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Abstract—In this paper, we present the BandWidth Inheritance (BWI) protocol, a new strategy for scheduling real-time tasks in

dynamic systems, which extends the resource reservation framework to systems where tasks can interact through shared resources.

The proposed protocol provides temporal isolation between independent groups of tasks and enables a schedulability analysis for

guaranteeing the performance of hard real-time tasks. We show that BWI is the natural extension of the well-known Priority Inheritance

Protocol to dynamic reservation systems. A formal analysis of the protocol is presented and a guarantee test for hard real-time tasks is

proposed that takes into account the case in which hard real-time tasks interact with soft real-time tasks.

Index Terms—Real-time scheduling, dynamic system, resource reservation, priority inheritance, constant bandwidth server.
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1 INTRODUCTION

THE main goal of a real-time scheduler is to provide
temporal guarantees. In a hard real-time system, the

scheduler must guarantee that, under certain worst-case
assumptions, the temporal constraints of all tasks are
respected. When mixing hard, soft, and non-real-time tasks,
providing such temporal guarantees becomes a complex
problem. In dynamic real-time systems, tasks can be activated
dynamically and the system has no a priori knowledge
about their run-time behavior. Classical real-time schedul-
ability analyses are not appropriate for dynamic real-time
systems because they require a priori knowledge of the
characteristics of all the tasks to guarantee that every hard
real-time task will meet its deadline.

The resource reservation framework is a class of
techniques that have been proven very effective in jointly
scheduling hard real-time (HRT) and soft real-time (SRT)
tasks. In particular, these approaches provide 1) temporal
isolation between tasks and 2) schedulability analysis for HRT
tasks. However, tasks are assumed to be independent. This
is a severe limitation that hinders their utilization in real
operating systems. The extension of the underlying model
to cope with tasks that access shared resources through
mutually exclusive (mutex) semaphores has only recently
been addressed [1], [2], [3].

In this paper, a new protocol, BandWidth Inheritance
(BWI), is presented. It extends the Constant Bandwidth
Server (CBS) algorithm [4] to real-time tasks that can access
shared resources via critical sections, by using a technique
derived from the Priority Inheritance Protocol (PIP) [5].

In the remainder of this paper, we describe the BWI
protocol and its properties. Then, we provide a schedul-
ability analysis for HRT tasks. This protocol does not
require any a priori knowledge of each task’s behavior.
Only the analysis is based on the knowledge of the worst-
case behavior of the HRT tasks. Hence, the BWI protocol is
suitable for a real operating system.

2 RELATED WORK

Deng and Liu [6] proposed a model of dynamic real-time
systems called the open system model. In their model, an
application is a set of tasks and a server (i.e., an algorithm of
the class of the aperiodic server algorithms [7], [8], [9]) is
used to handle each different application. A customized
scheduler can be associated with each server in a
hierarchical way. However, the algorithms proposed by
Deng and Liu require a priori knowledge of the tasks’
execution times even for SRT tasks.

A better approach is to provide temporal isolation between
tasks such that each task is protected from the misbehaviors
of the other tasks. This property is also called Bandwidth
Isolation (BIP) [4], [10]. The net effect is that each task
executes as though it were executing on a slower dedicated
processor. The BIP can be implemented using the resource
reservation framework [11], [12]. In this framework, when a
task arrives in the system requiring a certain level of
Quality of Service (QoS), an admission test is run. If, given
the current system load, the required level of QoS can be
guaranteed, the task is accepted in the system and assigned
a certain fraction of the system resources. Many scheduling
algorithms based on the resource reservation framework
have been proposed. The temporal isolation and the
resource reservation concepts were formally introduced
for the first time in the RT-Mach operating system [11].

The Resource Kernel (RK) [12] is the most complete work
to explicitly address the temporal isolation problem. An RK
allows each task to reserve a hardware resource for a certain
amount of time C every interval of time of length T . The RK
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technology is particularly interesting since it seamlessly
provides QoS guarantees even to non-real-time legacy
applications and it has been recently ported to Linux [13].

Resource-reservation techniques, originally based on a
fixed-priority scheme, have also been applied to dynamic
priority schemes like the Earliest Deadline First (EDF)
scheduler [14], [4]. One of the advantages of using EDF is
that it is an optimal scheduler and permits very high
processor utilization [15]. The Constant Bandwidth Server
(CBS) [4] is based on EDF and uses a deadline postponing
mechanism to efficiently provide the BIP. In particular, the
CBS algorithm enables a schedulability analysis for
HRT tasks and probabilistic analysis for SRT tasks.

All the algorithms cited so far support only independent
tasks. This is a major limitation for their implementation in
an operating system. In the real world, many real-time tasks
communicate by means of shared memory protected by
mutex semaphores.

Many researchers addressed the problem of providing
guarantees to hard real-time tasks accessing shared re-
sources. It has been proven that, if classical mutex
semaphores are used, a particular problem arises, known
as priority inversion. This problem was first described by Sha
et al. [5], who proposed two solutions, the Priority
Inheritance Protocol (PIP) and the Priority Ceiling Protocol
(PCP). Similar protocols have been proposed for dynamic
priority schedulers [16], [17], [18].

Applying these techniques to resource reservations is not
trivial. For example, the CBS algorithm assumes a very
simple task model, where no task can suspend itself or
block on a critical section. If tasks are allowed to suspend,
the properties of the CBS algorithm are not valid anymore
(see Section 4 for more details).

Kuo and Li [19] propose an extension to the open system
model presented in [6] that accounts for shared resources. In
[1], it is shown how to combine the Stack Resource Policy
(SRP) [17] with aperiodic servers, in order to share resources
between aperiodic tasks and hard real-time tasks. This
approach has been recently applied to the CBS algorithm
[2]. However, these solutions require a priori knowledge of
the maximum resource usage time for each task; otherwise,
the protocol may not work properly. This information may
not be available in dynamic real-time systems.

