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Chapter 1

Introduction

Don’t believe in manuals!!!
Herman Haertig

Corollary: Don’t believe in PhD dissertations...
Luca

Sab
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he recent evolution of computer technology made personal computers
= powerful enough to perform new typologies of activities, like manag-
) 'ing multimedia streams in real-time. As a result, a modern work-
station can be used to run new kinds of applications, such as MultiMedia
ones, as well as mixes of heterogeneous applications, each of them with dif-
ferent requirements. For example, it may be needed to concurrently run a
word processor (requiring a large amount of memory) together with an au-
dio/video streaming application, while a software mixer is mixing different
audio sources in real time and the Operating System (OS) kernel is receiving
a stream of packets from the network.
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1.1 Motivation

The need to run etherogenous mixes of different classes of applications in-
troduces new problems and requirements in handling hardware and software
resources. For example, consider the most common abstraction provided in
traditional servers and workstations, that is multiprogramming: the execu-
tion of multiple application tasks is interleaved in such a way as to create
the illusion of running simultaneously. The traditional requirement is that
all the applications proceed fairly (eventually according to some user spec-
ified weights) to avoid starvation, that interactive applications respond to
user input in a small time (but there is no clear definition of “small time”),
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and that the average response time of all applications is minimised. When
dealing with (for example) multimedia applications, these requirements have
to be revisited.

1.1.1 Time Sensitive Applications

As said, some new applications may be characterised by additional timing
requirements: for example, an audio MPEG player (such as the famous
WinAMP, or XAMP) should fill the sound card buffer before the sound card
needs the data. When this constraint is not respected, the result can be in-
correct, even if AMP decodes the mpeg audio correctly, because the decoded
data are generated too late. As a result, the user will hear some unpleasant
noise instead of its favourite song. Hence, in these cases the correctness of a
result does not only depend on the output values, but also on the time when
the result is generated (sometime, an approximate value computed on time
can be better than an exact value computed late). In this dissertation, such
applications are referred as time sensitive applications.

As will be shown in Chapter 2, classical real-time theory (pioneered by
Liu & Layland [LL73]) provides techniques for dealing with temporal con-
straints, but its application to generic time sensitive applications running on
a workstation OS can be difficult. For example, traditional real-time theory
mainly focuses on embedded control applications, which is only a subset of
all possible time sensitive applications considered in this work. In fact, dou-
ble thinking about it, it is possible to see that many applications are time
sensitive, even if they are not traditionally considered real-time applications.
An interesting example (that is also an “hot topic” in current OS research) is
represented by web servers: enabling an http server to respond to a request
in a specified time is fundamental to ensure that the web server will provide
the required Quality of Service (QoS).

Other notable examples of time sensitive applications are multimedia ap-
plications in general (streaming, video conference, audio or video players, and
so on), digital signal processing applications (such as software mixers, soft-
ware modems, or audio synthesiser), virtual reality applications, and many
others. Taking the above argument to the limit, we can say that all the appli-
cations are time sensitive: even a word processor (an example of “traditional
computer application”) is quite useless if it takes too much time to start or
to print a document.



1.1.2 Current OS Support

From the previous discussion it is easy to understand that time sensitive
applications are becoming more and more important, and supporting them
will become a fundamental issues in future OSs. However, the most com-
mon OS kernels and applications are not designed to support time sensitive
activities nor to run heterogeneous mixes of applications having contrasting
requirements. As a result, resources are allocated (and tasks are scheduled)
according to “general purpose” goals, such as reducing the average latency,
and it is difficult for the applications to provide a controllable QoS.

The most commonly proposed solution is to increase the hardware power
(and the amount of available resources), overengineering the system so that
it will result to be underloaded and all the applications will be served in a
reasonable way. As the power of the hardware is continuously increasing,
this solution is becoming cheaper and cheaper, but it results in an inefficient
exploitation of the available resources and in underutilisation of the sys-
tem, encouraging a bad programming practice. Moreover, every application
will likely run with the correct timing in the average case, but it cannot be
guaranteed that this will always happen. For example, if a resource greedy
application, such as Microsoft Word, or SUN StarWord, is launched when a
streaming application is running, it is almost sure that the streaming appli-
cation will experience a, hopefully transient, failure.

Hence, the inappropriateness of a traditional OS kernel for supporting
time sensitive applications is generally due to design goals that did not con-
sider support for timed activities. In particular, there are both theoretical
and practical issues, such as:

e task scheduling. The general purpose schedulers provided by the
most common OS are not designed to properly serve time sensitive
activities. Note that all the system resources (not only the CPU) must
be properly scheduled;

e resource allocation policy. As a result of the inappropriate schedul-
ing algorithms, system resources cannot be correctly allocated to the
various tasks in order to respect temporal constraints;

e kernel structure. Most of the current OS kernels are based on a
monolithic structure derived from BSD. This results in a series of
problems in accounting resource usage to the correct tasks, and in as-
signing resources to tasks in a proper way;

e temporal resolution of the system. General purpose OS kernels are
generally based on a periodic interrupt that triggers accounting and



scheduling activities, generally at a rate of 100 times per second. This
solution often results in a poor scheduling and accounting.

1.2 Contribution of this Dissertation

The thesis supported in this dissertation is that the appropriate scheduling
of system resources and the use of proper resource allocations policies in the
OS kernel ! permit to correctly support time sensitive applications without
over-engineering the system. The use of an appropriate kernel structure (or a
a proper modification of the traditional monolithic structure) is necessary to
correctly implement the scheduling algorithm, to implement an accurate re-
source allocation policy, and to effectively schedule all the system resources.
This enable to perform QoS guarantees in a workstation OS, enabling less
powerful computers to support time sensitive applications in a more pre-
dictable way.

1.2.1 Scheduling and Resource Allocation

Generic resource scheduling techniques are often inadequate for respecting
time constraints, hence the first element to support time sensitive applica-
tions is an appropriate scheduling algorithm. The algorithm of choice must
provide a theoretical foundation that permits to provide some kind of QoS
guarantee.

Using real-time theory it is possible to provide time guarantees under
some (very strict) assumptions, such as the complete a-priori knowledge of
the system. This includes a-priori knowledge of the task execution times (or
of their upper bounds), arrival times, and so on. While this assumption is
reasonable in an embedded system, where all the tasks are known in advance
and can be adequately analysed, any assumption regarding a-priori informa-
tion is not reasonable in a desktop operating system. In fact, in such a system
the number of active tasks can vary, and cannot be predicted; moreover, the
same application may need to run on a big number of different machines,
making impossible to know the execution times in advance. These systems
are often referred as Open Systems [DLS97, DL.97], to distinguish them from
Closed Systems, in which all the tasks that will run in the system are known
in advance. An Open System is a general purpose computer system in which
it is not possible to know a-priori neither the number nor the characteristics

leventually associated with user level QoS management and application-level adapta-
tion



of the applications that will be run. Typically, in an Open System applica-
tions with different levels of Quality of Service may coexists: hard real-time,
multimedia and interactive non-real-time applications.

Hence, in an Open System it is necessary to protect applications from
the misbehaviours of other applications. This property is called Temporal
Isolation: the net effect is that each application executes as it were on a
slower dedicated processor. The Resource Reservation approach [MRT93] is
a good way to implement temporal isolation using real-time techniques, and
has been proven to be very effective in the joint scheduling of Hard Real Time
(HRT) and Soft Real Time (SRT) applications in Open Systems. Another
possible way for implementing temporal isolation is Proportional Share (PS)
scheduling [PG93, PG94].

All those scheduling algorithms are characterised by low-level scheduling
parameters, that can be difficult to tune in the proper way. In particular,
the scheduling algorithm constitutes a mechanism provided by the kernel to
allocate resources to applications in a specified way, and a policy for allocating
resources must be specified at a higher level. For this reason, a QoS manager
that exports some high-level task model is needed to implement the resource
allocation policy by controlling the low-level parameters of the scheduler.

1.2.2 Kernel Structure

Most of the scheduling algorithms presented in the literature assume that
the scheduler has the total control of the system, and can decide when to
preempt the currently running task and to schedule a new task. Moreover,
scheduling decisions are assumed to be immediate, and no interference from
external factors is considered.

A real OS is more complex: to preserve the integrity of some data struc-
tures and the atomicity of some operations, tasks cannot be arbitrarily pre-
empted, the scheduler cannot be invoked at arbitrary time instants, but only
when specific events (such as a timer interrupt) occur, and exactly measuring
the execution time used by a task is not easy. Moreover, external events such
as hardware interrupts add another level of complexity, consuming execution
time and decreasing the predictability of the system.

The influence of these factors on task scheduling depend on how the
kernel is internally organised. In particular, traditional OS kernels (based on
the monolithic kernel structure) are not able to preempt a task when it is
executing a system call, and interrupts have the precedence over all the user
applications. This creates a discrepancy between the theoretical schedule and
the actual one produced by the system. This discrepancy can be reduced by
using an alternative kernel design, that reduces the the system calls size and
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permits to serve interrupts and external events in tasks scheduled by the
kernel. Some real-time systems such as Real-Time Mach [TNR90], DROPS
[HBB*98], and similar are based on a so called pkernel architecture, that
achieve those goals, but at the cost of a decreased efficiency. Other alternative
kernel architectures that can be used to improve real-time performance are
represented by the so called wvertically structured kernels (such as Nemesis
[Re97]), multithreaded kernels, or real-time executives.

Alternatively, the monolithic structure can be modified introducing kernel
preemptability to reduce the system calls’ size, and to introduce a more precise
accounting mechanism, high-resolution timers, and other mechanisms that
permit to increase the scheduler’s accuracy.

1.3 Organisation of the Dissertation

This dissertation introduces some contributions both in the field of scheduling
theory and resource allocation (more related to real-time research) and in the
OS field (implementation, kernel structure, and so on).

The first is concerned with the use of a proper scheduling algorithm and
the implementation of a QoS aware resource allocation policy. With the
latter implemented either at system level or at user level.

In Chapter 2 it will be shown that in order to enable QoS aware scheduling
and resource allocation a precise description of the tasks’ characteristics and
requirements is needed, and the concepts of task model and guarantee will be
introduced to solve this problem.

Chapter 3 will review some scheduling algorithms that can be used to
properly serve a time-sensitive application (namely, real-time and propor-
tional share schedulers). Moreover, it will be shown that reservation tech-
niques are the correct choice for a workstation OS, and the scheduling algo-
rithm used in this dissertation (namely the CBS) will be introduced as well
as some extensions used to synchronise time sensitive applications. The pro-
posed scheduling techniques will be then analysed providing a formal model
of the CBS, and the concept of QoS guarantee will be introduced.

Chapter 4 will address the problem of managing the system resources in
a proper way, based on the task models and guarantees presented in Chapter
2 and on the scheduling algorithms presented in Chapter 3. Some adaptive
techniques will be introduced.

The issues related to the implementation will be addressed in Chapter
5, where the most important kernel structures will be reviewed, and their
appropriateness to serve time sensitive applications will be evaluated. Some
of the most important problems and solutions will be presented, and some
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implementations of the techniques introduced in this dissertation will be
described, showing how a general-purpose kernels (such as Linux) can be
modified to support time-sensitive applications.

Finally, Chapter 6 will conclude the dissertation.
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Chapter 2

Fundamental Concepts

Any sufficiently advanced technology is indistinguishable from magic
Clarke’s law

Any sufficiently advanced magic is indistinguishable from
technology
Murphy’s reformulation of Clarke’s laW

Any sufficiently advanced magic is indistinguishable from a rigged
demonstration

Y
Programmer’s restatement of Murphy’s reformulation of Clarke S la,W

rhe OS kernel is the manager of all the hardware and software resources
~that are available in the system, and its rule is to assign resources
sto applications in order to properly execute them. The activities
composing a time sensitive applications are characterised by some temporal
constraints, and the desired QoS can be achieved only if the kernel kernel
allocates the resources so that those constraints are respected. Hence, the
kernel should be aware of the tasks’ characteristics and requirements.

In this chapter, some basic definitions and two abstractions used to de-
scribe applications’ characteristics and requirements (task models and guar-
antees) will be introduced.

2.1 Definitions

In a multiprogrammed system, the kernel assigns resources to the applica-
tions so that different applications give the impression to execute simultane-
ously. In other words, system resources have to be multiplexed between all
the applications that are running in the system; depending on the kind of re-
sources, the OS kernel can perform spatial multiplezing or time multiplexing.
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Spatial multiplexing is used when the same resource can be divided in
different parts, each of which can be assigned to a different application. A
typical example is the system memory: when several applications are running
in the system, the memory can be divided in regions, and each application
is assigned a different region. When the resource cannot be split in several
parts, time multiplexing must be used, and the resource is allocated to each
application at different times, using a time sharing technique.

To better understand these concepts, some definitions are needed:

Definition 1 An algorithm is the logical procedure that is used to solve a
problem, and it can be expressed using a special formalism called program-
ming language.

Definition 2 A program is a particular coding (implementation) of an al-
gorithm in a well defined programming language.

A program can execute as a sequential flow of operations, or can be composed
by more than one concurrent activities, that are called threads or processes.
Informally speaking, we can define threads and processes as follows:

Definition 3 A thread is a single flow of execution, characterised by a
small set of private resources, such as the CPU context, a stack and few
other variables. Hence, a thread has not a large set of private resources, but
generally works on public resources that it can share with other threads. In
order to execute, a thread must be associated to a set of resources such as for
example a memory space.

Definition 4 A process is composed by one or more threads, plus all the
resources that they need to execute (memory space, some descriptor tables,
and so on). These resources are private to the process, and cannot be accessed
by other processes (unless they are explicitly shared).

In this dissertation, the difference between threads and processes is not par-
ticularly important, and the word task will be used to identify an executable
entity, that can be a thread or a process.

2.2 Task Models

To understand what a task model is, let’s consider, for example, a task
reproducing a so called Continuous Media (CM) stream': the player task

'A Continuous Media is a stream of frames that should be played in a timely fashion,
such as a video or an audio stream.
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should decode and reproduce the stream frames periodically at a stable rate.
If this rate is not maintained, the experienced QoS decreases. As we will
see in Chapter 3, the use of an appropriate scheduling algorithm can help
to respect temporal constraints. However, the scheduling algorithm alone is
not enough since, in order to properly serve the application, the scheduling
parameters should be assigned adequately. Hence, the OS should provide
some way to specify the tasks’ requirements and parameters: this is the
role of the task model. A task model is an abstraction that can be used to
communicate to the OS kernel the tasks’ requirements and parameters, and
is necessary to decouple the scheduling algorithm from the application.

Unfortunately, the traditional task model (used by general purpose OSs
such as Windows or all the unix flavours) is not very useful for time sen-
sitive applications, since it characterise a task as a continuous stream of
instructions, optionally assigning an additional parameter (such as a fixed
priority or a “nice” value) to the task for describing the its importance. As a
result, real-time tasks can be scheduled using fixed priorities (Rate or Dead-
line Monotonic), dynamic priorities (Earliest Deadline First), or using some
form of Proportional Share, and the scheduling parameters are assigned giv-
ing the programmer a direct visibility of those low-level parameters such as
priorities, WCETSs, deadlines, weights, and so on. As can be easily seen,
this approach tends to mix the task model and the scheduling parameters,
exposing a direct visibility of the algorithm to the user.

2.2.1 The Real-Time Task Model

Returning to the previous example of a task reproducing a CM stream: to
provide a controlled QoS, frames have to be decoded periodically. This can be
done by splitting the player task into instances (using each instance to process
a single frame), and by executing task instances at a constant rate that is
compatible with the CM requirements. This result can be obtained using the
real-time task model, and using temporal constraints called deadlines to do
performance monitoring.

