
A hierarchical extension to the constant bandwidth server

framework
�

Giuseppe Lipari

Scuola Superiore S. Anna, Pisa, Italy

lipari@sssup.it

Sanjoy Baruah

The University of North Carolina

baruah@cs.unc.edu

Abstract

The constant bandwidth server (CBS) framework of
Abeni and Buttazzo (Integrating multimedia applica-
tions in hard real-time systems. In Proceedings of the
Real-Time Systems Symposium 1998, pp: 3{13) guar-
antees timely execution to individual threads in certain
kinds of real-time environments. An extension to the
CBS framework is proposed here, which permits the
partitioning of the set of threads comprising the sys-
tem into subsets representing individual applications,
and extends timeliness guarantees to these applications
as well.

Keywords. Preemptive scheduling; Constant-
bandwidth server; Hierarchical composition; Earliest
deadline �rst; Inter-application isolation; Bandwidth
reclamation.

1. Introduction

The Constant Bandwidth Server (CBS) scheduling
framework [1] has been proposed as a means of achiev-
ing the twin goals of per-thread performance guarantees
and inter-thread isolation in certain kinds of multi-
threaded real-time computer systems. In this frame-
work, each thread Tj = (Uj ; Pj) is characterized by
two parameters | a (worst case) utilization Uj , and a
period Pj . The utilization Uj denotes the amount of
processor capacity that is to be devoted to the thread
Tj (loosely speaking, it should seem to thread Tj as
though it were executing on a dedicated \virtual" pro-
cessor of computing capacity Uj). The period Pj is an
indication of the \granularity" of time from thread Tj 's
perspective | while this will be elaborated upon later,
it suÆces for the moment to assume that the smaller

�Supported in part by the National Science Foundation
(Grant No. CCR-9972105, CCR-9988327, and CCR-0082866).

the value of Pj , the more �ne-grained the notion of real
time for Tj . It is assumed that each thread Tj generates
a sequence of jobs J1j ; J

2
j ; J

3
j ; : : :, with job Jkj becoming

ready for execution (\arriving") at time akj (a
k
j � ak+1j

for all j; k), and having an execution requirement equal
to ekj time units (no a priori knowledge of either the ar-
rival times or the execution requirements is assumed).
Within each thread, we require that the jobs must be
executed in FCFS order | i.e, Jkj must complete be-

fore Jk+1j can begin execution. Given a set � of such
threads to be executed on a single shared preemptable
processor of computing capacity

P
Tj2�

Uj , the CBS
scheduling framework makes the following performance
guarantee: Let F k

j denote the time instant at which job

Jkj would complete execution, if all jobs of thread Tj
were executed on a dedicated processor of capacity Uj .
Let fkj denote the time instant at which Jkj completes
execution under CBS. It is guaranteed that

fkj < F k
j + Pj ; (1)

i.e., each job of each thread Tj is guaranteed to complete
under CBS no more than Pj time units later than the
time it would complete if executing on a dedicated pro-
cessor. (This is what we mean when we refer to the
period Pj of a thread Tj as a measure of the \granular-
ity" of time from the perspective of thread Tj | jobs
of Tj complete under CBS within a margin of Pj of the
time they would complete on a dedicated processor.)

Hierarchical schedulers. One consequence of the
guaranteed-performance property of CBS is that a
thread Tj that is continually backlogged (i.e., always
has jobs awaiting execution) is asymptotically guar-
anteed a fraction Uj=(

P
T`2�

U`) of the processor ca-
pacity. There has recently been considerable interest
in being able to extend such guarantees to a hierar-
chical composition of threads, while maintaining the
timing guarantees to individual threads (i.e., guaran-
teeing each thread that it continues to get to execute

Sanjoy Baruah
Giuseppe Lipari and Sanjoy Baruah. A hierarchical extension to the constant bandwidth server framework. Proceedings of the Real-Time Technology and Applications Symposium, Taipei, Taiwan. May 2001. IEEE Computer Society Press

in a timely manner). One of the motivations for devel-
oping scheduling frameworks that are thus hierarchical
in nature [3, 2, 10, 9] is the recognition of the fact
that individual applications may be comprised of sev-
eral sub-applications (and eventually, several threads);
in a hierarchical scheduling framework, each applica-
tion would request a certain amount of the shared re-
source (which, in the context of this paper, is a single
preemptable CPU), and then further distribute this re-
source among the various sub-applications that com-
prise it. The goals of guaranteed performance and iso-
lation, which CBS provides to each thread, should now
also be met with respect to each application in addition
to each thread { each application should be guaran-
teed a certain degree of performance, and applications
should be shielded from the e�ects of mis-behaving ap-
plications.

