
SHRUB: Shared Reclamation of Unused
Bandwidth

Scuola Superiore Sant’Anna
RETIS Lab

Technical Report

Sanjoy Baruah
University of North Carolina at Chapel Hill

baruah@cs.unc.edu

Giuseppe Lipari
Scuola Superiore Sant’Anna, Pisa

g.lipari@sssup.it

Luca Abeni
UniversitÃ di Trento

luca.abeni@dit,unitn.it

July 4, 2008



1 SYSTEM MODEL AND DEFINITIONS 1

1 System model and definitions

1.1 Task Model

A real-time taskτi is a stream of jobsJi,j . Each jobJi,j arrives (becomes executable)
at time ri,j , and finishes at timefi,j after executing for a timeci,j . Each jobJi,j

is characterized by a deadlinedi,j that is respected iffi,j ≤ di,j , and is missed if
fi,j > di,j .

A task is said to be periodic ifri,j+1 = ri,j + Ti, whereTi is thetask period. A
task issporadic if ri,j+1 ≥ ri,j + Ti, and in this caseTi is theminimum interarrival
time. In both casesdi,j = ri,j + Di, whereDi is the task’s relative deadline.

For a hard real-time task even a single deadline violation isconsidered as a severe
fault. In contrast, for asoft real-time task a few deadline violations are deemed accept-
able provided that the anomaly is kept in check. In this case,reasonable QoS metrics
can be are related to probability of missing a deadline, or tosimilar measurements.

1.2 Reservation model

A reservation is ascheduling entity. It can be attached to a task. The scheduler handles
reservations in its internal queues. Whenever the scheduler selects a reservation for
execution (dispatch), the corresponding task is executed.

A reservationSi is identified by:

• a periodPi;

• a capacity (ormaximum budget) Qi, 0 < Qi ≤ Pi;

• a weightwi (optional);

• a prioritypi (optional).

We define the utilization (orbandwidth) of reservationSi asBi = Qi

Pi
.

There are many algorithms that implement the concept of reservation, depending on
the scheduler that is used. For fixed priority schedulers, the Sporadic Server [SSL89]
(that is now part of the POSIX standard) and the Deferrable Server [SSL89] are the
most popular.

For the EDF schedulers, we have the Dynamic Sporadic Server [SB94], the Con-
stant Bandwidth Server (CBS) [AB98], the GRUB server [GB00], and many others.

Reservations can also be used to build hierarchies of schedulers. In such a case,
a reservation can be associated a set of tasks (or reservations) and alocal scheduler.
When the global scheler selects the reservation to execute,the local scheduler is exe-
cuted which in turn selects one of the associated tasks (reservations).

In this report we concentrate on the global scheduling of reservations on a single
processor system based on EDF.



2 RESERVATION ALGORITHMS 2

2 Reservation algorithms

2.1 CBS

The Constant Bandwidth Server (CBS) [AB98] implements reservations by using the
concept ofscheduling deadlines: each taskτi is handled by a dedicated CBS, which
uses a dynamic scheduling deadlineds

i to set its priority in the EDF scheduler. When
a new jobJi,j arrives, the reservation checks whether it can be scheduledusing the
last assigned deadline, otherwise the request is assigned an initial deadline equal to
ri,j + Pi. Each time the job executes forQi time units (i.e., its budget is depleted), its
scheduling deadline is postponed byPi. Thereby, the task is prevented from executing
for more thanQi units with the same deadline. This behaviour is achieved by using a
budgetqi which is decreased while the served task executes: more formally, if a task
τi served by a CBS(Qi, Pi) executes for a timeδ, the budget is updated asqi = qi − δ
(this is theCBS accounting rule).

It can be shown (see [AB98] for a complete description of the algorithm and its
properties) that if

∑

i Bi ≤ U lub (with U lub = 1 for EDF), then each taskτi is reserved
fractionBi = Qi/Ti of the CPU time regardless of the behaviour of the other tasks.
This property is calledtemporal isolation (meaning that the worst case schedule of a
task is not affected by the temporal behaviour of the other tasks running in the system).

3 Shrub

The average-case performance of a reservation-based scheduler can be greatly im-
proved by using a proper reclaiming policy. In this paper, wepresentSHRUB (SHared
Reclamation ofUnusedBandwidth), a new reclaiming mechanisms for reservation-
based schedulers based on EDF. Unlike other reclaiming policies,SHRUB allows to
precisely control the share of spare bandwidth to allocate to needing tasks by using
weights.

TheSHRUB algorithm is a variant of theGRUB reclaiming mechanism [GB00],
which in turn uses the CBS as a basic scheduler. While a “traditional” reservation is
described by a couple(Qi, Pi), in SHRUB each reservationRSVi = (Qi, Pi, wi) is
associated an additionalweight wi, which is used to distribute the reclaimed CPU time.

3.1 Basic intuition

Every reservation maintains the following internal variables to implement algorithm
SHRUB:

• the remaining capacityqi > 0. Notice that, due to the reclamation properties of
SHRUB, at some point in time it may happen thatqi > Qi.

• the reservation deadlinedi, which is used to schedule the reservations according
to EDF;

• the reservationstate (the states are the same as in GRUB).



3 SHRUB 3

Reminder: a reservation that has completed its jobs, and hasa residual budget of
qi, becomes idle at timedi −

qi

Ui
.

Since the reservations are scheduled by EDF, to guarantee the algorithm’s proper-
ties, the sum of the utilizations of all reservation must notexceed 1:

n
∑

i=1

Ui ≤ 1.

We further denote byACT (t) the set of reservations that are active at timet (i.e.
not idle); byUA(t) the total utilization of all active reservations at timet; UF (t) =
1 − UA(t).