A real-time task 7; is a stream of instances, or jobs, each of them per-
forming an independent activity, such as decoding a frame, receiving a packet
from the network, serving an interrupt, and so on.

Each job J; ; is characterised by an arrival time (or release time) r; ;, an
execution time ¢; j, and a deadline d; ;; in general d; ; = r; ; + D;, where D; is
the tasks’s relative deadline. When a new job J; ; arrives (at time r; ;) task 7;
is inserted into the scheduler ready queue and is ready to execute when the
scheduler selects it. After executing for a time ¢; ;, the job finishes at time
fi;j; in order the temporal constraints to be respected, each job .J;; should
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finish before its deadline d; ;.

In general, to perform some kind of guarantee about the respect of job’s
deadline it is necessary to have some information about the execution and
interarrival times. The simplest way to provide those information is to specify
a Worst Case Execution time (WCET) C; = max;{¢;;} and a minimum
interarrival time 7; = min;{r; ;41 — r;;} for the task. In this case, a task
7; can be characterised by the parameters (C;, T;, D;). For example, if the
arrivals are periodic and the relative deadline is equal to the period (that is
to say, if r; j.1 = r;; +T; and D; = T;), the task is said to be periodic, and
is described by the tuple (C;, T;) (the periodic task model was introduced by
Liu & Layland [LLT73]).

A task characterised by periodic arrivals (fixed interarrival times) but
unknown execution times is referred to as a semiperiodic task in this dis-
sertation. The distinction between periodic tasks and semiperiodic tasks
has been introduced to distinguish the case in which a WCET C; is known
(the Liu & Layland periodic model) from a more realistic case in which no
assumption on the execution times can be done.

2.2.2 The GPS Model

Returning to the CM player example, it is worth noting that to be properly
served, i.e. to respect the CM temporal constraints, the CM decoding task
must be assigned a proper amount of the CPU and of the other needed
resources. Hence, as an alternative to the real-time task model it is possible
to allow time sensitive tasks to execute at a constant rate, which permits to
respect their time constraints.

Executing each task 7; at a constant rate is the essence of the Generalised
Processor Sharing (GPS) [PG93, PG94] approach: in this model, each shared
resource needed by tasks (such as the CPU) is considered as a fluid that can
be partitioned among the applications. Each task will instantaneously receive
a fraction f;(t) of the resource at time ¢, where f;(¢) is defined as the share.
Note that the GPS model can be seen as the limiting form of a Weighted
Round Robin policy.

To compute the share of the resource that each task 7; will receive, in the
GPS model 7; is assigned a weight w;, and its share is computed as
Wy
£t Yrer() Wi

where ['(¢) is the set of tasks active at time 7.
Since each task consists of one or more requests for shared resources such
as the CPU, tasks can block and unblock, and the T'(¢) set can vary with time.

16



Hence, the share f;(¢) is a time varying quantity. The minimum guaranteed
share is defined as the rate

w;

Fi=g——!
ZTjEij

Note that a correct assignment of the tasks weights permits to guarantee
real-time performance to all the time sensitive tasks in the system. In fact,
based on the task share, it is possible to compute a response time for each
task request. The problem with this task model is that the task response
time and the task throughput are not independent.

2.3 High Level Task Models

The RT and PS task model presented in the previous section can be useful
to model the tasks’ requirements and characteristics, but in some cases they
exports some too low-level parameters. Since a user is not generally inter-
ested in the scheduling algorithm and its details, and does not often knows all
the tasks parameters, in many cases the RT or PS models are very different
from what the users really needs and using such models forces the program-
mer to assign low-level parameters according to complex mapping functions.
Moreover, a similar approach presents the following disadvantages:

e the system schedulability strongly relies on the exact knowledge of
WCETSs, which cannot always be easily estimated;

e in some cases tasks’ parameters (e.g., the PS weights) have not an easy
interpretation, so the user can only assign them using heuristic rules;

e tasks’ parameters are too low-level to support complex features, such
as bandwidth adaptation or advanced synchronisation.

The problems mentioned above can be addressed by introducing high-level
task models which provide an interface closer to the real needs. For example,
in a multimedia environment the following features can be identified for the
application tasks:

e cach task is characterised by an importance value with respect to all the
other tasks: when the system resources are not enough to fulfil each task
request, the resources will be shared according to tasks’ importance;

e some tasks need to execute with a constant rate, without respecting
any explicit time constraint;
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Figure 2.1: Example of the three classes of tasks.

e some tasks need to execute periodically: the task is composed of jobs,
each of them have to be activated at a period boundary and must finish
within the period end. This is a time constraint that can be expressed
in terms of deadlines;

e some tasks need to respond to internal or external events, serving a
minimum number of events per time unit.

To fulfil these requirements, a task 7; can be characterised by a weight
w;, representing the task’s importance with respect to the others. Moreover,
tasks can be characterised by some temporal constraints (such as a period
T;). Based on these characteristics, three classes of tasks can be defined (see
Figure 2.1):

e PseudoPS (PPS) Tasks 7; = (w;) are flows of instructions that
execute uniformly, receiving a processor share proportional to the task
weight w;;

e MultiMedia (MM) Tasks 7, = (w;,T;) are streams of jobs J;; pe-
riodically activated with a period T;, so that job .J;; arrives in the
system at time r;; = 7;;,_1 + T;, and should finish before the next
job starts (see the semiperiodic task model in the previous section).
Using the real-time terminology, we say that .J; ; has a soft deadline
d;j = 7ij+1 = rij + T;. The goal of the system is to assign each task a
fraction of the processor bandwidth sufficient to meet this requirement;

e Event Driven (ED) Tasks 7; = (w;, R;) are streams of aperiodic jobs
J; j activated by external or internal events. The user specifies the av-
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erage number R; of jobs that should be executed per time unit, and the
goal of the system is to automatically adjust the fraction of processor
bandwidth assigned to each task in order to meet this requirement.

PseudoPS tasks are equivalent to GPS tasks: they execute at a uniform
rate, but, since their execution time is not known, no temporal constraint can
be guaranteed, although a suitable (system dependent) tuning of the tasks’
weights may allow to serve conventional applications in a timely fashion,
without modifying them.

MM tasks are designed to manage CM streams. Since they are composed
of distinct jobs, the system can monitor each job’s execution time to arrange
the CPU bandwidth reserved to the task. Using this task model, the pro-
grammer has to specify the task period, but the task execution time does
not need to be estimated.

ED tasks are similar to MM Tasks, in the sense that the programmer
is not bound to specify the task execution time: the only mandatory task
parameter is the number R; of jobs that must execute in a time unit. The
difference with MM Tasks is that Event Driven Tasks are not periodically
activated by the system, but are activated by external events.

If the system is overloaded, and the CPU bandwidth is not sufficient to
fulfil each task’s requirement, an explicit bandwidth compression algorithm
corrects the fraction of CPU bandwidth assigned to each task using the task
weight w; (the tasks with the higher weights will receive a bandwidth nearest
to the requested one). This model permits to distinguish the task temporal
constraint (the period T; or the rate R; = 1/T;) from the task importance,
expressed by the weight w;. In fact, one of the biggest problems of classical
real-time scheduling algorithms (such as Rate Monotonic or Earliest Deadline
First) was that the task importance resulted to be proportional to the inverse
of the task period.

2.4 Guarantees

As shown in Section 2.2, a time sensitive application should be served so that
some temporal constraints are respected. Those constraints are expressed by
the task model: for example, in the real-time task model each job J; ; is asso-
ciated a deadline d; ;. Hence, the goal of the OS kernel is to allocate resources
in order to provide some guarantees about the temporal constraints: in the
previous example, a simple guarantee can be that each job .J;; terminates
before its deadline (Vi, 7, f;; < d; ;).

Definition 5 A guarantee is a contract between the system and a client
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(generally a task), regarding the amount of resources that the client will re-
ceiwe from the system, and the timing of this resource allocation.

In other words, the guarantee abstraction concerns the task performance,
and is used to decouple it from the scheduling algorithm an the implemen-
tation details (that is to say, a guarantee abstracts the behaviour provided
by a scheduler from the scheduling algorithm itself). In Chapter 3 it will be
shown that the most important issue in scheduling analysis is to prove that
a scheduling algorithm provides a particular kind of guarantee. In this way,
a programmer is allowed to reason in terms of model of resource allocation,
instead of coping with the resource allocation algorithm itself.

The guarantee abstraction is particularly important in real-time systems,
because it permits specify the QoS that a task will receive from the system.
In this context, it is important to know if the system will be able to provide
a specified guarantee, to determine if a task can be accepted in the system
(without compromising the guarantee of the other tasks). This is done using
an admission test.

Definition 6 The admission test, or schedulability test is a condition
that must be verified to provide a specified guarantee.

Informally speaking, the admission test states that the amount of resources
needed to respect a specified guarantee is less or equal than the amount of
available resources. The admission test depends on the scheduling algorithm,
and is used to pass from a task set and a scheduling algorithm to a guarantee
that will be provided by the system. In Chapter 3 some examples of admission
tests will be presented together with some real-time scheduling algorithms.

2.4.1 Hard Real-Time Guarantee

Real-time techniques were originally developed for implementing embedded
control system for which the consequence of a deadline miss was considered
to be catastrophic. For this reason, the first kind of guarantee that has been
presented in literature is the Hard Real-Time Guarantee, requiring that all
the deadlines in the system are respected.

More formally, a hard guarantee ensures that

V(Z,]), fi,j S di,j- (21)

In order to analyse the feasibility of a hard guarantee, some additional
definitions are needed:
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Definition 7 Given a real-time task 7;, its demanded time D;(ty,1s) is

defined as
Dj(ty,t2) = > Cij

Jirig>tindy j<to

Definition 8 In a similar way, the time demanded by a task setT" = {r,...7,}
can be defined as

D(tl, tg) - Z Dz

The concept of demanded time is fundamental to test if a task set T" is
schedulable or not, as stated by the following theorem:

Theorem 1 A necessary condition for the task set T = {m,...7,} to be
schedulable is that

th,tg 1ty > tl,D(tl,tg) < (tg — tl)

2.4.2 QoS Guarantees

In recent years, it has been shown that a more relaxed guarantee can be
useful too. In fact, respecting all the applications’ deadline can often be
overkilling, and aiming to that goal can lead to system underutilisation.

For this reason, the concept of soft real-time tasks has been proposed: a
soft real-time task is a task that should respect its deadlines, but that can
tolerate a “reasonable amount” of missed deadlines. It is easy to see that this
definition is too vague, and the “reasonable amount” should be quantified
in order to use this concept in a systematic way. In facts, the problem with
soft real-time is that it is often difficult to give a formal definition of a QoS
guarantee (soft guarantee). For this reason, the terms “QoS” and “soft real-
time” or “soft guarantee” are often used informally, and their meaning is
not well understood (for example, in all the real-time theory there is a big
confusion between soft real-time tasks and aperiodic tasks).

A possible way to define the concept of QoS guarantee in a more formal
way is to use probabilistic deadlines. Using this model,

7 = (Ui(c), Vi(t))

where U;(c) is the probability that job .J; ; has execution time ¢, and V() is
the probability that jobs’ interarrival time is ¢. Hence,

U(e) = Plea,;=c}
V;(t) = P{ri’j+1 — Ti,j = t}
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In Chapter 3 it will be shown that a proper assignment of the scheduling
parameters permits to respect all the task’s deadlines. This corresponds to
the Liu and Layland priority assignment and to the hard real-time guarantee.

On the contrary, a probabilistic guarantee permits to assign the schedul-
ing parameters (Q3,77) to 7; in a less conservative way, still maintaining
some control on the QoS experienced by 7;. In this case, the concept of prob-
abilistic deadline can be used to quantify the QoS experienced by each task.
A probabilistic deadline ¢ is not required to be always respected, but can be
respected by task 7; with a probability

XZ((S) = P{fi,j < T+ 5} < 1.

Performing a QoS guarantee with a probabilistic deadline § means to
guarantee that:

e if task 7; is described by the PDFs (U;(c), Vi(t))
e if the assigned scheduling parameters are (Qf,T7)

e then, each job J;; of task 7; has probability X;(d) of finishing within a
relative deadline 9.

2.4.3 GPS Guarantee

As explained in Section 2.2.2, the GPS model describes a task system as a
fluid flow system, in which each task 7; is modelled as an infinitely divisible
fluid, and executes at a minimum rate F; that is proportional to a user
specified weight w;.

Hence, task 7; is guaranteed to execute for a time s;(t1,%2) > (to — t1)F;
in each backlogged interval [t1,?5]. The exact definition of the GPS executed
time s; is s; = ttf fi(t)dt. Hence, in the ideal fluid flow case, the tasks’
execution can be described through the GPS guarantee:
execi(ty,ta) _ w;

> i=12..n (2.2)

Vr; active in [t
7; active in [ty, to], exec;(ty,ta) — w,

where exec;(t1,ty) is the execution time of 7; in the interval [t1, t5].

It can be easily seen that Equation 2.2 is equivalent to exec;(ty,ts) =
Si(tl,tQ).

In a real system, resources are allocated in discrete time quanta of size
. This quantum based allocation causes an allocation error: given two
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active tasks 71 and 7, the allocation error in the time interval [t1, 5] can be

expressed as
execi(ti,t2)  execi(ti,ts)

w; w;
An alternative way to express this allocation error is the mazimum lag Lag; =

maxy, ¢, {|ezec;(t1, t2) —si(t1,12)|}. Hence, a more realistic version of the GPS
guarantee is the following:

t
exec;(ty,ta) = / ’ fi(t)dt + —Lag;

t1

2.4.4 Reservation Guarantees

An important concept that emerged in the last years is the temporal isola-
tion, ensuring that the temporal behaviour of a task is not influenced by the
temporal behaviour of other tasks in the system.

In other words, if a task requires “too much” resources, it must be slowed
down in order not to jeopardize the other tasks’ guarantee. A similar property
is very important, since it permits to provide different guarantees to different
tasks: for example, it is possible to perform an hard guarantee on a task,
while other tasks are provided a probabilistic guarantee, or no guarantee at
all.

Looking at the previous section, it is possible to see that a PS guaran-
tee provides some form of temporal protection: if task 7; is guaranteed to
receive f;(to — t1) time units in the time interval (¢1,%,), it means that it is
possible to guarantee 7;’s performance independently from all the other tasks.
Of course, tasks’ weights w; need to be properly arranged, and an admission
test is needed, as shown in [SAWJ97]. However, imposing % to be con-
stant for all the (1, t2) intervals can be a too stringent requirement (in facts,
Section 2.4.3 shows that a real scheduling algorithm can only approximate a
PS guarantee).

A better solution would be to guarantee that the ratio % is constant
over well specified intervals, for example between deadlines in a real-time
task. This is the essence of the reservation guarantee. More formally, a
reservation (@,7T, D) guarantees that an amount ) of a resource will be
available to the reserved task every period T, within a deadline D from the
beginning of the period. Hence,

Vi > jrexec(j1 T, joT + D;) > (jo — j1 + 1)@

If T = D, the reservation simplifies to a (@, T) model, and the guarantee
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becomes
_exec(jiT, joT + D;)

Via > 71 . .
(Jo — J1)T
Some authors tend to distinguish hard reservation guarantees from soft

real-time guarantees: following this definition, a soft reservation guarantee is
based on the previous formula, whereas a hard reservation guarantees that

S @
- T

(2.3)

Vj2 > j1 exec(].lT, JQ.T + D) _¢ (2.4)
(j2 — )T T
Since a reservation guarantee ensures that () time units will be served
within a relative deadline D at each period T, it is possible to restate its
requirements as a hard real-time guarantee, requiring that a periodic task 7
with ¢;; < @, period T' and relative deadline D respects all its deadlines.
Hence, an admission test similar to the one of Theorem 1 is required.
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Chapter 3

Scheduling

My VCR is a real-time system;
it fails all the time.
I'm still alive

Rich Gerber

s said in Chapter 2, in a multiprogrammed system the kernel is re-

=} 9sponsible for multiplexing the system resources between concurrent
\-applications. More formally, the kernel has to schedule resources, de-
ciding which resource is assigned to which application. In this chapter, it will
be shown that in order to properly serve time sensitive applications (that is
to say, in order to respect temporal constraints of a given task model and ful-
fil a specified guarantee) the scheduling algorithm must be carefully chosen,
and some of the most important scheduling algorithms will be presented.