As a concrete example, consider three threads T1; T2,
and T3 each with Uj = 1=3, executing on a proces-
sor of unit computing capacity. Suppose that threads
T1 and T2 belong to one application which expects to
be assigned two-thirds of the total processor capacity,
and thread T3 is the sole thread of another applica-
tion which desires the remaining one-third of the pro-
cessor capacity. If each thread were continually back-
logged, then CBS |as de�ned in [1]| would guarantee
each thread one third of the processor capacity { this
is what the application semantics expect. However, if
thread T2 were idle while the other two were continu-
ally backlogged, then CBS would end up assigning each
thread one half the processor capacity, rather than as-
signing two-thirds of the capacity to T1, and one-third
to T3. Thus while each thread is indeed guaranteed
a certain level of performance (i.e., at least one-third
of the processor capacity) regardless of the behavior
of the other threads, inter-application isolation is not
achieved { the application fT1; T2g fails to receive its
desired two-thirds of the processor capacity because
application fT3g requests more than its reserved share.

This research. In this research, we generalize the
CBS framework to permit a 2-level hierarchical orga-
nization of the threads comprising a real-time system.
That is, we partition the set of threads � into N (dis-
joint) sets S1; S2; : : : ; SN satisfying S1[S2[� � �[SN =
� (the original CBS framework of [1] corresponds to the
special case N = 1). Each partition Si is assumed to
contain the threads corresponding to a distinct appli-
cation. We continue to provide each individual thread
in � a guaranteed level of performance, as represented
by Equation 1, regardless of the behavior of the other
threads in the system. In addition, however, we will en-
sure that processor capacity not used by a individual

thread is preferentially made available to other threads
that lie in the same partition as that thread, and that
this excess capacity is also made available in a timely
manner, regardless of the behaviors of threads in other
partitions. Hence, the isolation and performance guar-
antee properties, provided by CBS to each individual
thread, are now valid at both the thread level and the
partition level.

Organization. The remainder of this paper is orga-
nized as follows. In Section 2, we formally de�ne {and
justify{ the system model that forms the basis of this
research, and explain the goals of the scheduling frame-
work we will be proposing. In Section 3, we provide a
detailed description of the H-CBS scheduling algo-
rithm, our proposed extension to the CBS algorithm
of Abeni and Buttazzo [1] which achieves our goals
of providing guaranteed performance and isolation at
both the thread and the application level. In Section 4,
we illustrate the operation of the H-CBS algorithm by
detailing the scheduling decisions that would be made
by the algorithm on a particular example system. In
Section 5, we provide formal justi�cation of our claims
that the H-CBS algorithm does indeed meet its design
goals.

2. System model

In this paper, we will model a system as being
comprised of a set � of threads, with each thread
Tj = (Uj ; Pj) being characterized by the order pair of
parameters: its utilization Uj , and its period Pj . Each
thread Tj generates a sequence of jobs J1j ; J

2
j ; J

3
j ; : : :,

with job Jkj becoming ready for execution (\arriving")

at time akj (akj � ak+1j for all j; k), and having an ex-

ecution requirement equal to ekj time units. The fol-
lowing assumptions are made regarding the individual
threads:

� The arrival times of the individual jobs is not
known beforehand; i.e., it is not known prior to
time-instant akj when job Jkj will be arriving.

� The execution requirements of the individual jobs
are not known beforehand, nor are they revealed
upon job-arrival; instead, the value of ekj may only

be determined by actually executing Jkj to comple-
tion.

� Within each thread, we assume that these jobs
must be executed in FCFS order | i.e, Jkj must

complete before Jk+1j can begin execution.

The set � of threads is partitioned into the subsets
S1; S2; : : : ; SN , such that S1 [S2 [� � � [SN = � , and
Si \ Sk = fg for all i 6= k. For each such subset Si, we
let U(Si) denote the sum of the utilizations of all the
threads in Si: U(Si) =

P
Tj2Si

Uj . All these threads
are executed on a single shared preemptable proces-
sor; without loss of generality, we will assume that
this processor's computing capacity is unity, and thatPN

i=1 U(Si) = 1.

Given such system speci�cations, our goal is to
schedule the threads in such a manner that (i) each
thread Tj is allocated the shared processor in a timely
manner, such that the thread's execution closely mim-
ics the behavior it would experience if Tj were execut-
ing on dedicated processor of computing capacity Uj ,
and (ii) each subset of threads Si is allocated the shared
processor in a timely manner such that the threads in
the subset would execute in a manner that closely mim-
ics the manner in which they would execute if Si were
executing on dedicated processor of computing capac-
ity U(Si).

Job preemptions. Observe that both these goals
would be trivially satis�ed in a processor-sharing sched-
ule { a schedule in which the time-line is partitioned
into arbitrarily small intervals, and each thread Tj is
assigned a fraction Uj of the processor capacity during
each such interval. However, such a processor-sharing
schedule would necessarily involve a very large number
of processor preemptions. To understand why this is an
unacceptable solution, let us look at how preemptions
are handled in practice.

While we assume in this research that our processor
model satis�es the preempt-resume property { i.e., a
job executing on the processor can be interrupted at
any instant in time, and its execution resumed later {
we do not assume that preemptions are \free." Rather,
these preemption costs are incorporated into the model
in the standard manner, by \charging" the cost of each
preemption to one of the jobs involved { typically, the
one that gets scheduled after the preemption.

