

RT bandwidth constraints enforced by hierarchical DL scheduling

Luca Abeni, Alessio Balsini, Tommaso Cucinotta

Scuola Superiore Sant'Anna, Pisa

OSPM Summit 2017

Motivations

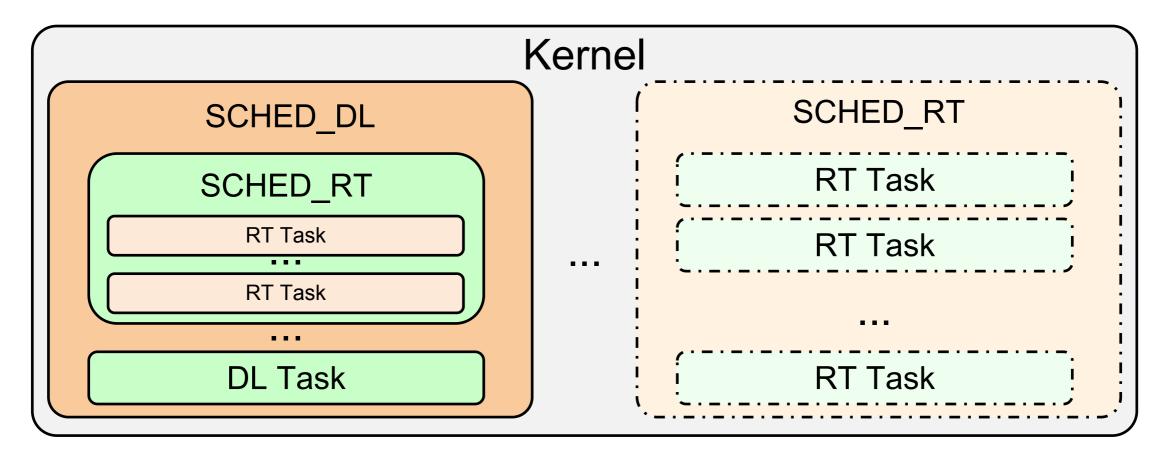
Real-time guarantees

- replace current RT throttling, designed purely as a runtime limitation mechanism
- new mechanism, based on SCHED_DEADLINE, trying to provide guarantees to groups of RT tasks
- from different viewpoint: SCHED_DEADLINE for groups of RT tasks
- goal: use hierarchical RT analysis to check whether all tasks will meet their deadlines

Code simplification

- remove a lot of code from rt.c
- especially "dangerous" code (runtime share)

Features at a glance


- 2-levels scheduling hierarchy
 - hierarchical EDF+CBS/FP scheduling
- cgroup-based interface
 - somehow compatible with existing rt throttling
- multi-processor group reservations
 - do not migrate runtime, migrate tasks!
 - can reuse existing real-time analysis (multi-supply functions)
- use dl scheduling entities for "scheduling" RT runqueues
 - no migrations (scheduling entities have no afffinities, etc...)

Hierarchical EDF+CBS/FP scheduling

2-levels scheduling hierarchy

- An RT CGroup is scheduled as a special DL entity
- Period and runtime are assigned by the Cgroup interface, deadline implicitly equal to the period

Luca Abeni – OSPM Summit 2017

DL Scheduling entities

"Regular" DL Entities

- connected to DL tasks
- can migrate (G-EDF)
 - affinity = whole root
 domain
 - all the CPUs of the cpuset
- support deadline<period

DL Entities representing RT cgroups

- connected to RT runqueues
- bound to a single CPU
 a DL entity per CPU
 - all with the same parameters
- implicit deadline=period

Issue: Admission control!

• For the moment, only guarantee no overload

Luca Abeni – OSPM Summit 2017

Patchset overview

- Ikml submission (31 March 2017): 1490982277-4437-1-git-send-email-a.balsini@sssup.it
- patchset with 3 patches
 - 1. remove RT throttling & cgroup-related from sched/rt.c
 - 2. hierarchical DL scheduling of RT groups
 - 3. allow RT tasks to migrate between the RT runqueues of the control group
- git metrics
 - 7 files changed, 837 insertions(+), 1036 deletions
 - deletions mainly in rt.c
 - to tell the whole story, some functionalities are removed

cgroup-based interface

Example of usage

```
mkdir /cgroup/cpu/rt1
echo 100000 > /cgroup/cpu/rt1/cpu.rt_period_us
echo 10000 > /cgroup/cpu/rt1/cpu.rt_runtime_us
echo $tid1 > /cgroup/cpu/rt1/tasks
echo $tid2 > /cgroup/cpu/rt1/tasks
chrt -r -p $rtprio1 $tid1
chrt -r -p $rtprio2 $tid2
```

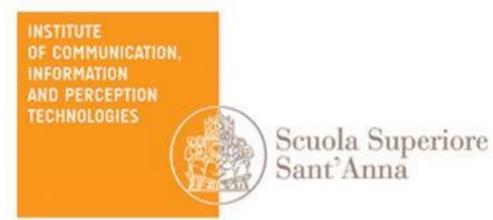
Overall available runtime for group on M cores

M * cpu.rt_runtime_us every cpu.rt_period_us

Current Status

Very Preliminary code

- Works well, but has some style issues
- The design has to be discussed


Posted early to discuss it

- Is this what people want / need?
- Is the design acceptable?
- Is it ok to have the same period / runtime on all CPUs?

Examples of open issues

- Push/Pull code is duplicated
- Admission test
- Very large patches...

Thank you! Luca Abeni luca.abeni@santannapisa.it

10

Backup Slides

Why SCHED_DEADLINE / CBS

Reservation-based scheduling

guarantee of Q time units every P time units
 CBS temporal isolation

- with FP, high priority tasks can arbitrarily delay low priority tasks
- with CBS/EDF, attempt to exceed the runtime results in being throttled
- CBS/EDF wake-up rule

Example of hierarchical analysis

2 tasks within a reservation

- o priority, period, WCET of the 2 tasks
- o Q, P parameters

schedulability analysis check

o magic formula...