3.1 Task Scheduling

To execute, each task 7 needs some resources to be assigned to it (in general,
it will need at least the CPU and some amount of memory); when time
multiplexing is used, a resource R is assigned to a single task 7; at
time ¢, hence it is possible to describe the resource allocation using a function
or:R" =T, where I' = {ry,...7,} is the set of all the tasks in the system.
More formally,

Definition 9 A schedule og(t) is an assignment of a resource R to a set
of tasks T' = {m,...7,}. Hence, og(t) is a function from the time domain
R* to the task set I'. Note that it is possible that at time t resource R is
not assigned to any task; in this case the resource is said to be idle. To cope
with this situation, the schedule can be defined as op : RY — T'U{d}, where
or(t) = ¢ means that R is idle at time t.
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Definition 10 A scheduling algorithm is an algorithm that is used to
decide to which task T; resource R will be assigned at time t.

Most of the scheduling algorithms are priority based: all the active tasks
(that is to say, all the tasks that are competing for a resource) are listed
in a ready task queue T'yeqqy, and a scheduling priority P(r;) is assigned to
each task 7;. At each time, the task having the highest priority is selected
(is scheduled), and the resource is allocated to it:

or(t) =7, : P(r;) = max {P(r;)}
7j €l ready
If the scheduler does not change the scheduling priorities (but they are as-
signed at task creation and can only be changed by using an explicit system
call), the scheduler is said to be based on static priorities. Otherwise (if
the scheduling priorities can be changed by the scheduler during the task
execution), the scheduler is referred as a dynamic priority based one. For
example, the classical Unix scheduler is based on dynamic priorities, since a
task’s priority decrease during task execution to avoid starvation.

3.2 Classical Real-Time Scheduling

As previously said, the scheduling algorithm is used for deciding to which task
to allocate a system resource. When dealing with time sensitive applications,
the goal of a scheduling algorithm is to allocate resources to a task set ' so
that some kind of guarantee is respected. Of course, the scheduler can provide
a guarantee (for example, the hard real-time guarantee - all the deadlines are
respected) only if the task models describing T' are known. From this point
of view, a scheduling algorithm transforms a task model (or a set of task
models) into a guarantee. This can be done by using a schedulability test to
check if given set of tasks is compatible with a specified guarantee.

To simplify the discussion, let’s assume that each task in the system only
needs the CPU to execute. Hence, the only scheduler present in the OS kernel
is the CPU scheduler, and it is responsible to schedule tasks so that their
time constraints are respected. The simplest way to do this is to consider
the periodic real-time task model, and the hard real-time guarantee: in this
case, each task 7; is described by two parameters (C;, T;), and the goal of the
scheduler is to meet all the deadlines d; ; = jT;. Moreover, since all tasks are
periodic, Theorem 1 can be simplified in the following lemma:

Lemma 1 IfT' = {n,...7,} is a set of periodic tasks 7, = (C;, T;), then a
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necessary condition for its hard schedulability is that
Z": G
— T, —

That is to say, if the system utilization >}, T is greater than 1, then it is
impossible to respect all the deadlines.

The first attempt to schedule such a task system can be to use a priority
based scheduler: for example, an intuitive choice can be to use fixed priorities
and to assign higher priorities to tasks characterised by shortest deadlines

(smallest periods):
1

T;
this is the Rate Monotonic (RM) priority assignment, that has been analysed
by Liu & Layland in [LL73]. As a confirmation of the goodness of the previous
intuition, RM turns out to be an optimal static priorities assignment. That
is to say, if a periodic task set is schedulable using fixed priorities,
then RM will schedule it properly.

As explained above, in order to provide a guarantee a schedulability test
is needed. The simplest kind of schedulability test is the utilization based
one, that is expressed by the following theorem:

P(TZ) =

Theorem 2 IfT' = {r,...7,} is a set of periodic tasks 7, = (C;,T;), then
RM will schedule it respecting all the deadlines if
" C;
—t < U,
Z T Tub

i=1 —°

where Uy is the utilization least upper bound and is defined as Uy =
1
n(2» —1).

Unfortunately, the condition expressed by Theorem 2 only is a sufﬁcient
condition, and it is not a necessary one. That is to say, if > ;- T < U
then the task set will be surely schedulable with RM, but if the system
utilization is greater than Uy, nothing can be said. Hence, restating the
previous sentence if the RM priority assignment is used and if the admission
test Yoo, T < Uy is passed, then each task in the system will respect all
its deadlines. If the admission test fails, then some deadlines can be missed;
since RM is based on static priorities, it is possible to forecast that the tasks
missing deadlines will be the lowest priority ones.

Theorem 3 If a scheduling algorithm based on static priorities is used to
schedule the periodic task set T' = {r,...7,} and task 7; does not miss any
deadline, then each task 7; : P(1;) > P(r;) will not miss any deadline.
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Unfortunately, the utilization least upper bound for RM is quite low (0.69
in the worst case); this problem can be addressed by using a different guar-
antee test based on the tasks’ finishing times, as explained in [ABRT93|.
Using this exact analysis, it is possible to perform a less pessimistic admis-
sion test, but there are still some task sets that are schedulable in theory
(since 37", &0 < 1) and are not schedulable by RM. Since RM is optimal
between all the fixed priority assignments, those task sets can be scheduled
only using dynamic priorities. In this case, the priority of a task does not
only depend on the task but it also depends on a second parameter, that
can be the time ¢, the job number j, or a generic index i (hence, it will be
expressed as P(7;,x)). The most intuitive dynamic priority assignment is
Earliest Deadline First (EDF), based on assigning priorities to the jobs, and
on assigning higher priorities to jobs with the shortest absolute deadline:

1
d

P(7;,j) = P(Jij) = —
i.j

EDF is an optimal scheduling algorithm, meaning that if a task set T’
is schedulable (that is, if an algorithm capable of scheduling I' in order to
respect every deadline exists), then EDF can schedule it respecting all the
deadlines.

This concept is expressed by the following theorem:

Theorem 4 A task set ' is schedulable by EDF if and only if

th,tg 1ty > tl,D(tl,tg) < (tg — tl)

Comparing Theorem 4 with Theorem 1, it is easy to see the optimality of
EDF.

3.3 Proportional Share Scheduling

A Proportional Share (PS) scheduling algorithm emulates the GPS allocation
model in a real system, where multiple tasks cannot execute simultaneously
on the same CPU.

Hence, the ideal fluid-flow allocation is approximated using a quantum-
based allocation. That is to say, in a Proportional Share scheduler the re-
source is allocated in discrete time quanta having maximum size (): a process
acquires a resource at the beginning of a time quantum and releases the re-
source at the end of the quantum (a new request is posted) or before (the
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process have to be expressly re-activated); this is done dividing each task 7;
in requests ¢F of dimension Q.

As already noted in Section 2.4.3, quantum based allocation introduces
an allocation error respect to the fluid flow model. The minimum theoretical
error bound is H,; = %(g— + %), where (); is the maximum dimension
for 7; requests and (Q; is the maximum dimension for 7; requests. This
allocation error influence the performance of time sensitive tasks in a way
that is described by the lag. In order to understand this, consider that in
the ideal GPS system task 7; executes for a time fttf fi(t)dt in the interval
[t1,ts]; in a real system this is impossible (because tasks are not fluid), so the
allocation error experimented by a task can be measured by the lag!':

t
lagz(tl) = /; 1 fz(t)dt — execi(tg,tl),
0

where t; is the activation time of the task.

In the following of this section, some of the most important PS scheduling
algorithm are analysed, showing how they emulates the ideal GPS allocation,
and evaluating their performance in terms of allocation error and lag.

3.3.1 Weighted Fair Queuing

The first known Proportional Share scheduling algorithm is Weighted Fair
Queuing (WFQ), that emulate the behaviour of a GPS system using the
concept of virtual time. The virtual time v(¢) is defined by increments as

follows:
v(0) = 1 0

Each quantum request ¢F is assigned a virtual start time S(g¥) and a virtual
finish time F(¢F) defined as follows:

S(a) = max{o(rix), Fg/ ™)}
F(d) = S+ L

2

where r; . is the time at which request ¢¥ is generated and Q; . is the request
dimension (required execution time); since );x is not known a priori (a task
may release the CPU before the end of the time quantum), it is assumed
equal to the maximum value @);.

lremember that the maximum lag has already be cited a measure of the allocation

error

29



Tasks’ requests are scheduled in order of increasing virtual finish time:
in the virtual time domain, each request will finish before the virtual finish
time.

WFQ provide fairness (bounding the allocation error) in static systems,
where all the tasks are always active, but presents some problems:

e it needs the frequent recalculation of v(¢);

e it does not perform well in dynamic systems (when a task activates or
blocks, the fairness of the schedule is compromised);

e it assumes each requests size equal the maximum value (scheduling
quantum): in a real situation this assumption is not correct;

3.3.2 Start Fair Queuing

In [GGV96], a proportional share scheduler is used to subdivide the CPU
bandwidth between various application classes: the proposed algorithm, Start
Fair Queuing (SFQ), is similar to WFQ but defines the virtual time in a dif-
ferent manner and schedules the requests in order of increasing virtual start
time. The virtual time v(¢) is defined as follows:

0 ift=20
v(t) =< 0 or any value if the CPU is idle
S(qk) if request ¢F is executing

SFQ guarantees an allocation error bound of 2H; ;, so it is near-optimal.
Moreover, SFQ calculates v(¢) in a simpler way (introducing less overhead)
and does not need the virtual finish time of a request to schedule it, so it
does not require any a priori knowledge of the request execution time (F(qF)
can be calculated at the end of ¢ execution).

A Proportional Share algorithm schedules the tasks in order to reduce
the allocation error experimented by each of them; to provide some form of
real-time execution it is important to guarantee that lag;(t) is bounded.

SFQ and WFQ provides an optimal upper bound for the lag: max;{lag;(t)} =
Q;, but do not provide an optimal bound for the absolute value of the lag:
for example, for SFQ this bound max,{|lag;(t)|} = Q;+ f; 3= Q; that depends
on the number of active tasks.

3.3.3 Earliest Eligible Virtual Deadline First

In [SAWJ'96] the authors propose a scheduling algorithm, called Earliest
Eligible Deadline First (EEVDF), that provide a bound on the lag experi-
mented by each task.
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EEVDEF defines the virtual time as WFQ and schedules the requests by
virtual finish times (in this case called virtual deadlines), but use the virtual
start time (called virtual eligible time) to decide if a task can be scheduled (is
eligible): if the virtual eligible time is grater than the actual virtual time, the
request is not eligible. Virtual eligible and finish time are defined as follows:

S(qlk) = maX{U(Ti,k)a E’(qffl + %}

F(g) = S(gf)+ Qi

w;

When a task joins or leaves the competition (activates or blocks), v(t) is
adjusted in order to maintain the fairness in dynamic system.

The minimum theoretical bound for the lag absolute value is Q, that is
guaranteed by the EEVDF algorithm; for this reason, EEVDF is said to be
optimal. EEVDF can also schedule dynamic task sets and can use fractional
and non uniform quantum size, so it can be used in a real operating system.
To the best knowledge of the authors, EEVDF is the only algorithm that
provides a fixed lag bound.

If the lag is bounded, real-time execution can be obtained maintaining
constant the share of each real-time task:

fi(t) = C; + magi{lagi(t)}_

3.4 Reservation Based Scheduling

Based on classical real-time scheduling (EDF or RM priority assignment), it
is possible to implement a reservation guarantee by simply enabling a task
T to execute as a real-time task (scheduled, for example, by EDF or RM)
for a time @, and then blocking it (or scheduling it in background as a non
real-time task) until the next period. In this way, a task is reshaped so that
it behaves like a periodic real-time task with parameters (), 7) and can be
properly scheduled by a classical real-time scheduler. A similar technique is
used in computer networks by the traffic shapers, such as the leaky bucket
or the token bucket. More formally,

e a reservation scheduler is characterised by two parameters (Q,T')
e a budget, or capacity is associated to each reservation

e at the beginning of each reservation period, the budget is recharged to

Q
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Missed Deadline!!!

Figure 3.1: Resource Reservations with aperiodic arrivals.

e when the reserved task executes, the budget is decreased accordingly

e when the budget arrives to 0, the reservation is said to be depleted, and
an appropriate action should be taken.

As previously said, when a reservation is depleted the reserved task can be
blocked, or it can be “downgraded” to be a non real-time task. By blocking
the task, it is possible to implement a hard reservation, whereas if the task
is downgraded to non real-time a soft reservation behaviour can be imple-
mented.

Note that the reservation parameters (@), T) are different from the task
parameters (C,T), and this separation can be useful to control the tasks’
QoS (as it will be shown in the next sections). In order to avoid confusion,
the reservation’s parameters will be indicated with (Q°, T®), whereas the task
parameters will be indicated with (C,T) as usual.

3.4.1 Reservation Systems on Dynamic Priority Sys-
tems

A generic reservation based scheduling algorithm can in general have some
problems in handling aperiodic task’s arrivals. For example, let’s consider two
tasks 7 = (2,4) and 7 = (1.5, 3) served by two reservations RSV; = (2,4),
and RSV, = (1.5,3). As shown in Figure 3.1, if the EDF priority assignment
is used to implement the reservation scheme, then the task set is schedulable
(and each task will respect all its deadlines). However, if an instance of one
of the two tasks is activated later (the third instance of 7 in the example), a
task may miss a deadline. Other similar problems can be highlighted when
a lot of reservation are created and immediately destroyed consecutively in
a short time.

When implementing reservations over a dynamic priority scheme (such
as the EDF priority assignment), it is possible to take advantage of dynamic
priorities in order to fix all these problems, and to better exploit the CPU
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time. This can be done by properly assigning a dynamic scheduling deadline
to each task and by scheduling tasks by EDF based on their scheduling
deadlines.

Definition 11 A scheduling deadline d;; is a dynamic deadline assigned
to a job J; ; in order to schedule it by EDF

Note that a scheduling deadline is something completely different from the
job deadline d; ;, that in this case is only used for performance monitoring.

The abstract entity that is responsible for assigning a correct scheduling
deadline to each job is called aperiodic server.

Definition 12 A server is a mechanism used to assign scheduling dead-
lines to jobs in order to schedule them so that some properties (such as the
reservation guarantee) are respected.

Hence, the server assigns to each job .J; ; an absolute time-varying deadline
d; ; which can be dynamically changed. This fact can be modelled by splitting
each job J; ; in chunks H;;, each of whose is assigned a fixed scheduling
deadline d ; .

Definition 13 A chunk H; ; is a part of the job J; j characterised by a fized
scheduling deadline d; ;. Each chunk H;;y is characterised by an arrival
time a; j i, an execution time e; ;i and by its scheduling deadline. Note that
the arrival time a; jo of the first chunk of a job J; j is equal to the job release
time: ;50 = Tij5-

In order to be useful to implement a resource reservation strategy, an
aperiodic server must assign scheduling deadlines to tasks so that the uti-
lization of the served task is less than a server utilization U®. This concept
can be better understood by extending the demanded time definition given
in Section 2.4.1 2.

