
Analysis of a Reservation-Based Feedback Scheduler �

Luca Abeni, Luigi Palopoli, Giuseppe Lipari,
Scuola Superiore Sant’Anna - Pisa

fluca, palopoli, liparig@sssup.it

Jonathan Walpole
Oregon Graduate Institute, Portland

walpole@cse.ogi.edu

Abstract

When executing soft real-time tasks in a shared proces-
sor, it is important to properly allocate the computational
resources such that the quality of service requirements of
each task are satisfied. In this paper we propose Adap-
tive Reservations, based on applying a feedback scheme to
a reservation based scheduler. After providing a precise
mathematical model of the scheduler, we describe how this
model can be used for synthesising the controller by apply-
ing results from control theory. Finally, we show the effec-
tiveness of our method by simulation and by experiments
with an MPEG player running on a modified Linux kernel.

1. Introduction

In recent years, a considerable amount of work has been
done to apply real-time techniques to new kinds of time-
sensitive applications, which are inherently more dynamic
than classical real time applications.

Due to their temporal constraints, these systems are
great candidates for using real-time techniques; however,
they present new challenges due to the variability and un-
predictability of their processing times, and to the data-
dependent processing requirements that characterise them.

When multiple real-time tasks of this type share the same
CPU, allocating resources to them becomes difficult, and
the tasks can be properly served only if the resource sched-
uler is able to cope with the high variance and unpredictabil-
ity of their requirements. Since the tasks running in the sys-
tem are characterised by unpredictable behaviour, it is im-
portant to providetemporal protection, so that each task is
protected from the fluctuations in the resource requirements
of the other ones. When temporal protection is enforced,
each task executes as if it were on a slower dedicated pro-
cessor, and can be guaranteed independently of the presence
of other tasks in the system. Temporal protection can be

�This work was partially supported by DARPA/ITO under the Informa-
tion Technology Expeditions, Ubiquitous Computing, Quorum, and PCES
programs, NSF Grant CCR-9988440 and EIA-0130344, and by Intel.

provided by using reservation-based schedulers [11], that
have proven to be very effective in various different situa-
tions.

If the tasks’ parameters were known in advance, it would
be possible to statically reserve the proper amount of re-
sources to each task. However, most of the time insuffi-
cient accurate information is available statically to reserve
the correct amount of time to each task (because, for ex-
ample, the execution times or the interarrival times are un-
known a-priori).

It is clear that we need some way of dynamically adapt-
ing the scheduling parameters to the actual workload. We
propose to do this, by using a feedback controller to moni-
tor and adapt the reservation to the observed requirements.
In other words, we believe that a combination of feedback
scheduling techniques and resource reservations is a useful
technique for properly serving time-sensitive applications
in a modern multimedia OS. Some of the advantages of
this combined use of feedback and reservation techniques
arethe following: Beterportability of real-time code: using
a feedback reservation-based scheduler, the performance of
the application does not depend on the execution time esti-
mation. Thus, applications can easily run on lots of different
machines and achieve a predictable QoS level.
A higher-levelprogramming interface: the use of a the
proposed feedback mechanism permits to implement high
level task models that separate the task parameters from the
scheduling parameters [2].
Robustness to variations in execution times caused by
DMA, caches, PCI bus masters, and similar mechanisms.
Moreover, a reservation-based feedback scheduler permits
to cope with the interrupt handling overhead by using aug-
mented reservations [16] or similar mechanisms.
Increased systemefficiency: adaptive reservations permit
to automatically adapt each reservation to the application’s
real requirements, avoiding the need for over-dimensioning
reservations that affects most of the static reservations sys-
tems.

Using a reservation-based feedback scheduler, the prob-
lem of providing high system utilisation and high QoS to
applications is decomposed into two simpler problems: 1)



designing a feedback controller that is stable and provides
a specified closed-loop dynamics, defined in terms of over-
shoot and response time, or in terms of closed-loop poles,
and 2) choosing the closed loop dynamic that provides the
desired QoS/utilisation trade-off.

In this paper, we address the first problem, characterising
the open-loop behaviour of a reservation-based scheduler,
and designing a proper feedback controller that is able to
provide a specified closed-loop behaviour. We believe that
the contribution of this paper is important in understanding
the dynamics of a reservation-based scheduler, and provid-
ing a foundation for developing adaptive reservation tech-
niques.

1.1. Related Work

Both the ideas of reservation-based scheduling and feed-
back scheduling are not new. CPU reservations were pro-
posed by Mercer and others [11], and are the theoretical
foundation for resource kernels [13]. Moreover, reservation
techniques proved to be very effective in providing tem-
poral isolation, and have been implemented in a number
of different systems using different scheduling algorithms
[5, 1, 4, 15]. Feedback techniques were originally proposed
in time sharing systems [3], and have been successively ap-
plied to real-time [12, 16] and multimedia systems [18].

In particular, the reservation and feedback approaches
can be combined in order to adjust tasks’ periods according
to the actual CPU load [12], or the processes served by a
reservation-based scheduler can be organised in a pipeline,
and their CPU proportion can be adapted to control the
length of the queues between the pipeline’s elements [18],
or adaptive reservations can be used for separating the task
parameters from the scheduling parameters [2].

