mechanism, non-
predictable applications can be guaranteed only paying
some penalty in processor utilization.

In our opinion, this is a serious limitation of the al-
gorithm in [2], because most of the applications in an
open system are event-driven and preemptable. More-
over, in both the previous approaches, no isolation is
provided: it is not clear what happens if a task is mis-
behaving and wants to execute more or arrives at an
higher rate than specified.

In [8], the Bandwidth Sharing Server (BSS) algo-
rithm has been proposed to provide isolation and pre-
cise real-time execution to hard and soft applications.

Every application is handled by a custom server with
a fixed bandwidth and a system-level scheduler, based
on EDF, selects the application to execute. The BSS
algorithm solves some of the problems of the previous
approaches:

e no information on the application is needed other
than the desired bandwidth;

e the scheduling strategy is de-coupled from the
guarantee algorithm: no information is needed on
the execution time or arrival rate in order to sched-
ule the tasks. These information are only needed
before run-time, in order to calculate the band-
width to assign to the application server;

e there is no need to distinguish between predictable
and non-predictable application; in particular, no
processor bandwidth need to be wasted when
scheduling hard-real-time tasks with a preemptive
algorithm;

e the BSS isolates applications: a misbehaving task
cannot affect the guaranteed performance of an-
other application; hence, the BSS is particularly
suitable for scheduling soft-real-time applications,
i.e. applications for which we have no exact infor-
mation on the worst case execution time or arrival
rate of the tasks.

However, the BSS suffers two major limitations: its
high complexity and the fact that the only scheduling
policy supported at the task level is EDF. To deal with
this limitations, in the following sections we present the
BSS-T algorithm: in section 5 the local selection mecha-
nism is extended in order to handle different schedulers
at the task level; in section 7 a new data structure,
called Incremental AVL tree, is introduced in order to
lower complexity.

3 Definitions

In our model, a task 7; is a finite or infinite sequence
of requests for a shared resource (e.g. the CPU). Each
job Ji; = (aij,cij,dij), is characterized by a request
time (or arrival time) a;;, a computation time ¢;; and
a deadline d;;. There is no constraint on the arrival
times: therefore, a task can be time-driven (periodic)
or event-driven (sporadic or even aperiodic).

The meaning of d;; depends on the task type. If
the task is hard-real-time, d;; represents the absolute
deadline, that is time by which a job must complete in
order for the application to be correct. If the task is
soft-real-time, d;; represents the time by which a job
should complete, if there is enough resource available.

Informally, we can define the percentage of jobs that
complete before the deadline as a measure of the Qual-
ity of Service (QoS) of a soft task: the more the jobs
that complete before d;;, the higher is the QoS experi-
enced by the soft task.

Thus, it is the responsibility of the system designer
to assign critical tasks a sufficient fraction of the pro-
cessor bandwidth such that no deadline is missed. On
the other end, if the application tasks are not critical,
the system designer can also decide to assign resource
shares basing on average values, so that deadlines can
be met with a certain probability (QoS guarantee).

An application is a set of tasks:

./4: {7—177—27---77-n}-

In the following, symbol 7'{4 will indicate the i-th task
of application A. Each application A is assigned a
bandwidth U4 which is the fraction of the processor
time that the application is allowed to use. Our system
consists of a set of applications S which share the same
resource. We assume that

Y ut<i

AES
4 The BSS-1I Algorithm

In this section we give an overview of the BSS-I algo-
rithm. The exposition is somewhat different from the
one in [8], because we need to extend the algorithm to
handle different scheduling policies. For details on the
original algorithm, please refer to [8].

In Figure 1, the general system architecture is out-
lined. Each application A is handled by a dedicated ap-
plication server S* and it is assigned a share (or frac-
tion or processor utilization, or bandwidth) U4, with
the assumption that the sum of the shares of all the
applications in the system cannot exceed 1. The server
maintains a queue of ready tasks: the ordering of the
queue depends on the local scheduling policy.

Each time a task is ready to be executed in appli-
cation A, the server SA calculates a budget B and
a deadline d for the entire application. The active
servers are then inserted in a global EDF queue, where
the global scheduler selects the earliest deadline server
to be executed. It will be allowed to execute for a
maximum time equal to the server budget. In turn, the
corresponding server selects the highest priority task in
the ready queue to be executed according to the local
scheduling policy.