The problem of priority inversion in reservation-based
systems was also considered by De Niz et al. [3]. The
reserve-inheritance approach proposed therein resembles
the approach proposed in this paper. However, while their
methodology is based on fixed priority scheduling, our
protocol is based on dynamic priority scheduling. In
addition, in this paper, we propose a new sufficient
schedulability analysis for HRT tasks, even when they
interact with SRT tasks.

3 SYSTEM MODEL

3.1 Definitions

A real-time task �i is a stream of jobs, or instances, Ji;j (where
Ji;j is the jth job of task �i); each job is a request for
execution on a shared processor and is characterized by an
arrival time ai;j, an execution time ci;j, and an absolute deadline

di;j. A real-time task is also assigned a relative deadline Di

and di;j ¼ ai;j þDi. We denote the finishing time of job Ji;j
with fi;j.

Real-time tasks can be hard or soft. A task �i is said to be a

hard real-time (HRT) task if all its jobs must complete

within their deadline (8j fi;j � di;j); otherwise, a critical

failure may occur in the system. HRT tasks need to be

guaranteed a priori. In order to perform a schedulability

test, every HRT task �i is characterized by a minimum

interarrival time Ti ¼ minjfai;jþ1 � ai;jg and a worst-case

execution time (WCET) Ci ¼ maxjfci;jg.

A task is said to be a soft real-time (SRT) task if it can

tolerate an occasional deadline miss. Usually, it is difficult to

compute theWCET for an SRT task.Moreover, inmost cases,

theWCETof an SRT task ismuchhigher than its average-case

execution time. Therefore, to allocate the processor to an SRT

based on its WCET is often considered a waste of resources.

At the price of an occasional deadline miss, SRT tasks are

allocated less bandwidth than the worst case.

A task may access shared resources using mutex

semaphores. If task �i accesses a resource Rk, we say that

�i uses Rk. Without loss of generality, in the remainder of

this paper, we will denote the resource and the corre-

sponding mutex semaphore with the same symbol Rk. A

critical section on resource Rk is a section of code

delimited by wait and signal operations on the correspond-

ing semaphore, denoted by P ðRkÞ and V ðRkÞ, respectively.

Critical sections can be nested, i.e., it is possible to access

resource Rj while holding the lock on resource Rk. We

assume properly nested critical sections, i.e., a sequence of

code like P ðR1Þ; . . . ; P ðR2Þ; . . . ; V ðR2Þ; . . . ; V ðR1Þ is valid,

whereas a sequence l ike P ðR1Þ; . . . ; P ðR2Þ; . . . ,

V ðR1Þ; . . . ; V ðR2Þ is not valid. Internal critical sections are

nested inside other critical sections, whereas external critical

sections are not. We denote the worst-case execution time of

the longest critical section of task �i on resource Rk as �iðRkÞ.

Note that �iðRkÞ comprises the execution time of all the

nested critical sections. We also assume that, if a job

performs a wait operation on semaphore Rk, it performs the

corresponding signal operation before its completion.

In this paper, we propose to schedule each task through a

server.A server is anabstractionusedby the scheduler to store

the scheduling parameters of a task. It is characterized by a

priority and it canbe inserted in the systemreadyqueue.Each

task is associated with a server and, when the server is

selected by the scheduler, the associated task is dispatched.

Therefore, the server canbe seenasawrapper for a task. For the

sake of simplicity, in the remainder of thepaper,wewillwrite

“server Si is blocked,” meaning that the task served by Si is

blocked, and “server Si is executing,” meaning that the task

served by Si is executing. Each server is characterized by a

budgetQi andaperiodPi, with the interpretation being that

each task is allowed to execute for Qi out of every Pi time

units. The fraction Ui ¼
Qi

Pi
represents the share (or band-

width) of the processor reserved for server Si. Our attention

is restricted to systems in which all servers execute on a
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single shared processor and the sum of the processor shares

of all the servers is no more than one:

X

n

i¼1

Qi

Pi

 !

� 1: ð1Þ

3.2 Requirements

In this paper, we present a novel scheduling policy and the
schedulability analysis for HRT tasks. As a general rule, the
scheduling algorithm should not be based on the knowl-
edge of the temporal behavior of the tasks. However, it
must allow a schedulability analysis. This separation of
concerns between scheduling algorithm and schedulability
analysis is very useful in dynamic real-time systems. Our
goal is to find a scheduling algorithm that is able to provide
the BIP without making any assumption on the temporal
behavior of the tasks. If it is possible to exactly characterize
a priori the temporal behavior of a task, then the proposed
schedulability analysis can be used to compute the server’s
budget and period that guarantee the task’s deadlines.
However, if our analysis is not correct, the BIP guarantees
that the other tasks in the system will not be affected.

Therefore, our scheduling algorithm must fulfill the
following requirements:

. The arrival times of the jobs (the ai;js) are not known
a priori, but are only revealed online during system
execution. Hence, our scheduling strategy cannot
require knowledge of future arrival times. For
example, we do not require the tasks to be periodic.

. The exact execution requirements ci;j are also not
known beforehand. They can only be determined by
actually executing Ji;j to completion. Nor do we
require an a priori upper bound (a “worst-case
execution time”) on the value of ci;j.

. The scheduling algorithm has no a priori knowledge
of which resources a task will access; it can only be
known online when the task tries to lock a resource.
Nor do we require any a priori upper bound on the
worst-case execution time �i;j of a critical section.

The last two assumptions are important because they
rule out the use of protocols like the PCP. See Section 6.2 for
a discussion on the PCP and the deadlock problem.

The following information is needed only for performing
a schedulability analysis on an HRT task �i:

. the worst-case computation time Ci;

. the period Ti;

. the type (HRT or SRT) of every task that (directly or
indirectly) interacts with �i (see Section 6.1 for a
definition of interaction);

. for each interacting task �j and for each shared
resource Rk, the worst-case execution time �jðRkÞ of
the longest critical section of �j on Rk.