Although these examples of feedback schedulers have
proved to be very effective in addressing the above issues,
little theoretical analysis of such mechanisms has been pro-
vided. For example, in some of those works [12, 2] the
feedback scheduler is designed using an ad-hoc approach,
whereas other works are based on the use of a PID controller
[18], which is known to stabilise a wide range of systems.
However, none of them analysed the feedback mechanism
to guarantee its dynamic behaviour.

The use of a more theoretically founded approach (al-
ready presented in [7]) was finally advocated by Stankovic
and others, and a feedback scheduler based on EDF was de-
signed based on those premises [9]. However, when design-
ing a feedback scheduler, control theory should be applied
carefully. The authors realized the problem, and corrected
their previous paper [8] presenting a general framework for
evaluating feedback schedulers.

2. Terminology and Definitions

As discussed in the introduction, in this paper we pro-
pose to monitor the real-time performance of the tasks, and
to use this information for adapting the amount of resources
reserved to each task. This performance monitoring can be
done by using a particular task model, thereal-time task
model, that permits the association of temporal constraints,
calleddeadlines, with the task. If these temporal constraints
are violated, the size of the reservation should be increased.

2.1. Definitions

According to the real-time task model, a task� i is a
stream of jobsJi;j . Each jobJi;j arrives (becomes exe-
cutable) at timeri;j , and finishes at timefi;j after executing
for a timeci;j . Moreover,Ji;j is characterised by a dead-
line di;j , that is respected iffi;j � di;j , and is missed if
fi;j > di;j .

For the sake of simplicity, we will only considerperiodic
tasks, in which ri;j+1 = ri;j + Ti, whereTi is the task
period. Moreover, we will assume thatdi;j = ri;j + Ti;
hence,ri;j+1 = di;j .

Our goal is to provide support for time-sensitive appli-
cation in which a deadline miss can degrade the QoS of
the task but does not have any catastrophic consequence.
Therefore, we will considersoft deadlines, and the goal of
the system will be to control the number of deadline misses.

2.2. Reservation-Based Scheduling

A reservation is a pair(Bi; T
s
i ), whereBi is the fraction

of resource utilisation dedicated to task�i, andT s
i is the

period of the reservation: task�i will be allowed to use the
resource forQi = BiT

s
i units every periodT s

i . Qi is also
calledbudget or capacity of the reservation.

It is important not to confuse the reservation periodT s
i

with the task periodTi: althoughT s
i = Ti is a perfectly

reasonable assignment, it is often useful to set the reserva-
tion period so thatTi = kT s

i ; k 2 f1; 2; : : :g. Although it
is possible to define a reservation for all kind of resources
(network, disk, etc.), in this paper we will consider only
CPU reservations.

The behaviour of a reservation is the following: a task
�i attached to a reservation(Bi; T

s
i ) can execute for a time

Qi = BiT
s
i with a real-time priority, assigned according

to some real-time scheduling policy, like Rate Monotonic
or Earliest Deadline First. The reservation is often imple-
mented using abudget qi that is recharged to the maximum
valueQi at the beginning of every reservation period, and
is decreased during the task execution. When the budget
reaches0, the reservation is said to bedepleted: if the task



needs to execute for more, some action is required in order
not to jeopardise the performance of the other tasks.

If
P

i Bi � U lub, with U lub depending on the schedul-
ing algorithm upon which the reservation system is imple-
mented, then each task�i attached to a reservation(Bi; T

s
i )

is guaranteed to receive its reserved amount of time (i.e.,Q i

time units overT s
i ).

For any reservation based system, we can define thevir-
tual finishing time VFTi;j of job Ji;j�1 as the time it would
finish in a dedicated processor of speedBi. For example,
if job Ji;j�1 arrives at timeri;j�1 and requestsci;j�1 units
of computation time, it would finish at timeri;j�1 +

ci;j�1
Bi

in the dedicated slower processor. Therefore, its virtual fin-
ishing time is VFTi;j =

ci;j�1
Bi

. Intuitively, if VFT i;j > Ti,
then we need to allocate a larger reservation to task� i, (i.e.
we need to speed-up the dedicated processor) in order to
fulfil its requirements.

It is also useful to define the concept oflatest possible
finishing time for a job. The latest possible finishing time
LFTi;j for job Ji;j�1 is theend of the latest reservation
period used by the job, minus the job arrival time: for ex-
ample, ifJi;j�1 has execution timeci;j�1 = 5, it has been
reserved a bandwidthBi = 0:5, and the reservation period
is T s

i = 4, then it uses
�

5
0:5�4

�
= 3 reservation periods, and

its latest possible finishing time is12.
There is a clear relationship between VFT and LFT:

LFTi;j =

�
VFTi;j

T s

�
T s;VFTi;j = LFTi;j �

qi
Bi

(1)

whereqi is the residual budget when the job finishes.

