SHRUB: Shared Reclamation of Unused
Bandwidth

Scuola Superiore Sant’Anna
RETIS Lab
Technical Report

Sanjoy Baruah
University of North Carolina at Chapel Hill
baruah@cs.unc.edu

Giuseppe Lipari Luca Abeni
Scuola Superiore Sant’Anna, Pisa UniversitA di Trento
g.lipari@sssup.it luca.abeni@dit,unitn.it

July 4, 2008

1 SYSTEM MODEL AND DEFINITIONS 1

1 System model and definitions

1.1 Task Model

A real-time taskr; is a stream of jobd; ;. Each jobJ; ; arrives (becomes executable)
at timer; ;, and finishes at timg; ; after executing for a time; ;. Each jobJ; ;

is characterized by a deadling; that is respected if; ; < d;;, and is missed if
fij > dij.

A task is said to be periodic if; ;1.1 = r; ; + T3, whereT; is thetask period. A
task issporadic if r; ;11 > r;; + T3, and in this casd; is theminimum interarrival
time. In both cased; ; = r; ; + D;, whereD; is the task’s relative deadline.

For a hard real-time task even a single deadline violatimoissidered as a severe
fault. In contrast, for @oft real-time task a few deadline violations are deemed accept-
able provided that the anomaly is kept in check. In this ceszsonable QoS metrics
can be are related to probability of missing a deadline, sirtalar measurements.

1.2 Reservation model

A reservation is acheduling entity. It can be attached to a task. The scheduler handles
reservations in its internal queues. Whenever the schedelects a reservation for
execution @ispatch), the corresponding task is executed.

A reservations; is identified by:

e aperiodP;;

e a capacity (omaximumbudget) Q;, 0 < Q; < P;;
e a weightw; (optional);

e a priority p; (optional).

We define the utilization (dpandwidth) of reservationS; asB; = %’?.

There are many algorithms that implement the concept ofvaten, depending on
the scheduler that is used. For fixed priority schedulees3jhoradic Server [SSL89]
(that is now part of the POSIX standard) and the Deferrabtee3¢SSL89] are the
most popular.

For the EDF schedulers, we have the Dynamic Sporadic Se®&94], the Con-
stant Bandwidth Server (CBS) [AB98], the GRUB server [GB@0Id many others.

Reservations can also be used to build hierarchies of s@rsdun such a case,
a reservation can be associated a set of tasks (or resexsatind docal scheduler.
When the global scheler selects the reservation to exeitigéocal scheduler is exe-
cuted which in turn selects one of the associated tasksyad8ms).

In this report we concentrate on the global scheduling afmedions on a single
processor system based on EDF.

2 RESERVATION ALGORITHMS 2

2 Reservation algorithms

2.1 CBS

The Constant Bandwidth Server (CBS) [AB98] implements mesi@®ns by using the
concept ofscheduling deadlines. each taskr; is handled by a dedicated CBS, which
uses a dynamic scheduling deadliffeto set its priority in the EDF scheduler. When
a new jobJ; ; arrives, the reservation checks whether it can be schedisied the
last assigned deadline, otherwise the request is assignédtial deadline equal to
r;,; + P;. Each time the job executes f@); time units (i.e., its budget is depleted), its
scheduling deadline is postponed By Thereby, the task is prevented from executing
for more than®); units with the same deadline. This behaviour is achievedsiygua
budgety; which is decreased while the served task executes: moreaflyrrif a task

7; served by a CB$Q);, P;) executes for a timé, the budget is updated as= ¢; — 0
(this is theCBS accounting rule).

It can be shown (see [AB98] for a complete description of tigerthm and its
properties) that i, B; < Ut (with U'® = 1 for EDF), then each task is reserved
fraction B; = Q,/T; of the CPU time regardless of the behaviour of the other tasks
This property is calledemporal isolation (meaning that the worst case schedule of a
task is not affected by the temporal behaviour of the ottekstaunning in the system).

3 Shrub

The average-case performance of a reservation-basedutehedn be greatly im-
proved by using a proper reclaiming policy. In this paperpnesenSHRUB (SHared
Reclamation ofUnusedBandwidth), a new reclaiming mechanisms for reservation-
based schedulers based on EDF. Unlike other reclaimingips)]SHRUB allows to
precisely control the share of spare bandwidth to allocateeeding tasks by using
weights.

The SHRUB algorithm is a variant of th&RUB reclaiming mechanism [GBO00],
which in turn uses the CBS as a basic scheduler. While a tioadil” reservation is
described by a coupl;, P;), in SHRUB each reservatioRSV; = (Q;, P;,w;) is
associated an additionakight w;, which is used to distribute the reclaimed CPU time.

3.1 Basic intuition

Every reservation maintains the following internal vakéshto implement algorithm
SHRUB:

¢ the remaining capacity; > 0. Notice that, due to the reclamation properties of
SHRUB, at some point in time it may happen that> Q;.

o the reservation deadling, which is used to schedule the reservations according
to EDF,;

o the reservatiostate (the states are the same as in GRUB).

3 SHRUB 3

Reminder: a reservation that has completed its jobs, ana hesidual budget of
q;, becomes idle at time; — g—

Since the reservations are scheduled by EDF, to guarardedgbrithm’s proper-
ties, the sum of the utilizations of all reservation mustexateed 1:

zn: U; <1.
=1

We further denote byACT'(¢) the set of reservations that are active at tinfee.
not idle); byU4(t) the total utilization of all active reservations at timeUr (t) =
1—Ua(t).