4 THE CONSTANT BANDWIDTH SERVER

In this section, a brief overview of the Constant
Bandwidth Server (CBS) algorithm is given. A fully
detailed description can be found in [4]. A server Si is
described by two parameters: the server maximum budget

Qi, and the server period Pi. The server bandwidth Ui ¼
Qi

Pi
is

the fraction of the CPU bandwidth assigned to Si. The
algorithm dynamically updates two variables ðqi; �iÞ for
each server Si: qi is the server’s current budget and keeps
track of the consumed bandwidth; �i is the server’s
current scheduling deadline. Initially, qi is set to the
maximum budget Qi and �i is set to 0. A server is active
if the corresponding task has a pending instance.

All tasks in the system are assumed to be independent and
no task is allowed to suspend itself waiting for a shared
resource or a synchronisation event. The system consists of n
servers and a global scheduler based on the Earliest Deadline
First (EDF) priority assignment. At each instant, the active
server with the earliest scheduling deadline �i is selected and
the corresponding task is dispatched to execute.

The CBS algorithm updates its variables as follows:

. Rule A: When job Ji;j of task �i arrives at time ai;j,
the server checks the following condition:

qi � Qi

�i � ai;j

Pi

:

If the condition is verified, the current pair ðqi; �iÞ is
used. Otherwise, a new pair ðqi; �iÞ is computed as
qi  Qi and �i  ai;j þ Pi.

. Rule B: If server Si executes for �t units of time, the
budget is decreased accordingly: qi  qi ��t.

. Rule C: Server Si is allowed to execute while qi > 0.
When the budget is exhausted (qi ¼ 0) and the
served job has not finished yet, a new pair ðqi; �iÞ is
computed: The scheduling deadline is postponed to
�i  �i þ Pi and the budget is recharged to qi  Qi.
Since the scheduling deadline has changed, the
EDF queue may be reordered and a preemption
may occur.

If Rule C is never applied to server Si (i.e., it is never the
case that qi ¼ 0 and the task has not yet finished), we say
that server Si never postpones its scheduling deadline.

The CBS algorithm has two important properties: the
bandwidth isolation property (BIP) and the hard schedulability
property (HSP). The BIP ensures that each server Si will
contribute to the total system utilization for no more than
Ui. The HSP ensures that it is possible to independently
verify the schedulability of each HRT task. For proofs of the
following theorems, please refer to [20] and [10].

Theorem 1 (Bandwidth Isolation Property). Given a system
of n servers, with

Pn
i¼1 Ui � 1, no server misses its scheduling

deadline, regardless of the behavior of the tasks.

Theorem 2 (Hard Schedulability Property). If an HRT task
�i is served by a server Si ¼ ðQi; PiÞ, with maximum budget
Qi � Ci and period Pi � Ti, then server Si never postpones its
scheduling deadline and each job will complete before its
absolute deadline.

The underlying assumption used to prove the previous
theorems is that the executing server is the one with the
earliest deadline. If a task is blocked on a semaphore, then
this assumption is violated and the previous properties do
not hold anymore.
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5 THE PRIORITY INHERITANCE PROTOCOL

The Priority Inheritance Protocol (PIP) was first presented
in [5] to solve the priority inversion problem. According to
this protocol, when a high-priority job JH wants to access a
critical section that is already held by a low-priority job JL,
the latter inherits the priority of JH . When JL unlocks the
resource, it returns to the priority it had at the time it
acquired the lock.

Even though the PIP was developed in the context of
fixed priority scheduling, it can be applied in the context of
dynamic priority scheduling as well. The following basic
properties hold:

. A job JH can be blocked by a lower priority job JL for at
most the worst-case execution time of one critical section
of JL, regardless of the number of semaphores shared by
JH and JL.

. A job Ji can encounter blocking by at most one critical
section for each semaphore that it tries to lock.

Using these properties, it is possible to give a sufficient
condition for the schedulability of a set of n HRT periodic
tasks. Suppose that the tasks are ordered by nondecreasing
periods (Ti < Tj ) i < j). The schedulability condition is
the following [21], [22]:

8i 1 � i � n
X

i

j¼1

Cj

Tj

þ
Bi

Ti

� 1; ð2Þ

where Bi is the worst-case blocking time of task �i.

5.1 Using the Priority Inheritance Protocol
with the CBS

When applying the PIP to the CBS, it is not clear how to
account for the blocking time. One possible way would
be to consider the blocking time using the following
admission test:

8i 1 � i � n
X

i

j¼1

Qj

Pj

þ
Bi

Pi

� 1; ð3Þ

where Bi represents the maximum blocking time experi-
enced by each server.

However, this solution is not suitable for a dynamic
system. In fact, to compute the maximum blocking time of
each server, when a task is created we must “declare” the
worst-case execution time of the critical sections on each
accessed resource. This is in contrast with the goal of a
scheduler that must be independent of the actual require-
ments of the tasks. In addition, if an SRT task holds a critical
section for longer than declared, any server can miss its
deadline.

Example 1. To highlight this problem, consider the example
shown in Fig. 1. In this example, there are three servers,
S1 ¼ ð2; 6Þ, S2 ¼ ð2; 6Þ and S3 ¼ ð6; 18Þ. Server S1 is
assigned task �1, which accesses a resource R for the
entire duration of its jobs (i.e., two units of time).
Server S2 is assigned task �2, which does not use any
resource. Server S3 is assigned task �3, which has an
execution time of six units of time and accesses resource
R for five units of time. Now, suppose that �3 is an SRT

task that claims to use resource R for only two units of
time. The system computes a maximum blocking time
B1 ¼ B2 ¼ 2 for servers S1 and S2. According to (3), the
system is schedulable and all servers can be admitted.

In the configuration of arrival times shown in Fig. 1,
server S1 arrives at time t2 and tries to access R. Since it is
locked, server S3 inherits a deadline �

0
3
¼ 8 and continues

executing. If no enforcement is put on the worst-case
execution time of the critical section of task �3 on
resource R, server S2 misses its deadline, as is shown
in Fig. 1. The simple fact that �3 executes more than
expected inside the critical section invalidates the BIP
and task �2, which does not use any resource, misses its
deadline.

