
CPU Reclaiming for

SCHED DEADLINE

Luca Abeni

luca.abeni@santannapisa.it

April 3, 2017



CPU Reclaiming: Why?

CPU Reclaiming Luca Abeni

• SCHED DEADLINE: allow task to execute for
runtime every period

• And if the task needs more execution time?
• It is delayed!
• But maybe there is some usable CPU idle time...

• Reclaiming: allow the task to execute for more than
runtime

• Whithout breaking guarantees for other deadline
tasks!

• Whithout starving non-deadline tasks!

• Maximum fraction of CPU time usable by
deadline tasks...



Again, Why???

CPU Reclaiming Luca Abeni

• How is this related to power management???

• If we scale the CPU frequency...
• ...We increase the tasks’ execution times
• Need to increase the runtimes too!!!

• Knowing how much runtime we can reclaim helps to
perform more informed frequency scaling

• See presentation by Juri and Claudio



CPU Reclaiming: How?

CPU Reclaiming Luca Abeni

• Keep track of the fraction of CPU time of inactive
deadline tasks (U inact)...

• And allow to reclaim it!

• Track U inact “globally” or per-runqueue?

• In this patchset, per runqueue...
• But a “global” alternative is also available
• Only few patches change

• Original patchset based on Uactive...

• But it had fairness issues!
• Testcase: 4 CPUs, 11 tasks with utilization 0.33

• Cannot be easily partitioned on the 4 CPUs
• We end up with 3 CPUs running 3 tasks and a

CPU running 2 tasks



CPU Reclaiming: Utilization Tracking

CPU Reclaiming Luca Abeni

• Let’s see how to update Uactive / U inact...

• Cannot be immediately updated when a task
blocks

• deadline task becomes inactive → increase U inact

• For the runqueue where it was executing

• When does a task become inactive?

• At the so called “0-lag time”
• Computed when the task blocks
• If “0-lag time” ≤ t, immediately inactive
• Otherwise, setup an “inactive timer”



Why 0-lag?

CPU Reclaiming Luca Abeni

• If Uact/inact was updated immediately when a task
blocks...

• ...We could have problems with tasks consuming
their “future runtime”

• Example: 2 tasks with runtime = 2ms, period =
10ms

• First task blocking after 4.9ms

(2, 10)

(2, 10)

U=0.4 U=0.2

δq = −Uactδt



Active / Inactive Tasks

CPU Reclaiming Luca Abeni

TASK_RUNNING

Wakeup

Wakeup

Active
Blocked

t = 0−lag

(inactive timer fires)
Inactive
Blocked

Block, t >= 0−lag

Block, t < 0−lag



Implementation Issues - 1

CPU Reclaiming Luca Abeni

• When a task wakes up U inact should be decreased

• If the “0-lag time” already passed!

• Possible race between wakeup and “inactive timer”

• Solved by adding a new flag (set if the “inactive
timer” is pending) in the dl entity

• Wakeup on a different CPU/runqueue: might need to
lock the previous runqueue



Implementation Issues - 2

CPU Reclaiming Luca Abeni

• How to reclaim CPU time not allocated to deadline
tasks?

• Per-runqueue “extra bandwidth” that can be
reclaimed

• Updated when a task moves to/from deadline

• Need to iterate on all the active runqueues in the
root domain!

• Interaction with CPU online / offline?

• Would it be a good idea to initialise and clear this
field in rq online/offline dl()?



Implementation Details

CPU Reclaiming Luca Abeni

• Instead of tracking U inact, I track Uact and “Ui”

• Ui: utilization on rq i: (utilization of the deadline
tasks running on rq i and of deadline tasks that
blocked when running on rq i

• Then, U inact
= Ui − Uact

• Why this?

• Because Uact or Ui ca be needed for frequency
scaling

• To minimize changes respect to previous
versions of the patchset

• This can be changed if needed



The Patchset - 1

CPU Reclaiming Luca Abeni

• Patch 1: Introduce tracking of active utilization Uactive

• Simple (but not fully correct) tracking: increase
when task enter runqueue, decrease when task
exits runqueue

• Patch 2: Improve tracking of active utilization Uactive

• Introduce the concept of 0-lag time, the “inactive
timer”, etc...

• Patch 3: Fix an old issue with the utilization of
deadline tasks

• Not related with reclaiming, but now that we have
the inactive timer...

• Patch 4: GRUB accounting



The Patchset - 2

CPU Reclaiming Luca Abeni

• Patch 5: Modify GRUB to reclaim only a fraction of
the CPU time

• Patch 6: Enable reclaiming only for tasks that ask for
it

• Introduce a new flag in the scheduling attributes
structure

• Patch 7: Introduce the tracking of RQ utilization Ui

• Needed to compute U inact
= Ui − Uactive

• Patch 8: base GRUB on U inact

• Fixes the fairness issue

• Patch 9: allow to reclaim more CPU time



And... What if we Want “Global” Uactive?

CPU Reclaiming Luca Abeni

• A patchset exists
• Not updated with the latest bugfixes (yet)
• Changes in patches 1, 4 and 5


	CPU Reclaiming: Why?
	Again, Why???
	CPU Reclaiming: How?
	CPU Reclaiming: Utilization Tracking
	Why 0-lag?
	Active / Inactive Tasks
	Implementation Issues - 1
	Implementation Issues - 2
	Implementation Details
	The Patchset - 1
	The Patchset - 2
	And... What if we Want ``Global'' Uactive?

