
A multiprocessor implementation of the Total Bandwidth Server∗

Sanjoy Baruah

The University of North Carolina

Chapel Hill, NC. USA

Giuseppe Lipari

Scuola Superiore S. Anna

Pisa, Italy

Abstract

If a periodic task system is scheduled upon an identical
multiprocessor platform using the Earliest Deadline First
scheduling algorithm, it is known that the “schedulable uti-
lization” – the largest bound such that any periodic task sys-
tem with cumulative utilization no larger than this bound is
guaranteed to be successfully scheduled – is strictly less than
the capacity of the platform. The issue of using the excess
processing capacity (the difference between the platform ca-
pacity and the schedulable utilization) is addressed here, and
an algorithm is presented, and proven correct, that uses this
excess capacity to provide guaranteed real-time service to
aperiodic jobs.

Keywords: Real-time systems; multiprocessor scheduling;

periodic task systems; aperiodic jobs; earliest deadline first.

1 Introduction

Over the years, the preemptive periodic model
has proven remarkably useful for representing recurring
processes that occur in hard-real-time (HRT) applica-
tion systems. The scheduling of systems of such tasks
has therefore been the subject of much research, partic-
ularly upon uniprocessor platforms. In many real-time
application systems, it is the case that there are oc-
casional non-recurring jobs that need to be executed
in addition to the HRT jobs generated by the periodic
tasks. Such aperiodic jobs are typically handled by
an aperiodic server, which makes use of the proces-
sor capacity left over by the HRT jobs to execute these
aperiodic jobs.

In uniprocessor systems, all the processor capacity
that is left unused by the HRT jobs is available to the
aperiodic server; hence, designing an aperiodic server
for uniprocessor platforms is essentially a problem of
accurately measuring the amount of such unused ca-

∗Supported in part by the National Science Foundation
(Grant Nos. ITR-0082866, CCR-0204312, and CCR-0309825).

pacity, and then allocating it appropriately to the ape-
riodic jobs in order to optimize some desired metric.
This can be a complex problem, particularly if it is
desired (as it usually is) that each aperiodic job com-
plete as quickly as possible. In multiprocessor systems,
however, the complexity of designing aperiodic servers
is further compounded by the fact that, in addition to
measuring the amount of processor capacity left unused
by the periodic tasks, we must also take into account
the manner in which this unused capacity occurs. For
example, if k > 1 processors are left idle at some in-
stant by the periodic tasks’ jobs and there is only one
aperiodic job to be served, then this aperiodic job is
able to execute on only one of these idle processors,
and hence a fraction(k − 1)/k of the idle capacity is
not usable by the aperiodic server. In this paper, we
study the issue of designing aperiodic servers for such
multiprocessor platforms, that make efficient use of the
processor capacity left unused by the periodic tasks’
jobs.

Organization of this document. In Section 2 be-
low, we define the terminology and notation that will
be used in this paper, and present prior results that are
needed in the following sections. In Section 3 we de-
sign, and establish the correctness of, a multiprocessor
aperiodic server that is able to make efficient use of the
capacity left unused by periodic tasks. We conclude in
Section 4 with a summary of the results presented here,
and discussion on interesting future research directions.

2 System model and Background

2.1 The periodic task model

In the preemptive periodic model [10, 9] of recur-
ring real-time tasks1, a periodic task τi = (Ci, Pi)
is characterized by two parameters: a (worst-case) ex-
ecution requirement Ci and a minimum inter-arrival

1Note that what we call a periodic task here is sometimes
referred to in the literature as a sporadic task.

0-7695-2132-0/04/$17.00 (C) 2004 IEEE

Proceedings of the 18th International Parallel and Distributed Processing Symposium (IPDPS’04)

Authorized licensed use limited to: UNIVERSITA PISA S ANNA. Downloaded on October 7, 2008 at 6:45 from IEEE Xplore. Restrictions apply.

separation parameter Pi (often referred to as the pe-

riod of the task). Such a periodic task generates an
infinite sequence of hard-real-time jobs (HRT jobs).
An HRT job j is characterized by three parameters – an
arrival time a(j), an execution requirement e(j), and a
deadline d(j) – with the interpretation that it must ex-
ecute for an amount equal to its execution requirement
e(j) over the time-interval [a(j), d(j)). The HRT jobs
generated by periodic task τi each have an execution
requirement of Ci and a deadline Pi time units after
its arrival time. The first HRT job generated by τi

may arrive at any time-instant; successive arrivals are
separated by at least Pi time units. We use the term
utilization to denote the ratio of the execution require-
ment parameter of a task to its inter-arrival separation
parameter — the utilization Ui of τi is equal to Ci/Pi.
Intuitively speaking, the utilization of a periodic task
denotes the fraction of the computing capacity of a
unit-capacity processor that may need to be devoted
to executing jobs of this periodic task, in the worst
case. A periodic task system consists of several such
periodic tasks that are to execute on a shared platform.
The jobs are assumed to be independent in the sense
that each job does not interact in any manner (access-
ing shared data, exchanging messages, etc.) with other
jobs of the same or another task. It is also assumed
that the model allows for job preemption; i.e., a job
executing on a processor may be preempted prior to
completing execution, and its execution resumed later
on the same or a different processor, at no cost or
penalty. Let τ = {τ1, τ2, . . . , τn} denote a periodic task
system. For any such periodic task system τ , Usum(τ)
will denote the cumulative utilizations of all tasks in τ
(Usum(τ)

def
=

∑n

i=1 Ui); Umax(τ) will denote the largest

utilization of any task in τ (Umax(τ)
def
= maxn

i=1 Ui).

The basic periodic task model described above can
be generalized in several ways. These generalizations
better represent the kinds of recurring processes occur-
ring in a larger class of real-time systems, and hence are
likely to prove more useful to the designers of real-time
application systems.