Another problem that must be considered is the
depletion of the server budget while the task is in a critical
section and has inherited the deadline of another server. In
the original CBS formulation, the server deadline is
postponed and the server budget is immediately recharged.
When the PIP is applied, it is not clear which deadline has
to be postponed.

To solve the problems mentioned above, we combine the
PIP and the CBS in a single protocol called BandWidth
Inheritance (BWI). The basic idea is that, when a task that
executes inside a low-priority server blocks a high-priority
server, it inherits the pair ðq; �Þ of the blocked server.

6 THE BANDWIDTH INHERITANCE PROTOCOL

Before starting with the description of the Bandwidth
Inheritance protocol, we need to understand the meaning of
temporal isolation when considering interacting tasks. In the
original CBS paper [4], tasks are assumed to be independent
and, hence, do not interact in any way. When tasks access
shared resources, they cannot be considered completely
independent anymore. What does isolation mean in such a
scenario?

Consider again the example shown in Fig. 1. Server S1

and server S3 share a resource. It is easy to see that if S3

holds the lock for longer than declared, some task will
probably miss its deadline. Our goal is to prevent task �1
and �3 from interfering with �2. In fact, since �1 and �3 both
access the same resource, it is impossible to provide
isolation among them.
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6.1 Bandwidth Isolation in the Presence of Shared
Resources

In this section, we define more precisely the concept of
interaction between tasks. Intuitively, a task �i can be
affected by a task �j if it can be directly or indirectly
blocked by �j. This relation is formalized by the following
definition:

Definition 1. A sequence Hi ¼ ð�1; R1; �2; R2; . . . ; Rz�1; �zÞ,
with z � 2, is a blocking chain on task �i if:

. �i ¼ �1;

. 8k ¼ 1; . . . ; z� 1, �k and �kþ1 both use Rk; and

. If z > 2 8k ¼ 2; . . . ; z� 1, �k accesses Rk with a
critical section that is nested inside a critical section
on Rk�1.

If z ¼ 2, then �i and �z directly share a resource. If z > 2,
then �i and �z interact through nested critical sections.

As an example, consider the blocking chain
H1 ¼ ð�1; R1; �2; R2; �3Þ:

. Task �3 uses resource R2;

. Task �2 uses R2 with a critical section that is nested
inside the critical section on R1; and

. Task �1 uses R1.

Notice that, in the above example, �1 can be blocked by �2
and by �3, but �3 cannot be blocked by �1. Hence, a blocking
chain defines an antisymmetric relation � between �i and
�z: �i � �z but not vice versa.

In general, there can be more than one chain between
two tasks �i and �j because they can directly or indirectly
share more than one resource. Let us enumerate the chains
starting from task �i in any order. Hh

i denote the
hth blocking chain on �i. Without loss of generality, in the
remainder of the paper, we will sometimes drop the
superscript on the chain.

Let �ðHiÞ denote the set of tasks �2; . . . ; �z in the sequence
Hi (�i excluded), and RðHiÞ the set of resources R1; . . . ; Rz�1

in the sequence Hi, respectively.

Definition 2. The set �i of tasks that may interact with �i is
defined as follows:

�i ¼
[

h

�ðHh
i Þ:

Set �i comprises all tasks that may directly or indirectly
block �i.

Given these definitions, we can state more precisely the
goals of our scheduling strategy. Whether task �i meets its
deadlines should depend only on the timing requirements
of �i and on the worst-case execution time of the critical
sections of the tasks in �i. Therefore, in order to guarantee
an HRT task �i, it is only necessary to know the behavior of
the tasks in �i.

6.2 The Priority Ceiling Protocol and
the Problem of Deadlock

If we allow nested critical section, the problem of deadlock
must be taken into account. Deadlock can be avoided by
means of static or dynamic policies. One possibility is to use a
protocol, like thePCP, thatpreventsdeadlock fromoccurring.

However, the PCP uses a priori information on the task
parameters. For each resource, it requires the knowledge of
the priorities of all the accessing tasks in order to compute
the resource ceiling. The resource ceilings are then used by
the protocol to regulate access to resources. Therefore, the
requirements of the PCP are in contrast with the initial
requirements we made for our scheduling discipline. In
addition, if the ceilings are not computed correctly, not only
the analysis but also the resulting schedule is incorrect. An
example can be easily built in which, due to an SRT task
that fails to declare access to one resource, the ceilings are
not computed correctly and a deadlock can occur.

On the other hand, the PIP does not require any a priori
information. Hence, in this paper, we select the PIP as the
basic resource access protocol.

To solve the deadlock problem, we consider another
static policy. We assume that resources are totally
ordered and each task respects the ordering in accessing
nested critical sections. Thus, if i < j, then task � can
access a resource Rj with a critical section that is nested
inside another critical section on resource Ri. When such
an order is defined, the sequence of resources in any
blocking chain is naturally ordered. For a deadlock to be
possible, a blocking chain must exist in which there is a
circular relationship like H ¼ ð. . . ; Ri; . . . ; Rj; . . .Ri; . . .Þ.
Therefore, if the resources are ordered a priori, a
deadlock cannot occur.

If the total order is not respected when accessing nested
critical sections, a deadlock can still occur. As we will see in
the next section, our scheduler is able to detect it during
runtime, but the action to be taken depends on the kind of
resources. In the remainder of the paper, we shall assume
that resources are ordered.

6.3 Description of the Bandwidth Inheritance
Protocol

The BWI protocol allows tasks to be executed on more than
one server. Every server Si maintains a list of served tasks.
During runtime, it can happen that a task �i is in the list of
more than one server. Let eði; tÞ be the index of the earliest
deadline server among all the servers that have �i in their
list at time t. Initially, each server Si has only its own task �i
in the list, hence, 8i eði; 0Þ ¼ i.1 We call server Si the default
server for task �i.