Definition 14 Given a server S;, its demanded time D} (t1,t3) is defined
as
Dj(t1,12) = > ey
Jirii Ztl/\df,]‘ <t

Where d; ; is the j'h deadline generated by server S;, and e;; is the amount
of time that the served task will execute with deadline d; ;.

Znote that the demanded time was defined in the context of the real-time guarantee,
and we are extending the definition to the reservation guarantee
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Based on these definitions, a server must generate scheduling deadlines
so that
Di(ty,t) < (to — 1) B;

in this way, a set of servers is schedulable (that is to say, each scheduling
deadline is respected) if Y0 | Bf < 1.

3.4.2 The Constant Bandwidth Server

The service mechanism proposed in this dissertation is the Constant Band-
width Server (CBS), a work conserving server (implementing soft reserva-
tions) that has been inspired by the Total Bandwidth Server and by the
Dynamic Sporadic Server (for a better comparison between these service
mechanisms, see [Abe98, AB9S].

The CBS algorithm is formally defined as follows:

e A CBS S is characterised by a budget ¢* and by a ordered pair (Q*, T*),
where Q° is the server mazimum budget and T? is the server period. The
ratio B® = Q°/T* is denoted as the server bandwidth. At each instant,
a fixed deadline dj is associated with the server. At the beginning
dy = 0.

e Each served job J;; is assigned a dynamic deadline d;; equal to the
current, server deadline dj.

e Whenever a served job J;; executes, the budget ¢® of the server S
serving 7; is decreased by the same amount.

e When ¢* = 0, the server budget is recharged to the maximum value
(° and a new server deadline is generated as dj,, = dj + T°. Notice
that there are no finite intervals of time in which the budget is equal
to zero.

e A CBSis said to be active at time ¢ if there are pending jobs (remember
the budget ¢* is always greater than 0); that is, if there exists a served
job J; j such that r; ; <t < f; ;. A CBS is said to be idle at time ¢ if it
is not active.

e When a job J;; arrives and the server is active the request is en-
queued in a queue of pending jobs according to a given (arbitrary)
non-preemptive discipline (e.g., FIFO).

34



25 om o EE S i
e el m mlm )
CBS | R ” °

(2,7) |

Figure 3.2: Simple example of CBS scheduling.

e When a job J;; arrives and the server is idle, if ¢/ > (dj, — r; ;) B® the
server generates a new deadline dj ; = r; ; + T and ¢’ is recharged to
the maximum value )°, otherwise the job is served with the last server
deadline dj using the current budget.

e When a job finishes, the next pending job, if any, is served using the
current budget and deadline. If there are no pending jobs, the server
becomes idle.

e At any instant, a job is assigned the last deadline generated by the
server.

Figure 3.2 illustrates an example in which a hard periodic task (directly
scheduled by EDF) 7 is scheduled together with a soft task 7, served by a
CBS having a budget Q° = 2 and a period T* = 7. The first job of 7, arrives
at time r; = 2, when the server is idle. Being ¢® > (dj — 1) B?, the deadline
assigned to the job is df = ry +T° = 9 and ¢’ is recharged at )° = 2. At
time ¢; = 6 the budget is exhausted, so a new deadline d = d; +7T° = 16 is
generated and ¢’ is replenished. At time ry the second job arrives when the
server is active, so the request is enqueued. When the first job finishes the
second job is served with the actual server deadline (dj = 16). At time to = 16
the server budget is exhausted so a new server deadline dj = dj +7° = 23
is generated and ¢ is replenished to ()°. The third job arrives at time 17,
when the server is idle and ¢* =1 < (d§ —r3)B* = (23— 17)2 = 1.71, so it is
scheduled with the actual server deadline dj without changing the budget.

In Figure 3.3, a hard periodic task 7 is scheduled together with a soft
task 7o, having fixed inter-arrival time (7, = 7) and variable computation
time, with a mean value equal to C'; = 2. This situation is typical in appli-
cations that manage continuous media: for example, a video stream requires
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Figure 3.3: Example of CBS serving a task with variable execution time and
constant inter-arrival time.

to be played periodically, but the decoding/playing time of each frame is not
constant. In order to optimise the processor utilization, 7 is served by a
CBS with a maximum budget equal to the mean computation time of the
task (Q° = 2) and a period equal to the task period (7% =T, = 7).

As we can see from Figure 3.3, the second job of task 7, is first assigned a
deadline dj = o+ 7. At time t5, however, since ¢’ is exhausted and the job
is not finished, the job is scheduled with a new deadline dj = dj +7°. As a
result of a longer execution, only the soft task is delayed, while the hard task
meets all its deadlines. Moreover, the exceeding portion of the late job is not
executed in background, but is scheduled with a suitable dynamic priority.

In other situations, frequently encountered in CM applications, tasks have
fixed computation times but variable inter-arrival times. For example, this is
the case of a task activated by external events, such a driver process activated
by interrupts coming from a communication network. In this case, the CBS
behaves exactly like a TBS with a bandwidth B* = Q°/T*. In fact, if C; = Q*
each job finishes exactly when the budget arrives to 0, so the server deadline
is increased of 7. It is also interesting to observe that, in this situation, the
CBS is also equivalent to a Rate-Based Execution (RBE) model [JB95] with
parameters x = 1,y = T;, D = T;. An example of such a scenario is depicted
in Figure 3.4.

Finally, Figure 3.5 shows how the tasks presented in Figure 3.1 are sched-
uled by a CBS when an instance arrives late. Since the CBS assigns a correct
deadline to the instance arriving late (the third instance of 71), 7o does not
miss any deadline, and temporal protection is preserved.
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Figure 3.4: Example of CBS serving a task with constant execution time and
variable inter-arrival time.

Figure 3.5: CBS with aperiodic arrivals.
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Figure 3.6: Serving some jobs divided in chunks.

3.4.3 CBS Properties

The proposed CBS service mechanism presents some interesting properties
that make it suitable for supporting CM applications. The most important
one, the the isolation property is formally expressed by the following theorem.

Theorem 5 A CBS with parameters (Q°, T*) demands a bandwidth U* = %

Proof.
In order to prove that a CBS with parameters (Q*,T*) cannot demand a
bandwidth greater than B® = Q°/T*, it is sufficient to prove that

th,tg €Nty > t1, Ds(tl,tg) < Bs(tQ — tl)

Remember that each job .J; can be thought as consisting of a number of
chunks Hj ;, each characterised by a release time a;; and a fixed deadline d ;.
An example of chunks produced by a CBS is shown in Figure 3.6. To simplify
the notation, all the chunks generated by a server will be referred with an
increasing index k (in the example of Figure 3.6, H,; = Hy, Hi» = Ho,
H,, = Hj, and so on).

The release time and the deadline of the k* chunk generated by the server
will be denoted by a; and di, ¢ will indicate the actual budget and n the
number of requests in server queue. These variables are initialised in the
following manner:

dg = 0
c? 0
n = 0
k=0

Using these notations, the server behaviour can be expressed as in Figure
3.7.
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When job J; arrives at time 7y

When

When

When

enqueue the request in the server pending request queue;
n=n+1;
if (n == 1) /* (the server is idle) x/

if (r; + (¢® / Q%) x 1% >= d})

[H—mmm Rule 1---——-—————-——- */
k =k + 1;
Qg = Tj;
dj = a, + T7;
= Q%
else
[H=mmmmmmm Rule 2-------------—- */
k =k + 1;
Qg = Tj;
di = di_y;

/* ¢’ remains unchanged */
job J; terminates
dequeue .J; from the server queues;
n=n-1;
if (n !'= 0) begin to serve the next job in queue with deadline dj;
job J; served by S, executes for a time unit
¢ =c - 1;

(¢ == 0)

[H—mmmmmmmm - Rule 3------------—-- */
k =k + 1;

ar = actual_time();

s — S S .
po=dpy v T

s = Qs;

Figure 3.7: The CB algorithm.
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Note that the execution time of chunk Hy, e, is the server time demanded
in the interval [ag, d}]: ey = D*(ag,d}). Hence,

k2
th, tg, Elkl, kg : Ds(tl, t2) = Z € = Z €k-
k:akztl/\sztQ k=k1

If ¢5(t) is the server budget at time ¢ and fj is the time at which chunk Hj
ends to execute, it is possible to see that ¢*(fi) = ¢*(ax) — ex, while ¢*(agy1)
is calculated from ¢*(fy) in the following manner:

¢ (aps1) = c*(fx) if dj,, was generated by Rule 2
T Q8 if dj,, was generated by Rule 1 or 3.

Based on these observations, the theorem can be proved by showing that:

S
Ts’

and this property can be proved by proceeding by induction on ky — &y, using
the algorithmic definition of CBS shown in Figure 3.7.

D*(ar,, di,,) + ¢ (fi) < (di, — k)

Inductive base. If in [t1, ;] there is only one active chunk (k1 = ky = k),
then two cases have to be considered.
Case a: dj < ap +1T1°.

If di < ap +T°, then dj is generated by Rule 2, so a; + %Ts < dj
and ay = fr_1, that is

c’(a
a + égs’“)Ts < dj.

Being ¢*(fx) = ¢*(ax) — ex = ¢*(ax) — D*(ayx, d}), it is possible to see that
D*(ax, di)) + *(fr)
Qs

ap + T1s<d]sc

hence s

Ds(ak,dsk) + Cs(fk) < (dz — ak)%
Case b: dj = a +T°.
If dj = ap + T°, then D*(ag,d}) + c*(fx) = ex + *(fi) = Q°.
Hence, in both cases

Dk 1) + € () = D df) + ' (o) < (0 — )2 = (d, — o0,
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Inductive step. The inductive hypothesis

S

Ds(aklﬂ dlscgfl) + Cs(fb*l) < (di271 - a’kl)ﬁ

is used to prove that
S
Ts
Given the possible relations between dj and dj_,, three cases have to be
considered:

Ds(aklvdlscg) + Cs(sz) < (dz2 - akl)

o dj > d; ;+ 1% That is, dj is generated by Rule 3 or Rule 1 when
Tj Z dj'fl

e dj =dj_,. That is, dj is generated by Rule 2.
o d; , < dj <dj_,+T° Thatis, dj is generated by Rule 1 when

Case a: dy, = dy, 1 + Ts.

In this case dj, can be generated only by Rule 1 or 3. Adding e, to both
sides of the inductive hypothesis, the following disequation can be obtained:

kz 1 Qs
Z er + ex, < (dj, 4 akl)ﬁ — * (fro—1) + €ny
k=k1

and from ¢*(fx) = ¢*(ar) — e it follows that

S

5 en < (1 ) 2 = fuya) + o) — (fu).

k=k1

Since dj, is generated by Rule 1 or 3, it must be ¢*(ay,) = Q°, therefore:

S

3 e < (@, 1 ) — (i) + Q@ — ()

k=k1

S S

ko
Z €r + Cs(flm) < (dZQ—l - akl)% - Cs(fk2—1) + QS < (d15€2—1 B akl)% + QS

k=k:
and finally

s s s s Q° s s Q°
D (aklﬂdk2)+c (fk2) < (de—l_a’kl)_+Q ( k2— 1+T _akl)Ts



S

Ds(aklvdlsm) + Cs(sz) < (dZQ - akl)ﬁ'

Case b: dj, = dj, .
If dj, = dj, ., then dj  is generated by Rule 2. In this case,

kQ 1 Qs
Z ex + ek, < dZQ 1 akl)ﬁ - Cs(sz—l) + Chy
k=k1

but, being di, = dj,_,, ¢*(fr,) + ex = c*(ar,) and c*(ax,) = c*(fr,—1) (by
Rule 2), it results:

S S

5 en < (dh, — ) e — o)+ eny = (0, - a) e — ()

k=k1

hence
S

Ds (k1,k2) +c’ ka Z e < de akl)%'
k=ki
Case c: dj, | <dy, <dj, | +T°

Ifdj, <dj, ,+T°, then dj, is generated by Rule 1, hence akz—i-%Ts >
i, o, and ¢ fr,—1) > (d, | — ax,)%. Applying the inductive hypothesis,
the following disequation can be obtained:

kQ 1 Qs
Z ex + ek, < de 1 akl)ﬁ - Cs(sz—l) + Chy
k=k1

from which it follows that

S S

Q Q
Z ek de 1 — Ak )_s — (dlsmfl — Q. )_s + €L
P kl 1 T 2 T 2

S

s s Q
> en < (dpyy —djy g —ag, + akz)ﬁ + €k,
k=k:

Now, being ex, = Q° — ¢*(fi,), we have:

S

22 er < (_akl +akz)Q_ +QS - C (sz) = (ak2 + 17 — akl)Q_

; - = (fi)
Pl T T ?
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but, from Rule 1 and 3, it results that dj = ax + 7, hence

S

k2 Q
> ep < (dy, — akl)ﬁ — *(fro)

k=k1

S

k2
D (ky, ko) + ¢ (fr,) = Z er < ( 22 - akl)%'
k=k,

The isolation property allows to use a bandwidth reservation strategy to
allocate a fraction of the CPU time to each task that cannot be guaranteed a
priori. The most important consequence of this result is that soft tasks can be
scheduled together with hard tasks without affecting the a priori guarantee
even in the case in which soft requests exceed the expected load.

In addition to the isolation property, the CBS has the following charac-
teristics:

e No hypothesis are required on the WCET and the minimum inter-

arrival time of the served tasks: this allows the same program to be
used on different systems without recalculating the computation times.
In other words, this property is the one that permits to decouple the
task model from the scheduling parameters.

If the task’s parameters are known in advance, a hard real-time guar-
antee can be performed. This is the hard schedulability property, ex-
pressed by the following lemma:

Lemma 2 A hard task 1; with parameters (C;,T;) is schedulable by
a CBS with parameters Q) = C; and T} = T; if and only if 7; is
schedulable without the CBS.

Proof.

For any job of 7;, r; j11 —7;; > T; and ¢; j < ;. Hence, by definition of
the CBS, each job J; ; is assigned a scheduling deadline d} ; = r; ; + T}
(since 7; ; is always greater than df; ) and it is scheduled with a budget
Q; = C;. Moreover, since c¢; ; < ()7, each job finishes no later than the
budget is exhausted, hence the deadline assigned to a job does not

change and is exactly the same as the one used by EDF. O
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e The CBS automatically reclaims any spare time caused by early com-
pletions. This is due to the fact that whenever the budget is exhausted,
it is always immediately replenished at its full value and the server
deadline is postponed. In this way, the server remains eligible and
the budget can be exploited by the pending requests with the current
deadline.

e Knowing the statistical distribution of the computation time of a task
served by a CBS, it is possible to perform a statistical guarantee, ex-
pressed in terms of probability for each served job to meet its deadline.

3.4.4 A Model of the CBS

In order to perform a formal analysis of a reservation based scheduler (and
of the CBS in particular), a mathematical model of the system is needed. If
a task 7; is scheduled by a reservation based scheduler (for example, if it is
served by a CBS) with parameters (Qf,77), then 7; can be modelled with a
queue. Moreover, if the task’s interarrival times are multiple of T}, they can
be expressed as 7 j11 — 1i; = 2;;1;, hence:

1. each T} units of time, () = B;T” units of time of task 7; can be served;

2. the arrival of job J;; corresponds to a request of ¢;; units of time
entering the queue;

3. when a job arrives, the next request of ¢;;; units will arrive after r;,, —
rj = 2; ;17 units of time.