2.3. Bandwidth Reservations (CBS & GRUB)

Although any scheduling algorithm could be used to im-
plement a reservation strategy, the use of a dynamic priority
scheduler permits to obtain a more efficient implementa-
tion. An example is the Constant Bandwidth Server (CBS)
[1] a reservation algorithm based on the Earliest Deadline
First (EDF) priority assignment, that uses a server mecha-
nism to implement reservations. A server is ascheduling
entity that maintains two internal variables, a budgetq i and
a absolute deadlinedsi . Each time a task arrives, the server
becomes active, and it is assigned an initial deadlinedsi , and
an initial budgetqi. Then, all the active servers are ordered
in a EDF queue: the earliest deadline server is selected, and
the corresponding task is executed. While the task executes,
the server budget is decreased accordingly; if the task fin-
ishes before the reservation is depleted, the server becomes
inactive and is extracted from the EDF queue. If instead the
reservation is depleted and the task has not yet finished, the
server deadline is postponed todsi = dsi + T s

i , and the EDF
queue is reordered. For a full explanation of the algorithm,
see [1].

Algorithm GRUB (Greedy Reclamation of Unused
Bandwidth) [4] is very similar to the CBS. As with CBS,
each server has an absolute deadlinedsi ; however, instead
of using a budgetqi, each server uses a variableVi, called
server virtual time. In addition, each server uses an internal
variablebi that represents the current server bandwidth: if
bi is set constant and equal toBi, then Algorithm GRUB
is almost equivalent to Algorithm CBS1. If we want to re-
claim the unused processor bandwidth, thenb i is variable
and equal toBi

Bt
, whereBt is the sum of the bandwidth of

the active servers. For the sake of simplicity, in the remain-
ing of this paper we do not consider the reclaiming rule of
Algorithm GRUB: hence, we setbi = Bi.

Note that, for CBS and GRUB, when a job finishes the
deadline of the server minus the job arrival time is equal to
the latest possible finishing time: LFTi;j = dsi � ri;j�1.
Moreover, when using Algorithm GRUB, the VFT of a job
is simply the value of the server virtual time when the job
finishes.

2.4. Feedback Scheduling

A feedback mechanism can be defined based on: anob-
served value, used as input to the feedback mechanism,
an actuator, which permits to apply the feedback action
to change the system behaviour, and afeedback law, used
to compute the new value to apply to the actuator, based on
the observed value. When such a feedback scheme is ap-
plied to a scheduler, the observed value can be some QoS
metric: for example, the deadline miss ratio in some inter-
val of time [8], or the response time, the jitter, and so on.
Similarly, some scheduling parameter can be used as an ac-
tuator.

If the feedback strategy is applied to a reservation based
scheduler, the actuator is the amount of CPU reserved to
the task (hence,Qi or Bi). SinceQi (Bi) is not constant,
we will indicate it asQi;j (Bi;j). We call the resulting ab-
straction anAdaptive Reservation. An adaptive reservation
mechanism works as follows: a reservation based(Bi;j ; T

s
i )

is used to schedule�i; when a jobJi;j finishes, an ob-
served value is measured, and a new scheduling parameter
Bi;j+1 = g(Bi;j ; : : :) is computed. If

P
i Bi;j > U lub,

then the reserved bandwidths are rescaled, to maintain the
system schedulable.

3. Mathematical Model of a Reservation

Since a proper feedback scheme providing the required
characteristics can be designed only based on an accurate
model of the system, we are going to develop a precise

1There is some slight difference in the initial assignment of the server
deadline. However, this difference does not have a big impact on the dy-
namic behaviour of Algorithm GRUB.



mathematical model of a reservation based scheduler. First
of all, we simplify the notation by removing the task index
from all the quantities: we will useQ instead ofQi, T s

instead ofT s
i , Jj instead ofJi;j , and so on.

The goal of our feedback scheduler is to control LFT (or
VFT) to T ; thus, we define thescheduling error �k as the
difference between the latest possible finishing time LFTk

and the job relative deadlineT . Note that, if LFTk > T ,
then jobJk�1 consumes some of the time that should be
used by the next job, which will have less time to execute.
In this case, jobsJj�1 andJj share a reservation period, and
LFTj+1 depends on LFTj . To express this dependency, and
to write the dynamic equations of our system, it is useful to
introduce another state variable that represents the amount
of time used byJj�1 in its last reservation that it shares
with Jj . We propose two different models: one model is
based on thevirtual finishing time, and we assume that all
the state variables are accessible. The other model is based
on thelatest possible finishing time and we assume that LFT
is the only accessible state variable.

3.1. Accessible Internal State

In the first model, we define thescheduling error as the
difference between the virtual time and the task period:
�k = VFTk � T . Using Algorithm GRUB VFT can be
directly measurd; if, on the other hand, another reservation-
based algorithm (like the CBS) is used and the value of the
budgetq is not accessible, then the virtual time can be com-
puted by using Equation 1.

If the scheduling error at the previous instance is less
than 0, the virtual time can be easily calculated as: VFTk =
ck�1
Bk�1

. However, if the scheduling error is greater than0, the
virtual time at stepk depends on the value of the previous
virtual time: VFTk = VFTk�1 � T + ck�1

Bk�1
.

By substituting, we can express the dynamic equation of
the system as follows:

�k+1 =

�
�k +

ck
Bk

� T �k � 0
ck
Bk

� T �k < 0
(2)

Note that, by using this definition, the scheduling error is a
continuous value.

3.2. Non-Accessible Internal State

When it is not possible to measure thevirtual finishing
time, we define the scheduling error as the difference be-
tween thelatest possible finishing time and the task period:
�k = LFTk � T . Notice that, in this case, the scheduling
error is a discrete variable and it is multiple ofT s.