As long as no task is blocked, BWI follows the same rules
as Algorithm CBS. In addition, BWI introduces the
following rules:

. Rule D: If task �i is blocked when accessing a
resource R that is locked by task �j, then �j is added
to the list of server Seði;tÞ. If, in turn, �j is currently
blocked on some other resource, then the chain of
blocked tasks is followed and server Seði;tÞ adds all
the tasks in the chain to its list until it finds a ready
task.2 In this way, each server can have more than
one task to serve, but only one of these tasks is not
blocked.
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. Rule E: When task �j releases resource R, if there is
any task blocked on R, then �j was executing inside a
server Seðj;tÞ 6¼ Sj. Server Seðj;tÞ must now discard �j
from its own list and the first blocked task in the list
is now unblocked, let it be �i. All the servers that
added �j to their list while �j was holding R must
discard �j and add �i.

BWI is an inheritance protocol: When a high-priority task

�i is blocked by a lower-priority task �j, �j inherits server

Seði;tÞ and the execution time of �j is then charged to Seði;tÞ.

Therefore, Seðj;tÞ ¼ Seði;tÞ. When the budget of Seði;tÞ is

exhausted, Seði;tÞ’s deadline is postponed and �j can

continue to execute on server Seðj;tÞ that may now be

different from Seði;tÞ.

Example 2. The behavior of BWI is demonstrated by

applying the protocol to the example of Fig. 1. The

resulting schedule is depicted in Fig. 2.

. At time t ¼ 1, task �3, which is initially served by
S3, locks resource R.

. At time t ¼ 2, server S1 becomes the earliest
deadline server and dispatches task �1, which
immediately tries to lock resource R. However,
the resource is already locked by �3. According to
Rule D, �3 is added to the list of S1 and �1 is
blocked. Now, there are two task in S1’s list, but
only �3 is ready. Hence, Seð3;2Þ ¼ S1 and S1

dispatches task �3.
. At time t ¼ 3, server S2 is activated, but it is not

the earliest deadline server. Thus, �3 continues to
execute.

. At time t ¼ 4, the budget of server S1 has been
depleted. According to Rule C (see Section 4), the
server deadline is postponed to �1  �1 þ P1 ¼ 14

and the budget is recharged to q1  Q1 ¼ 2. Since
S1 is no longer the earliest deadline server, S2 is
selected and task �2 is dispatched.

. At time t ¼ 6, S1 is again the earliest deadline
server; hence, task �3 is dispatched.

. At time t ¼ 8, �3 releases the lock on R. According
to Rule E, �1 is unblocked and �3 is discarded from
the list of server S1. Now, S1’s list contains only
task �1 and Seð3;2Þ ¼ S3. Server S1 is still the

earliest deadline server, but its budget has been
depleted. According to Rule C, �1  �1 þ P1 ¼ 20

and q1  Q1 ¼ 2.

Note that, in this case, task �2 is not influenced by the
misbehavior of �3 and completes before its deadline.

6.4 Properties of BWI

In this section, the bandwidth isolation property and the
hard schedulability property are extended to consider
interacting tasks and they are proven for the BWI protocol.
We also derive sufficient conditions for assigning server
parameters that guarantee HRT tasks. First, we present
some preliminary results.

Lemma 1. Each active server always has exactly one ready task in
its list.

Proof. Initially, no task is blocked and the lemma is true.
Suppose that the lemma holds just before time tb, when
task �i is blocked on resource R by task �j. After applying
Rule D, both servers Sj and Si have task �j in their list
and task �i is blocked. By definition of eðj; tbÞ, Seðj;tbÞ ¼ Si.
Moreover, if �j is also blocked on another resource, the
blocking chain is followed and all the blocked tasks are
added to Si until the first nonblocked task is reached.
The lists of all the other servers remain unchanged, thus
the lemma is true.

Now, suppose that the lemma is true just before time
tr. At this time, task �j releases the lock on resource R. If
no other task was blocked on R, then the lists of all the
servers remain unchanged. Otherwise, suppose that task
�i was blocked on R and is now unblocked: Server Si has
�j and �i in its list and, by applying Rule E, discards �j.
The lists of all the other servers remain unchanged, and
the lemma holds. tu

Theorem 3. Consider a system consisting of n servers with
Pn

i¼1 Ui � 1, which uses the BWI protocol for accessing shared
resources. No server in the system misses its scheduling
deadline.

Proof. Lemma 1 implies that, at all times, the earliest
deadline server has one and only one ready task in its
list. As explained in [10], the resulting schedule can be
regarded, from the viewpoint of the global scheduler, as
a sequence of real-time jobs whose deadlines are equal to
the deadlines of the servers (also referred as chunks in
[20] and [4]). As the earliest deadline server never blocks,
the computation times and the deadlines of the chunks
generated by the server do not depend on the presence of
shared resources. In [20], [10], it was proven that, in
every interval of time, the bandwidth demanded by the
chunks produced by server Si never exceeds Qi

Pi
,

regardless of the behavior of the served tasks. Since
Lemma 1 states that each active server always has one
nonblocked task in its list, the previous result is also
valid for BWI. Hence, from the optimality of EDF and
from

Pn
i¼1

Qi

Pi
� 1, it follows that none of these chunks

misses its deadline. tu

Note that the previous theorem states that no scheduling
deadline (that is, we recall, the server’s deadline used to
schedule the servers with EDF) will be missed, but it does
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not say anything about a task’s deadlines. Recall that the
goal of a real-time scheduling algorithm is to meet the
HRT deadlines. At this point, we need a way to relate the
tasks’ deadlines to the server deadlines (and, hence, to the
server parameters) so that it is possible to provide
guarantees to HRT tasks.

Definition 3. Given a task �i, served by a server Si with the BWI
protocol, the interference time Ii is defined as the maximum
time that all other tasks can execute inside server Si for each
job of �i.