The server deadline is assigned by the server to be
always equal to the deadline of the earliest-deadline

task in the application (notice that, as per the descrip-
tion above, the task selected to be executed is chosen
according to the local scheduler policy and might not
be the earliest deadline task). The budget calculation
will be described in the next section.

To better understand the dynamics of the system, in
the following we describe the system events, the inter-
face that the global scheduler module exports towards
the application server and the interface that each server
exports toward the global scheduler.

The interface that the kernel exports toward the
server consists of only two functions:

activate(Server S, Budget B, Deadline d) : in-
serts server S in the global EDF queue with dead-
line d and budget B. If S becomes the earliest
deadline server, then it is selected to execute (its
schedule() function is called).

suspend(Server S) : extracts server S from the
global EDF queue. If S was executing, then its
deschedule() function is called; a new server is se-
lected to be executed (its schedule() function is
called).

Each server exports the following interface to the
global scheduler:

schedule() : the server is selected to execute. In turn
the highest priority task is chosen to be executed
according to the local scheduler policy.

deschedule(time e) : the application is no longer ex-
ecuting, and the processor was held for e consec-
utive units of time; the server updates its internal
data accordingly.

budgetExhausted(time e) : the budget is over and
the application has been suspended. If the applica-
tion consists of hard tasks, then the server raises
an exception. If the application consists of soft
tasks, the server calculates a new tuple (budget,
deadline) and activates the application again.

The dynamics of the system are described by the
following set of events:

Task arrival: a new task instance is released in an ap-
plication. If the task is already active, the arrival
is buffered. If the task is not active, it is inserted
in the local ready queue: this could cause a local
preemption. Also, if the newly activated task is
also the earliest deadline task in the application,
then the server

1. suspend itself calling the suspend(S) func-
tion;

Application A

RM Queue
Task Al 1» —
Application B
EDF Queue
TaskBl [Z___ o L
Application Z
Round Robin
TaskzZl [Z___ o L

Server A

Server B

Server Z

EDF Application Queue
-
—(oe)
—

Figure 1. System Architecture.

2. calculates a new tuple (B, d), where d is the
earliest deadline among those of the active
tasks in the application and B is calculated
according to the algorithm described in sec-
tion 4.1;

activates itself calling the activate (S, B,
d).

Since the server deadline has changed, a global
preemption could occur. In this case, the global
scheduler calls the deschedule(E) function of the
preempted server, where E is the amount of time
that the server held the processor; then it calls the
schedule() function of the preempting server to
signal that it has gained the processor.

Task end: a task instance finishes execution. If there

is some buffered instance for this task, it is acti-
vated and inserted in the ready queue. If the ready
queue becomes empty, then the server suspend it-
self, waiting for the next task arrival. Otherwise,
the next task in the ready queue is selected to exe-
cute. If the finished task was the earliest deadline
task in the application, then the server deadline
changes: again the server suspend itself, calcu-
lates a new tuple (B,d), and activate itself. Just
as before, if the server deadline changes, a global
preemption can occur.

Budget Exhausted: the server budget is exhausted.

The global scheduler suspends the executing server
and calls its budgetExhausted() function. In
this case the server cannot execute any longer with

the current deadline, otherwise some other appli-
cation could be affected. We have two cases:

1. If the application consists of hard tasks, then
something catastrophic could happen if the
task misses its deadline. This can be consid-
ered a fault: therefore, an exception must be
raised.

. If the application is soft, we can simply de-
grade the level of service of the application
lowering its priority. Hence, the server post-
pone its deadline, a new budget is calculated
and the server activate itself again. In section
5 we discuss different methods of postponing
the server deadline.

4.1 Budget calculation

In the BSS algorithm [8], in order to calculate the

budget, every server uses a private data structure called
list of residuals. We briefly recall here this mechanisms

to
In

explain how the budget for each server is calculated.
section 7 we will introduce a novel data structure,

called Incremental AVL Tree with the same properties
of the list of residuals but with a lower complexity.

For each task of an application A, the list of resid-

uals L# contains one or more of the following type of
elements:

I = (B,d)

where

e (is the task’s deadline;

e B is the budget available in interval [a,d] (where
a is the task’s arrival time); that is, the maximum
time that application A is allowed to demand in

[a, d].