It has been shown [8] that if a set of jobs is scheduled
using EDF, then the total number of context-switches
due to preemptions is bounded from above at twice
the number of jobs. In EDF-based schedules, therefore,
preemption costs can all be accounted for by increasing
the execution requirement of each job by two context-
switch times, and making each such job responsible
for switching context twice: �rst, when it preempts
another job to seize control of the processor for the
�rst time; and next, when it completes execution and
returns control of the processor to the job with the
next highest deadline. (It is easily seen that all con-

text switches in the system are accounted for in this
manner.) We will see later in this paper that our H-
CBS algorithm schedules a job with a large execution
requirement by successively postponing the deadline ac-
cording to which it is scheduled | each such deadline-
postponement is essentially equivalent to generating a
new job. We will see that job Jkj 's deadline may be

changed as many as

�
(ekj =Uj)

Pj

�
times { this jobs could

therefore be charged for as many as 2�

�
(ekj =Uj)

Pj

�
con-

text switches. For small Pj , this becomes unacceptably
large, and much of the processor capacity allocated
to Tj could end up being spent thrashing in context
switches. As a design rule, it is probably best for the
application designer to choose a value for Pj such that
(ekj =Uj) � Pj for most jobs Jkj generated by Tj |
i.e., to choose Pj to be such that the median (or an
even higher percentile) of the execution requirements
of these jobs is no larger than Uj � Pj .

It is noteworthy that if all the Pj 's are chosen arbi-
trarily close to zero, then the H-CBS algorithm reduces
to the Hierarchical Generalized Processor Sharing (H-
GPS) algorithm of Bennett and Zhang [2].

Our objectives. If our goal in this extended system
model were to provide a performance guarantee identi-
cal to that provided by CBS (i.e., to ensure that each
job complete in the shared processor within a margin
equal to the period of the thread that generated it, of
the time it would complete if this thread were execut-
ing on a slower dedicated processor), then it can be
shown that we could achieve this goal by simply ignor-
ing the partitioning of the threads into S1; S2; : : : ; SN ,
and scheduling all the threads using the CBS algorithm
of Abeni and Buttazzo [1]. However, our performance
requirements are somewhat stronger | in addition to
wanting to emulate on the shared processor the be-
havior that would be experienced by each thread on
a dedicated virtual processor, we also wish to emulate
the behavior that would be experienced by each subset
if all the threads comprising it were to execute on a
dedicated virtual processor. More formally,

� Let F k
j denote the time instant at which job Jkj

would complete execution if all jobs of thread Tj
were executed on a dedicated processor of capacity
Uj .

� Let �k
j denote the time instant at which Jkj would

complete execution, if the threads in the partition
Si such that Tj 2 Si were executing the CBS al-
gorithm of [1] on a dedicated virtual processor of
computing capacity U(Si).

� Let fkj denote the time instant at which Jkj com-
pletes execution under H-CBS.

The analogue of the CBS performance guarantee would
bound the di�erence between fkj and F k

j :

fkj < F k
j + Pj :

As stated above, this can be achieved by simply
scheduling all threads using the CBS algorithm of
Abeni and Buttazzo [1]. However, we have an addi-
tional goal: we also wish to bound the di�erence be-
tween fkj and �k

j . Achieving this turns out to be non-
trivial, in the sense that there seems to be a contra-
diction between achieving performance guarantees at
the two di�erent levels { the thread level, and the par-
tition level { of our 2-level scheduling hierarchy. Our
approach in this paper towards resolving this appar-
ent contradiction is to design a strategy for identifying
processor capacity that is unused by a thread at the
earliest possible instant , and then transferring this ex-
cess capacity to some other thread that is served by the
same CBS server. We incorporate and extend the tech-
niques that were introduced in [5], to help us optimally
identify such unused processor capacity.

3. The H-CBS algorithm

In this section, we provide a detailed description of
the H-CBS scheduling algorithm. As stated previously,
we will model our system as being comprised of a set �
of threads partitioned into the subsets S1; S2; : : : ; SN ,
that are to execute on a single shared processor. We
let U(Si) denote the sum of the utilizations of all
the threads in Si: U(Si) =

P
Tj2Si

Uj . Without
loss of generality, we will assume that the threads
execute on a shared processor of capacity equal to
U(S1) + U(S2) + � � � + U(SN), and that the capaci-
ties have been normalized such that this sum equals
1.

Algorithm Variables. For each thread Tj in the
system, the H-CBS algorithm maintains two variables:
a deadline Dj and a virtual time Vj .

� Intuitively, the value of Dj at each instant is a
measure of the priority that the H-CBS server ac-
cords thread Tj at that instant | H-CBS will
essentially be performing earliest deadline �rst
(EDF) scheduling based upon these Dj values.

� The value of Vj at any time is a measure of how
much of thread Tj 's \reserved" service has been
consumed by that time. As a �rst approximation,

we can assume that the value of Vj will be updated
in such a manner that, at each instant in time,
thread Tj has received the same amount of service
that it would have received by time Vj if executing
on a dedicated processor of capacity Uj .