Theorem 4. If an HRT task �i is served by a server Si with the
BWI protocol, with parameters Qi ¼ Ci þ Ii and Pi ¼ Ti,
where Ci is the WCET, Ti is the minimum interarrival time,
and Ii is the maximum interference time for Si, then task �i
will meet all its deadlines, regardless of the behavior of the
other noninteracting tasks in the system.

Proof. According to Theorem 2, the CBS algorithm
guarantees that each server Si receives up to Qi units
of execution every Pi units of time. Hence, if each
instance of �i consumes less than Qi and instances are
separated by Pi or more, server Si never postpones its
scheduling deadline. From Theorem 1, fi;j � �i.

Theorem 3 extends the result of Theorem 2 to BWI.
However, when considering the BWI protocol, other
tasks can execute inside server Si, consuming its budget
(and, hence, postponing the deadline of server Si even if
Ci � Qi). In order to ensure that server Si will never
postpone its scheduling deadline, we have to consider
the interference time from those tasks. If Ii is the
maximum time that other tasks can execute inside Si, it
follows that �i can execute for Qi � Ii units of time before
exhausting the server budget. Hence, the theorem
follows. tu

6.4.1 Considerations

When our system consists only of HRT tasks, BWI is not the
best protocol to use. In fact, substituting Qi and Pi into (1),
we obtain:

X

n

i¼1

Ci þ Ii

Ti

� 1;

whichmay result in a lower utilization than (2) because all the
interference times are summed together. Hence, if we are
dealing with a hard real-time system, it is better to use other
scheduling strategies like the PCP [5] or the SRP [17], [2].

The BWI protocol is more suitable for dynamic real-time
systems, where hard, soft, and non-real-time tasks can
coexist and it is impossible to perform an offline analysis for
the entire system. Of course, this comes at the cost of a
lower utilization for HRT tasks.

7 INTERFERENCE TIME COMPUTATION

In the general case, an exact computation of Ii is a complex
problem. In this section, we restrict our attention to the
computation of the interference time for HRT tasks. At first
glance, the problem may seem similar to the problem of
computing the blocking times Bi for the PIP. However,

computing the interference time is much more difficult
because we have to consider the interference of the
SRT tasks. Their unpredictable execution times may cause
the associated servers to exhaust their budgets and
postpone their deadlines.

In many cases, it is desirable to guarantee an HRT task �i
even if it interacts with SRT tasks. In fact, sometimes it is
possible to know indirectly the worst-case execution time of
the critical sections of an SRT task. For example, consider an
HRT task and an SRT task that access the same resource by
using common library functions. If the critical sections are
implemented as library functions with bounded execution
time, thenwe can still determine the amount of time that a soft
taskcan steal fromthe server’s budget of anHRT task. Indeed,
this is a very common case in a real operating system.

Therefore, we will now consider the problem of comput-
ing Ii for a server Si that is the default server of an HRT task.
We start by providing an important definition that
simplifies the discussion.

Definition 4. Let Si be a server that never postpones its deadline
(i.e., Si’s budget is never exhausted while there is a job that has
not yet finished). We call Si an HRT server. If the server
deadline of Si can be postponed (i.e., a time t exists in which
qi ¼ 0 and the served job has not yet finished), we call Si an
SRT server.

The distinction between HRT and SRT servers depends
only on the kind of tasks they serve. Both HRT and
SRT servers follow the same rules and have the same
characteristics. However, it may be impossible to know the
WCET of an SRT task, so the corresponding default SRT
server can decrease its priority while executing. The presence
of SRT servers that interact with HRT servers complicates
the computation of the interference time.

The following examples show how one or more SRT
tasks can contribute (directly or indirectly) to the inter-
ference time of an HRT task.

Example 3. Consider an HRT task �i, served by server Si

and an SRT task �j, served by a server Sj with period
Pj < Pi. We do not know the WCET of task �j. Therefore,
we assign the budget of Sj according to some rule of
thumb. Server Sj is an SRT server as it may postpone its
deadline. If �j executes less than its server budget and the
server deadline is not postponed, Si cannot preempt Sj.
If, instead, �j executes for more than its server budget,
the server’s deadline is postponed. The corresponding
situation is shown in Fig. 3a. Sj can be preempted by Si

while inside a critical section, and block �i, contributing
to its interference time Ii.

Example 4. Consider three tasks, �i, �j, and �k, served by
servers Si, Sj, and Sk, respectively, with Pj < Pi < Pk.
Servers Si and Sk are HRT servers, while Sj is an SRT
server. All tasks access resource R. Task �i accesses
resource R twice with two different critical sections. One
possible blocking situation is shown in Fig. 3b. The first
time, �i can be blocked by task �k on the first critical
section. Then, it can be preempted by task �j, which first
locks R, and then, before releasing the resource, depletes
the server budget and postpones its deadline. Thus,
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when �i executes, it can be blocked again on the second

critical section on R. Note that both �j and �k belong to �i.

Example 5. As the last example, we show one case in which,

even if all tasks in �i are HRT tasks, it may happen that �j
interferes with Si with two different critical sections.

Consider three tasks, �i, �j, and �k. Task �i accesses only

resource R2 with two critical sections. Task �j accesses

two resources R1 and R2 and R2 is accessed twice with

two critical sections, both nested inside the critical

section on R1. Task �k accesses only R1 with one critical

section. The only blocking chain starting from task �i is

Hi ¼ ð�i; R2; �jÞ. Hence, �i ¼ f�jg. Note that task �k

cannot interfere with task �i.
Tasks �i, �j, and �k are assigned servers Si, Sj, and Sk,

respectively, with Pk < Pi < Pj. Tasks �i and �j are both
HRT tasks and we know their WCETs and periods.
Task �k is an SRT task and we do not know its WCET.
Finally, we assume knowing the duration of all critical
sections (for example, because resources are accessed
through shared libraries that we are able to analyze).

We assign budgets and periods of servers Si and Sj so
that they are HRT servers (to compute their interference
time, we use the algorithm described in Fig. 5, which will
be presented later). We assign the budget of server Sk

according to some rule of thumb. We do not know if Sk

will exhaust its budget while executing. Therefore, we
consider server Sk as an SRT server.