§1. As our first generalization, we no longer require
that all the jobs generated by a periodic task have
identical execution requirements and relative deadlines.
Rather, we consider the utilization parameter of a pe-
riodic task to be a “first-class” concept, and derive
conditions on the execution requirement and relative
deadline from this utilization parameter. This gen-
eralization is motivated by the following abstraction:
Each generalized periodic task τi represents a sequence
of HRT jobs that are known to meet their time con-
straints when executing upon a processor of computing
capacity equal to the tasks’ utilization. The periodic

task system τ = {τ1, . . . , τn} is therefore comprised
of n such sequences of jobs that are multiprogrammed
onto a common platform. For technical reasons that we
will elaborate upon later, we add the restriction that
each individual job’s execution not exceed an a priori
specified upper bound. Formally, then, each general-
ized periodic task τi is characterized by a utilization Ui,
and an upper bound upon the execution requirements

of each of its jobs C
(ub)
i . The jobs j1, j2, . . ., generated

by τi are required to satisfy the properties enumerated
in Equation 1:

(1a) a(j1) ≥ 0 (1)

(1b) e(jℓ) ≤ C
(ub)
i

for all ℓ

(1c) a(jℓ) ≥ d(jℓ−1) for all ℓ ≥ 2

(1d) d(jℓ) = a(jℓ) +
e(jℓ)

U
for all ℓ ≥ 1

We will refer to periodic task systems that satisfy the
constraints represented in Equation 1 above as Par-
tially Generalized Periodic Task Systems, or PGPTS’s
(this model is “partially generalized” in contrast to the
more fully generalized model described below). In con-
trast, we will refer to periodic task systems defined us-
ing the (C,P) model described above as basic periodic
task systems.

§2. As a further generalization, we get rid of the re-
quirement that successive jobs of the same task not
have overlapping intervals. That is, we replace the con-
straints (1c) and (1d) with the weaker constraint (2c)
below:

(2a) a(j1) ≥ 0 (2)

(2b) e(jℓ) ≤ C
(ub)
i

for all ℓ

(2c) d(jℓ) = max {a(jℓ), d(jℓ−1)} +
e(jℓ)

U
for all ℓ ≥ 2

We will refer to periodic task systems that satisfy the
constraints represented in Equation 2 above as general-

ized periodic task systems, or GPTS’s. (Note that this
generalization places some restrictions upon the imple-
mentation of the multiprocessor system-level scheduler
– since there may be several jobs of the same task ac-
tive simultaneously, it is incumbent upon the scheduler
to ensure that several jobs of a task are not simultane-
ously scheduled upon different processors.)

The various PTS models described above are sum-
marized in Table 1

Some further notation: for any (partially) general-

ized periodic task τi = (C
(ub)
i , Ui), let P

(ub)
i denote the

relative deadline of a job of τi that has the maximum
permissible execution requirement:

P
(ub)
i

def
=

C
(ub)
i

Ui

.

0-7695-2132-0/04/$17.00 (C) 2004 IEEE

Proceedings of the 18th International Parallel and Distributed Processing Symposium (IPDPS’04)

Authorized licensed use limited to: UNIVERSITA PISA S ANNA. Downloaded on October 7, 2008 at 6:45 from IEEE Xplore. Restrictions apply.

Basic (BPTS). Each periodic task τi is specified by an exe-
cution requirement Ci and a period Pi, and generates a
sequence of jobs each with execution requirement Ci and
relative deadline Pi, with successive jobs arriving at least
Pi time units apart.

Partially Generalized (PGPTS). Each periodic task τi is
specified by a utilization Ui and an upper bound on execu-

tion requirement C
(ub)
i

, and generates a sequence of jobs

each with execution requirement ≤ C
(ub)
i

, with the arrival
time of job j being after the deadline of the previous job
generated by τi, and the deadline of job j being e(j)/Ui

time units after its arrival.

Generalized (GPTS). Each periodic task τi is specified by a
utilization Ui and an upper bound on execution require-

ment C
(ub)
i

, and generates a sequence of jobs each with

execution requirement ≤ C
(ub)
i

. Job j can arrive at any
time after the arrival of the previous job generated by τi,
and has a deadline e(j)/Ui time units after the later of its
arrival-time and the deadline of the previous job generated
by τi.

Table 1. The three kinds of Periodic Task Sys-

tem (PTS) models discussed in this paper.

For any (P)GPTS τ , let Pmax(τ) denote the largest
relative deadline of any task in τ :

Pmax(τ)
def
=

n
max
i=1

{Pi} .

Aperiodic jobs. In addition to the periodic tasks’
jobs, there may be certain aperiodic jobs that also need
to be scheduled. An aperiodic job may arrive at any
time, and is characterized by a (worst-case) execution
requirement and a deadline. Nothing about an aperi-
odic job – its arrival time, execution requirement, or
deadline – is known prior to the instant it arrives; at
that instant, all its parameters are completely known.

Some further definitions:

Definition 1 Let τ denote a periodic task system
specified using the basic, partially generalized, or gen-
eralized model, which is to be scheduled upon a multi-
processor platform comprised of m unit-capacity pro-
cessors. Let J denote a (finite or infinite) collection of
HRT jobs generated by τ .

1. For any m-processor scheduling algorithm A, let
A(J) denote the schedule generated when J is
scheduled upon m unit-capacity processors by
scheduling algorithm A.

2. Let t ∈ R denote any time-instant, and A any m-
processor scheduling algorithm. For any J ′ ⊆ J ,
the expression W(J ′, A(J), t) denotes the total

amount that jobs in J ′ have been executed in
schedule A(J) over the time-interval [0, t).