We find it useful to define a state variablexk that repre-
sents the amount time consumed by jobJk�1 on the latest

T
s

T

J 1

J 2

a)

b)

3 3

35

Figure 1. Internal state xj .

reservation period, if shared with jobJk. To help clarify the
meaning ofxk , an example is shown in Figure 1. In Figure
1.a,J1 uses only 2 reservation periods and finishes before
the end of its period:J1 andJ2 do not share any reservation,
andx2 = 0. In Figure 1.b,J1 uses 3 reservation periods:
therefore,x2 = 1. In the following, we assume thatxk is
not measurable.

The equations for computingxk and LFTk are shown in
Figure 2; from those equations, we can derive the schedul-
ing error:

�k =

8<
:

�k�1 � T � T s +
l
ck�1+xk�1
Bk�1T s

m
T s �k�1 � T sl

ck�1
Bk�1T s

m
T s � T �k�1 < T s

(3)
Now, we want to show that this model is equivalent to

the one expressed by Equation 2, plus a quantisation error
due to the fact that the internal statexk is not measurable.

We define thequantisation error QEk in the two cases:
�k�1 � Ts and�k�1 < Ts. In the first case,�k depends
on xk�1 that is not measurable. However,xk�1 is always
in the range[0; Bk�1T

s]. Hence, we can use the following
upper bound for the scheduling error:

�k = �k�1 � T � T s +

�
ck�1 +Bk�1T

s

Bk�1T s

�
T s

Now, we define the quantisation error as:

QEk =

�
ck�1 +Bk�1T

s

Bk�1T s

�
�
ck�1 +Bk�1T

s

Bk�1T s

In the second case, we can simply define the quantisation
error as:

QEk =

�
ck�1

Bk�1T s

�
�

ck�1
Bk�1T s

Finally, we define a new scheduling error as~�k = �k �
QEkT

s. By substituting,

~�k+1 =

�
~�k +

ck
Bk

� T ~�k � T s

ck
Bk

� T ~�k < T s (4)

We can see Equations 2 and 4 are similar, except the
switching point, which is0 for Equation 2 andT s for Equa-
tion 4.



(
x0 = 0

LFT1 =
l

c0
B0T s

m
T s xk =

�
ck�1 + xk�1 � (LFTk � T s)Bk�1 LFTk > T
0 LFTk � T

LFTk =

8<
:

l
ck�1

Bk�1T s

m
T s LFTk�1 � T

LFTk�1 � T � T s(1�
l
ck�1+xk�1
Bk�1T s

m
) otherwise

Figure 2. Computation of xk and LFTk.

4. Controller Design

As shown in Section 3 a reservation-based scheduler
with periodTs can be dealt with as a dynamical system de-
scribed by the following equations:

�k+1 =

�
�k +

ck
Bk

� T if �k � K
ck
Bk

� T if �k < K
(5)

where�k represents the scheduling error, withK = 0 for
the first model, described in Section 3.1, andK = T s for
the second model, described in Section 3.2. In the latter case
Equation 5 describes an approximation of the scheduling
error where the quantisation error QEj is neglected (in the
sequel we will also tackle this problem). The goal of this
section is to propose techniques for effectively designing
feedback controllers for this system.

We will first use a classical “pole-placement” technique
to synthesise a controller in each mode. Before getting into
these topics we need to introduce some definitions and no-
tations that will be used throughout the section. ByCH we
denote the set of sequences of execution timesck such that
ck < H . Vectorxk will denote the state of the closed loop
system, inclusive of�k and of the controller’s own states
(for example the state of a Proportional Integral (PI) con-
troller consists of the past values of its input that it needs
to issue a new command). The symbolBr(x0) denotes the
set of all points having euclidean distance (henceforth de-
noted bydist) from x0 lower than or equal tor. Finally by
x we will denote an equilibrium point for the closed loop
system’s state. An equilibriumx of the closed loop feed-
back scheduler is saidpractically stable if for all � > 0
and for all sequencesck 2 CH , there existsÆ andR s.t.
if x0 2 BÆ(x0) then dist(xk; BR(x)) � � for all k.
Stronger concepts are practicalasymptotical stability, for
whichdist(xk ; BR(x)) is required to vanish, and practical
exponential stability that requires an expontial decay rate
� < 1: i.e. dist(xk; BR(x)) �M�k.

It is worth noting that the action of the unknown distur-
banceck prevents one from controlling the system exactly
into a pointx. Rather the system is controlled into a set
BR(x), whose radiusR grows withH (i.e. with the max-
imum allowed variation of the computation time). Conse-

quently,�k that is part of the state is controlled into a neigh-
bourhoodBR(�) of the equilibrium� of radiusR, given by
a one dimensional projection ofBR(x). Practical asymp-
totical stability implies that in response to a small perturba-
tion of the initial state, the evolution of�k always remains
close toBR(�) and that it is eventually captured into this
set. For exponential stability, we include the additional re-
quirement that the distance between�k andBR(�) decays
with exponential rate. Another quantity of interest describ-
ing the quality of the system’s evolution if theovershoot
defined asmaxk dist(xk; Br(x)).