One possible blocking situation is shown in Fig. 4.
Task �j locks resource R1 and then resource R2. At time
t1, it is preempted by task �i that tries to lock resource R2

and it is blocked. As a consequence, task �j inherits
server Si and interferes with it for the duration of the
first critical section on R2. When �j releases R2, it returns
inside its server Sj and �i executes completing its critical
section on R2. Then, server Sk is activated and �k starts
executing and tries to lock resource R1. Since R1 is still
locked by �j, �k is blocked and �j inherits server Sk. While
�j executes inside Sk, it again locks resource R2. Before
releasing R2, server Sk exhausts its budget and post-
pones its deadline. Now, the earliest deadline server is Si

that continues to execute and tries to again lock R2 at
time t2. As a consequence, �j inherits Si and interferes
with it for the second time.

From the examples shown above, it is clear that there are

many possible situations in which a task can interfere with a

server. In the next section, we formally present a set of

lemmas that identify the conditions under which a task can

interfere with an HRT server.

7.1 Conditions for Interference

We start by defining the set of servers that can be inherited

by a task.

Definition 5. Set �j is the set of all servers that can be

“inherited” by task �j, Sj included:
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�j ¼ Sij9Hi; �j 2 Hi

� �

[ Sj

� �

:

A task �j can only inherit tasks in �j, hence 8t Seðj;tÞ 2 �j.

Definition 6. Set �SRT
j ðiÞ is the set of SRT servers that can be

“inherited” by task �j and interfere with server Si:

�
SRT
j ðiÞ ¼ fSkjSk is an SRT server^

9Hk ¼ ð�k; . . . ; �j; . . . ; �iÞg:

If Sj is an SRT server, it is also included in �SRT
j ðiÞ.

Consider again Example 5. There is one chain from �k to

�i: Hk ¼ ð�k; R1; �j; R2; �iÞ. Therefore, Sk 2 �SRT
j ðiÞ. Set

�SRT
j ðiÞ is important in our analysis because it identifies

whether a task �j can inherit an SRT server before

interfering with the server Si under analysis. In Example 5,
task �j can inherit the SRT server Sk, which may later

postpone its deadline.
Now, we prove some important properties of the BWI

protocol.

Lemma 2. If server Si is HRT, then 8t : �eði;tÞ � �i.

Proof. When �i inherits a server Sj, this server must have a
scheduling deadline shorter than �i. Recall that, by

definition, eði; tÞ is the index of the server with the
shortest scheduling deadline among all servers inherited
by �i at time t. Hence, �eði;tÞ ¼ �j < �i. If Sj postpones its

deadline before the time in which �i releases the
resource, �i continues to execute inside the server with

the shortest deadline among the inherited servers. Since
Si never postpones its deadline, the lemma is proven. tu

Lemma 3. Given a task �i, only tasks in �i can be added to server

Si and contribute to Ii.

Proof. It follows directly from Rule D and from the

definition of �i. tu

Lemma 4. Let Si be an HRT server. Task �j with default server
Sj cannot interfere with server Si if:

Pj � Pi ^ 8Sk 2 �
SRT
j ðiÞ : Pk > Pi:

Proof. By contradiction. For �j to interfere with Si, it must
happen that, at a certain time t1, �j locks a resource R; it
is then preempted by server Si at time t2, which blocks

on some resource; �j inherits Si as a consequence of this

blocking. Therefore, �j must start executing inside its
default server before Si arrives and executes in a server
Seðj;t2Þ with deadline �eðj;t2Þ > �i when it is preempted. By
hypothesis, Pj � Pi ) �j < �i. Hence, �j executes in a
server Seðj;t1Þ with �eðj;t1Þ > �i. However, it follows from
the hypothesis that server Sj never postpones its dead-
line (Sj 62 �SRT

j ðiÞ) and, from Lemma 2, �eðj;t1Þ � �j < �i.
This is a contradiction, hence the lemma is proven. tu

Now, we are ready to define more precisely which tasks
can interfere with our server Si.

Definition 7. A proper blocking chain Hi is a blocking chain
that contains only tasks that can interfere with Si:

8�j 2 Hi : Pj > Pi _ 9Sk 2 �
SRT
j ðiÞ : Pk � Pi:

Later, we will present an algorithm for computing the
interference time for server Si which explores all proper
blocking chains starting from �i. However, in some cases,
we have to consider multiple interference times from the
same task and multiple interference times on the same
resources. The following lemmas restrict the number of
possible interference situations.

Lemma 5. Let Si be an HRT server and �j a task belonging to a
proper blocking chain Hi. If the following condition holds:

Pj > Pi ^ 8Sk 2 �
SRT
j ðiÞ : Pk � Pi;

then �j can interfere with server Si for at most the worst-case
execution of one critical section for each job.

Proof. Suppose that �j interferes with Si in two different
intervals. The first time it interferes in interval ½t1; t2Þ, the
second time in interval ½t3; t4Þ. Therefore, at time t2,
�eðj;t2Þ > �i. If �j does not lock any resource in ½t2; t3Þ, then,
at time t3, server Si blocks on some resource R that was
locked by �j before t1 and that it has not yet released.
Therefore, �j interferes with Si for the duration of the
critical section on R, which includes the duration of the
first critical section (�ðRÞ � ðt4 � t3Þ þ ðt2 � t1Þ) and the
lemma is proven.

Now, suppose that �j executes in interval ½t2; t3Þ and
locks another resource R1. It follows that it inherits a
server Sk that preempts Si with �k < �i. Hence, Pk < Pi.
From the hypothesis, Sk is an HRT server and �k is not
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postponed before �j releases resource R1. Hence, �j
cannot inherit Si while it is inside Sk and we fall back to
the previous case. tu

Lemma 6. Let Si be an HRT server and R a resource. If the
following condition holds:

8Hh
i ; H

h
i ¼ ð. . . ; R; �j; . . .Þ; 8Sk 2 �

SRT
j ðiÞ : Pk � Pi;

then at most one critical section on R can contribute to
interference time Ii.