3. For any periodic task τi ∈ τ , let I(τi) denote any
collection of jobs that could legally be generated
by task τi. Let I(τ) denote any collection of jobs
that could legally be generated by the tasks in τ :

I(τ)
def
=

⋃

τi∈τ I(τi).

4. We are interested in periodic task systems that
only generate collections of HRT jobs that are fea-

sible; hence, we assume that τ satisfies these two
properties: (i) Usum(τ) ≤ m; and (ii) Umax(τ) ≤
1. It is straightforward to observe that any τ not
satisfying both these properties can generate col-
lections of jobs which are infeasible. On the other
hand if τ satisfies both these properties, any I(τ) is
feasible upon a multiprocessor platform comprised
of m unit-capacity processors. To see this, let j de-
note any job generated by τi in I(τ), and let j′ de-
note the previous job generated by τi if any (if j is
the first job generated by τi, then d(j′) is assumed
equal to zero). A processor-sharing schedule which
assigns a fraction Ui of a processor to job j dur-
ing the interval [max{a(j)d(j′)}, d(j)), will meet
job j’s deadline. Let opt denote a scheduling al-
gorithm that generates such a schedule, and hence
let opt(I(τ)) denote this schedule for I(τ) — i.e.,
opt(I(τ)) assigns each job in I(τi) a fraction

Ui of a processor over the time-interval be-

tween the larger of its arrival-time and its

predecessor’s deadline, and its own dead-

line.

2.2 Background and related work

The Total Bandwidth Server (TBS) abstraction
was introduced by Buttazzo et al. [12, 14, 13] for ser-
vicing aperiodic jobs in a uniprocessor hard-real-time
environment, in which a set of (basic) periodic tasks is
scheduled using the preemptive Earliest Deadline First
scheduling algorithm (Algorithm EDF) [9, 7]. When
an aperiodic job arrives, the TBS algorithm makes a
determination on whether to accept the aperiodic job
or not – accepting the job is tantamount to guaran-
teeing that it will be executed for an amount of time
equal to its execution requirement before its deadline.
The uniprocessor TBS variants proposed in [12, 14, 13]
achieve full processor utilization while simultaneously
guaranteeing the timely execution of all HRT jobs.

We have recently [8, 15, 6] been studying the
scheduling of (generalized) periodic task systems upon
multiprocessor platforms comprised of several identical
processors. For periodic task systems that are sched-
uled using Algorithm EDF upon m processors, we have

0-7695-2132-0/04/$17.00 (C) 2004 IEEE

Proceedings of the 18th International Parallel and Distributed Processing Symposium (IPDPS’04)

Authorized licensed use limited to: UNIVERSITA PISA S ANNA. Downloaded on October 7, 2008 at 6:45 from IEEE Xplore. Restrictions apply.

shown that the schedulable utilization2 is not equal to
the system capacity (as is the case with uniprocessor
EDF); rather, it depends upon the largest utilization of
any periodic task in the task system being scheduled.
More specifically, we have shown:

1. A sufficient condition for ensuring that periodic

task system τ is successfully scheduled upon m
unit-capacity processors by EDF is that

Usum(τ) ≤ m − (m − 1) × Umax(τ) . (3)

2. For all µ, 0 < µ < 1 and for all positive ǫ , there

are periodic task systems τ ′ that have Umax(τ
′) =

µ and Usum(τ ′) = m − (m − 1)µ + ǫ, which EDF

fails to successfully schedule upon m unit-capacity

processors.

In the uniprocessor TBS algorithm [12, 14, 13], ape-
riodic jobs are serviced by a server which is assigned
a capacity (1 − Usum(τ)), where τ denotes the peri-
odic task system being scheduled. When an aperiodic
job arrives, the server determines whether it possesses
sufficient capacity prior to the job’s deadline to com-
plete it. If so, the job is admitted and guaranteed to
meet its deadline; otherwise, it is rejected. Intuitively,
this server approach works for the following reason:
from the optimality of EDF upon uniprocessors [9, 7],
it follows that all the capacity of the processor can be
used for scheduling the periodic plus the aperiodic jobs.
Hence the processor capacity not needed by the peri-
odic tasks – a quantity equal to (1 − Usum(τ)) — may
be devoted to executing aperiodic jobs.

Contributions in this paper. In this paper, we
present Algorithm M-TBS, a multiprocessor version of
the total bandwidth server. As with the uniproces-
sor TBS, M-TBS schedules the HRT jobs of the pe-
riodic tasks with EDF, and has an aperiodic server
to handle the aperiodic jobs. Our objective is to ob-
tain an aperiodic server that uses not just the amount
of the usable capacity unused by the periodic tasks
(i.e., an amount [m − (m − 1)Umax(τ) − Usum(τ)])
for serving aperiodics — such a server would essen-
tially mimic, upon multiple processors, the behavior of
TBS’s uniprocessor server — but also the additional
amount (m− 1)Umax that is, according to Equation 3,
essentially unavailable to multiprocessor EDF for mak-
ing real-time performance guarantees (to the periodic

2The schedulable utilization of a scheduling algorithm is
defined as follows [11] : “A scheduling algorithm can [success-
fully] schedule any set of periodic tasks [...] if the total utilization
of the tasks is equal to or less than the schedulable utilization of
the algorithm.”

tasks’ jobs). So we are, in a sense, fundamentally re-

claiming for real-time use by our aperiodic server the
capacity that is not available for serving periodic tasks.
Stated differently, Algorithm M-TBS, executing upon
m processors, is able to service aperiodic jobs even
when the periodic task system τ scheduled upon the
m processors maximally utilizes the processors by hav-
ing Usum(τ) equal to (m − (m − 1)Umax(τ)). Con-
sequently, the aperiodic server in Algorithm M-TBS

is rather more complex than the aperiodic server of
uniprocessor TBS [12, 14, 13], and new techniques are
introduced for analyzing its behavior.