4.1. Design based on a PI Controller

To design a controller for the dynamic system described
by Equation 5, we are going to analyse the two modes cor-
responding to�k � K and�k < K separately. The under-
lying assumption is that that the considered equilibrium� is
“far” from the switching surface�k = K. If this assumption
were released, there would be no theoretical support for the
proposed design technique2. However, in practical applica-
tions the system did not exhibit pathological behaviour.

We are going to show the design for the first operating
mode (the same consideration apply to the second one): if
�k � K, then�k+1 = �k + ckuk � T whereuk is defined
as 1

Bk
.

Quantities�k, ck, andBk can be expressed as a constant
value plus a variation:�k = ��k + �, ck = c + �ck and
uk = u+�uk. At the steady state it must holdc = T

u
.

Assuming small variations around the linearization
point, the relation between the variations can be foundvia
differentiation:

��k+1 = ��k+c �uk+u �ck = ��k+
T

u
�uk+u �ck:

(6)
For notational simplicity, in the rest of the section we will
drop the symbol� and,�k, uk andck will represent vari-
ations of the original quantities around the�; u; c respec-
tively.

2In the control literature it is possible to find both unstable systems
resulting from the switching combination of stable systems and vice versa.



Fu

Fc

−

++ BRef

c

+G

Figure 3. Dynamic system representing a lin-
earised reservation with a feedback mecha-
nism.

As the difference Equation 6 is linear, it is possible to
compute the Z transform: �(z) = Fc(z)c(z) + Fu(z)u(z),
where Fc(z) = u

z�1 and Fu(z) =
T

u(z�1) . To achieve the
control goals, we use a feedback controller G(z) as in Fig-
ure 3: u(z) = �G(z)�(z). The closed loop dynamics is
described by the transfer function F (z) between c(z) and
�(z):

�(z) = F (z)c(z) =
Fc(z)

1 +G(z)Fu(z)
c(z) (7)

The simplicity of the system (whose dynamic equa-
tions are similar to those of a tank) suggested the use of
a PI controller. A PI controller is described by: uk =

c1(��k) + c2
Pk�1

j=0 (��k�1) where c1 and c2 are the co-
efficients of the proportional and integral actions respec-
tively. By subtracting the expression for uk�1 from the
expression for uk the equation can be written as: uk =
uk�1+�(��k)+�(��k�1), where � = c1 and � = c2�c1.
The transfer function G(z) is given by:

G(z) =
�z + �

z � 1
:

Plugging G(z) into Equation 7, we have:

�(z) = F (z)c(z) =
u(z � 1)

z2 + (T
u
�� 2)z + � T

u
+ 1

c(z): (8)

As long as the equilibrium of the system is “ far” from the
switching surface and that variations around are small, re-
quiring practical asymptotical stability is achieved if the ze-
ros zi of the denominator in Equation 8 (i.e. the poles of
the closed loop system), have norm strictly lower than 1:
jjzijj < 1. Observe that the use of the PI controller enables
the choice of the two closed loop poles poles. As a mat-
ter of fact, to place the closed loop poles in z1 and z2 it is
sufficient to impose:

z2 + (
T

u
�� 2)z + �

T

u
+ 1 = z2 � (z1 + z2)z + z1z2:

Solving for �; � yields:

� =
u(2� (z1 + z2))

T
; � =

u(z1z2 � 1)

T
:

Moreover, the decay rate � is given by the maximum norm
of the poles.

Repeating the computations for �k�1 < K, we obtain:

� =
u(1� (z1 + z2))

T
; � =

u(z1z2)

T
:

4.2. Accounting for the Quantisation Error

Focusing on the case of the unaccessible internal state,
we have to deal with the problem of quantisation error.

According to Equation 4, �k = ~�k + QEkT
s. As we

did before, we consider an equilibrium point where the
quantisation error has a value ~QEk and repeat the analy-
sis considering the variation around the equilibrium QEk =
~QEkTs +�QEk, where Ts has been absorbed into �QEk.

Hence we have 0 � �QEk � Ts. Considering now the lin-
earised system, we can treat �QEk as an additional norm-
bounded disturbance . The transfer function from such a
disturbance to �k is given by 1

1+Fu(z) G(z)
.

If the controller is able to stabilise the system into a point
rather than into a set, it is possible to apply the Steady State
Worst Case Analysis developed by Slaughter [17]: the worst
case steady state quantisation error on � is lower than or
equal to j 1

1+Fu(Z)G(Z)
jZ=1T

s. Replacing Fu and G with
the expressions provided above, it is possible to conclude
that j 1

1+Fu(Z)G(Z)
jZ=1T

s = 0. Therefore, if it is possi-
ble to stabilise the system into a point then the steady state
value for the effect of the quantisation error is 0. The ef-
fect of quantisation is, in this case, an overestimation of the
bandwidth ~B assigned to the task. In fact, imposing the
equilibrium condition �k+1 = �k in equation 3 we obtain:�

c
~BT s

�
T s � T = 0:

Observing that x � dxe < x+ 1, we obtain:

c

T
� ~B �

c

T � T s
:

As one would expect, diminishing Ts (and hence the
quantisation grain) results into higher and higher precision
for the control. Again, observe that a less conservative
bound can be

4.3. A global stability test.

Such properties as the system’s practical stability are
formally guaranteed, in the synthesis technique proposed
above, only if the closed loop evolution of the system is
confined to one of the two modes (i.e. either �k � K or
�k > K for all k).

