Makefiles for Dummies

Luca Abeni

luca.abeni@unitn.it

March 3, 2008

Abstract
These short notes describe how to easily write makefiles for compiling
C/C++ projects composed by multiple files. ... [to be continued]

1 Introduction

To manage the complexity of the code, the sources of large software projects
are often organised in different files (a single file often corresponds to a soft-
ware module). Groups of source files can be compiled independently, and the
resulting objects are then linked together obtaining the final executable. In
particular, C projects are composed by .c files (containing source code) and .h
files (describing software interfaces): each .c file is compiled (together with the
used headers) to obtain .o object files, and the .o files are linked together with
some libraries to obtain the executable file. The standard make program is a
tool designed to automate this build process, keeping track of the dependencies
between source files, object files, and executables, and recompiling files only
when really needed.

The behaviour of the make program is controlled through a makefile, con-
taining a description of all the dependencies and building rules needed to compile
the final executable (informally speaking, a makefile is a collection of instruc-
tions that should be followed to compile your program). The big difference
between using make respect to a shell script is that when some source files are
modified the "make” command is able to compile only the needed files (instead
of recompiling all the sources, as a shell script). In other word, the program
will be recompiled using as few compilation commands as possible. To achieve
this goal, you need to supply the rules for compiling various files and file types,
and the list of dependencies between files (in the form of relationships like “if
file A was changed, then files B and C also need to be re-compiled”, or similar).
Writing a makefile containing this kind of information is generally quite sim-
ple, but there is the risk to end up with long lists of dependencies and rules
which can look difficult to maintain.

The GNU make comes with a set of predefined rules which help in reducing
the size and complexity of makefiles, and should be used to write effective and
simple makefiles. [to be continued|

<target >: <prerequisites>
<command>

Figure 1: A Makefile rule

test: a.o b.o c.o

gcc —o test a.o b.o c.o
a.0: a.c

gcec —Wall —g —c a.c
b.o: b.c

gcc —Wall —g —c¢ b.c
c.0: c.c

gcec —Wall —g —c c.c
clean:

rm —f test a.o b.o c.o

Figure 2: An example of simple Makefile

2 Makefiles Structure

As already observed, makefile is mainly a collection of rules describing depen-
dencies between prerequisites and targets, and the commands needed to generate
a target from its prerequisites. Figure 2 describes a generic rule, where:

e <target> is a name for the action executed by the rule, or (more fre-
quently!) the name of a file generated by the rule. Example of targets are
.0 object files, executable files, etc..., but also clean, install, etc...

e <prerequisites> is a list of files used to build the target

e <command> is a description of the action executed by the rule (sometimes,
more than one command).

Note that each command line begins with the <tab> character.

When considering a rule, the make program checks is the prerequisites are
newer than the target: in such case, the target is rebuilt by executing the
command. If the rules has no prerequisites, the target is always rebuilt. If the
rule has some prerequisites, make checks if the have to be rebuilt in a recursive
way, by checking the rules that have them as targets.

When the make command is executed with no arguments, it starts by consid-
ering the first rule in the makefile (sometimes known as default rule) and trying
to build it. To do so, it consults the rules for building all the prerequisites, and
so on... The user can select an alternative target to build instead of the default
one by passing such target as a parameter to make.

An example makefile, building an executable “test” from the source files
“a.c”, “b.c”, and “c.c” is shown in Figure 2: the default rule (with target

test: a.o b.o c.o

gcc —o test a.o b.o c.o
a.o: a.c b.h c.h

gcc —Wall —g —c a.c
b.o: b.c b.h

gce —Wall —g —c b.c
c.o0: c.c c.h

gcc —Wall —g —c c.c
clean:

rm —f test a.o b.o c.o

Figure 3: A more correct Makefile example

test) shows how to build the executable from the single .o object files, and the
following 3 rules show how to build the object files from the sources. Finally,
the last rule (with target clean) permits to remove all the generated files.

Now, it is important to note that the rules generating the objects files are
not fully correct: for example, if module a.o uses some functionalities from
the b.o module, it must include the b.h header file, but this dependency is
not modelled in the makefile. As a result, if b.h is modified a.o is not rebuilt
(to understand why this is a problem, consider the case when b.h contains
something like #define MAX VALUE 10, and a.c contains something like int
values [MAX_VALUE]... What happens if MAX_VALUE is changed from 10 to 1007).
In this case, a more correct makefile can be the one shown in Figure 2 (assuming
that a.c uses b.c and c.c).

Note that tracking all the dependencies in a makefile is not easy, and requires
a lot of maintenance work (for example, a modification to the program during
the development or debugging can change the dependencies).

3 Writing Simpler Makefiles

Fortunately, GNU make provides some ways to simplify the makefiles, and to
make them more manageable. Such simplifications are mainly based on two
techniques: makefile variables and implicit rules.

3.1 Makefile Variables

The concept of variables is not a GNU-only feature, but is supported by every
POSIX compliant make. In general, a variable can contain a single value or a list
of values (file names, compiler options, etc...), is assigned using a statement like
<variable name> = ..., and is dereferenced by prepending its name with the
$ symbol. See Figure 3.1 for an example (note that if the variable name is longer
than 1 character, the it must be enclosed in parenthesys when dereferencing the
variable).