Thread States. At any instant in time during run-
time, each thread Tj is in one of three states: inactive,
activeContending, or activeNonContending. The initial
state of each thread is inactive. Intuitively at time
to a thread is in the activeContending state if it has
some jobs awaiting execution at that time; in the
activeNonContending state if it has completed all jobs
that arrived prior to to, but in doing so has \used up"
its share of the processor until beyond to (i.e., its vir-
tual time is greater than to); and in the inactive state
if it has no jobs awaiting execution at time to, and it
has not used up its processor share beyond to.

At each instant in time, the H-CBS server chooses
for execution some thread that is in its activeContending
state (if there is no such thread, then the processor is
idled). From among all the threads that are in their
activeContending state, the next job needing execution
of the thread Tj , whose deadline parameter Dj is the
smallest, is chosen for execution.

When the �rst job of Tj arrives, Vj is set equal to this
arrival time. While (a job of) Tj is executing, its virtual
time Vj is increased at a rate that will be speci�ed
later. If at any time this virtual time becomes equal to
the deadline (Vj == Dj), then the deadline parameter
is incremented by Pj (Dj Dj + Pj). Notice that
this may cause Tj to no longer be the earliest-deadline
active thread, in which case it may surrender control
of the processor to an earlier-deadline thread.

State Transitions. Certain (external and internal)
events cause a thread to change its state (see Figure 1):

1. If thread Tj is in the inactive state and a job J
k
j ar-

rives (at time-instant akj), then the following code
is executed

Vj akj
Dj Vj + Pj

and thread Tj enters the activeContending state.

2. When a job Jkj of Tj completes (at time-instant

fkj) | notice that Tj must then be in its
activeContending state | the action taken depends
upon whether the next job Jk+1j of Tj has already
arrived.

inactive

3

1

42(b)

2(c)

activeNonContending

activeContending

Figure 1. State transition diagram. The labels
on the nodes and edges denote the name by
which the respective states and transitions
are referred to in this paper.

(a) If so, then the deadline parameter Dj is up-
dated as follows:

Dj � Vj + Pj ;

the thread remains in the activeContending

state.

(b) If there is no job of Tj awaiting execution
and Vj > fkj (i.e., the current value of
Vj is greater than the current time) then
thread Tj changes state, and enters the
activeNonContending state.

(c) If there is no job of Tj awaiting execution
and Vj � fkj (i.e., the current value of Vj
is no larger than the current time) then,
too, thread Tj changes state and enters the
inactive state.

3. For thread Tj to be in the activeNonContending

state at any instant t, it is required that Vj >
t. When this ceases to be true, because time has
elapsed since Tj entered the activeNonContending

state but Vj does not change for threads in this
state, then the thread enters the inactive state.

4. If a new job Jkj arrives while thread Tj is in the
activeNonContending state, then the deadline pa-
rameter Dj is updated as follows:

Dj � Vj + Pj ;

and thread Tj returns to the activeContending

state.

5. There is one additional possible state change | if
the processor is ever idle, then all threads in the
system return to their inactive state.

3.1 Incrementing virtual time

It now remains to specify how the virtual time Vj
of a thread Tj changes when a job of Tj is executing.
If we were implementing the CBS algorithm of Abeni
and Buttazzo [1] rather than H-CBS, Vj would be up-
dated in such a manner that, at each instant in time,
thread Tj has received the same amount of service that
it would have received by time Vj if executing on a
dedicated processor of capacity Uj . And, this can be
achieved by incrementing Vj at a rate 1=Uj :

d

d t
Vj

def

=

� 1
Uj
; if Tj is executing

0; otherwise
(2)

|intuitively, executing Tj for one time unit is equiva-
lent to executing it for 1=Uj time units on a dedicated
processor of capacity Uj , and we are updating Vj ac-
cordingly.

If we were to increment virtual time according to
Equation 2 above, we would be emulating on a shared
processor the behavior that would be experienced by
each thread if it were executing on a single dedicated
processor. However, recall that our extended system
model allows for a two-level hierarchy of threads { in-
dividual threads Tj are grouped into subsets, and our
design goal is to be able to emulate the behavior that
would be experienced by each subset if all the threads
comprising it were to execute on a dedicated virtual
processor, in addition to emulating on the shared pro-
cessor the behavior that would be experienced by each
thread on a dedicated virtual processor. In order to
achieve our goal, we must be able to identify comput-
ing capacity that is not going to be used by each in-
dividual thread Tj as soon as possible, and be able
to assign such excess capacity to other threads that
happen to be in the same subset Si as the thread Tj .
Below, we identify two sources of this excess capac-
ity, and describe how this excess capacity is reclaimed
by H-CBS; brie
y, these sources are (i) threads in the
inactive state, which by virtue of being in this state are
not making use of their reserved capacities at the cur-
rent instant, and (ii) threads that make the transition
labelled \2(c)" in Figure 1 { in order to make this tran-
sition a thread must have its virtual time strictly less
that the current time and is therefore not making use
of the capacity that it had reserved during the interval
between its virtual time and the current instant.