Using this model, the evolution of task 7; can be described by a state
variable z; ; defined as follows:

zij = mar{0,7; ;1 — 2;QF} + i

where z; j indicates the length of the queue (in time units) immediately after
job J; ; arrival.

When job J; ; arrives, it will be served at a rate of ()7 units of time each
T?, hence, if there are z; ; units of time to serve immediately after .J; ; arrival

(at time 7;;), J;; is guaranteed to be served in [%11 TF time units. As a
result, job J; ; will finish before time

)
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3.5 Stochastic Analysis of a Reservation Based
System

One of the advantages of using a reservation based scheduling approach such
as the CBS, is that the scheduling parameters (QF,77) can be separated
from the task characteristics (such as execution and interarrival times). In
this way, if task 7; is described by a pair of Probability Distribution Functions
(PDFs) of the execution and interarrival times, then it is possible to perform
a probabilistic quarantee, as defined in Section 2.4.2. A simplified stochastic
analisys of the CBS (only considering semiperiodic tasks and generalized spo-
radic tasks) is presented in [AB99]; this section extends the previous results
by generalizing the analisys to tasks characterized a stochastic behaviour in
both execution and interarrival times.

In order to perform a stochastic analysis of a generic reservation based
scheduling algorithm, the simplified case in which 7; ;41 — 7;; is a multiple
of T7 is considered first, and the model presented in Equation 3.1 is used.
Since the execution and interarrival times are random variables described by
the PDFs U;(c) and Vj(t), the state variable x is a random variable too, and
is described by a PDF W,(Ci’j) = P{z;; = k}.

According to Equation 3.2, job J; ; will finish before time

i+ ’Vz;-‘ T°
7

hence the probability 7 that the queue length z;; is k immediately after
a job arrival is a lower bound to the probability that the job finishes before
the probabilistic deadline
k
62' = | — T;.s‘
E

Being the interarrival times multiple of T, it is possible to define V/(z) =
P{r;; —r;ij—1 = zT*} as probability that the interarrival time between two
consecutive jobs is 27T;°. Hence,

0 if tmod TS #0

Vi) = { V(%) otherwise. (3:3)

Note that since ¢; ; and r; ;41 — r;; are time invariant, U;(c) and V/(z) do

not depend on j. Under these assumptions, it is possible to compute W,(CZ’])
as follows:

7_‘.1(:,]') — P{gji’j = k}P{maX{O,[L’i’jfl — Zi,st} + Cij = k} =
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= Z P{maX{O,ZL’i’j,1 — Zi,st} + Cij = kA Tij—1 = h} =
h=—c

oo

= Z Z P{max{O, Tij—1 — Zi’st} + Cij = kN Tij—1 = h A Zij = Z}

2=—00 h=—00

Being z; ; and z; j greater than 0 by definition, the sums can be computed
for h and z going from 0 to infinity:

71_}(;’,3') _ Z Z P{maz{0,h — 2Q°} + ¢, j = k}P{x; j_1 = h} P{z; = 2}

2=0 h=0

- Z Z P{max{o, h — ZQS} + ¢ = k}Vi'(z)ﬂ'}(Li’j_l) —

h=0 2=0
— Z Z P{ci,j =k — maz{0,h — ZQS}}V;'(Z)W}(E’J'*I) _
h=0 z=0
— Z Z U(k — ma:[;{(), h — ZQS})V;I(Z)F,(Li’j_l)
h=0 z=0
Hence,
Wi(zi’j) _ Z mh,kﬂ;(f’j_l)
h=0
with N
mp, = Y Ui(k — maz{0, h — 2Q;})V{ (2). (3.4)

2=0
Considering mj, ; as an element of a matrix M, 70" can be computed
by solving the equation

) = pemrta-b (3.5)
where
7r[(]i,j)
W%i’j)
N
o) = | G)
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3.5.1 Stability Considerations

For a generic queue, it is known that the queue is stable (i.e., the number of
elements in the queue do not diverge to infinity) if

mean interarrival time

p= - - < 1.
mean service time

Hence, the stability can be achieved under the condition

where E[C}] is the execution time expectation and E[T;] is the interarrival
time expectation.

If this condition is not satisfied the difference f; ; — r; ; between the fin-
ishing time f; ; and arrival the time 7; ; of each job J; ; of task 7; will increase
indefinitely diverging to infinity as j increases:

JILIEIO fi,j — Ti,j = Q.
This means that, for preserving the schedulability of the other tasks, 7; will
slow down in an unpredictable manner.

If a queue is stable, a stationary solution of the Markov chain describing

the queue can be found; that is, there exists a finite solution II* such that
I’ = lim; o 1149, Since M) = M09~ we can compute IT as follows:

I’ = Jim %) =

j—o0

= lim M'TI%-D =

j—o0
= M lim T%=Y = M°IT.
j—o0
Hence, IT’ can be computed by solving the eigenvector problem

I’ = M'IT’.

This solution can be approximated by truncating the infinite dimension ma-
trix M to an nzn matrix M and solving the eigenvector problem IT¢ = M¢IT¢
with some numerical calculus technique.
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3.5.2 Relaxing the hypothesis on interarrival times

In the previous analysis, task interarrival times are assumed to be multiple
of an integer value 77 so that Equation 3.3 is verified. This assumption
results to be very useful in order to simplify the queue analysis, but can be
unrealistic in some practical situations.

Using some appropriate approximation, it is possible to relax the assump-
tion on the interarrival times without compromising the analysis based on
it. When Equation 3.3 is not respected, it is convenient to introduce a new
distribution Vj(t) which approximates V;(t) for enabling the previously devel-
oped analysis. In this way, it is possible to analyse the task behaviour based
on the approximate PDF \N/i(t)Ninstead of the actual PDF V;(¢). In order this

approximation to be correct, V;(¢) must:
e be conservative (pessimistic);
e verify Equation (3.3).

“Being conservative” means that if a probabilistic deadline can be guaranteed
using V;(t), it is guaranteed also according to the real distribution V;(t). Since
the opposite is not true, this approach is pessimistic.

The new PDF Vj(t) is conservative if

k
vk, 3 Viln) > 3 Viln), (3.6)
while the second requirement states that

N 0 if tmodT? 0
Vi(t) = { V(&) otherwise.

Equation (3.6) states that the approximated interarrival times Cumulative
Distribution Function (CDF) W;(t) computed from Vj(t) must be greater
than or equal to the interarrival times CDF W;(¢) computed from V;(t).
Recall that the CDF of a stochastic variable expresses the probability that
the variable is less than or equal to a given value. The CDF W (¢) of a
stochastic variable ¢ can be computed as W (t) = X! _, V(n), where V(t) is
the PDF of ¢, as shown in Figure 3.8.

In practice, the intuitive interpretation of Equation 3.6 is that a Vj(t)
is conservative if the probability that the interarrival time is smaller than ¢
according to V;(t) is bigger than according to V;(t). Figure 3.9 explains this
concept.
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Figure 3.8: CDF vs PDF.

Given a generic interarrival times PDF V;(t), it is possible to generate a
conservative approximation V;(¢) if 3k : ¢t < k = V;(¢) = 0. In this case, it is
possible to set T < k and to compute

~ 0 if tmod T/ #0
Vit) = { St Vi(t) otherwise. (3.7)
It can be easily verified that if V;() is computed according to Equation 3.7,
then it will have both the required properties. However, every conservative
approximation V;(¢) respecting Equation (3.6) can be used: an extreme case
is using

~ 1 of t=T%

Vi(t) = { 0 otherwise.
This is a very pessimistic approximation and corresponds to the worst case
sporadic task analysis, based on considering task 7; as a periodic task with
period equal to the MIT. In this case,

V,(Z):{1 if z=1

0 otherwise
and Equation (3.4) becomes
i, = Uil — max{0,h — Q7))

that is coherent with the results in [AB99].
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Figure 3.9: Conservative approximation of a CDF.

The 3k : t < k = Vj(t) = 0 assumption is realistic (an interarrival
time must have a lower bound) and does not impose serious limits to the
applicability of the analysis. However, in some occasions the lower bound can
be too small, resulting in a small T}’ value that unnecessarily increases the
number of context switches; in some other cases, a continuous distribution
can be used to approximate V;(¢), making difficult to compute the lower
bound.

In these cases, some approximation can be introduced by truncating the
interarrival times PDF. In practice, this can be done by considering V;(t) =0

if t < to, with V;(¢y) << 1; in this way, it is possible to assign T} < t.
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Chapter 4

Adaptive Scheduling

When something does not work, reboot the system and restart from
beginning.
Computer Scientist approach

When something does not work, try to decompose the problem in
smaller problems, so that you will have many problems instead of
one.

Computer Engineer approach

When something does not work, keep randomly changing things
until it works...
Luca’s approach

0 Section 2.3, three high-level task models have been introduced (PPS
© tasks, MM tasks, and ED tasks). Those high level models associate a
weight w; to each task 7;, and characterise time-sensitive tasks (MM
and ED Tasks) with proper temporal constraints. In Chapter 3 some schedul-
ing algorithm that are suitable for managing time sensitive applications have
been introduced; however, it is not clear how PPS, MM, and ED tasks can
be implemented in terms of those scheduling algorithms.

For example, to guarantee the respect of tasks deadlines (when using pri-
ority based scheduling), or to reserve the correct amount of resources to each
task (when using a reservation strategy or a PS scheduler), some knowledge
about the tasks’ execution times is required. But since the tasks’ WCET's
are not specified in the PPS, MM or ED model, some form of adaptation is
needed for performing a correct tuning of the scheduling parameters.

@
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Figure 4.1: The control scheme.

4.1 The Feedback Mechanism: Adaptive Band-
width Reservations

When the task execution or interarrival times are unknown, some form of
adaptation is needed to estimate them. Such an adaptation mechanism can
be designed following these steps:

1. choose a suitable low-level scheduling algorithm, on top of which
the adaptive mechanism will be implemented;

2. map the task model’s parameters to the scheduling algorithm param-
eters;

3. design a feedback mechanism to adjust the tasks’ reserved band-
width on line.

Since the basic idea is to control each task independently from the others,
the proposed feedback scheme is based on a scheduler providing temporal
protection between tasks. Every algorithm that provides temporal protection
(such as a reservation scheme or a PS scheduler) can be used to implement
the low-level scheduler, whose scheduling parameters are adapted by the
feedback mechanism so that the user does not have to cope with them. The
scheduling algorithm used in this work is based on the Earliest Deadline
First (EDF) [LL73], since it achieves full CPU utilization. Based on EDF,
temporal protection is provided using a bandwidth reservation mechanism,
hence serving each task with a dedicated CBS is the natural choice. Since
a CBS S; is characterised by the pair (QF,T7) (or (Bf,T7)), the PPS, MM,
and ED task models must be mapped to such server parameters.

For what concerns PPS tasks, ()7 can be considered as the scheduling
quantum, and it is assigned an initial default value of Q*, which can be
changed using a specific system call. Then, each PPS task 7; is assigned a
bandwidth

w;

Bi = Bpps (41)

Zj;TjePPS Wi
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where Bppg is the total bandwidth assigned to PPS tasks. Thus, 7} is
computed as T} = %

Equation 4.1 shows how the total PPS bandwidth is shared among the
PPS tasks according to the tasks weights (hence, it results to be identical to
the share f; in a PS system). In this way, the fraction of CPU bandwidth
Bppg assigned to PPS tasks will be shared among them proportionally to
the weights, like in a PS system !

For what concerns MM and ED tasks, the T parameter is fixed and
equal to T; = 1/R;, where R; is the task rate specified by the user. The Qf
parameter is adjusted by the system in order to meet the tasks’ temporal
requirements. As said, this can be done using a feedback mechanism that
controls the scheduling parameters based on an observed value. When
a CBS is used to serve a time sensitive task 7;, the natural choice for the

observed value is the the CBS scheduling error
€, =di;— (rij +1;)

defined as the difference between the last CBS scheduling deadline d; ; as-
signed to job J; ; and the task’s soft deadline d; ; = r; ; + T;.

Since the underlying priority assignment is based on EDF, if the server is
schedulable each instance J; ; is guaranteed to finish within the last assigned
server deadline dj;. Hence, the CBS scheduling error ¢}, represents the
difference between the deadline d} ; that .J; ; is guaranteed to respect and the
deadline d; ; = r; ; +T; that it should respect. When this value is 0, the task
is guaranteed to respect its soft deadline, whereas when the scheduling error
is different from 0, some task instance can terminate after its (soft) deadline
because the reserved bandwidth Q; is not enough to properly serve it.

Hence, the objective of the systern is to control the scheduling error €® to
0: if this value increases, (){ has to be increased accordingly, otherwise it can
be left unchanged. Based on this idea, a feedback control mechanism can
be used to adapt the amount of resources reserved to each task. In practice,
the amount of CPU bandwidth B; ; reserved to job J; ; can be different from
the amount of CPU bandwidth reserved to other jobs of the same task, and
is adjusted according to a feedback function B;; = f(Bi; 1,€;; ). Different
kinds of feedback functions can be used, but the intuitive requirement is that
;> 0= f(Byj ;) > Bij.

Note that all this mechanism works correctly under the assumption that
all the scheduling deadlines d? ; are respected, and this is true if and only

'Each PPS task will receive an amount Qf of CPU time every T¢, so Qf can be
considered as the scheduling quantum in a conventional time sharing system, as said
above.
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if a schedulability condition Y B} < 1 is verified. To better express this
requirement, some additional definitions are needed:

Definition 15 Given a task set I' = {7,...7,} composed of n tasks, a
bandwidth assignment B is a vector B = (B;,...B:) € R"™ such that
Vi <n,0< B} <1, and at every time B = B, ;.
Definition 16 A bandwidth assignment B is said to be feasible if Y. Bl <
1.

The feasibility of a bandwidth assignment is a global condition, because
it depends on all the servers S; in the system. However, the feedback
function f() only performs a local adaptation, since it operates only on a
single task and does not consider any schedulability (or feasibility) condi-
tion?. As a result, it is possible that the reserved bandwidths are increased
“too much” and the bandwidth assignment is not feasible (that is to say,
Y jiremmurp Bi > B™»¥) In this case, some form of global mechanism is
necessary to decrease the tasks’ reserved bandwidths so that the assignment
is feasible. This compression of the reserved bandwidths is performed by the
compression function B' = g(B)

The compression function is a function g : " — R" that transforms an
infeasible bandwidth assignment into a feasible one; in practice, if B’ = g(B),
then 3, Bf' < 1. In particular,

A~

B_s,:{ B N Bi<1
! gi(B) otherwise

It is worth noting that according to these considerations it is possible
to define a feedback mechanism in which the reserved CPU bandwidth B?*
is decreased only in overload conditions (when >; Bf > 1). The specified
task weights w; can be used to decrease the tasks’ reserved bandwidth in
overload conditions. This solution has the advantage of avoiding unnecessary
bandwidth adaptations, but could be more difficult to analyse.

A simple solution to perform such a bandwidth compression is to scale
the tasks’ utilizations in a proportional way:

!

being s; the scaling factor. Since the compression must be done according
to the tasks’ weights, s; must be proportional to w;: s; = w;M. Imposing

Zbecause it is not aware of all the other reserved tasks in the system.
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sl __ maxr .
Y jiremmupp B = B™, it results:

> B = B™=
J
Jim;EMMUED
S Bls; = B
Jim;€EMMUED
S Biw,M = B"™ =
JiT;EMMUED
M Y  Buw = B"™=
Jim;EMMUED

Bmaz

S
Zj:TjGMMUED Bjw,

M =

Hence,
Bmaz
B!' = Bjw; - (4.2)
Zj:TjEMMUED Bjw;

This simple rule can be slightly modified to guarantee a minimum bandwidth
B,.;n, to each task.