In a special but important case it is possible to provide a
stronger result. For the sake of simplicity, we restrict only



to the case of accessible internal state, which is described by
Equation 5. Moreover, assume that the sequence of compu-
tation times ck is constant - ck = c8k - and that a lower
and an upper bound are known: h � c � H . For prac-
tical purposes this assumption means that the computation
times vary slowly with respect to the system closed loop
dynamics. For simplicity consider only the case when the
system has to be stabilised into � = 0, u = T

c
. In this case

the scheduler is a piecewise affine (PWA) system [6]: i.e.
there exist a partition of the state space into polyhedral cells
(�k � K and �k > K) and in each cell the system evolves
with a linear dynamic. We use a different PI controller in
each cell:

uk =

�
uk�1 � �1�k � �1�k�1 if �k � K
uk�1 � �2�k � �2�k�1 if �k > K

(9)

Considering as state vector xk = [�k; uk �
T
c
]T , the closed

loop evolution is given by:

xk+1 =

�
A1(c)xk if �k � K
A2(c)xk if �k > K

where:

A1(c) =

�
1� �1c c
�(�1 + �1) 1

�

A2(c) =

�
��2c c
�(�2 + �2) 1

�
(10)

The problem we want to tackle is to analyse the robust sta-
bility of a given design. More precisely we want to know if
a choice of the gains �1; �2; �1; �2 accomplishes the goal
of stabilising the system robustly with respect to c: i.e. for
any value of c in the interval [h; H ]. A sufficient test for
this is the following:

Theorem 1 The origin of the state space of the PWA sys-
tem in Equation 10 is robustly asymptotically stable for
c 2 [h; H ] if there exist a positive definite matrix P such
that:

AT
1 (h) P A1(h)� P � 0

AT
2 (h) P A2(h)� P � 0 (11)

AT
1 (H) P A1(H)� P � 0

AT
2 (H) P A2(H)� P � 0:

The notation Q � 0 in the above denotes that Q is nega-
tive definite matrix. Inequalities in condition 11 are linear
matrix inequalities (LMI); finding a feasible solution for a
system of LMIs is a problem that can be solved in polyno-
mial time using convex optimisation techniques.

The above result produces a “global” stability test, i.e.
we are able to know if the origin of the state space is asymp-
totically stabilised starting from any initial state and with
the possibilities of switching between the two modes. The
price to be paid for this strong result is the assumption of
constant (or at least slowly varying) ck.

5. Experimental Results

The correctness of the controller design was verified
through simulations and through some experiments with
real implementation on the Linux kernel. In this section,
we are going to show some of these results.

5.1. Simulations

Evaluating the performance of a feedback scheduler is
not trivial: schedulers that seem to work properly at a first
glance [9] may result to be unstable when evaluated more
systematically [8]. To properly evaluate our adaptive reser-
vation mechanism, we considered the system response to a
step and a ramp in the system load, since they have been
proved to be a good test case [8]. In particular, we report
the evolution of the scheduling error � j and of the reserved
CPU bandwidth Bj .

We performed extensive simulations using a wide set of
different parameters. For the sake of brevity we report only
some meaningful experiments. In particular, in the follow-
ing we consider a task � with period T = 40 and execution
time cj = 5 if j < 300, cj = 15 otherwise, and we report
only the results obtained using the model presented in Sec-
tion 3.2, in which the internal state is not fully accessible,
and that is more difficult to control.

0

5

10

15

20

25

30

35

40

290 295 300 305 310 315 320 325 330

E

Job Number

Scheduling Error (T = 40, Ts = 20)

Z2 = 0.2
Z2 = 0.6
Z2 = 0.9

Figure 4. Scheduling Error obtained using an
adaptive reservation with T s = 20.

Figure 4 shows the evolution of the scheduling error
for various values of the closed loop poles (in particular,
Z1 = 0:1, and Z2 = 0:2, 0:6, or 0:9), when T s = 20.
When, at job J299, the execution time increases from 5 to
15, the scheduling error raises to 40 (two times the reserva-
tion period), and it is controlled to 0 in a short time. Note
that when the system reaches the steady state, the quanti-
sation error is 0, as expected. Moving Z2 from 0:2 to 0:9
the decay rate is the decay rate increases (as expected from
control theory) thus resulting into a longer transient.



5

10

15

20

25

30

290 295 300 305 310 315 320 325 330

B
 *

 T

Job Number

Reserved Time (T = 40, Ts = 20)

Execution Time
Z2 = 0.2
Z2 = 0.6
Z2 = 0.9

Figure 5. Bandwidth reserved by an adaptive
reservation with T s = 20.

Figure 5 shows the evolution of the reserved time, and
is probably more interesting: the impact of the quanti-
sation error is an overestimation of the reserved band-
width, which in the worst case results to be 0:747198 in-
stead of 0:375 = 15=40. Hence, the overestimation is
0:747198� 0:375 = 0:37220; this value is compatible with
the worst case estimation developed in Section 4.2, which is
B0(T s=(T � T s)) = 0:375(20=(40� 20)) = 0:375. Note
that, in this case, the quantisation error tends to increase
when Z2 moves to 0:2.