Thus, an element [specifies for the interval [a,d]
the amount of execution time available in it. The goal
of the server is to update the list such that in every
interval of time the application cannot use more than
its bandwidth. From now on, symbol l;, will denote the
element in the k-th position of the list.

List LA is ordered by non-decreasing deadlines d.
For the list to be consistent, the budgets must be as-
signed such that they are non-decreasing. Intuitively,
this means that the total execution time allowed in an
interval is never smaller than the execution time al-
lowed in any contained interval.

The server assigns the application a pair (budget,
deadline) corresponding to the element I = (B,d) of
the earliest deadline task in the application, regardless
of the local scheduling policy. Only in the case the local
scheduling policy is EDF, this element corresponds to
the first task in the ready queue.

Two main operations are defined on this list: adding
anew element and updating the list after some task has
executed.

4.2 Adding a new element

A new element is created and inserted in the residual
list when a newly activated task becomes the earliest
deadline task among the ready tasks in the application.
Let d; be its deadline: first, the list is scanned in order
to find the right position for the new element. Let k
be such a position, that is:

A1, dr1 <d; < dy,

Now, the budget B; is computed as:

B; = min{D;U*, (di — dy_1)U* + By_1, Bx} (1)

where U# is the bandwidth (share) assigned to ap-
plication A and D; is the task’s relative deadline. At
this point, the new element is completely specified as
I = (Bi,d;) and can now be inserted at position k,
so that the k-th element becomes now the (k + 1)-th
element, and so on.

The basic idea behind Equation (1) is that the bud-
get for the newly arrived task must be constrained such
that in any interval the application does not exceed its
share. A typical situation is shown in Figure 2: when at
time ¢ task 7; becomes the earliest deadline task, the

Figure 2. Computation of B;

algorithm must compute a new budget: it must not
exceed the share in interval [a;, d;], which is D;U4; it
must not exceed the share in interval [ay_1,d;] which
is By 1 + (d; — dp_1)U* , and must not exceed the
share in interval [ay, d] which is By. It can be shown
that, if B; is the minimum among these values, then
the application will not use more than its share in any
other interval.

4.3 Updatingthelist

Every time the application leaves the processor, (i.e.
the deschedule(time e) is called), the list must be up-
dated. It could happen for any of the following reasons:

e the task has finished execution;
e the budget has been exhausted;

e the application has been preempted by another ap-
plication with an earlier deadline;

e suspend() has been called while the application
was executing.

Then, the algorithm picks the element in the list cor-
responding to the actual deadline of the server, say the
k-th element, and updates the budgets in the following
way:

Vi,
Vi,

k B]':Bj—e

>
< k A Bj>DB;, — remove element l;

J
J
4.4 Deleting elements

We also need a policy to delete elements from the
list whenever they are not necessary any longer. At

time ¢, element [}, can be deleted if the corresponding
task’s instance has already finished and

e cither dj, <t;
e or By > (dy — t)UA.

It can be seen from Equation 1 that in both cases
element [;, is not taken into account in the calculation
of the budget. In fact, suppose that element [; is being
inserted just after [;. Then

D;UA = (d; — tyUA < By + (d; — dy,)UA

and By, + (d; — dp)U* cannot be chosen in the mini-
mum. Suppose now that element [; is being inserted
just before [j,. Then

D;UA = (d; — t)yUA < (dy, — t)UA < By

and By, cannot be chosen in the minimum. Since [, can-
not contribute to the calculation of any new element,
then it can be safely deleted.

5 Support for different scheduling poli-
cies

In [8], EDF was the only supported local scheduling
policy. In this case, for each application, the server se-
lects its currently active task with the earliest deadline;
hence the server deadline is always coincident with the
deadline of the first task in the ready queue.

In this work, it is possible to choose a different local
scheduling policy for each server. The algorithm re-
mains the same except that the task selected to be exe-
cuted might not be the earliest deadline task. However,
the server is always assigned a pair (budget,deadline)
equal to element ! = (B,d) in the residual list corre-
sponding to the earliest deadline task.

To clarify the mechanism, consider the example in
Figure 3 in which two applications are scheduled by the
BSS algorithm: application A consists of two tasks, 77
and 75! and it is served by a server with a bandwidth
of 0.5 and with a Deadline Monotonic scheduler. Ap-
plication B consists of only one task and it is served
by a server with a bandwidth of 0.5 (since there is only
one task, the local scheduling policy doesn’t matter).