The described closed loop control used to adjust the reserved bandwidth
is shown in Figure 4.1.

4.2 Performance of Adaptive Reservations

When implementing an Adaptive Reservation abstraction, it is important
to design the feedback function so that the resulting adaptive scheduler is
able to assign the correct amount of resource to each task (when possible)
in a short time and with an acceptable accuracy. Using the control theory
terminology, the closed loop system must be stable, and the response time,
overshoot, and steady-state error must be compliant with some specifications.

Although designing a proper feedback function f() might seem to be
simple, things are more complicated than what appears at a first glance
[Goe02]. Hence, a careful analysis of the closed loop scheduler is needed; in
this section, after a simple analysis based on the CBS model developed in
Section 3.4.4, a control theoretical approach will be proposed.

4.2.1 Analysis of a Simple Feedback Scheme

Using Adaptive Reservations, the bandwidth reserved to an adaptive task
7; varies from instance to instance, hence it will be indicated as B; ;. If the
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bandwidth assignment is feasible, B; ;11 = f(Bi,;,¢€;); hence, according to
Equations 3.1 and 3.2, each task dynamics is described as follows:

Ti1 = Cia

Tij = maz{0, Tij—1 — 2i,jBi ;T b+ Ci,j
R — Tij s

€y = {TSB”] TS — T,

BZ)J+1 = f(B 5,]9 67’7])

If the feedback function f(B,e¢) is properly designed it is possible to
prove that B;; will converge to a correct value B; > 7. For example, if the
feedback equation is f(B,€) = B 4+ a% B, then the new v bandwidth assigned
to job .J; j41 results to be

Bi,j—l—l Bz]+aTBz]_B,]+04

zi; | T?
— B, b | 2L 1) By
MGTB} T, )

But if the task is semiperiodic, then T; = 2T (remember that T; is a
multiple of T7), hence

Ty 1

2

Now, defining S, ; = [I—’1 B; ;, it is possible to obtain

Sij
Bl]+1 BZ]+Oé( >

—Bij)=(1-0)

Note that S; ; is an estimation of the CPU bandwidth required to serve J; ;
in a server period, hence S” is an estimation of the CPU bandwidth needed
to schedule J; ; in 277 = T time units (that is, S;; should converge to the
amount S; of CPU bandwidth needed by the task to control the scheduling
error to 0). Since a succession a(n + 1) = (1 — a)a(n) + S converges to
S for n — o0, limj_,o B;j = Bi will be equal to the estimated bandwidth
requirement 57 if the compression equation is not used. Hence, if a feasible
bandwidth assignment that controls all the scheduling errors to 0 exists, the
reserved bandwidths will converge to it.

More formally, given n > 0 it exists jy such that Vj > jo, |B;; — Si;| <.
Hence,

(4.3)

i!j

ZT; J xT; j
S;.i S;.i [T.Séi--lBi,j [TSBl-I 2%
2, _ 77 < Z’] < 1,] ,r] % >J _ 77 S BZ’ S i »J _|_ 77 :>
z z z z



{L"’j } <2< { i W+n$
17 B, - | T¥Biy

Tis B]z,] - 77 S Z :> BZ)J 2 zTZS 77
Ti,j o Ti,j
TiSB]i,j tn oz z-1 Bij < (z—lng 0

If j > jo, then B;; will be constrained into the interval :TJ <B;; < (sziTl

of size (sz;Tf — :’TZS = ﬁ It is easy to see that increasing z the reserved
bandwidth will converge to a better estimation of the requested bandwidth.
On the other hand, increasing z will decrease the server period, increasing
the number of context switches and the kernel overhead.

From this argument, it is possible to understand that the server period
has to be carefully chosen in order to find a good trade-off between a more

precise resource allocation and a low kernel overhead.

4.2.2 A Control Theoretical Approach

The feedback function can be designed using different approaches, either
theoretically founded or empirically proven to be effective. Since closed-loop
systems similar to an adaptive reservation have been studied at long in control
theory, an idea for properly designing the feedback function is to apply some
results form control theory. In fact, control theory provides powerful tools
that are very useful in analysing closed-loop systems, proving their stability,
and evaluating their dynamic properties.

Additional Definitions

To extend the scheduling error concept t a generic reservation based system,
it is useful to define the latest possible finishing time for a job. The latest
possible finishing time LFT; ; for job .J; ;_; is the end of the latest reservation
period used by the job, minus the job arrival time: for example, if .J; ;_; has

execution time c¢; j_; = 5, it has been reserved a bandwidth B; = 0.5, and

5

m} = 3 reservation periods,

the reservation period is 7} = 4, then it uses [

and its latest possible finishing time is 15.
Note that, for CBS, when a job finishes the deadline of the server minus

the job arrival time is equal to the latest possible finishing time: LFT;; =

S
dZ - TZ’],1

Mathematical Model of a Reservation

A proper feedback scheme providing the required characteristics can be de-
signed only based on an accurate model of the system. In this section, a
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model of a reservation system alternative to the one presented in Section
3.4.4 will be developed.

The notation will be simplified by removing the task index from all the
quantities: hence, () will be used instead of @);, T® will be used instead of
T?, J; will be used instead of J; ;, and so on.

The goal of the feedback scheduler is to control LFT to T'; thus, the
scheduling error € is defined as the difference between the latest possible
finishing time LFT}, and the job relative deadline T". Note that, if LF'T; > T,
then job .J,_; consumes some of the time that should be used by the next
job, which will have less time to execute. In this case, jobs .J;_; and J;
share a reservation period, and LEFT; ; depends on LET;. To express this
dependency, and write the dynamic equations of our system, it is useful to
introduce another state variable that represents the amount of time used by
J;—1 in its last reservation that it shares with .J;.

As said, the scheduling error is defined as the difference between the latest
possible finishing time and the task period:

e = LFT, —T.

Notice that the scheduling error is a discrete variable and it is multiple of
Ts.

It is also useful to define a state variable z; that represents the amount
time consumed by job J,_; on the latest reservation period, if shared with
job Jg. To help clarify the meaning of x;, an example is shown in Figure 4.2.
In Figure 4.2.a, J; uses only 2 reservation periods and finishes before the end
of its period: J; and .J; do not share any reservation, and z, = 0. In Figure
4.2.b, J; uses 3 reservation periods: therefore, x5 = 1. In the following, x;
will be assumed to be not measurable.

By definition,

Zo =0
Uik, = T
The general equations for x; and LFT} are the following:

. Cr_ 1+ Xp_1— (LFTk — TS)B]C,I LET, > T
TE=1 0 LFT, <T

By T3

[ Ch=1 ]Ts LFT,  <T

By T3

LFT,  — T —T5+ |4t i s TFT, ;> T
LFTF{ - [atma ] T LFT,

From the previous equation, it is possible to derive the scheduling error:
(o T T
€ —

[BZ’:ITJ T5 - T ery < T*

(4.4)
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Figure 4.2: Internal state z;. In case a), the first job finishes before the end
of its period, hence 25 = 0; in case b), the first job consumes 3 reservation
periods, and consumes 1 capacity unit in the last reservation period, hence

1’2:1.

Now, a quantisation error QE, can be introduced considering two different
cases: €,_1 > T% and €,_1 < T?. In the first case, ¢, depends on x;_; that
is not measurable. However, x;_; is always in the range [0, B;_17°]. Hence,

the following upper bound for the scheduling error holds:

Cr—1+ BleT T

=61 — 1T —T°
€k = €k—1 +{ B T

The quantisation error can be defined as:

QF, = {%—1 + Bk—lTs“ o1+ B T

By_1Ts BT+

In the second case, the quantisation error is defined as follows:

Ck—1 Ck—1
E, = —
QB {Ble'J By (T

Finally, the scheduling error is redefined as follows:
gk: = € — QEkTs.
By substituting,

B €k—|—]—§"~—T €, >1T%
€k+1 = K

Sk = s
By T €. <T
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Controller Design

As shown, a reservation-based scheduler with period T can be dealt with as
a dynamical system described by the following equations:

LT ife >T¢
€k+1 :{ €k+Bk fer < (4.6)

E_IZ -T if e, <T*
where ¢, represents the scheduling error. Equation 4.6 describes an approxi-
mation of the scheduling error where the quantisation error QE; is neglected
(in the this issue will be addressed in the sequel). The goal of this section
is to propose techniques for effectively designing feedback controllers for this
system. This task is hindered by the possibility for the system dynamics of
switching between two different modes corresponding to ¢, > T and ¢, < T°.

The classical “pole-placement” technique can be used to synthesise a con-
troller in each mode; in this way it is possible both to comply with require-
ments on the closed loop dynamics (i.e. the evolution of the scheduler under
the action of a feedback controller).

Let’s start to design the controller for the first operating mode (the same
consideration apply to the second one): if e, > T, then

€1 = € +cpup — T

where uy, is defined as Bik.

Quantities €, ¢z, and By can be expressed as a constant value plus a
variation: €, = A€, +€, ¢, = ¢+ Aci and up = u+ Auy. At the steady state
it must hold ¢ = %

Assuming small variations around the linearization point, the relation

between the variations can be found via differentiation:
_ _ T _
A€k+1 = Aek +c Auk +u Ack = Aek + = Auk +u Ack. (47)
U

For notational simplicity and with a slight abuse of notation, in the rest of
the section the symbol A will be dropped. Hence, unless otherwise stated,
€, ur and ¢, represent variations of the original quantities around the €, ¢
respectively.

As the difference Equation 4.7 is linear, it is possible to compute the Z
transform:

€(Z) = Ho(Z)e(Z) + Hu(Z)u(2),

where H.(Z) = 7% and H,(Z) = E(ZTfl)'
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Ref + F H +

Figure 4.3: Dynamic system representing a linearised reservation with a feed-
back mechanism.

To achieve the control goals, a feedback controller F'(Z) is used as in
Figure 4.3: u(Z) = —F(Z)e(Z). The closed loop dynamics is described by
the transfer function H(Z) between ¢(Z) and €(Z):

__ H(2)
1+ F(Z)H,(Z)

e(Z) = H(Z)e(Z) c(2) (4.8)

The simplicity of the system (whose dynamic equations are similar to

those of a tank) suggested the use of a PI controller. A PI controller is
described by:

k—1
ug = c1(—€) + ¢ Z(—Ekq)
=0

where ¢; and ¢y are the coefficients of the proportional and integral actions
respectively. By subtracting the expression for u;_; from the expression for
uy the equation can be written as:

Up = Up_1 + oz(—ek) + B(_kal)-

where oo = ¢; and 8 = ¢3 — ¢;. The transfer function F(Z) is given by:

aZ +f3
F(7) = .
(2) = ——
Plugging F(Z) into Equation 4.8,
u(Z —1)

e(Z) = H(Z)c(Z) (2). (4.9)

22+ Za-2)Z+pL11"

The closed loop system is stable if the zeros Z; of the denominator in
Equation 4.9 (i.e. the poles of the closed loop system), have norm strictly
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lower than 1: ||Z;|| < 1. Observe that the use of the PI controller enables
the choice of the two closed loop poles poles. As a matter of fact, to place
the closed loop poles in Z; and Z, it is sufficient to impose:

T T
7 + (504—2)Z+55 +1=2" (2 + Z2) 7 + Z1 75,

Solving for «, (3 yields:

u(2 — (Z1 + Z3))
T
u(Z1Zy — 1)

O

a =

Moreover, the decay rate p is given by the maximum norm of the poles.
Repeating the computations for €,_; < T, it is possible to obtain:

u(l— (2, + Zy))
T
u(Z173)

b=

o =

All subsequent results can similarly be rephrased.

Accounting for the Quantisation Error

According to Equation 4.5
€ — gk: + QEkTS

Let’s consider an equilibrium point where the quantisation error has a value
QEk and repeat the analysis considering the variation around the equilibrium
QE, = QEkTS + AQE,, where T* has been absorbed into AQE,. Hence,
0 < AQE, < T?. Considering now the linearised system, it is possible to
treat AQE, as an additional norm-bounded disturbance (see Figure 4.4).
The transfer function from such a disturbance to €, is given by m

Thereby, it is possible to use standard results from control theory to
compute a bound for the effect of quantisation. Considering for simplicity
the case of distinct and real poles, such a bound is provided by %
This bound has to be added to the one computed for the uncertainties of the
computation time ¢;. As one would expect, diminishing 7% (and hence the
quantisation grain) results into higher and higher precision for the control.
Again, observe that a less conservative bound can be obtained by numerically

computing E =3 || fxl|-
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Qantization Error

Ref + G Fu +

Figure 4.4: Dynamic system representing a linearised CBS with a feedback
mechanism.

Moreover, if the controller is able to stabilise the system into a point
rather than into a set, it is possible to apply the Steady State Worst Case
Analysis developed by Slaughter [Sla64]: the worst case steady state quanti-
sation error on € is lower than or equal to |W|Z:1Tﬁ Replacing H,
and F' with the expressions provided above, it is possible to conclude that
|W|Z:1TS = 0. Therefore, if it is possible to stabilise the system
into a point then the steady state value for the effect of the quantisation
error is 0. The effect of quantisation is, in this case, an overestimation of
the bandwidth B assigned to the task. In fact, imposing the equilibrium

condition €1 = € in equation 4.4 it is possible to obtain:

LC}W—T:Q
BTs

Observing that < [x] < = + 1, this results in

ol

<B< .
=T =T _Ts

N ol

Experimental Results

To test the effectiveness of the proposed adaptive scheme, an adaptive reser-
vation controlled by the PI designed in Section 4.2.2 was simulated, compar-
ing the results obtained with different poles assignments and different server
periods. These first experiments were performed using synthetic workloads
(as proposed in [LSAT00]) to estimate the performance of a feedback sched-
uler. Then, a more realistic workload (such as the execution times of an
MPEG decoder) was simulated to show how a controller that gives good
responses to a step can have problems with real workloads. In this case, a
proper assignment of the poles is a critical task that needs further investiga-
tions.
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Scheduling Error (T = 40, Ts = 20)
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Figure 4.5: Scheduling Error obtained using an adaptive reservation with
T?% = 20 in response to a step in the load.

Evaluating the performance of a feedback scheduler is not trivial: sched-
ulers that seem to work properly at a first glance [LSTS99] may result to be
unstable when evaluated more systematically [LSAT00]. To properly evalu-
ate our adaptive reservation mechanism, the system response to a step and
a ramp in the system load were used, since they have been proved to be a
good test case [LSAT00].

Although a wide set of experiments was performed, for the sake of brevity
only some meaningful experiments are reported here. In particular, in the
following results consider a task 7 with period 7" = 40 and execution time
c; =5 if 7 < 300, ¢; = 15 otherwise.

Figure 4.5 shows €; when T° = 20 (the closed loop poles are assigned as
in the previous simulation). When, at job Jagg, the execution time increases
from 5 to 15, the scheduling error raises to 40 (two times the reservation
period), and it is controlled to 0 in a short time. Note that in this case
the overshot is smaller than in the previous experiment: this is due to the
quantisation error caused by the non-accessible internal state. However, when
the system reaches the steady state, the quantisation error is 0, as expected.
As in the previous case, moving Z, from 0.2 to 0.9 the decay rate is higher.

Figure 4.6 shows the evolution of the reserved time, and is probably more
interesting. In this case, the impact of the quantisation error is an overestima-
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Reserved Time (T = 40, Ts = 20)
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Figure 4.6: Bandwidth reserved by an adaptive reservation with 7% = 20 in
response to a step in the load.

tion of the reserved bandwidth, which in the worst case results to be 0.747198
instead of 0.375 = 15/40. Hence, the overestimation is 0.747198 — 0.375 =
0.37220; this value is compatible with the worst case estimation developed in
Section 4.2.2, which is B(T* /(T —T?*)) = 0.375(20/(40 —20)) = 0.375. Note
that, in this case, the quantisation error tends to increase when 7 moves to
0.2: in fact, a faster controller tends to “overreact” to the execution times
variation, and the quantisation error prevents B; from decreasing after the
first adaptation.