(xi). One source of excess capacity is the processor
capacity that remains unused because some threads are
in the inactive state. In reclaiming such excess proces-
sor capacity, though, we must be very careful to not
end up using any of the future capacity of currently

inactive threads, since we have no idea at any instant
when the currently inactive threads will become active.
That is, we should devise strategies for updating the
virtual times | the Vj 's | in order to maximize recla-
mation of the processor capacity of currently inactive

threads, without compromising the future performance
guarantees of these threads.

De�nition 1 We de�ne a thread Tj to be active at
a particular instant in time if it is in either the
activeContending or the activeNonContending state at
that time, and inactive if it is in the inactive state.

Intuitively, a thread is active at time t if it is either
waiting to execute jobs at instant t, or if it has already
consumed its reserved processor capacity for time t.

For each subset Si, H-CBS maintains an additional
variable the current excess capacity �i, which at each
instant in time is equal to the sum of the capacities
Uj of all threads Tj that are not active at that instant
in time. The current excess capacity �i is initially set
equal to U(Si) for all i; whenever a thread Tj 2 Si un-
dergoes the state-transition labelled \1" in Figure 1, �i
is decremented by Uj ; whenever Tj undergoes the state-
transitions labelled \2(c)" or \3", �i is incremented by
Uj .

Let [t; t +� t) denote a time interval during which
no scheduling events occur { i.e., no thread under-
goes a state-transition, and the same job is scheduled
throughout this interval. If a thread of Si is executing
during this interval, then let Tj denote this executing
thread; else, let Tj denote the highest-priority (earliest-
deadline) thread Tj in Si { note that Tj may in this case
be either active contending or active non-contending.
We refer to this thread Tj as the bene�ciary thread
of server Si during the interval [t; t+� t), and we will
assign all the excess capacity of Si during this interval
| a quantity of � t � �i | to this bene�ciary thread
for \free". Consequently, the bene�ciary Tj gets an
amount of excess capacity equal to (� t � �i) during
this interval; equivalently, its virtual time Vj should

decrease by an amount equal to � t��i
Uj

. However, if Tj
were currently being executed { i.e., H-CBS has chosen
the thread Tj for execution during [t; t+� t) { then Tj
has used an amount equal to

(� t�� t � �i) = � t � (1� �i)

of its own processor capacity during this interval;
equivalently, its virtual time Vj should increase by an

amount equal to � t�(1��i)
Uj

. That is, for each Si the vir-

tual time Vj of the bene�ciary thread Tj 2 Si de�ned

as above is updated as follows by H-CBS:

d

d t
Vj =

(
1��i
Uj

; if Tj is executing

� �i
Uj

otherwise
(3)

(xii). There is one other source of excess processor
capacity that H-CBS reclaims. Recall that a thread
Tj which makes the transition labelled \2(c)" in Fig-
ure 1 at some time-instant to satis�es the property that
Vj < to at that instant. That is, Tj has only used its
reserved processor capacity until some time-instant Vj
that is strictly less than the current instant | its re-
maining capacity, which equals ((to�Vj) �Uj), is avail-
able for H-CBS to reclaim. Once again, H-CBS will
allocate all this reclaimed capacity in a greedy man-
ner, to the active thread with the highest priority (i.e.,
smallest deadline parameter) that is in the same subset.
Suppose that this thread is Tk { i.e., after Tj undergoes
the transition labelled \2(c)" in Figure 1 at instant to,
thread Tk is the active thread in the same subset as Tj
with the earliest value of its deadline variable. Then
all the reclaimed capacity is assigned to Tk, and this is
done by decrementing Tk's virtual time by the appro-
priate amount, as follows:

Vk Vk �
(to � Vj) � Uj

Uk
(4)

H-CBS thus observes the following rules for up-
dating virtual time:

� If Tj 2 Si is the bene�ciary thread in �(Si)

d

d t
Vj

def

=

(
1��i
Uj

; if Tj is executing

� �i
Uj

otherwise

� If Tj 2 Si undergoes transition \2(c)" at time
to,and T` is the active thread with the next-earliest
deadline in Si:

V` V` �
(to � Vj) � Uj

U`

4. An Example

We will now illustrate the operation of the H-CBS
algorithm, by tracing the scheduling of a simple system.

Consider a system � comprised of three threads T1 =
(0:3; 12), T2 = (0:2; 8), and T3 = (0:5; 10). Suppose
that � is partitioned into S1 = fT1; T2g and S2 = fT3g
(therefore, U(S1) = 0:5 and U(S2) = 0:5). Suppose
that the �rst job J11 of T1 arrives at instant 0 and has
an execution requirement equal to 6, and the �rst job

����
����
����
����
����
����

����
����
����
����
����
����

�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����

���������
���������
���������

���������
���������
���������

��������
��������
��������
��������
��������
��������

��������
��������
��������
��������
��������
��������

��
��
��

��
��
��

0 2 4 6 8 10 12 14 16 18 20 22 24 26

T1=(0.3,12)

T2=(0.2,8)

T3=(0.5,10)