Let us concentrate our attention on application A:

e an instance of task 77 arrives at time ¢ = 0 with
deadline d; = 10 and an (as yet unknown) exe-
cution requirement ¢; = 3 units. Then the server
calculates a budget B; = 5 and inserts a new ele-
ment in the residual list:

LA = {(5,10)}

Then the server invokes activate(A,5,10), and
the global scheduler puts it in the global ready

queue. However, since the server of application B
has an earlier deadline, the schedule() function
is not called until time ¢ = 3;

o At time t = 3 the global scheduler signals the
server of application A that it can execute;

e At time ¢ = 4 an instance of task 73! arrives with
deadline ds = 12 and an execution requirement of
¢z = 5. According to the DM scheduler, since task
75 has a smaller relative deadline than task 1,
then a local preemption is done. However, since the
earliest deadline in application A is still d; = 10,
the server budget and deadline are not changed.

e At time 8 the budget is exhausted: application
A has executed for 5 units of time. The global
scheduler suspends the server and invokes its bud-
getExhausted() function. The server first up-
dates the list:

LA ={(0,10)};

then it postpones its deadline: suppose the dead-
line is postponed by T" = 10 units of time: d} =
dy + 10 = 20, (see next paragraph for alternative
rules for postponing the deadline). Now the earli-
est deadline in the application is do = 12, and the
server calculates a new budget equal to:

B2 = (d2 — dl)U'A + Bl;
and inserts it into the list:
LA = {(0,10); (1,12)};

Finally, it invokes activate(A,1,12). Since it is
again the earliest deadline server in the global
ready queue, it is scheduled to execute.

e At time ¢t = 9 task 75 finishes. The server updates
the list:
LA = {(0,10); (0,12)};

Now the earliest deadline in application A is d} =
20. Then the server calculates a new budget and
inserts it in the list:

LA = {(0,10); (0, 12); (4,20)} ;

finally, it invokes activate(A, 4,20). Since it is
not the earliest deadline server, another server is
scheduled to execute.

It is important to notice that at time ¢t = 8 the earli-
est deadline in the application has been postponed, and

TAl T [] l [1 P
rA2 1] :

0 2 4 6 8 10

12 14 16 18 20

Figure 3. An example of schedule produced by the BSS algorithm: the two tasks in application A are

scheduled by Rate Monotonic

this deadline can in general be different from the dead-
line of the executing task. Notice also that this frame-
work is very general: it is possible to choose any kind of
local scheduler. In particular, we can let tasks share lo-
cal resources with any concurrency control mechanism,
from simple semaphores to the more sophisticated Pri-
ority Ceiling or Stack Resource Policy.

Some consideration must be done for non-real-time
applications whose tasks have no deadline. It also is
possible to schedule these applications with the BSS-
I algorithm if we provide a way to assign a deadline
(and a budget) to the application. A simple way is to
define an additional parameter Tx with the following
meaning: each time a task of a non-real-time applica-
tion is released at time %,, it is assigned a deadline at
to+Tx. This deadline has no meaning of criticality, but
is only a way to give a priority to the application. The
smaller the value of T, the higher the responsiveness
of the non-real-time application, and the higher the
run-time overhead for the system in terms of context-
switch times, handling of deadline postponements, etc.
Notice that, no matter the value of T}y, the other real-
time applications in the system will not be influenced
as long as the total utilization factor in the system is
less than 1 (see section 6).

5.1 Rulesto postpone deadlines

When the application budget is exhausted, the
server cannot execute any longer with the current dead-
line otherwise some other application could be affected:
thus, its deadline is postponed by a certain amount.
Even though postponing the server deadline is neces-
sary, it could cause a global preemption, as we are low-

ering the priority of the executing server. There are
several ways to postpone the deadline depending on
the desired level of service and on the local scheduling
algorithm.

In [8], the proposed rule was to postpone the dead-
line of the executing task by an amount equal to the
task’s relative deadline; then the server selected the
next task in the ready queue and calculated a new bud-
get for it. This rule is intuitive and flexible, however
it needs some adjustment for the case of local sched-
ulers different from EDF. In fact, the earliest deadline
in the application must be postponed in order to lower
the server priority, and in general this deadline can be
different from the deadline of the executing task. For
example, in a static priority scheduler, after an event
of budget exhaustion, the priority of the executing task
remains the same but the server executes with a longer
deadline.