3 Design and analysis of a multiproces-

sor aperiodic server

In this section we derive, and establish the cor-
rectness of, the aperiodic server associated with Algo-
rithm M-TBS that is responsible for scheduling aperi-
odic jobs. For ease of exposition, we first (Section 3.1)
assume that (i) there is exactly one aperiodic job in
the system at any instant in time; (ii) the aperiodic
server simply executes in the background — a waiting
aperiodic job is executed only if there is no HRT job
awaiting execution; and (iii) HRT jobs are generated
by a partially generalized periodic task system (PG-
PTS). We then (Section 3.2) get rid of the first assump-
tion, and permit arbitrarily many aperiodic jobs. Next,
(Sections 3.3 and 3.4), we remove the second assump-
tion. Finally (Section 3.5), we permit our recurring
HRT processes to be modelled using the generalized
periodic task model, and describe the aperiodic server
in complete detail.

For ease of presentation, we will assume in the re-
mainder of this paper that the global multiprocessor
EDF scheduling algorithm is used for scheduling the
HRT jobs which are generated by the [generalized] pe-
riodic task systems. However, we will show that our
results hold if any multiprocessor scheduling algorithm
A is used for this purpose, provided that this algorithm
satisfies the following condition:

∀I(τ) : ∀t ∈ R : W
(

I(τ), A(I(τ)), t
)

≥ W

(

I(τ), opt(I(τ)), t
)

(4)

I.e., for all collections of jobs I(τ) that could legally

be generated by generalized periodic task system τ , it is

the case that jobs in I(τ) have received at least as much

execution over the time-interval [0, t) under Algorithm

A as they have in the schedule opt(I(τ)) (described in
Definition 1), in which all deadlines are met, for all
time-instants t. (Of course, one would first need to
ensure that the scheduling algorithm used is able to
meet the deadlines of all the HRT jobs; however, this
issue is orthogonal to the one of designing an aperiodic
server.)

0-7695-2132-0/04/$17.00 (C) 2004 IEEE

Proceedings of the 18th International Parallel and Distributed Processing Symposium (IPDPS’04)

Authorized licensed use limited to: UNIVERSITA PISA S ANNA. Downloaded on October 7, 2008 at 6:45 from IEEE Xplore. Restrictions apply.

Lemma 1 below asserts that EDF satisfies Condi-
tion 4 above, and is hence a suitable algorithm to use
with our reclamation scheme:

Lemma 1 ([8]) Let τ denote a generalized periodic

task system satisfying Inequality 3 above:

Usum(τ) ≤ m − (m − 1)Umax(τ) .

Algorithm EDF satisfies Condition 4 above:

∀I(τ) : ∀t ∈ R : W
(

I(τ), EDF(I(τ)), t
)

≥ W

(

I(τ), opt(I(τ)), t
)

(5)

Although we restrict our attention in this paper to sys-
tems that use EDF for scheduling the HRT jobs gen-
erated by the (generalized) periodic task system, we
would like to reiterate that our results hold if any mul-
tiprocessor scheduling algorithm that satisfies Inequal-
ity 4 is used. For example, it can be shown that the
pfair scheduling algorithms PF [4], PD [5], and PD2 [1]
all satisfy Inequality 4 upon periodic task systems τ
for which Usum(τ) ≤ m and Umax(τ) ≤ 1 hold; hence
the results presented here hold for systems in which
these algorithms are used for scheduling the HRT jobs.
Also, it is known [8] that any work-conserving schedul-
ing algorithm A satisfies Inequality 4, provided τ satis-
fies Inequality 3 above; hence, recently-proposed work-
conserving multiprocessor scheduling algorithms such
as RM-US [2], fpEDF [3], etc. can be used on such
systems.

3.1 Background scheduling a single aperiodic job

Suppose that a collection of HRT jobs I(τ), gener-
ated by PGPTS τ , is being scheduled by EDF upon a
multiprocessor platform comprised of m unit-capacity
processors. (Note that we do not require that the
arrival-times of the jobs in I(τ) be known beforehand;
however, the parameters of all tasks in τ is assumed
to be known a priori .) Suppose further that τ sat-
isfies Condition 3, and all jobs in I(τ) consequently
meet their deadlines in the EDF-generated schedule
EDF(I(τ)).

Suppose that a single aperiodic job J = (A,E) now
arrives at time-instant A, with execution-requirement
equal to E. Suppose that this job has a response

time of f when executed as a background job — i.e.,
it completes execution as a background job at time-
instant A + f . In the remainder of this section, we
compute an upper bound on this response time f .

Let I ′(τ) denote all the jobs in I(τ) that arrive be-
fore time-instant A+ f ; for each i, 1 ≤ i ≤ n, let I ′(τi)
denote the jobs in I ′(τ) generated by τi. That is,

I ′(τi)
def
=

{

j|j ∈ I(τi)
∧

a(j) ≤ A + f
}

I ′(τ)
def
=

⋃

τi∈τ

I ′(τi)

Observe that over the interval [A,A + f), aperiodic
job J is executing whenever all m processors are not
busy executing HRT jobs. Hence, f is maximized when

all the HRT work that arrives before A + f and that

has not been executed prior to time-instant A executes

with maximum parallelism – i.e., on all m processors,
thereby leaving no processor available for J .

How much such work can there possibly be? To
compute this, observe that the amount of such work in
I ′(τi) — i.e., generated by task τi — is at most

∑

j∈I′(τi)

e(j)

 −W(I ′(τi),EDF(I(τ)), A) .

Hence, the total amount of such work in I ′(τ) is at
most

∑

τi∈τ

∑

j∈I′(τi)

e(j)

 − W(I
′
(τi), EDF(I(τ)), A) .