No time �1 V1 D1 V2 D2 �2 V3 D3 comment

1 0� 0.5 - 1 - 1 0.5 - 1 prior to start
2 0 0.2 0 12 - 1 0.0 0 10 J1

1
and J1

3
arrive

3 2� 0.2 �
4

3
12 - 1 0.0 4 10 J1

3
executes over [0; 2); V1 in incremented

according to Equation 4
4 2 0.0 �

4

3
12 2 10 0.0 4 10 J1

2
arrives

5 5� 0.0 �
4

3
12 2 10 0.0 10 10 T3 has exhausted its budget

6 5 0.0 �
4

3
12 2 10 0.0 10 20 T3 increments its deadline

7 5 + � 0.0 �
4

3
12 2 + �

0:2
10 0.0 10 20 J1

2
completes execution over [5; 5 + �), for

�! 0
8 5 + � 0.2 �

10

3
12 2 + �

0:2
1 0.0 10 20 T2 transfers its excess budget to T1, as per

Equation 3
9 10:75 0.2 12 24 2 + �

0:2
1 0.0 10 20 J1

1
executes over [5; 10:75); V1 is incremented

according to Equation 3. V1 is
incremented by P1

10 15:75� 0.2 12 24 2 + �

0:2
1 0.0 20 20 J1

3
executes for �ve time units, thus exhausting

its budget
11 15:75 0.2 12 24 2 + �

0:2
1 0.0 20 30 J1

3
increments its deadline

12 16 0.5 12 2
3

24 2 + �

0:2
1 0.0 20 30 J1

1
executes for 0:25 time units, and completes.

V1 is incremented according to Equation 3.

Figure 2. Scenario described in Section 4.

J13 of T3 also arrives at instant 0 and has a large enough
execution requirement that J13 will utilize the processor
whenever it is scheduled. Suppose that the �rst job
J12 of T2 arrives at instant 2, and has an arbitrarily
small execution requirement of � (�! 0). The resulting
schedule is depicted in Figure 2; the steps taken by H-
CBS in generating this schedule are explained below.

Initially, the variables �1 and �2 are both equal to
0:5 (indicating that no threads are active, and �i
therefore equal U(Si) for i = 1; 2).

At time to = 0, jobs J11 and J13 arrive. As a conse-
quence, threads T1 and T3 make the transition la-
belled \1" in Figure 1; thus,

� �1 �1 � U1, and �2 �2 � U3.

� V1 to and V3 to.

� D1 to + P1 and D3 to + P3.

Since D3 < D1, H-CBS begins executing J13 .

Over the interval [0; 2), V3 is incremented at a rate
(1 � �2)=U3 = 2 while V1 is decremented at a
rate �1=U1 = 2

3 , both according to Equation 3.

At time to = 2, J12 arrives, and T1 makes the transi-
tion labelled \1" in Figure 1; thus,

� �1 �1 � U2 = 0.

� V2 to.

� D2 to + P2.

D2 and D3 are now both equal; let us assume that
H-CBS breaks the tie in favor of T3, and thus con-
tinues executing J13 .

Over the interval [2; 5), T3's job is executed, and
V3 thus continues to be incremented according to
Equation 3 at a rate (1� �2)=U3 = 2. Since �1
now equals zero, it follows from Equation 3 that
V1 and V2 do not change over this interval.

At time to = 5, V3 becomes equal toD3 { T3 has thus
exhausted its budget. Since T3 has exhausted its
budget, it must increment its deadline parameter:
D3 D3+P3. D2 now becomes the earliest dead-
line, and H-CBS begins executing J12 .

Over the interval [5; 5 + �), J12 is executed.

At time to = 5 + �, J12 completes execution, and
hence undergoes the state-transition \2(c)" in Fig-
ure 1. As a consequence,

� �1 �1 + U2 = 0:2.

� D2 1.

� The excess capacity of T2 is transferred to T1
| this is achieved by decrementing V1 ac-
cording to Equation 4.

D1 is now the smallest-deadline thread in the sys-
tem, and H-CBS consequently chooses T1 for exe-
cution.

Over the interval [5 + �; 10:75+ �), T1's job is exe-
cuted, and T3 is thus incremented according to
Equation 3 at a rate (1� �1)=U1 = 8

3 . Since �2
equals zero, V3 does not change over this interval.

At time to = 10:75+ �, V1 becomes equal to D1 { T1
has thus exhausted its budget. Since T1 has ex-
hausted its budget, it must increment its deadline
parameter: D1 D1 + P1. D3 now becomes the
earliest deadline, and H-CBS begins executing J13 .

Over the interval [10:75 + �; 15:75+ �), J13 is exe-
cuted, and V3 incremented according to Equa-
tion 3 at a rate (1 � �2)=U3 = 2. Also, V1
is decremented at a rate �1=U1 = 2

3 over this
interval.

At time to = 15:75+ �, V3 becomes equal to D3 { T3
has thus exhausted its budget. Since T3 has ex-
hausted its budget, it must increment its deadline
parameter: D3 D3 + P3. D1 now once again
becomes the earliest deadline, and H-CBS begins
executing J11 .