Initially, we consider that all reservations update their variables according to the
CBS algorithm. Suppose a reservationSi executes in interval[t1, t2], with ∆t = t2 −
t1. Suppose that the amount of free bandwith in the interval is constant and equal to
UF (t) = UF (t1) = 1 − UA(t1). For the sake of simplicity, in the following we drop
thet parameter.

Now suppose we insert in the system a job with the following parameters:

• arrival timea = t1;

• absolute deadlined = t2;

• computation timec = UF ∆t.

It is easy to prove that, by inserting such a job, the system remains schedulable (it
can be done by using the processor demand bound analysis). Itthen follows that in
interval [t1, t2] there is an extra budget equal toc = UF ∆t that can be used by the
active reservations.

In theGRUB algorithm this extra budget is entirely given to the executing reserva-
tion Si. Therefore, inGRUB the reservation budget is decreased as follows:

∆qi = −∆t + c = (1 − UF )∆t = −UA∆t (1)

Notice that the budget of the executing reservation is decreased at a rate that is
proportional to the current reserved bandwidth in the system. If Bact < 1, this is
equivalent to temporarily increase the maximum budget of the reservation for the cur-
rent period. In the limit case of a fully utilized system,Bact = 1 and the budget is
decreased as in theCBS accounting rule. In the opposite limit case of only one active
reservation, the budget is decreased at a rateBi.

Here we propose to distribute the extra budget to all active reservations in propor-
tion to their relative weigth. For simplicity, we denote byWA(t) the sum of all the
weigths of the active reservations:

WA(t) =
∑

Sj∈ACT (t)

wj (2)

We assume that the setACT (t) does not change in[t1, t2], soWA is constant in the
interval.



4 EFFICIENT IMPLEMENTATION 4

In interval [t1, t2], each active reservationSi will receive an extra budget equal to
UF ∆t wi

WA
. In addition, the budget of the executing reservation will be decreased by

∆t. Therefore, all the budgets of the active reservations willbe updated as follows:

qi =

{
(

−1 + UF
wi

WA

)

∆t if Si executes

UF
wi

WA
∆t if Si does not execute

(3)

By doing the substitutionVi = di −
qi

Ui
, it follows thatdVi = −

dqi

Ui
. By rewriting

the equation with derivatives, we have

dVi =

{
(

1 − UF (t) wi

WA(t)

)

dt if Si executes int

−UF (t) wi

WA(t)dt if Si does not execute int
(4)

Therefore, if a reservationSi becomes active at timeta and becomes idle at time
tb > ta, for anyt, ta ≤ t ≤ tb:

Vi(t) =

∫ t

ta

dVi =

∫ t

ta

σi(x) − UF (x)
wi

WA(x)
dx (5)

whereσi(x) = 1 if Si executes int, otherwise it is 0.
As you can see, there is one component that depends on the reservation, and one

that is common to all reservations. We can rewrite it in the following way:

Vi(t) =

∫ t

ta

σi(x)dx − wi

∫ t

ta

UF (x)

WA(x)
dx (6)

The second integral is common to all reservations, so it can be computed globally.
In the two limit cases (fully utilized system and only one reservation), rule 1 and

3 are identical. However, when there are many reservations in the system and there
is some unused CPU time,SHRUB effectively distributes such time to all needing
reservations in proportion to their weights. UnlikeGRUB, SHRUB uses the weights
to assign more spare bandwidth to reservations with higher weights.

4 Efficient implementation

It looks like the algorithms isO(n), because the budgets of all active reservations must
be updated at every event. Actually, this is not necessary. We introduce an additional
global variable in the system:

Vg(t) =

∫ t

0

UF (x)

WA(x)
dx (7)

Now, the virtual time of every reservation can be updated as follows. LetLi be the last
instant at which the virtual time of reservationSi has been updated. Suppose that the
reservation is active but does not execute untilt > Li, then

Vi(t) = Vi(Li) − wi(Vg(t) − Vg(Li)) (8)



REFERENCES 5

Suppose instead that reservationSi starts executing inLi and it executes until timet.
Then:

Vi(t) = V (Li) + t − Li − wi(Vg(t) − Vg(Li)) (9)

For every reservation, we maintain an additional helper variableVg(Li). Then we only
need to update the reservation variables at all events that are relevant to the reservation
itself, and precisely:

• when the reservation becomes activeVi = t;

• when the reservation starts executing;

• when the reservation is suspended;

• when the reservation becomes idle.

A similar reasoning can be done by using the budgets instead of the virtual times.
By implementing the algorithm this way, at every event it is inly necessary to update

a constant number of variables. Hence, the algorithm has complexity O(1) per each
event.

According to the complexity convention that is used in network research, the total
complexity of Algorithm SHRUB isO(n), because there can be up ton events (one
per reservation) in any infinitesimal small interval of time.

References

[AB98] Luca Abeni and Giorgio Buttazzo. Integrating multimedia applications in
hard real-time systems. InProceedings of the IEEE Real-Time Systems Sym-
posium, Madrid, Spain, December 1998.

[GB00] G.Lipari and S.K. Baruah. Greedy reclaimation of unused bandwidth in con-
stant bandwidth servers. InIEEE Proceedings of the 12th Euromicro Confer-
ence on Real-Time Systems, Stokholm, Sweden, June 2000.

[SB94] M. Spuri and G. C. Buttazzo. Efficient aperiodic service under the earliest
deadline scheduling. InProceedings of the IEEE Real-Time Systems Sympo-
sium, December 1994.

[SSL89] B. Sprunt, L. Sha, and J. P. Lehoczky. Aperiodic scheduling for hard real-
time systems.The Journal of Real-Time Systems, 1989.