≡

∑

j∈I′(τ)

e(j)

 − W(I
′
(τ), EDF(I(τ)), A)

≡ (Since I ′(τ) includes all jobs that arrive before A)

∑

j∈I′(τ)

e(j)

 − W(I(τ), EDF(I(τ)), A)

≤ (By Equation 5, since τ satisfies Condition 3)

∑

j∈I′(τ)

e(j)

 − W(I(τ), opt(I(τ)), A) (6)

Hence, the total amount of HRT work in I(τ) that,
by executing in parallel upon all m processors, can de-
lay the completion of the aperiodic job J = (A,E),
is upper-bounded by Expression 6 above. In Lemma 2
below, we derive a succinct upper bound on Expression
6.

Lemma 2
∑

j∈I′(τ)

e(j) −W(I(τ), opt(I(τ)), A) (7)

≤

(

f × Usum(τ) +
∑

τi∈τ

P
(ub)
i Ui(1 − Ui)

)

Proof: All jobs in I(τi) that have a deadline be-

fore time-instant A complete prior to A in the sched-
ule opt(I(τ)); hence, they do not contribute to the left-
hand side of Inequality 7. We partition the remaining
jobs in I(τi) into three categories:

1. At most one job j in I(τi) may arrive prior to A
and have deadline after A.

0-7695-2132-0/04/$17.00 (C) 2004 IEEE

Proceedings of the 18th International Parallel and Distributed Processing Symposium (IPDPS’04)

Authorized licensed use limited to: UNIVERSITA PISA S ANNA. Downloaded on October 7, 2008 at 6:45 from IEEE Xplore. Restrictions apply.

�

A (A + ℓ) (A + f) (A + f + ℓ̂)(A + f + ℓ̂ − p)

�

�

�

�

(F − ℓ − (p − ℓ̂))
��

Figure 1. Contribution of jobs of task τi to the left-hand side of Inequality 7 (Lemma 2).

• Let us assume that this job’s deadline is at
time-instant A + ℓ (see Figure 1).

• The contribution of this job to the left-hand
side of Inequality 7 is exactly equal to ℓ · Ui

— this follows from the fact that the schedule
opt(I(τ)) assigns a fraction Ui of a processor
to τi between the arrival and deadline of each
of its jobs.

2. At most one job j in I(τi) may arrive prior to A+f
and have deadline after A + f .

• Let us assume that this job’s deadline is at
time-instant A+f +ℓ̂ (see Figure 1), and that

its relative deadline is p where p ≤ P
(ub)
i .

• Then, its arrival time is at time-instant A +
f + ℓ̂ − p.

• Let us assume that its execution requirement
is C ′

i, which is, by Equation 1, no more than
p · Ui. Note that, since this job completes
execution before time-instant A + f , it must
be the case that (p−ℓ̂) ≥ C ′

i; i.e., ℓ̂ ≤ (p−C ′
i).

3. The maximum contribution of jobs in I(τi) that
have arrival instant after A + ℓ, and deadline no
larger than A + f + ℓ̂ − p, is bounded from above
by ((f − ℓ − (p − ℓ̂)) · Ui).

Hence, the total contribution of τi to the left-hand side
of Inequality 7 is bounded from above by

(f − ℓ − (p − ℓ̂)) · Ui + ℓ · Ui + C ′
i

= f · Ui − (p − ℓ̂) · Ui + C ′
i

≤ f · Ui − (p − (p − C ′
i)) · Ui + C ′

i (Since ℓ̂ ≤ (p − C′

i
))

= f · Ui − C ′
i · Ui + C ′

i

= f · Ui + C ′
i · (1 − Ui)

= f · Ui + pUi · (1 − Ui)

≤ f · Ui + P
(ub)
i · (1 − Ui) (Since p ≤ P

(ub)
i

) (8)

To bound the left-hand side of Inequality 7, we sum
Expression 8 over all tasks τi ∈ τ to obtain

(

∑

τi∈τ

(

f · Ui + P
(ub)
i Ui · (1 − Ui)

)

)

,

which simplifies to
(

fUsum(τ) +
∑

τi∈τ

P
(ub)
i Ui · (1 − Ui)

)

,

which is the right-hand side of Inequality 7.

In Expression 6, we had obtained an upper bound
on the total amount of HRT work in I(τ) arriving no
later than A + f that had not yet been executed by
time-instant A. In Lemma 2, we derived a succinct
upper bound on Expression 6; i.e., we have shown that
the total amount of HRT work in I(τ) arriving no later
than A + f that, by executing in parallel upon all m
processors, can delay the completion of the aperiodic
job J = (A,E), is bounded from above by

f × Usum(τ) +
∑

τi∈τ

P
(ub)
i Ui(1 − Ui)

If this work executes with maximum parallelism, then
it will consume all m processors over time-intervals of
cumulative length

f · Usum(τ) +
∑

τi∈τ P
(ub)
i Ui(1 − Ui)

m
.

Consequently, the aperiodic job J = (A,E) completes
execution no later than time-instant

A +
f · Usum(τ) +

∑

τi∈τ P
(ub)
i Ui(1 − Ui)

m
+ E .

0-7695-2132-0/04/$17.00 (C) 2004 IEEE

Proceedings of the 18th International Parallel and Distributed Processing Symposium (IPDPS’04)

Authorized licensed use limited to: UNIVERSITA PISA S ANNA. Downloaded on October 7, 2008 at 6:45 from IEEE Xplore. Restrictions apply.