Initially, we consider that all reservations update theiriables according to the
CBS algorithm. Suppose a reservati®nexecutes in intervgky, to], with At = ¢t —
t1. Suppose that the amount of free bandwith in the intervabisstant and equal to
Ur(t) = Up(t1) = 1 — Ua(t1). For the sake of simplicity, in the following we drop
thet parameter.

Now suppose we insert in the system a job with the followingpeeters:

e arrival timea = t1;
e absolute deadling = ¢,;
e computation time: = UpAt.

It is easy to prove that, by inserting such a job, the systemanes schedulable (it
can be done by using the processor demand bound analystsenifollows that in
interval [t1, t2] there is an extra budget equaldo= UrAt that can be used by the
active reservations.

In the GRUB algorithm this extra budget is entirely given to the exeuyiteserva-
tion S;. Therefore, iNGRUB the reservation budget is decreased as follows:

Agi=—At+c=(1-Up)At = —UasAt (1)

Notice that the budget of the executing reservation is desae at a rate that is
proportional to the current reserved bandwidth in the systéf B,.; < 1, this is
equivalent to temporarily increase the maximum budgeteféservation for the cur-
rent period. In the limit case of a fully utilized systef,.; = 1 and the budget is
decreased as in tH@BS accounting rule. In the opposite limit case of only one a&ctiv
reservation, the budget is decreased at albate

Here we propose to distribute the extra budget to all acégenvations in propor-
tion to their relative weigth. For simplicity, we denote By (¢) the sum of all the
weigths of the active reservations:

Walt)= > w)

S;€ACT(t)

We assume that the sdtCT'(t) does not change ifi;, t2], SOW4 is constant in the
interval.

4 EFFICIENT IMPLEMENTATION 4

In interval[t1, 2], each active reservatios} will receive an extra budget equal to
UrAtgp-. In addition, the budget of the executing reservation walldecreased by
At. Therefore, all the budgets of the active reservationshelupdated as follows:

g = { (— ;) At if S; executes 3)

Ur WL At if .S; does not execute

By doing the substitutio; = d; — £, it follows thatdV; = —%4. By rewriting
the equation with derivatives, we have ’

1-— w—) dt if S; executes irt
av; = Ur(t)w.m s . (4)
—Up(t)W D dt if S; does not execute ih
Therefore, if a reservatioi; becomes active at timg, and becomes idle at time
ty > tg, foranyt, t, <t <t

/dV /az)WA()da: (5)

whereo;(z) = 1if S; executes in, otherwise it is 0.
As you can see, there is one component that depends on theatise, and one
that is common to all reservations. We can rewrite it in tHeowing way:

Vilt) = / o1(2)dz — w; V[ﬁ(&)}dw (6)

The second integral is common to all reservations, so it eacoimputed globally.

In the two limit cases (fully utilized system and only oneamestion), rule 1 and
3 are identical. However, when there are many reservatiotise system and there
is some unused CPU tim&HRUB effectively distributes such time to all needing
reservations in proportion to their weights. UnligRUB, SHRUB uses the weights
to assign more spare bandwidth to reservations with higlegghts.

4 Efficient implementation

It looks like the algorithms i®)(n), because the budgets of all active reservations must
be updated at every event. Actually, this is not necessagyintkoduce an additional
global variable in the system:

¢ UF (:L) "
o Wa(z)
Now, the virtual time of every reservation can be updatedbafs. LetL; be the last

instant at which the virtual time of reservatiéh has been updated. Suppose that the
reservation is active but does not execute unti L;, then

Vy(t) = (7)

Vi(t) = Vi(Li) — wi(Vy(t) = Vy(Li)) (8)

REFERENCES 5

Suppose instead that reservatignstarts executing irl; and it executes until time
Then:
Vi(t) = V(Li) +t = Li — wi(Vg(t) — Vg (Li)) (9)

For every reservation, we maintain an additional helpeieteV, (L;). Then we only
need to update the reservation variables at all eventsithatkevant to the reservation
itself, and precisely:

e when the reservation becomes acfige= ¢;
e when the reservation starts executing;

e when the reservation is suspended,;

e when the reservation becomes idle.

A similar reasoning can be done by using the budgets instiethe @irtual times.

By implementing the algorithm this way, at every event itilyinecessary to update
a constant number of variables. Hence, the algorithm haplexity O(1) per each
event.

According to the complexity convention that is used in netw@search, the total
complexity of Algorithm SHRUB isO(n), because there can be uprtevents (one
per reservation) in any infinitesimal small interval of time

References

[AB98] Luca Abeni and Giorgio Buttazzo. Integrating mulBdia applications in
hard real-time systems. FProceedings of the IEEE Real-Time Systems Sym-
posium, Madrid, Spain, December 1998.

[GBOO0] G.Lipariand S.K. Baruah. Greedy reclaimation of sed bandwidth in con-
stant bandwidth servers. IEEE Proceedings of the 12th Euromicro Confer-
ence on Real-Time Systems, Stokholm, Sweden, June 2000.

[SB94] M. Spuri and G. C. Buttazzo. Efficient aperiodic seevuinder the earliest
deadline scheduling. IRroceedings of the |EEE Real-Time Systems Sympo-
sium, December 1994.

[SSL89] B. Sprunt, L. Sha, and J. P. Lehoczky. Aperiodic dciiag for hard real-
time systemsThe Journal of Real-Time Systems, 1989.