Figures 4.7 and 4.8 plot the evolution of the scheduling error and of B;T*
when T = 10, respectively. In this case, the quantisation error is lower and
the response becomes closer to the one of model without quantisation. In
this case, faster controllers (Z = 0.2 and Z» = 0.5) have an underrun in the
scheduling error, that was previously masked by the quantisation error.

The same experiments were repeated using a ramp on the input, and gave
similar results.

As previously stated, the first set of experiments was performed based
on a synthetic workload that has been recognised as particularly significant
for evaluating system performance [LSAT00]. However, some experiments
performed using a more realistic workload highlighted new problems.

To generate a realistic workload, an MPEG player running on Linux has
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Scheduling Error (T =40, Ts = 10)
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Figure 4.7: Scheduling Error obtained using an adaptive reservation with
T? =10 in response to a step in the load.
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Figure 4.8: Bandwidth reserved by an adaptive reservation with 7% = 10 in
response to a step in the load.
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Figure 4.9: Frame decoding times for the Star Wars Episode 1 trailer, mea-
sured on a P4 1.80GHz CPU running Linux and XFree86.
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Figure 4.10: Reserved amount of time under a realistic workload (fast PI
controller).
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Figure 4.11: Reserved amount of time under a realistic workload (slow PI
controller).

been instrumented to measure the frame decoding times for the trailer of
Star Wars Episode 1 [Luc99], shown in Figure 4.9. As it is possible to see,
the execution times are highly variable. Since the goal of the PI controller is
to control the scheduling error to 0, it can be expected that this variability
in the execution times will be reflected in a high variability in the reserved
time. Figure 4.10 shows the evolution of the reserved time for a PI controller
(the simulation was performed setting 7" = 33ms - 33.3 frames per second,
T° =T/4=8.25ms, Z; = 0.1 and Z, = 0.2. By comparing the two figures,
it is clear that the reserved bandwidth does not stabilise properly; as a result,
the scheduling error does not stabilise to 0, but continues to oscillate. This
kind of problem can be expected from the theory of control, because the
system’s input is highly variable. Since the system is practically stable and
the variations in the input are bounded, the variations on the scheduling
error are also bounded (and the average of the scheduling error is 0).

This problem can be addressed by filtering out the higher frequencies
(this can be done by moving one of the two poles near to 1). The results are
shown in Figure 4.11. By comparing Figures 4.11 and 4.9, it is clear that
the reserved bandwidth results to be more stable, and this permits to better
control the scheduling error. The first controller (with Z; = 0.2) tends to
“over-react” to execution time variations, presenting a bigger overshot: even
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after the initial transient, the scheduling error raises to more than 33ms. On
the contrary, moving the second pole to Zs = 0.9, the maximum scheduling
error registered after the initial transient is 8.75ms.

Summing up, while considering the response to a step or to a ramp the
position of the poles Z; and Z, only influences the overshoot and the response
time, when a more realistic workload is applied as input to the system, the
position of the poles becomes critical for the system performance.

4.3 The QoS Manager

To test the effectiveness of the proposed approach, the adaptive reservation
abstraction described in the previous sections has been implemented through
a QoS Manager that realizes the control loop used to adjust the scheduling
parameters.

Most of the functionalities of the control loop are coded in the user-level
QoS manager; in this way, the kernel is only required to:

e provide temporal protection (hence, the kernel scheduler has to use an
appropriate scheduling algorithm;

e give the possibility of changing the scheduling parameters of each task;

e export some kind of performance parameter that can be used as an
observed value for the control loop. As said, if the kernel implements
the CBS algorithm, it can export the CBS scheduling error.

In this vision, the kernel provides a mechanism, the scheduling algorithm,
that is used by the QoS manager to implement a resource management, policy.
The tasks whose scheduling parameters are controlled by the QoS Manager
are referred as adaptive tasks, whereas the other tasks (characterised by fixed
scheduling parameters) will be referred as regular tasks.

Since the QoS Manager needs to have a global system visibility to im-
plement the compression equation (and to eliminate the problems described
in [CT94)), it is a regular task (indicated as qosman in Figure 4.12). The
QoS Manager task is used to create adaptive tasks and to manage their
bandwidths according to some user defined policy.

All the adaptive applications have to be linked against the QoS library,
that interfaces them with the QoS manager, providing some library calls to
communicate with it.

When the qosman task is created, it asks the system for all the available
CPU bandwidth in order to distribute it among adaptive tasks. When an
application needs to create a new adaptive task, it must issue a request to the
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Figure 4.12: The Adaptive QoS Manager.
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qosman (through the qset_addtask() library call). After this call the task
is created and added to the set of the tasks handled by the QoS Manager.

At the beginning of each period, the adaptive task is activated (i.e., a new
job is created for that task). When the job finishes, the task has to notify this
event to the qosman task (through the qtask_endinstance() library call);
in this way, qosman has the possibility to monitor the performance of the
adaptive task. In this case, performance monitoring is done by measuring
the scheduling error, that will be used to compute the new requested band-
width by applying the feedback function f(). After that, the QoS manager
will apply the compression function g¢(), and will adjust the parameters of
all the adaptive tasks in the system (note that if the requested bandwidth
assignment is feasible, the scheduling parameters of only one task need to be
changed).

4.3.1 Implementation on the HARTIK kernel

A first version of the QoS manager has been coded on HARTIK [AB00] (that
directly provides the CBS scheduling inside the kernel), taking advantage of
the particular HARTIK structure to simplify and making more efficient the
implementation.

HARTIK is in fact a real-time executive that must be directly linked to the
application program, sharing code and data with it. In particular, the kernel
structures are not protected from the application, and all the application
threads share the same address space. The first prototypal implementation
of the QoS Manager, based on HARTIK, took advantage of these peculiarities
of the HARTTK kernel to improve the efficiency and reduce the overhead. On
the other hand, this implementation is not portable.

After that the first prototype showed the effectiveness of adaptive reser-
vations, the QoS manager has been reimplemented in a portable way, to
provide support for different kinds of kernels.

4.3.2 Portable Reimplementation

To make the QoS manager independent from the OS kernel, its functionalities
have been split between user tasks (inside the QoS Library) and the qosman
task. In this way, the adaptation mechanism is distributed between the
application address space and the QoS manager address space, and some
IPC mechanism is used to allow communication between the QoS library
(in the application space) and the QoS manager. In a unix-like system,
such as Linux, this mechanism can be provided through some form of IPC
(for example, a FIFO, or named pipe); in non-protected systems, such as
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Figure 4.13: The closed-loop controller: Client/Server architecture.

HARTIK, this communication can be more efficiently performed using shared
memory.

Hence, the portable implementation of the QoS manager and library is
based on a two-layer approach, in which the upper layer is system indepen-
dent, whereas the lower layer is system defendant and is responsible for:

e providing a simple and efficient communication mechanism between the
QoS library and the qosman task;

e implementing the interactions between the QoS manager and the ker-
nel (that is to say, reading the scheduling error and modifying the
scheduling parameters).

This new implementation results in a client/server structure, and this
approach also helps to better isolate the various functionalities into specific
modules, as shown in Figure 4.13:

1. the QoS library code, running in the adaptive application address space,
is responsible for reading the observed value and computing the feed-
back function,

2. the QoS manager receives requests from the adaptive applications, and
performs the resource assignment applying the compression function,

3. the kernel schedules the tasks according to the parameters set by the
QoS manager, and produces a new scheduling error.

All the interface calls are implemented by QoS library functions that send
the appropriate requests to qosman. In particular, the qman_endinstance ()
call reads the scheduling error (using an appropriate call to the OS kernel,
or passing through the QoS manager), computes the feedback function (only

72



Scheduling Error (T = 33, Ts = 6.25)
120 T T T T

100

80

60

20

-40 I I I I
0 50 100 150 200 250

Job Number

Figure 4.14: Scheduling Error for an MPEG player with 7" = 33ms and
1% =6.75ms.

using the read value and the status information contained in the application’s
address space), and sends the new bandwidth requirement to qosman.

The QoS Manager task receives bandwidth requests from the application
tasks, and serves them by adapting the tasks’ scheduling parameters. If
the sum of the CPU bandwidths requested by all the clients (the adaptive
tasks) through the QoS library is greater than Uy, then the compression
function is applied, and the CPU bandwidth assigned to all the adaptive
tasks is updated. Otherwise, only the CPU bandwidth reserved to the task
performing the request is changed. Note that qosman is the only task that
can modify the scheduling parameters in the kernel.

The portable reimplementation of the QoS manager currently runs on
HARTIK and on the Linux kernel (Linux/RK [RAAN'00] in particular).

4.3.3 Experimental Evaluation

The effectiveness of the QoS Manager was tested implementing the controller
described in Section 4.2.2; the implementation of the PI controller was a
simple task and required less than half an hour.

Using this implementation, the feedback scheduler was tested by running
two simultaneous MPEG players (at 33.3Fps and 20Fps) attached to two
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Figure 4.15: Scheduling Error for an MPEG player with 7" = 50ms and
7% =12.5ms.

adaptive reservations, with periods 33/4 = 8.25ms and 50/4 = 12.5ms. The
scheduling errors for the two players are shown in Figures 4.14 and 4.15.
These experiments were performed setting Z; = 0.1 and Z, = 0.8.

After an initial transient, the feedback controller is able to adapt the re-
served bandwidths so that the scheduling error is controlled to about 0. Since
the execution times are highly variable, the scheduling error cannot be con-
stant, but it is important to note that e < 0 most of the time (remember that
a negative scheduling error is not bad for the perceived QoS). In coincidence
with big variations in the execution times, the scheduling error increases, but
it is immediately controlled to 0 again. It is important to note that these
plots refer to real experiments performed on a real Linuz system, and that
the two players run simultaneously and share some important resource, such
as the X server.

4.4 User Level Adaptation

In this section, the previously introduced adaptation mechanism will be de-
scribed from a different point of view, analysing it in terms of demanded
bandwidth and requested bandwidth. The concepts of demanded bandwidth
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and reserved bandwidth have been informally used in the previous sections,
and will be more formally defined here.

The demanded bandwidth can be defined based on the time D} (t1,ts)
demanded by server S;. In fact, it has been proved that Di(t1,ts) < (t2 —
t1) B¢, hence

Definition 17 The demanded bandwidth is be defined as

B?emanded — max Dzs (tl) tQ) )
(ti,t2) to — 1ty
First of all, note that
DS (. 1) (t — ) B
Bdemanded — max i \U1, 02 = Bdemanded < 2 1 (R Bs
¢ (ti,t2) 19 — T ! - to — 11 v

Moreover, it is easy to find a case (a continuously backlogged task) in which
the demanded bandwidth is equal to the reserved bandwidth, hence Bdemanded >
B:.
As a result, we obtain
Bgemanded < B’f emanae S
{ Bdemanded ; B = Bzd ded — Bz
Since the demanded bandwidth results to be equal to the reserved bandwidth,
they will be both referenced as B} in the future.
The requested bandwidth can be defined based on the tasks’ soft dead-
lines, in order to describe the amount of the CPU bandwidth that the task
should be reserved to fulfil its time constraints.

Definition 18 Given a task 7;, its requested bandwidth BF is defined as

D;(t1,12)
max —
t13t2 t2 — tl

Where D;(t1,t5) is the time demanded by the tasks’ soft deadlines, as previ-
ously defined in Chapter 2.

Now, let’s remember that a task served by a CBS S; cannot demand
more than the reserved bandwidth B}: if the task requested bandwidth B;
is greater than B, the task will slow down in order not to affect the others.
This can be better understood in the following way:

Bret — fim 2000 gy Tt Eicotiy _
t—o00 t t—00 t k—o0 t
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As shown in Section 3.5, if EE[[[V{(E) < B?, the task QoS can be controlled,
otherwise the scheduling deadline Wih be postponed in an unpredictable way.
Since ];E[[[‘f((f))] < B;“, the previous condition can be rewritten as B;“! < B.

Hence, if a task “requests too much bandwidth” (i.e., if the requested
bandwidth is greater than the reserved bandwidth: B;“’ > Bf) its schedule
is no more predictable, and its QoS cannot be controlled. In this dissertation,

a task requiring too much bandwidth is referred as an overloaded task.

Definition 19 Task 7; is said to be overloaded if
B*" > B;. (4.10)

The “task overload” situation can be removed in two ways (that may also
be combined together):

1. By increasing the reserved bandwidth B}
2. By decreasing the task requested bandwidth B;?

The first strategy is used by adaptive reservations, where the scheduler or a
QoS manager adapts the reserved bandwidths in order to resolve all the task
overload situations (if possible). In the second strategy, each application
explicitly scales down its QoS (and consequently its resource requests), in
order to make B;“Y < Bf, thus removing the overload condition. This is
referred as application level adaptation, since in this case each application
has the responsibility to cope with its own overloads (each application can
scale down its QoS in different ways, and it is the only entity to know how
to perform such a QoS adaptation). Numerous solutions for performing such
an application level adaptation have been proposed in the literature and are
well known in the multimedia community, ranging from enlarging the task’s
period to skipping some tasks’ instances.

Note that if the sum of all the requested bandwidths }=; B;“? is less than
the maximum available CPU bandwidth B™%*, then the adaptive reservation
mechanism will be able to use the first strategy (global adaptation) to find
a feasible bandwidth assignment B = (B§,...B?) such that Vi, Bf > B/

If, on the other hand, 3°; B;“? > B™ then the less important tasks can
suffer from local overloads. Indeed, the goal of the global adaptive reser-
vation mechanism is to isolate task overloads in the less important tasks,
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independently from their requirements and periods. In this aspect, adaptive
reservations differ from classical real-time techniques, in which task impor-
tance is inversely proportional to its period.

In this case, an overloaded task can use application level adaptation to try
to scale down its requirements (by decreasing its QoS). If such an adaptation
is performed, the task may exit the overload condition, reaching a lower
QoS level in a controlled fashion, otherwise the QoS degradation can be
unpredictable.

If a task 7; does not implement the application level adaptation, the less
important tasks (the tasks 7; with w; < w;) will be more penalised in terms
of reserved bandwidth, since the global adaptive reservation mechanism per-
forms the compression based on task importances w;. Hence, the bandwidth
of the less important tasks will be used to satisfy the QoS requirements of
the most important tasks. Such a system behaviour is consistent with the
proposed QoS model (avoiding overloads in the most important tasks). A
possible concern can be that a misbehaved task having a high importance
can compromise the QoS experienced by all the applications in the system.
However, the importance w; is assigned by the user, and can be used as a
mechanism to penalise misbehaved tasks or applications that do not adapt
their QoS properly.

Since the amount of resources requested by a task to provide a specified
level of QoS is not always known (and only a feedback mechanism can be
used to control the QoS) the global adaptive reservation mechanism alone
may not be able to guarantee a minimum QoS to each task.

If application level QoS adaptation is implemented, the task can scale
down its resource requirements in order to provide a minimum QoS, if the task
is guaranteed to receive a minimum amount of resources. For this reason, the
original adaptive reservations scheme can be enhanced in order to guarantee
a minimum fraction of the CPU bandwidth to each task. Note that this
modification only affects the compression equation, and does not change
anything in the original feedback scheme.