-10

0

10

20

30

40

50

60

290 295 300 305 310 315 320 325 330

E

Job Number

Scheduling Error (T = 40, Ts = 10)

Z2 = 0.2
Z2 = 0.6
Z2 = 0.9

Figure 6. Scheduling Error obtained using an
adaptive reservation with T s = 10.

Figures 6 and 7 plot the evolution of the scheduling error
and of BjT

s when T s = 10, respectively. In this case, the
quantisation error is lower and the response becomes closer
to the one of model without quantisation. In this case, faster
controllers (Z2 = 0:2 and Z2 = 0:5) have an underrun
in the scheduling error, that was previously masked by the
quantisation error.

We repeated the same experiments using a ramp on the

5

10

15

20

25

30

290 295 300 305 310 315 320 325 330

B
 *

 T

Job Number

Reserved Time (T = 40, Ts = 10)

Execution Time
Z2 = 0.2
Z2 = 0.6
Z2 = 0.9

Figure 7. Bandwidth reserved by an adaptive
reservation with T s = 10.

input, and we obtained similar results.

5.2. Real Workloads

As previously stated, the first set of experiments was per-
formed based on a synthetic workload that has been recog-
nised as particularly significant for evaluating system per-
formance [8]. However, some experiments performed using
a more realistic workload highlighted new problems.

0

5

10

15

20

0 200 400 600 800 1000

E
xe

cu
tio

n 
T

im
e 

(m
s)

Frame Number

Frame Decoding Times

Figure 8. Frame decoding times for the Star
Wars Episode 1 trailer.

To generate a realistic workload, we instrumented an
MPEG player running on Linux, and we measured the
frame decoding times for the trailer of Star Wars Episode
1 [10], shown in Figure 8. As it is possible to see, the ex-
ecution times are highly variable. Since the goal of the PI
controller is to control the scheduling error to 0, we can
expect that this variability in the execution times will be re-
flected in a high variability in the reserved time. Figure 9
shows the evolution of the reserved time for a PI controller,



0

5

10

15

20

0 200 400 600 800 1000

B
 *

 T
 (

m
s)

Job Number

Reserved Time

Fast Controller (Z1 = 0.1, Z2 = 0.2)

Figure 9. Reserved amount of time under a
realistic workload (fast PI controller).

using the second model (when the internal state is not fully
accessible). We consider T = 33ms (33:3 frames per sec-
ond), T s = T=4 = 8:25ms, Z1 = 0:1 and Z2 = 0:2 (the
results obtained with the first model are similar). By com-
paring the two figures, it is clear that the reserved bandwidth
does not stabilise properly; as a result, the scheduling error
does not stabilise to 0, but continues to oscillate. We can
expect this kind of problem, from the theory of control, be-
cause the system’s input is highly variable. Since the system
is practically stable (see the definition of practical stability)
and the variations in the input are bounded, the variations
on the scheduling error are also bounded (and the average
of the scheduling error is 0).

0

5

10

15

20

0 200 400 600 800 1000

B
 *

 T
 (

m
s)

Job Number

Reserved Time

Slow Controller (Z1 = 0.1, Z2 = 0.9)

Figure 10. Reserved amount of time under a
realistic workload (slow PI controller).

This problem can be addressed by filtering out the higher
frequencies. We moved one of the two poles near to 1,
and the results are shown in Figure 10. By comparing Fig-
ures 10 and 8, it is clear that the reserved bandwidth re-

sults to be more stable, and this can permit to better control
the scheduling error. By analysing the scheduling error, it
appears that the first controller (with Z2 = 0:2) tends to
“over-react” to execution time variations, presenting a big-
ger overshot: even after the initial transient, the scheduling
error raises to more than 33ms. On the contrary, moving
the second pole to Z2 = 0:9, the maximum scheduling er-
ror registered after the initial transient is 8:75ms.

Summing up, we can say that while considering the re-
sponse to a step or to a ramp the position of the poles Z1

andZ2 only influences the overshoot and the response time,
when a more realistic workload is applied as input to the
system, the position of the poles becomes critical for the
system performance.

5.3. Implementation on a Real System

After verifying the correctness of the proposed feedback
scheme through simulations, we performed some experi-
ments on a real implementation. For this purpose, we used
the dynamic QoS manager implemented on Linux/RK [14]
(look at the cited paper for more details) and the second
model of the scheduler, described in Section 3.2, which can
introduce some quantisation error. The implementation of
the PI controller presented in this paper was a simple task
and required less than half an hour.

-40

-20

0

20

40

60

80

100

120

0 50 100 150 200 250

E

Job Number

Scheduling Error (T = 33, Ts = 6.25)

Figure 11. Scheduling Error for an MPEG
player with T = 33ms and T s = 6:75ms.

Using this implementation, we tested the feedback
scheduler by running two simultaneous MPEG players (at
33:3Fps and 20Fps) attached to two adaptive reservations,
with periods 33=4 = 8:25ms and 50=4 = 12:5ms. The
scheduling errors for the two players are shown in Fig-
ure 11 and 12. These experiments were performed setting
Z1 = 0:1 and Z2 = 0:8.