Over the interval [15:75 + �; 16 + �), J11 is exe-
cuted, and V1 incremented according to Equa-
tion 3 at a rate (1� �1)=U1 = 8

3 .

At time to = 16 + �, J11 completes execution and un-
dergoes the state-transition \2(c)" in Figure 1. As
a consequence,

� �1 �1 + U1 = 0:5.

� D1 1.

� Since there are no active threads in S1, T1
cannot transfer its excess capacity (as man-
dated by Equation 4) to any other thread.

5. Formal Analysis of H-CBS

In this section, we provide formal justi�cation of our
claims that the H-CBS algorithm does indeed meet its
design goals. That is, we show (Theorem 1) that the
H-CBS algorithm provides service to each thread in a
timely manner (as does the CBS algorithm of Abeni &
Buttazzo [1]); furthermore, we show (Theorem 2) that

the H-CBS algorithm provides service to each partition
in a timely manner as well.

Recall that we are modelling our system as a set �
of threads partitioned into the subsets S1; S2; : : : ; SN ,
with U(Si) denoting the sum

P
Tj2Si

Uj . We assume
that all these threads execute on a single shared pro-
cessor of unit capacity:

PN
i=1 U(Si) = 1.

Thread-level guarantee. As before, let F k
j denote

the time instant at which job Jkj would complete ex-
ecution, if all jobs of thread Tj were executed on a
dedicated processor of capacity Uj . Let f

k
j denote the

time instant at which Jkj completes execution under
H-CBS.

Theorem 1 It is guaranteed that

fkj < F k
j + Pj ; (5)

i.e., H-CBS makes the same per thread performance
guarantee as does the CBS framework of [1].

Proof Sketch: It can be shown that a thread Tj
receives identical service under CBS and H-CBS if the
other threads in the system are continually backlogged
| i.e., if there is no excess processor capacity to re-
claim and distribute. Since CBS has been shown [1, 5]
to satisfy Inequality 5 under all circumstances, it thus
follows that H-CBS guarantees that Inequality 5 will
be satis�ed, in the absence of any excess execution ca-
pacity.

Since capacity is reclaimed by H-CBS from a thread
only when it is deemed to be not needed by the thread
| i.e., only that capacity is reclaimed from a thread
which becomes excess due to a thread being inactive
at present (Equation 3) or in the past(Equation 4) |
the �nish time of a job of an active thread must be �
its �nish time in the absence of any excess execution
capacity from other threads. Thus in Equation 5 above,
fkj under H-CBS will be no larger than the value of fkj if
there had been no excess capacity available. And, we
have argued above that in the absence of any excess
capacity the correctness of CBS implies that H-CBS
satis�es Inequality 5.

Application-level guarantee. Without loss of gen-
erality, let us assume that minTj2�fa

1
jg = 0; i.e., the

�rst job (of any thread) arrives at time-instant 0. For
each application Si, 1 � i � N , consider the schedule if
Si were to execute on a dedicated virtual processor of
computing capacity U(Si) in a work-conserving FCFS
manner. Let

[�1i ; �
1
i); [�

2
i ; �

2
i); : : : ; [�

k
i ; �

k
i); : : :

denote the busy intervals in this schedule, with �ki < �ki
and �ki < �k+1i for all k � 1. That is,

� the dedicated virtual processor is idle prior to in-
stant �1i

� For all k � 1; the dedicated virtual processor is ex-
ecuting jobs generated by threads in Si throughout
the interval [�ki ; �

k
i)

� For all k � 1; the dedicated virtual processor is
idle throughout the interval [�ki ; �

k+1
i).

For each server Si and for all k � 1, let Bk
i denote the

amount of execution that jobs of threads in Si will have
received during its �rst k busy intervals, if executing
on a dedicated processor of computing capacity U(Si):

Bk
i

def

= U(Si) �

kX

`=1

(�`i � �`i)

!
:

Algorithm H-CBS guarantees that jobs of threads in Si
will receive this amount of service in a timely manner
| more speci�cally,

Theorem 2 Under the H-CBS scheduling algorithm,
jobs of (threads in) Si are guaranteed to receive Bk

i

units of execution by time-instant�
�ki + max

Tj2Si

fPjg

�
;

i.e., each partition of threads Si is guaranteed to com-
plete under H-CBS all the jobs that it would complete
in its �rst k busy-periods no more than maxTj2Si

fPjg
time units later than the time it would complete if this
partition were executing on a dedicated processor.

(This is, intuitively speaking, the \best" guarantee of
timely service that we can reasonably make | since
each thread Tj in Si has a notion of timeliness that
is as accurate as its period parameter Pj , we cannot
expect the partition to collectively respect a �ner-
grained notion of time than its most coarse-grained
component thread.)