We can therefore solve for f :

A +
f · Usum(τ) +

∑

τi∈τ
P

(ub)
i

Ui(1 − Ui)

m
+ E ≥ A + f

≡ f · (m − Usum(τ)) ≤ mE +
∑

τi∈τ

P
(ub)
i

Ui(1 − Ui)

≡ f ≤

mE +
∑

τi∈τ

P
(ub)
i

Ui(1 − Ui)

m − Usum(τ)

(9)

Inequality 9 above is the desired upper bound on the
response-time f of the aperiodic job J = (A,E): it is
guaranteed that Algorithm M-TBS will complete job
J at or before time-instant A + f . Observe that this
bound depends only upon the parameters of periodic
task-system τ , and the worst-case execution require-
ment of J ; hence, it can be computed at time-instant
A when job J arrives.

3.2 Multiple aperiodic jobs

Above, we have considered the situation where ex-
actly one aperiodic job must be scheduled along with
all the periodic HRT jobs in I(τ). A more general for-
mulation would have an entire series of aperiodic jobs
J1, J2, . . ., with each Ji = (Ai, Ei) characterized by an
arrival time and an execution requirement, that need
to be executed. Below, we describe how upper bounds
on the completion times for all these aperiodic jobs
may be computed. In the remainder of this section, we
assume that these aperiodic jobs are indexed accord-
ing to non-decreasing arrival times (i.e., Ai ≤ Ai+1 for
all i ≥ 1), and that the aperiodic server considers these
jobs in non-decreasing index order (i.e., Ji is considered
prior to Ji+1) by the aperiodic server.

The aperiodic server would maintain an additional
variable ER, which keeps track of the remaining execu-
tion requirement of all aperiodic jobs. Let ER(t) denote
the value of this variable at time-instant t, t ≥ 0.

• ER is initially equal to zero: ER(0) ← 0.

• When aperiodic job Ji = (Ai, Ei) is processed
by the aperiodic server, ER is incremented by an
amount equal to Ei: ER(Ai) ← ER(Ai) + Ei.

• At each instant, ER is decremented at a rate equal
to the number of processors that are executing
aperiodic job at that instant: d

d t
ER(t) = −k,

where k denotes the number of processors (0 ≤
k ≤ m) executing aperiodic jobs at time-instant t.

Using arguments virtually identical to those above, it
can be shown that Ai + fi, the latest completion-time

for aperiodic job Ji = (Ai, Ei), can be obtained by
solving the following for fi:

Ai +
fi · Usum(τ) +

∑

τi∈τ
P

(ub)
i

Ui(1 − Ui) + ER(Ai)

m
+ Ei ≥ Ai + fi

≡ fi · (m − Usum(τ)) ≤ mEi +
∑

τi∈τ

P
(ub)
i

Ui(1 − Ui) + ER(Ai)

≡ fi ≤

mEi +
∑

τi∈τ
P

(ub)
i

Ui(1 − Ui) + ER(Ai)

m − Usum(τ)

(10)

Comparing Inequality 10 with Inequality 9, we see
that the presence of not-yet-completed aperiodic work
increases the numerator of the expression by an amount
equal to the outstanding work ER(Ai), and is hence es-
sentially equivalent to having the single aperiodic job’s
execution requirement increased by an amount equal
to (ER(Ai)/m).

3.3 EDF scheduling of the aperiodic jobs

Rather than scheduling the aperiodic job as a back-
ground job, we can instead have it scheduled by the
EDF scheduler that is responsible for scheduling the
HRT jobs, by assigning it an appropriate deadline. To
determine an appropriate value for this deadline A+D
(see Figure 2), observe that

1. the presence of this aperiodic job in the EDF queue
has no effect upon the scheduling of HRT jobs with
deadline less than (A + D); and

2. no HRT job with deadline greater than (A + f +
Pmax(τ)) has arrived prior to the instant A + f
when the aperiodic job completes execution.

Hence, assigning the aperiodic job a deadline equal to

A+

mE +
∑

τi∈τ P
(ub)
i Ui(1 − Ui)

m − Usum(τ)

+Pmax(τ) (11)

ensures that it effectively executes in the background
with respect to the HRT jobs, and does not effect the
scheduling of the HRT jobs in any manner.

It can similarly be shown that, in the case of multi-
ple aperiodic jobs (as considered above in Section 3.2),
each job Ji could be assigned a deadline Di equal to

max

Di−1,
mEi +

∑

τi∈τ
P

(ub)
i

Ui(1 − Ui) + ER(Ai)

m − Usum(τ)
+ Pmax(τ)

(12)

with the “max” is due to the fact that deadlines are as-
signed to aperiodic jobs in non-decreasing order: since
the deadlines of earlier aperiodic jobs were computed

0-7695-2132-0/04/$17.00 (C) 2004 IEEE

Proceedings of the 18th International Parallel and Distributed Processing Symposium (IPDPS’04)

Authorized licensed use limited to: UNIVERSITA PISA S ANNA. Downloaded on October 7, 2008 at 6:45 from IEEE Xplore. Restrictions apply.

�

A

(E)

A + f A + D

�

�

D
��

Pmax(τ)
��

Figure 2. An aperiodic job with execution requirement E arrives at time-instant A, and is assigned a

deadline equal to A + D. It completes execution at time-instant A + f . The deadline assigned must

be such that it results in (D − f) being at least Pmax.

with no knowledge of the i’th aperiodic job, the pres-
ence of this i’th job should not effect the scheduling
of earlier jobs. (For the same reason, we also assume
that in case of tied deadlines, the EDF implementation
breaks ties in favor of earlier-admitted jobs.)