After an initial transient, the feedback controller is able
to adapt the reserved bandwidths so that the scheduling er-
ror is controlled to about 0. Since the execution times are



-50

0

50

100

150

200

250

300

350

400

0 50 100 150 200 250

E

Job Number

Scheduling Error (T = 15, Ts = 12.5)

Figure 12. Scheduling Error for an MPEG
player with T = 50ms and T s = 12:5ms.

highly variable, the scheduling error cannot be constant, but
it is important to note that � � 0most of the time (remember
that a negative scheduling error is not bad for the perceived
QoS). In coincidence with big variations in the execution
times, the scheduling error increases, but it is immediately
controlled to 0 again. It is important to note that these plots
refer to real experiments performed on a real Linux system,
and that the two players run simultaneously and share some
important resource such as the X server.

6. Conclusions

In this paper, we address the problem of developing a
feedback scheduler based on resource reservations, by de-
veloping a precise and accurate mathematical model of a
reservation-based scheduler. We verified the correctness
of the proposed model and the effectiveness of the de-
signed controller through an extensive set of simulations
and through real experiments on a real-time version of
Linux.

As a future work, we plan to apply control theory more
rigorously in order to formally prove the robustness and sta-
bility of the controller. The problem of determining a proper
closed loop dynamics that guarantees the desired QoS level
in presence of a realistic workload will be addressed. In
particular, we will devise a methodology for imposing the
decay rate of the close loop system.

References

[1] L. Abeni and G. Buttazzo. Integrating multimedia applica-
tions in hard real-time systems. In Proceedings of the IEEE
Real-Time Systems Symposium, Madrid, Spain, December
1998.

[2] L. Abeni and G. Buttazzo. Adaptive bandwidth reservation
for multimedia computing. In Proceedings of the IEEE Real

Time Computing Systems and Applications, Hong Kong, De-
cember 1999.

[3] F. J. Corbato, M. Merwin-Dagget, and R. C. Daley. An
experimental time-sharing system. In Proceedings of the
AFIPS Joint Computer Conference, May 1962.

[4] G.Lipari and S. Baruah. Greedy reclaimation of unused
bandwidth in constant bandwidth servers. In IEEE Proceed-
ings of the 12th Euromicro Conference on Real-Time Sys-
tems, Stokholm, Sweden, June 2000.

[5] H. hua Chu and K. Nahrstedt. CPU service classes for mul-
timedia applications. In Proceedings of the IEEE Interna-
tional Conference on Mutimedia Computing and Systems,
Florence, Italy, June 1999.

[6] J. Johansonn and A. Rantzer. Computation of piecewise
quadratic lyapunov functions for hybrid systems. Transac-
tion on Automatica Control, 43(4), 1998.

[7] B. Li and K. Nahrstedt. A control theoretical model for qual-
ity of service adaptations. In Proceedings of Sixth Interna-
tional Workshop on Quality of Service, 1998.

[8] C. Lu, J. A. Stankovic, T. F. Abdelzaher, G. Tao, S. H.
Son, and M. Marley. Performance specifications and metrics
for adaptive real-time systems. In Proceedings of the 21th
IEEE Real-Time Systems Symposium, Orlando, FL, Decem-
ber 2000.

[9] C. Lu, J. A. Stankovic, G. Tao, and S. H. Son. Design and
evaluation of a feedback control edf scheduling algorithm.
In Proceedings of the 20th IEEE Real-Time Systems Sympo-
sium, Phoenix, AZ, December 1999.

[10] G. Lucas. Star wars episode I: The phantom menace, May
1999.

[11] C. W. Mercer, S. Savage, and H. Tokuda. Processor capac-
ity reserves for multimedia operating systems. Technical
Report CMU-CS-93-157, Carnegie Mellon University, Pitts-
burg, May 1993.

[12] T. Nakajima. Resource reservation for adaptive qos mapping
in real-time mach. In Sixth International Workshop on Par-
allel and Distributed Real-Time Systems (WPDRTS), April
1998.

[13] R. Rajkumar, K. Juvva, A. Molano, and S. Oikawa. Re-
source kernels: A resource-centric approach to real-time and
multimedia systems. In Proceedings of the SPIE/ACM Con-
ference on Multimedia Computing and Networking, January
1998.

[14] R. R. Rajkumar, L. Abeni, D. de Niz, S. Ghosh, A. Miyoshi,
and S. Saewong. Recent developments with linux/rk. In Pro-
ceedings of the Second Real-Time Linux Workshop, Orlando,
Florida, november 2000.

[15] D. Reed and R. F. (eds.). Nemesis, the kernel – overview,
May 1997.

[16] J. Regehr and J. A. Stankovic. Augmented CPU Reser-
vations: Towards predictable execution on general-purpose
operating systems. In Proceedings of the IEEE Real-
Time Technology and Applications Symposium (RTAS 2001),
Taipei, Taiwan, May 2001.

[17] J. Slaughter. Quantization errors in digital control systems.
IEEE Transactions on Automatic Control, 1964.

[18] D. Steere, A. Goel, J. Gruenberg, D. McNamee, C. Pu, and
J. Walpole. A feedback-driven proportion allocator for real-
rate scheduling. In Proceedings of the Third usenix-osdi.
pub-usenix, feb 1999.