Proof. The proof of this lemma is very similar to the proof of
Lemma 5. By contradiction. Suppose that two critical
sections on the same resource R contribute to Ii. The first
time, task �p inherits server Si at time t1 while it is
holding the lock on R. The second time, task �j inherits
server Si at time t2 > t1 while it is holding the lock on R.
It follows that:

. The lock on R was released between t1 and t2;

. �j arrives before t2 and executes on a server SeðjÞ

with �eðjÞ < �i;
. �j acquires the lock on R at ta < t2;
. just before t2, �i < �eðjÞ;t2 .

Hence, at time ta, �j is executing in an inherited server
Sk 2 �SRT

j ðiÞ that postpones its deadline before �j
releases the lock on R. Sk must arrive after Si with
deadline �k < �i and later postpone its deadline. This
contradicts the hypothesis that 8Sk 2 �SRT

j ðiÞ : Pk � Pi.
Hence, the lemma is proven. tu

The previous lemmas restrict the number of combina-
tions that we must analyze when computing the inter-
ference time. In particular, Lemma 5 identifies the
conditions under which a task can interfere with server Si

for at most one critical section; Lemma 6 identifies the
conditions under which a certain resource can interfere
with server Si at most one time.

Now, we need to quantify the interference time due to
each blocking chain.

Lemma 7. The worst-case interference time for server Si due to a
proper blocking chain Hi ¼ ð�1; R1; . . . ; Rz�1; �zÞ is:

�ðHiÞ ¼
X

z

k¼2

�kðRk�1Þ: ð4Þ

Proof. It simply follows from the definition of proper
blocking chain. tu

Given a proper blocking chain, we need to distinguish the
tasks that can interfere with Si for at most the duration of one
critical section (i.e., that verify the hypothesis of Lemma 5)
from the task that can interfere with Si multiple times.

Definition 8. Given a proper blocking chain Hh
i , let �ðH

h
i Þ be

the set of tasks in Hh
i that verify the hypothesis of Lemma 5.

�ðHh
i Þ ¼ �jj�j 2 Hh

i ^ Pj > Pi ^ ð8Sk 2 �
SRT
j ðiÞ : Pk � PiÞ

n o

:

We do the same thing for the resources.

Definition 9. Given a proper blocking chainHh
i , letRðH

h
i Þ be the

set of resources inHh
i that verify the hypothesis of Lemma 6.

RðHh
i Þ ¼

RjjRj 2 Hh
i ^ Pjþ1 > Pi ^ ð8Sk 2 �

S
jþ1RT ðiÞ : Pk � PiÞ

n o

:

7.2 Algorithm for Computing the Interference Time

We are now ready to present the pseudocode for Algorithm
interference(), shown in Fig. 5. Let csi denote the
number of critical sections for task �i and CSiðkÞ denote the
set of proper blocking chains starting from the kth critical.
More formally, CSiðkÞ is the set of proper blocking chains of
the form Hh

i ¼ ð�i; R; . . .Þ, where R is the resource accessed
in the kth critical section of �i.

Function interferenceðk; T ;RÞ is first called with k ¼ 1,
T ¼ �i, and withR equal to the set of all possible resources.
At line 5, we consider the case in which �i is not blocked on
the kth critical section. In this case, the function is
recursively called for the ðkþ 1Þth critical section.

At lines 6-12, we consider the case in which �i is blocked
on the kth critical section. For each proper blocking chainHi

in CSiðkÞ, the algorithm checks if it is a legal blocking chain,
i.e., the resources in RðHk

i Þ and the tasks in �ðHk
i Þ have not

yet been considered in the interference time computation. If
so, function interference() is recursively called with
k0 ¼ kþ 1, T 0 ¼ T n �ðHiÞ, and R

0 ¼ R nRðHiÞ (lines 8-10).
Otherwise, it selects another chain from CSiðkÞ. The
recursion stops when k > csi (line 4).

The algorithm has exponential complexity since it
explores all possible interference situations for server Si.
We conjecture that the problem of finding the interference
time in the general case is NP-Hard. However, we leave the
proof of this claim as future work.

7.3 Interference Time Computation for SRT Tasks

It is very difficult to compute the interference time for an
SRT task. The problem is that an SRT task can deplete the
capacity of its server, postponing the server deadline, which
causes the server’s priority to decrease.

As a consequence, an SRT task can potentially be blocked
many times by every other task and several times on each
resource. The worst-case interference time can be very high,
whereas the average interference timewill probably bemuch
lower than the worst case. Moreover, since an SRT task can
tolerate occasional deadline misses, there is no advantage to
selecting the server’s budget based on the worst-case
computation time and worst-case interference time.

In order to assign the server parameters and then adjust
them for minimizing the number of deadline misses, it is
better to dynamically adjust the budget by using an online
feedback mechanism like the one proposed by Abeni and
Buttazzo [23] or the elastic model proposed by Buttazzo
et al. [24].

8 CONCLUSIONS AND FUTURE WORK

In this paper, we presented the Bandwidth Inheritance
protocol, a novel scheduling discipline that allows the
sharing of resources between real-time tasks in dynamic
real-time systems. Coherently with the Resource Reserva-
tion approach, BWI provides some temporal isolation
properties without requiring any a priori knowledge about
the structure and the temporal behavior of the tasks.
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In addition, a schedulability analysis for HRT tasks has
been developed and presented in this paper. This analysis is
based on formal properties of the BWI protocol that are
presented and proven in the paper.

As future work, we are currently analyzing new
strategies for coping with SRT tasks. Roughly speaking,
an SRT task that borrows interference time from another SRT
task should give it back after some time. The idea is that
every SRT task should be given a fair share of the processor
over long intervals. Moreover, we are planning to combine
feedback scheduling techniques [25], [24], [23] with BWI in
order to adjust the parameters of the servers and minimize
the number of missed SRT deadlines.
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