3.4 Admission control

Thus far in this section, we have assumed that ape-
riodic jobs are not subject to any real-time constraints.
An alternative model formulation – the one described
in the Introduction (Section 1) – would have each ape-
riodic job also subject to a real-time constraint. In
this model, an aperiodic job Ji = (Ai, Ei, ηi) is char-
acterized by a response-time constraint ηi in addition
to its arrival time Ai and its execution requirement
Ei (as above). For such systems, the aperiodic server
must perform admission control when job Ji arrives
at time-instant Ai: admit this job only if it is possi-
ble to execute it for Ei units by time-instant Ai + ηi

without compromising the schedulablity of HRT jobs
or any previously admitted aperiodic jobs. That is,

• job Ji is admitted if and only if fi ≤ ηi, where fi

is as defined in Expression 10 above; and

• ER is incremented at time-instant Ai if and only
if Ji is admitted.

Algorithm M-TBS’s acceptance test for aperiodic jobs
is given in Figure 3. A variable ER, referenced in this
acceptance test, is maintained by Algorithm M-TBS,
and stores the cumulative remaining execution require-
ment of all aperiodic jobs admitted thus far. Initially,
ER ← 0. When an aperiodic job is admitted, ER is in-
cremented by its execution requirement. If k aperiodic

jobs are being executed, k ≤ m, then ER is decre-
mented at a rate equal to k.

3.5 Handling generalized periodic tasks

In Sections 3.1–3.4 above, we derived an algorithm
(summarized in Figure 3 above) for servicing aperiodic
jobs in an environment in which HRT jobs generated by
a partially generalized periodic task system (PGPTS)
are to be scheduled to meet all deadlines upon a mul-
tiprocessor platform. We now consider the situation in
which the HRT jobs are generated by a generalized pe-
riodic task system (GPTS). (The reader may wish to
consult Table 1 to refresh his/ her memory concerning
the precise difference between the two models.)

In this case, the arguments in Section 3.1 no longer
hold. In brief, this is because the crucial step in that
section is the computation of an upper bound on the
completion time of an aperiodic job when it executes in
the background. This upper bound was determined by
computing an upper bound on the amount of work that
could be generated by HRT jobs of the PGPTS. If the
HRT jobs are generated by a GPTS, though, schedul-
ing an aperiodic job in the background could result in
a potentially unbounded response time for the aperi-
odic job since each periodic task τi could generate an
arbitrarily large number of jobs, each with execution

requirement at most (Ui × P
(ub)
i), all arriving at the

same time instant as the aperiodic job. All these HRT
jobs would execute prior to surrendering the processor
to the background server responsible for scheduling the
aperiodic job, which would therefore see its execution
pushed back by an arbitrary amount of time. Hence
the analysis of Sections 3.1 and 3.2 – computing upper

0-7695-2132-0/04/$17.00 (C) 2004 IEEE

Proceedings of the 18th International Parallel and Distributed Processing Symposium (IPDPS’04)

Authorized licensed use limited to: UNIVERSITA PISA S ANNA. Downloaded on October 7, 2008 at 6:45 from IEEE Xplore. Restrictions apply.

Admission control: Should aperiodic job Ji = (Ai, Ei, ζi) be admitted?

if ζ ≥ fi, where fi is computed according to Inequality 10, then

then accept Ji and assign it a deadline according to Equation 12, and update ER accordingly

else reject Ji

end if

Figure 3. Algorithm M-TBS’s acceptance test for aperiodic jobs.

bounds on the response time of a single and of multiple
aperiodic job[s] respectively – no longer hold. However,
we will show below that the results of Sections 3.3 and
3.4 continue to hold; in particular, the admission con-
trol/ deadline assignment algorithm presented in Sec-
tion 3.4 (and summarized in Figure 3 above) remains
correct for this generalized task model.

In brief, the reasoning that leads us to this conclu-
sion is as follows.

• Recall that it is required that the multiprocessor
scheduling algorithm that is used for scheduling
the HRT jobs (assumed in this paper to be mul-
tiprocessor EDF) guarantee to meet deadlines of
all the HRT jobs. For the case of a GPTS τ com-
prised of n generalized periodic tasks τ1, τ2, . . . , τn,
this implies that the scheduling algorithm meet all
HRT jobs’ deadlines when the generalized periodic
tasks generate any legal collection of jobs – i.e.,
each τi generates any sequence of jobs satisfying
Equation 2.

• Consider now any collection of jobs I(τ) generated
by GPTS τ = {τ1, τ2, . . . , τn}, with I(τi) denoting
the jobs generated by τi.

• Suppose that an aperiodic job J is admitted at
time instant A with execution requirement E
and is assigned a deadline A + D, based upon a
response-time upper bound computation of A + f
(see Figure 1). Let us examine the potential effect
of this admitted aperiodic job upon the scheduling
of jobs in I(τi). Let A+fo denote the actual com-
pletion time of the aperiodic job J when scheduled
using deadline A+D; since f was a computed up-

per bound on the response time, it follows that
(A + fo) ≤ (A + f).

• It is possible that some job j in I(τi), which has ar-
rival time a(j) < A+fo but deadline d(j) > A+D
(and hence lower deadline-priority than the admit-
ted aperiodic job), is denied execution at some in-
stant that it would have been executed had J not

been admitted. However, this in itself cannot re-
sult in future missed deadlines for any HRT jobs
in I(τ). To see why,

1. Suppose that we were to modify I(τ), to de-

lay job j’s arrival until the instant that the
aperiodic job J completes execution. More
formally, Î(τ) is obtained from I(τ) by re-
placing j with a new job ĵ, with a(ĵ) = A+fo,
e(ĵ) = e(j), and d(ĵ) = d(j).

2. Note that

d(ĵ) − a(ĵ)

≥ (A + D) − (A + fo)

≥ D − fo

≥ D − f

= Pmax(τ) (by Equation 12)

≥ P
(ub)
i ;

hence, the value assigned to e(ĵ) does not vi-
olate Equation (2c), and Î(τ) is consequently
a legal collection of jobs generated by GPTS
τ .