Proof Sketch: It can be shown that all the excess ca-
pacity that is reclaimed from a thread Tj according to
Equation 3 is reclaimed as soon as it becomes available,
and all the excess capacity that is reclaimed according
to Equation 4 is reclaimed within Pj time units of it
becoming available. And, any reclaimed capacity is as-
signed at a priority corresponding to the deadline of
the next-earliest deadline thread of the same server |
thus, this reclaimed capacity is guaranteed to be ob-
tained by some thread in the server within one period
of the time it is reclaimed.

6. Conclusions and future work

We have proposed a global scheduling algorithm for
use in preemptive uniprocessor systems in which sev-
eral di�erent time-sensitive applications, each of which
can be considered to be comprised of several threads,
are to execute on a single preemptable processor. Our
scheduling algorithm { the H-CBS algorithm { is
an extension of the CBS algorithm of Abeni and But-
tazzo [1]. As with the CBS algorithm, each thread in
a system scheduled using the H-CBS algorithm is as-
sured certain performance guarantees | the illusion
of executing on a dedicated processor | and isolation
from any ill-e�ects of other misbehaving threads. Un-
like the CBS algorithm, however, the H-CBS algorithm
extends these guarantees to each application (consid-
ered to be a subset of the set of threads comprising the
system) as well.

In the original CBS algorithm [1], the threads com-
prising the system being scheduled have a \
at" or-
ganization { each thread, characterized by its two pa-
rameters, bears the same relationship with every other
thread. In this paper, we have essentially extended the
results of Abeni and Buttazzo [1] to the case where the
threads comprising the system can be considered orga-
nized into a two-level hierarchy | individual threads
are grouped into partitions (applications), and all of
these partitions together comprise the system. In our
opinion, the most interesting set of issues left open
concerns applying the techniques presented here to a
model in which threads can be arranged in a hierarchy
that is more than two deep. It seems clear that our
techniques can indeed be applied to systems that have
such a deeper hierarchical structure; however, we do
not yet know precisely what kinds of guarantees these
techniques will yield in these more complex hierarchical
systems.

It can be argued that restrictive thread model as-
sumed in this paper | that jobs generated by each
thread must be executed in FCFS order | severely
limits the applicability of these results since jobs gen-
erated by individual threads in many multi-threaded
real-time application systems do not satisfy the FCFS
property. Work has been done [6, 4, 7] on design-
ing scheduling algorithms for use in real-time multi-
threaded systems under which each thread is assured
performance guarantees and isolation from misbehav-
ing threads, even when jobs generated by each thread
are not constrained to execute in a FCFS order. In the
future, we will study the extension of these algorithms
to hierarchically-structured systems as well.

References

[1] Luca Abeni and Giorgio Buttazzo. Integrating multi-
media applications in hard real-time systems. In Pro-
ceedings of the Real-Time Systems Symposium, pages
3{13, Madrid, Spain, December 1998. IEEE Computer
Society Press.

[2] Jon C.R. Bennett and H. Zhang. Hierarchical packet
fair queueing algorithms. IEEE/ACM Transactions on
Networking, 5(5):675{689, Oct 1997.

[3] P. Goyal, X. Guo, and H.M. Vin. A hierarchical cpu
scheduler for multimedia operating systems. In Pro-
ceedings of the Second Symposium on Operating Sys-
tems Design and Implementation (OSDI'96), pages
107{122, Seattle, Washington, October 1996.

[4] Giuseppe Lipari and Sanjoy Baruah. EÆcient schedul-
ing of real-time multi-task applications in dynamic sys-
tems. In Proceedings of the Real-Time Technology and
Applications Symposium, pages 166{175, Washington,
DC, May{June 2000. IEEE Computer Society Press.

[5] Giuseppe Lipari and Sanjoy Baruah. Greedy reclaima-
tion of unused bandwidth in constant-bandwidth
servers. In Proceedings of the EuroMicro Conference on
Real-Time Systems, pages 193{200, Stockholm, Swe-
den, June 2000. IEEE Computer Society Press.

[6] Giuseppe Lipari and Giorgio Buttazzo. Scheduling
real-time multi-task applications in an open system.
In Proceedings of the EuroMicro Conference on Real-
Time Systems, York, UK, June 1999. IEEE Computer
Society Press.

[7] Giuseppe Lipari, John Carpenter, and Sanjoy Baruah.
A framework for achieving inter-application isolation
in multiprogrammed, hard real-time environments. In
Proceedings of the Real-Time Systems Symposium, Or-
lando, FL, November 2000. IEEE Computer Society
Press.

[8] A. K. Mok. Fundamental Design Problems of Dis-
tributed Systems for The Hard-Real-Time Environ-
ment. PhD thesis, Laboratory for Computer Science,
Massachusetts Institute of Technology, 1983. Available
as Technical Report No. MIT/LCS/TR-297.

[9] John Regehr, Jack Stankovic, and Marty Humphrey.
The case for hierarchical schedulers with performance
guarantees. Technical Report CS-2000-07, Department
of Computer Science, University of Virginia, March
2000.

[10] Ion Stoica, Hui Zhang, and T. S. Eugene Ng. A hi-
erarchical fair service curve algorithm for link-sharing,
real-time and priority service. In Proceedings of ACM
SIGCOMM'97, August 1997.