Another possibility is to postpone the server dead-
line by a small fixed amount Tpp. Suppose for example
that, even if the budget is exhausted, the executing
task needs to execute only a little more to complete.
Thus, postponing the deadline by Tp could give the
task the small amount of budget that is needed to
complete without causing a preemption. However, if
the task has an highly variable execution requirement,
this rule could result in a large amount of unnecessary
preemptions.

A good compromise between the two previous rules
is to postpone the task deadline by an amount that
increases exponentially: the first time a task instance
exhausts its budget, its deadline is postponed by Tp; if
the same instance exhausts its budget a second time, its
deadline is postponed by 2Tp; if it exhaust its budget

a third time, its deadline is postponed by 47Tp; and
so on. In this way, the system automatically adapts
to the application needs. It is an engineering issue to
select the most appropriate Tp in order to minimize
the number of preemptions and the completion times
of the soft tasks.

6 Formal properties

The BSS-I has two important properties:

e The Bandwidth Isolation Property says that,
no matter the local scheduling algorithm, the exe-
cution times and the arrival rates of the tasks, no
application misses its server’s current deadline.

e The Hard Schedulability Property says that
if an application A is schedulable when executed
alone on a processor with speed U4, then it is
schedulable when handled by a BSS-I with band-
width U4 together with other applications on a
processor with speed 1.

The Bandwidth Isolation Property ensures that if an
application demands more service time than expected,
the schedulability of the others is not affected, but only
the “wrong” application slows down.

On the other end, the Hard Schedulability property
ensures that, if the task parameters are correctly es-
timated, an a-priori guarantee can be performed and
the application executes as it was running alone on a
slower processor. Of course, the schedulability condi-
tion for an application depends on the local scheduling
algorithm and on the application bandwidth. Here are
some examples of schedulability conditions for different
local schedulers:

Earliest Deadline First: Application A, which
consists of periodic hard real-time periodic tasks, is
schedulable if and only if:

~(|L-Di
VL>O,ZQ 7 J+1>C’i§UAL
i=1 i

where C;, D; and T; are respectively the worst-case
execution time, the relative deadline and the period
for task i.

Rate Monotonic: Application A, which consists of
periodic or sporadic tasks with deadlines equal to pe-
riods, is schedulable if:

(3

Vi=1,...,n Z{%w C; < TiUA.
- j

Jj=1

Stack Resource Policy with EDF: Application A,
which consists of periodic tasks with deadlines equal to
periods, is schedulable if:

i
C; B;
Vi=1,... E—f —t<pyh
l , " j:1Tj+Ti_

where B; is the maximum blocking factor for task i.

However, recall that the Hard Schedulability Prop-
erty is valid for any local scheduling policy. The proofs
for the Bandwidth Isolation Property and the Hard
Schedulability Property are rather complex and can-
not be reported here due to space limitations. We will
give only an overview of the method used to prove the
hard schedulability property. The complete proofs can
be found in [7].

Proof Sketch. Suppose that the application is
schedulable with the specified scheduling algorithm on
a processor PA with speed U#. It’s easily seen that
the application is schedulable by a BSS-I server that
executes alone on processor P4 with assigned band-
width equal to 1. Moreover, no task will finish after the
computed server deadline. Let o be the schedule pro-
duced for application A on processor P* as described
above and let us compute these schedules for every ap-
plication in the system. We define the system tick T
such that every event in the system is multiple of T5.
Now, let us consider the original system. It must be
executed on a processor P with speed 1. Let us build a
(feasible) global schedule o in the following way: every
tick we schedule application A for T,U, application
B for T,U"B, and so on. This is equivalent to merging
all the schedules using a global GPS scheduler. Since
o is feasible, and since EDF is optimal, then there will
exist a feasible EDF schedule for the entire system.

7 Improving complexity bounds

It is easy to see that if the list of residuals L is
implemented as a linear list, both the insert and the
update operations take time O(N), where N is the max-
imum number of elements in the list. In [8], we showed
that N is bounded by O(Dj,4e), Where Djq, if the
maximum relative deadline among the tasks of the ap-
plication; hence the complexity of an operation on the
list of residuals is O(D);,4,) which is pseudo-polynomial
in the input. To obtain a more efficient algorithm, we
decided to implement the residual list as a novel data
structure that we call Incremental AVL tree.