VAR=test

print:
echo $(VAR)

Figure 4: Using variables in a makefile

CFLAGS = —Wall —g
LDLIBS = —lefence
test: test.o b.o c.o
clean:
rm —f test a.o b.o c.o

Figure 5: An example of simple Makefile

3.2 Implicit Rules

To avoid the need to repeat similar rules in all the makefiles, GNU Make pro-
vides some implicit rules, which automatically implement standard techniques
for building some targets. For example, there are implicit rules for building
executables files from object files, or to compile .c source files into .o objects.

Implicit rules use some default makefile variables so that, by changing the
values of the variables, it is possible to change the way the implicit rule works.
The most important of such variables are:

e CPPFLAGS: the parameters to be passed to the C preprocessor (for example,
-I <path>, -D <symbol>, etc.)

e CFLAGS: the parameters to be passed to the C compiler (for example,
-Wall, -g, etc)

e CXXFLAGS: the parameters to be passed to the C+-+ compiler

e LDFLAGS: the parameters to be passed to the linker (for example, -L
<path>, etc)

e LDLIBS: the libraries that have to be linked into the executable (for ex-
ample, -1m, etc)

Thanks to the implicit rules, GNU make knows how to generate a .o file
from a .c file, a .cc (or .cpp, or...) file, a .s file, etc, so there is no need to
write targets like the a.o: ... target in Figures 2 and 2.

GNU Make also knows how to generate executable files from .o files, when
the first object file in the prerequisites is <executable name>.o (you just need
to specify the prerequisites for the target executable). So, a makefile for gener-
ating the test program from test.o, b.o, and c.o can look like the one listed
in Figure 3.2 (the dependencies on .h header files are not specifies yet).

%.d: %.c
$(0CC) MM -MF $@ $<

Figure 6: Generating dependencies from a C file

It is worth noting some important points:
e Never set -I or -D in CFLAGS. They belong to CPPFLAGS

e If you need to set -I . in CPPFLAGS, you probably wrote wrong #include
directives in yoyr code

e Always set -Wall in CFLAGS. Compiler warnings are very useful to detect
bugs or anomalies in your programs

e When you compile C++ programs, you must use CXXFLAGS, not CFLAGS

e Setting -g in CFLAGS is generally a good idea. The generated code will not
be affected, but the object and executable files will contain useful debug
information, making the gdb output less cryptic

e When compiling programs that use pthreads, you probably need to set
-pthread in CFLAGS and LDFLAGS (in this case, you do not need to set
-1lpthread in LDLIBS). If -pthread is not supported by your compiler
(this probably means that you are on windows), you need to set ~1pthread
in LDLIBS, and some -D options (probably ~-DREENTRANT and some others,
depending on your C library) in CPPFLAGS

Finally, note that in some cases you do not even have to write a makefile:
for example, if you want to compile the C file test.c generating an executable
file named test, you can just type make test. Of course you want to properly
set CFLAGS (and maybe other options), so you must use something like make
CFLAGS="-Wall -g" test.

4 Automatic Dependencies Generation

The dependencies of .o object files from .h header files are generally quite com-
plex, and difficult to keep up-to-date. Fortunately, they can be automatically
generated by instructing gcc to look at the #include directives. This is done
by using the -MM gcc option (plus the -MF option to specify an output file); see
the gce manual (or type man gcc in a linux shell) for more details.

In few words, the command line gcc -MM -MF <filename>.d <filename>.c
reads the <filename>.c file and creates a <filename>.d file containing all the
dependencies on header files included with #include "..." (headers included
with #include <...> are system files and do not need to be tracked). The
corresponding makefile rule is shown in Figure 4: note that %.d: %.c is a

CFLAGS = —Wall —g
LDLIBS —lefence

OBJS = test.o b.o c.o
test: $(OBJS)

clean:
m —f *x.0 *x.d test

%.d: %.c
$(CC) VMM -MF $@ $<
—include $(OBJS:.o0=.d)

Figure 7: Generating dependencies from a C file

obj—m = test_module.o
test_module—objs = filel .o file2.0 test.o

Figure 8: A simple makefile for compiling a Linux kernel module

way to say “a .d file is generate from the corresponding .c file”, $(CC) is a
predefined variable containing the name of the C compiler, $@ is a variable
containing the target, and $< is a variable containing the prerequisites. As a
result, a complete example of simple makefile is listed in Figure 4 (note that
include $(0BJS:.o=.d) is some black magic needed to include all the .4 files
corresponding to the .o files in $0BJS).

5 Compiling Linux Kernel Modules

Compiling Linux kernel modules is much more complex than compiling regular
user-space applications: for example, CFLAGS and CPPFLAGS must be set with
some proper options (depending on the Linux kernel, and even on its configu-
rations), and some special post-linking operations have to be performed.

Fortunately, the Linux kernel already provides a set of proper makefiles and
scripts (known as KBuild system) that can be used to compile generic modules.

The simplest way to use KBuild to compile a Linux kernel module is to write
a makefile similar to the one in Figure 5 (showing how to build a module named
testmodule.ko from the source files filel.c, file2.c, and test.c), and to
typemake -C <path to configured kernel sources> M=<path to the module
source> modules (note that to use KBuild you need some configured Linux
sources somewhere).

For more information about KBuild, see the Documentation/kbuild direc-

tory inside the kernel source.

6 References

This document does not pretend to provide an exhaustive description of the
make program. For more information, consult the make manual (http://www.
gnu.org/software/make/manual), or type info make in a linux shell.