3. Therefore, the multiprocessor scheduling al-
gorithm that is used for scheduling the HRT
jobs (assumed in this paper to be multipro-
cessor EDF) guarantees to meet deadlines of
all the HRT jobs in Î(τ).

• By repeated applications of the above argument
to each job in I(τ) that is delayed due to the ad-
mission of each aperiodic job, we conclude that all
HRT deadlines are met by Algorithm M-TBS even
when the HRT jobs are generated by generalized
periodic tasks satisfying the constraints enumer-
ated in Equation 2.

4 Conclusions

In many hard-real-time application systems, there
are occasional “aperiodic” jobs that need to be ser-

0-7695-2132-0/04/$17.00 (C) 2004 IEEE

Proceedings of the 18th International Parallel and Distributed Processing Symposium (IPDPS’04)

Authorized licensed use limited to: UNIVERSITA PISA S ANNA. Downloaded on October 7, 2008 at 6:45 from IEEE Xplore. Restrictions apply.

viced in addition to the jobs that are generated by
recurring (“periodic”) tasks. In this paper, we have
designed a scheduling algorithm that provides guar-
anteed performance to such aperiodic real-time jobs.
While our goal is to provide upon multiprocessor plat-
forms the same kind of service that is provided by the
uniprocessor Total Bandwidth Server (TBS) of But-
tazzo et al. [12, 14, 13], our approach is quite different,
due in large part to the fact that while the uniproces-
sor TBS essentially uses capacity that is available for,
but unused by, periodic tasks, our multiprocessor Al-
gorithm M-TBS actually uses processor capacity that
is not available to periodic tasks.

For ease of exposition, we have restricted our atten-
tion in this paper to sytems that use EDF for scheduling
the jobs that are generated by the periodic task system.
However, our techniques are applicable, and our results
hold, for a much larger class of scheduling algorithms
than merely EDF: if any multiprocessor scheduling al-
gorithm A is able to guarantee that Condition 4 is sat-
isfied, our reclamation techniques will hold for systems
that use this algorithm A to schedule these periodic
tasks’ jobs.

References

[1] Anderson, J., and Srinivasan, A. Early
release fair scheduling. In Proceedings of the

EuroMicro Conference on Real-Time Systems

(Stockholm, Sweden, June 2000), IEEE Computer
Society Press, pp. 35–43.

[2] Andersson, B., Baruah, S., and Jansson, J.

Static-priority scheduling on multiprocessors. In
Proceedings of the IEEE Real-Time Systems Sym-

posium (December 2001), IEEE Computer Society
Press, pp. 193–202.

[3] Baruah, S. Utilization bounds for the fixed-
priority scheduling of periodic task systems on
identical multiprocessors. Tech. Rep. TR03-022,
Department of Computer Science, The University
of North Carolina, June 2003.

[4] Baruah, S., Cohen, N., Plaxton, G., and

Varvel, D. Proportionate progress: A notion of
fairness in resource allocation. Algorithmica 15, 6
(June 1996), 600–625.

[5] Baruah, S., Gehrke, J., and Plaxton, G.

Fast scheduling of periodic tasks on multiple
resources. In Proceedings of the Ninth Inter-

national Parallel Processing Symposium (April

1995), IEEE Computer Society Press, pp. 280–
288. Extended version available via anonymous ftp
from ftp.cs.utexas.edu, as Tech Report TR–
95–02.

[6] Baruah, S., Goossens, J., and Lipari, G.

Implementing constant-bandwidth servers upon
multiprocessor platforms. In Proceedings of the

Eighth IEEE Real-Time and Embedded Technol-

ogy and Applications Symposium (San Jose, Cali-
fornia, September 2002), IEEE Computer Society
Press, pp. 154–163.

[7] Dertouzos, M. Control robotics : the procedu-
ral control of physical processors. In Proceedings

of the IFIP Congress (1974), pp. 807–813.

[8] Goossens, J., Funk, S., and Baruah, S.

Priority-driven scheduling of periodic task systems
on multiprocessors. Real Time Systems 25, 2–3
(2003), 187–205.

[9] Liu, C., and Layland, J. Scheduling algorithms
for multiprogramming in a hard real-time environ-
ment. Journal of the ACM 20, 1 (1973), 46–61.

[10] Liu, C. L. Scheduling algorithms for multiproces-
sors in a hard real-time environment. JPL Space

Programs Summary 37-60 II (1969), 28–31.

[11] Liu, J. W. S. Real-Time Systems. Prentice-Hall,
Inc., Upper Saddle River, New Jersey 07458, 2000.

[12] Spuri, M., and Buttazzo, G. Efficient aperi-
odic service under earliest deadline scheduling. In
Proceedings of the Real-Time Systems Symposium

(San Juan, Puerto Rico, 1994), IEEE Computer
Society Press, pp. 228–237.

[13] Spuri, M., and Buttazzo, G. Scheduling aperi-
odic tasks in dynamic priority systems. Real-Time

Systems: The International Journal of Time-

Critical Computing 10, 2 (1996).

[14] Spuri, M., Buttazzo, G., and Sensini, F. Ro-
bust aperiodic scheduling under dynamic priority
systems. In Proceedings of the Real-Time Systems

Symposium (Pisa, Italy, 1995), IEEE Computer
Society Press, pp. 210–221.

[15] Srinivasan, A., and Baruah, S. Deadline-
based scheduling of periodic task systems on mul-
tiprocessors. Information Processing Letters 84, 2
(2002), 93–98.

0-7695-2132-0/04/$17.00 (C) 2004 IEEE

Proceedings of the 18th International Parallel and Distributed Processing Symposium (IPDPS’04)

Authorized licensed use limited to: UNIVERSITA PISA S ANNA. Downloaded on October 7, 2008 at 6:45 from IEEE Xplore. Restrictions apply.