An AVL tree is a binary tree with the following prop-
erties:

e It is ordered: for each node n, every element in its
left subtree is “less” than the element in node n,

and each element in its right subtree is not “less”
than the element in node n, where “less” is a re-
lation of ordering defined on the elements.

e It is balanced: for each node n the height of the left
subtree differs from the height of the right subtree
by 1, 0 or -1.

e the usual operations of insertion, deletion and
search of an element take time O(log(/N)) where
N is the number of elements in the tree.

An Incremental AVL Tree is introduced here as a
particular kind of AVL tree in which elements are tu-
ples (b,d) that correspond to elements in the resid-
ual list. The tree is ordered by increasing values of
d. While in a residual list we store the budgets B, in
an incremental AVL tree, we store the budgets in a
relative way.

For each node n, we denote with n.parent, n.left and
n.right respectively its parent node, its left child and
its right child, and with n.b and n.d the relative budget
and the deadline. The budget B in each node can be
calculated as:

B =n.b+ ref(n)

where ref() is a function defined recursively on n:

e if n is the root node, ref(n) returns 0;

e if n is the left child of its parent node, ref(n) re-
turns ref(n.parent);

e if n is the right child of its parent node, ref(n)
returns n.parent.b + ref(n.parent));

Of course, the insertion, update and deletion oper-
ations for an AVL tree must be re-written to take into
account the fact that the contents of a node depends
on its position in the tree. Due to space constraints,
we cannot report the complete implementation of this
data structure. In the following we will give some hint
on how these operations can be implemented. More
details can be found in [7].

Insertion. When inserting a new element, the al-
gorithm explores the tree in order to find the correct
position. It starts descending from the root of the tree:
if the deadline of the element to insert is greater than
or equal to the deadline of the current node, the al-
gorithm inserts it in the right subtree; if the deadline
of the element to insert is less than the deadline of
the current node, the algorithm inserts it in the right
subtree. As the algorithm descends through the tree,
it keeps track of the relative budget according to the
previous rule; when finally it finds the correct position

for insertion, the new element is assigned the relative
budget.

After an insertion, the tree could result unbalanced.
Suppose for example that the right subtree of node n
has an height equal to h and the left subtree has an
height equal to h + 2. In an AVL tree, to re-balance
the tree, we need to perform one or two rotations, de-
pending on the structure of the left subtree. In an
Incremental AVL tree, the relative budget of the nodes
to be rotated must be updated accordingly.

Update. After the server has consumed E units
of execution time with deadline d, the data structure
must be updated. As explained in section 4.3, we need
to find the element with deadline equal to d, and sub-
tract E from the budget of this element and from all
the following ones. Moreover, we have to ensure the
consistency of the list deleting all the elements that
have a deadline smaller than d and a budget greater
than B. This can result in a great number of elements
to delete. To minimize the number of operations we use
a technique called “lazy deletion”: briefly, we avoid to
delete an element during an update operation and we
update only the elements in the path from the root to
the node with deadline d. The other elements will be
updated the next time the algorithm descends the tree.

Deletion. To minimize the number of operations to
perform, the algorithm deletes only when the current
time is greater than the deadline of the root element.
At that point, it deletes at once the root element and its
left subtree. As a consequence, the right child becomes
the new root. Of course, doing lazy deletion, we keep
in the tree more elements than necessary. However,
this does not increase the overall complexity of the al-
gorithm. It can be shown that the maximum number
of elements in the tree is O(2D 4), Where Diay is the
largest relative deadline in the application.

7.1 Complexity

It has been shown that the complexity of the in-
sert and update operations in a balanced binary tree is
O(log(N)), with N number of elements in the tree.
According to the discussion in the previous section,
N = O(2D4z)- Since the complexity of implement-
ing the ready queue in each server can be as low as
O(log(N.4)) (where N4 is the number of tasks in ap-
plication A), the overall complexity of the BSS al-
gorithm is O {log(Nyax) + log(Napp) + log(Darax)}
where N4, is the number of applications and Dasax
and Ny ax are respectively the maximum relative
deadline and the maximum number of tasks among all
the applications.

Currently, we are doing simulation experiments to

compare the average and the maximum complexity of
the insert and update function in the incremental AVL
tree and in the linear list, as a function of the number
of tasks and of the number of applications.

8 Conclusions and future work

If general-purpose computers are to support both
real-time and non-real-time applications, it is impor-
tant that (i) performance guarantees be provided to
individual real-time applications, and (ii) each appli-
cation be isolated from the potential misbehavior of
other active applications.

The BSS approach [8] is a provably optimal ap-
proach to processor scheduling that can provide both
performance guarantees and inter-application isolation.
The major drawback of BSS was its computational
complexity. Also, each application was required to
schedule its own tasks according to earliest deadline
first algorithm.

In this paper, we have described an evolution of the
BSS algorithm, called BSS-I, aimed at improving it in
two ways:

e generalizing the server mechanism; we managed
to de-link each application’s internal scheduling
strategy from the BSS specification, so that it is
now possible to choose an arbitrary scheduling dis-
cipline for the application;

e proposing a new data structure to implement the
lists of residuals that are maintained by BSS. By
storing these lists of residuals as balanced binary
trees rather than as linked lists/arrays, we have
obtained a significant reduction of the complexity,
and therefore reduced the run-time overhead.

As future work, we are considering several issues.
Until now, applications have been considered to be in-
dependent. In the future we plan to further extend the
BSS algorithm to permit different application to access
global-shared resources. We believe that this problem
is crucial for an implementation of techniques based on
bandwidth allocation in a real operating system.

Another interesting issue is the reclaiming of unused
bandwidth. In fact, during the system life, some appli-
cation can be temporarily idle; also, there can be time
intervals in which the system load is strictly less than
1. Then, the active applications could take advantage
of this unused bandwidth improving their quality of
service and performance expectation.

References

[1] N.C. Audsley, A. Burns, M. Richardson, K. Tin-
dell, and A. Wellings. Applying new scheduling
theory to static priority preemptive scheduling.
Software Engineering Journal, 8(8):284-292, Sep
1993.

[2] Z. Deng and J. W. S. Liu. Scheduling real-time
applications in open envirovment. In IEFEE Real-
Time Systems Symposium, San Francisco, Decem-
ber 1997.

[3] T.M. Ghazalie and T.P. Baker. Aperiodic servers
in a deadline scheduling environment. Journal of
Real-Time System, 9, 1995.

[4] J. Jehuda, G.Koren, and D.M. Berry. A time shar-
ing architecture for complex real-time systems. In
Proceedings of the First IEEE International Con-

ference on Engineering of Complex Computer Sys-
tems (ICECCS), pages 9-16, November 1995.

[5] J.P. Lehoczky and S. Ramos-Thuel. An optimal
algorithm for scheduling soft-aperiodic tasks in
fixed-priority preemptive systems. In Proceedings
of the IEEE Real-Time Systems Symposium, De-
cember 1992.

[6] J.P. Lehoczky, L. Sha, and J.K. Strosnider. En-
hanced aperiodic responsiveness in hard real-time
environments. In Proceedings of the IEEE Real-
Time Systems Symposium, December 1987.

[7] G. Lipari. Resource Reservation in Real-Time Sys-
tems. PhD thesis, Scuola Superiore S.Anna, Pisa,
Italy, under preparation.

[8] G. Lipari and G.C. Buttazzo. Scheduling real-
time multi-task applications in an open system.
In Proceeding of the 11th Euromicro Workshop on
Real-Time Systems, York, UK, June 1999.

[9] M. Spuri and G. Buttazzo. Efficient aperiodic ser-
vice under earliest deadline scheduling. In Proceed-
ings of the IEEE Real-Time Systems Symposium,
December 1994.

[10] M. Spuri and G.C. Buttazzo. Scheduling aperi-
odic tasks in dynamic priority systems. Journal
of Real-Time Systems, 10(2), 1996.

[11] M. Spuri, G.C. Buttazzo, and F. Sensini. Robust
aperiodic scheduling under dynamic priority sys-
tems. In Proceedings of the IEEE Real-Time Sys-
tems Symposium, December 1995.

[12] K. Tindell, A. Burns, and A. Wellings. An ex-
tendible approach for analysing fixed priority hard
real-time tasks. Journal of Real Time Systems,
6(2):133-151, Mar 1994.