4.4.1 Hierarchical QoS feedback control

As shown, when application level adaptation is used together with the adap-
tive reservation approach, there are two orthogonal forms of adaptation:

e the reserved bandwidth adaptation realized by an active entity having
a global system visibility, such as a QoS manager or the scheduler itself;

e the application level QoS adaptation, as presented in the previous sec-
tion.
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Figure 4.16: Two-Level Feedback.

This integrated approach, referred in this dissertation as hierarchical
adaptation, presents the advantages of both methods, allowing the appli-
cations to scale their QoS when the bandwidth adaptation is not able to
serve them properly. In fact, it can be shown that adaptive reservations
can suffer when all the tasks require too much resources (basically, when
> B > B™%) and the QoS adaptation mechanism can solve this prob-
lem. On the other hand, the bandwidth adaptation mechanism allows appli-
cations to obtain the desired QoS without requiring any a-priori knowledge
on their resource requirements.

To use the hierarchical QoS management approach, a new level of feed-
back has to be added to the feedback scheme of Figure 4.1, as shown in Figure
4.16. The inner loop controls the bandwidth B} reserved by the global adap-
tive reservation, while the outer loop controls the bandwidth B;“? requested
by the application, using the local method. As explained above, the goal of
the control loops is to obtain Bf > B;“’. One of the major problems with
this kind of hierarchy is that it can easily reach unstable conditions. For
example, let’s consider two tasks 7 and 7,: by reacting to a transient over-
load, the global adaptive reservation mechanism can decrease Bj; if 7y reacts
immediately by decreasing its QoS, when the transient overload finishes the
bandwidth adaptation mechanism can increase Bj. In this way, 7, increases
its QoS level, stealing bandwidth from 7y, preventing it to recover its initial
QoS level.

To solve this problem, the application level QoS adaptation action has
been made slower than the bandwidth adaptation one, so that QoS is changed
only when the overload condition is long (in most cases, the QoS is not scaled
in response to transient overloads).

More information about hierarchical QoS adaptation can be found in
[ABO1].
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Chapter 5

OS

5 years from now everyone will be running free GNU on their 200
MIPS, 6/M SPARCstation-5
Andrew S. Tanenbaum, 30 Jan 1992

o the first part of this dissertation, scheduling and resource allocation
© techniques suitable for serving time sensitive applications have been
o presented. However, those issues have been addressed from a “purely
mathematical” point of view, without considering real implementations. In
this chapter, the implementation of the previously described techniques will
be analysed, showing the most important problems and some possible solu-
tions.

5.1 Kernel Structures

Since the structure of the kernel can heavily influence the accuracy of the
scheduler, imposing or removing constraints and assumption on the resource
allocation strategies, in this section the most diffuse kernel structures will be
presented and evaluated from the real-time perspective.

5.1.1 Executives

The simplest way to organise system and user code is the one used by ex-
ecutives. An executive is a bunch of library code that can be linked to an
application, providing some “kernel functionalities”, such as multithreading,
interrupt management, and so on. As for traditional kernels, the role of an
executive is to abstract the hardware machine, implementing a higher level
programming interface.
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The main difference with a kernel-based OS is that executives do not
create a real distinction between application code and system code, and ev-
erything is mixed together. For this reason, someone tends to see an executive
as a LibOS (library Operating System).

Using an executive, the “system services” can be invoked through simple
near or far calls: no interrupt, trap, or gate mechanism is needed. As a
result, an executive is generally more efficient and introduces less overhead,
providing good real-time performance and introducing less unpredictabilities
in the scheduling. For this reason, executives are often chosen to implement
simple real time systems, such as RTEM [rte], HARTIK/SHARK [ABOO,
But93, LLBT97, GAGBO01], and similar. On the other hand, the increased
efficiency achieved by eliminating the barrier between system code and user
code results in a decreased flexibility and in the total absence of any kind of
protection.

5.1.2 DOS-like Systems

Respect to executives, in this kind of systems (sometime called “systems
without kernel”), there is a better distinction between application code and
system code. However, the application still has complete access to the hard-
ware (and this fact permits to increase the efficiency and predictability of
device drivers). In this way, system services are only “facilities” that appli-
cations may or may not use. Protection is not enforced, and each application
is free to do everything (even crash the system): someone sees this fact as a
drawback (lack of protection), someone else loves this kind of freedom (better
predictability).

Since system code and application code are separated, applications can
require system services through system calls, that are implemented using an
INT/TRAP mechanism (as in MSDOS) or some system entry table (as in
Amiga OS). However, due to the lack of some concepts like protection, and
similar, it is not appropriate to talk about a “real kernel”.

Examples of this kind of systems are MSDOS and its clones (such as
FreeDOS [fre]), AmigaDOS, and similar. Note that, thanks to their simplic-
ity and predictability, these OSs are often used in embedded and real-time
systems.

5.1.3 Monolitihic Kernels

This is the most common OS structure: a single program, the kernel, running
in privileged mode (system mode), abstracts the hardware providing a high
level Application Binary Interface (ABI). Since protection is enforced by the
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kernel (using appropriate hardware facilities such as the MMU), applications
cannot directly access hardware resources, but must require such an access
to the kernel.

The kernel is implemented as a single-threaded program, hence only one
single execution flow can run in system mode at each time. The kernel
responds to two different kinds of requests, coming from up (application
requests) or down (hardware requests); application requests are the system
calls, conforming to the kernel exported ABI.

Application requests are often called top halvesin Unix terminology, while
bottom requests are called bottom halves (in Linux), soft interrupts (in the
*BSD world), or Deferred Procedure Calls - DPCs - (in Windows & similia).
As said above, it is avoided to execute more than one top half simultaneously;
this requirement is often enforced using non-preemptable system calls.

Since a task cannot be preempted during the execution of a system call,
only one top half per time is active. Moreover, top halves also need to syn-
chronise with bottom halves: bottom halves are executed atomically, accord-
ing to kernel-defined priorities, immediately before returning from system
mode to user mode. When a hardware interrupt fires, the system executes
an Interrupt Service Routine (ISR) that acknowledges the hardware and
queues a request for a bottom half execution. Since the bottom half will be
executed immediately before returning to user mode, if the interrupt inter-
rupted a user mode program the bottom half will execute immediately before
the ISR, whereas if the interrupt interrupted a top half the bottom half will
execute after the top half. In this way the atomicity between top halves and
bottom halves is guaranteed; to synchronise with ISRs, a top half needs to
explicitly disable and reenable interrupts. For this reason, monolithic kernels
are often referenced as non-preemptive and single-threaded kernels.

To correctly manage multiple processors (I.LE., SMP machines), a mono-
lithic kernel requires strong modifications. This is due to the fact that in
a multiprocessor environment the simple top half/bottom half synchronisa-
tion scheme does not work (for example, nothing in the scheme presented
above prevents two top halves from executing simultaneously on two differ-
ent CPUs), and more complex mechanisms (such as spinlocks) must be used.
Note that the modifications needed to use a monolithic kernel on an SMP
machine make it more similar to a multithreaded kernel.

Finally, note that nonpreemptable system calls and bottom halves can
create scheduling anomalies by removing the “full preemptability” hypothe-
sis used in real-time theory, and by introducing priority inversions. Hence,
although the monolithic structure permits to enforce protection between user
applications and to achieve high throughput, it is not suitable for real-time
systems.
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5.1.4 Multithread Kernels

This kind of kernels remove the limitation of having one single execution flow
inside the kernel. In this way, the kernel can also be preemptable.

In a multithreaded kernel, different execution flows can be used for pro-
cessing interrupt requests (without the need for making them atomic like the
bottom halves). Synchronisation between the various execution flows must
be explicitly enforced using a combination of interrupt disabling and busy
waiting named spinlock. For this reason, the extension to SMP machines is
much simpler.

A spinlock provides two operations, lock and unlock, and acts as a mu-
tex, ensuring the atomicity of sections contained between lock and unlock.
The difference respect to mutexes is that a spinlock will not use the process
block/unblock mechanism. On a single processor machine, a lock operation
is equivalent to disabling interrupts (an x86 cli instruction), which will be
reenabled by the unlock operation. On a SMP machine, a lock will disable
interrupts and, if the spinlock is locked, will perform a busy wait (with a
polling cycle) until the spinlock is unlocked.

Examples of multithreaded kernels are Solaris or AtheOS. Note that, due
to their internal structure and to the possibility of running interrupt handlers
in dedicated thread, multithreaded kernels creates less scheduling anomalies
than monolithic kernels in real-time systems.

5.1.5 pkernel systems

The mukernel idea is not new, being born in '70s. The basic concept is to
reduce the number of abstractions exported by the kernel to a minimum, im-
plementing in user space the higher level abstractions provided by traditional
monolithic kernels. The minimum abstractions that the ukernel must provide
are address spaces, threads, and some TPC mechanism (channels or ports).
All the rest of the OS can be implemented through user level programs.

Using such a pkernel based design, an operating system kernel can be
implemented in two possible ways: as a single user process (server), or as a
set of cooperating servers. An example of the first approach is the Lite server
[Hel94], implementing a BSD style kernel on top of Mach, or the mklinux
server [dPSR96], implementing Linux on top of OFS/Mach. An example of
the second approach is the GNU Hurd [TB].

In a multi server implementation, kernel functionalities are split in groups
implemented by different servers (for example, a EXT?2 file system server,
a process server, an authentication serve, and so on). This approach can
result to be more flexible, and has been recently discovered as more efficient
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[GIJPT00].

Since a pkernel only implements very simple functionalities, its execution
paths will be very short, hence it will not create big anomalies in real-time
scheduling. Moreover, device drivers can be implemented externally to the
kernel (in dedicated server), so that they do not influence the real-time per-

formance of the system. For this reason there are a lot of real-time systems
implemented over pkernels [TNR90, Hil92, HBB*98, Meh99].

Fat pkernels

First generation pkernels, such as Mach and Chorus, were developed using
the “traditional kernel” design, with the result of obtaining big kernels (in
fact, the “u” does not mean “small”), often incorporating device drivers (and
thus also loosing some real-time properties).

These “fat” pkernels resulted in a less efficient (although more flexible)
implementation of the OS functionalities due to various problems like TPC
overhead and cache effects.

As a result, a single server implementation of a monolithic kernel running
on Mach can incur in a 30% performance penalty. A possible solution are
co-located servers that, running in the same pkernel address space, do not
incur in the IPC overhead. In this way, one of the biggest advantages of
pkernel systems (protection between servers) is lost. Windows NT uses a
similar design (NT drivers are in fact co-located servers).

Small pkernels (Second Generation)

To solve the problems encountered in fat pkernels, a second generation of
pkernels has been designed. These new pkernels, such as L4 and QNX, only
implements the basic needed functionalities, that have been identified in:

1. Threads

2. Address Spaces

3. an TPC mechanism

4. an Interrupt Handling mechanism.

By exporting a minimal interface, that only provides few fundamental ser-
vices, the kernel size can be minimised so that the whole kernel fits in cache.
Moreover, the most critical IPC paths can be optimized by using the CPU
registers to pass message data.
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The performance improvement obtained by the second generation pkernels
is remarkable, and these OSs result to be particularly suited for real-time and
embedded systems.

5.1.6 RTLinux-like systems

As seen, the predictability requirements of a real-time system often contrasts
with the throughput and flexibility requirements of a general-purpose sys-
tem. Sometimes, a general-purpose system can be useful for development,
and being able to run real-time programs on if can greatly speed-up the de-
velopment process. However, general-purpose systems are generally based on
a monolithic structure.

If real-time performance are not important for the applications running
on the monolithic kernel, but are only important for tasks that do not use the
general-purpose kernel features, then it could be possible to run the general-
purpose kernel over a real-time executive that directly accesses the hardware.
This requires some kind of interrupt virtualization mechanism: interrupt are
directly managed by the real-time executive, and are forwarded to the non
real-time kernel running over it when appropriate. Instead of disabling in-
terrupts, the non real-time kernel can ask the real-time executive to stop for-
warding interrupts, so that hardware interrupts are disabled /reenabled (and
managed) only by the real-time executive. In this way, real-time applications
get very good real-time performance, and predictable delays and latencies,
as proved by RTLinux [BY96], RTAT [MBDPO00], and similar systems.

Using this kind of solutions, two different subsystems (an executive or
a DOS-like system used by real-time applications, and a monolithic kernel
running in background over it) coexist in the same machine, trying to achieve
the best of the two worlds. Of course, things can also be seen in the other
way around: applications running on the monolithic kernel will get very bad
real-time performance and a bad throughput (the non real-time monolithic
kernel is scheduled in background), and real-time applications will not be
able to access the services provided by the monolithic kernel and will be able
to crash or starve the whole system (the real-time executive does not provide
any kind of protection).

The second problem (lack of protection in the real-time executive) can
be solved by adopting a pkernel structure, and using a high-priority real-
time server instead of a real-time executive. In this way, interrupts are not
virtualized, but forwarded by the pkernel, and the non real-time server is
scheduled in background because of its low priority. This solution has been
implemented in L4-RTL [Meh99], achieving real-time performance compa-
rable with the one of RTLinux/RTAI while enforcing protection between
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real-time applications [MHSHO1].

5.2 Scheduling Latency

As explained, real kernels often generate a schedule that is different from
the expected one, due to the strategies used to enforce mutual exclusion
or the guarantee the consistency of internal data. The difference between
the actual schedule produced by the kernel and the ideal schedule can be
quantified using a metric called kernel latency.

Definition 20 Let 7 be a task belonging to a time-sensitive application that
should be ideally scheduled at time t, and let t' be the time at which T is
actually scheduled; the kernel latency experienced by T is defined as L = t' —t.

According to the previous description, several sources of kernel latency
can be identified; the two most important sources being timer resolution and
non-preemptive sections in the kernel. In this section, the kernel latency of
a monolithic kernel will be analysed, and some techniques for reducing that
latency will be described.

Timer resolution latency occurs because kernel timers are generally im-
plemented using a periodic tick interrupt. For example, consider a periodic
task 7 that needs to execute every Tus. Typically, the task will be woken
up by a kernel timer that is triggered by the periodic tick interrupt with say,
period T%°*. Hence, a task that sleeps for an arbitrary amount of time T
can experience some timer resolution latency LY if its expected activation
time is not on a tick boundary.

Another source of latency, the non-preemptable section latency is caused
by non-preemptable sections in the kernel or in the drivers. In a monolithic
kernel, this component of latency includes the effects of ISRs and bottom
halves. Consider an example where interrupts are disabled at time ¢. Task
7 can only enter the ready queue later when interrupts are re-enabled. In
addition, even if 7 enters the ready queue at the correct time ¢, it may still
not be scheduled if preemption is disabled for some reason. In this case, 7
will be scheduled when preemption is re-enabled at time #', contributing a
non-preemptable section latency L™ = t' —t.

5.2.1 Timer Resolution

As said, in a traditional kernel, timers are triggered by a periodic tick in-
terrupt, which on x86 machines is generated by the Programmable Interval
Timer (PIT) and has a period T%* = 10ms. As a result, the maximum
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latency due to the timer resolution max{ L™} is T** = 10ms. Thus, this
value can be reduced by reducing T%*. However, decreasing T"“* increases
system overhead because more tick interrupts are generated. In addition,
there is a lower bound on L!™¢" which is equal to the execution time re-
quired for servicing the tick interrupt.

The fact that a periodic timer interrupt is not an appropriate solution
for a real-time kernel is well known in the literature, and thus most of the
existing real-time kernels provide high resolution timers based on an aperiodic
interrupt source[ST93]. In an x86 architecture, the PIT or the CPU APIC
(Advanced Programmable Interrupt Controller present in many modern x86
CPUs) can be programmed to generate aperiodic interrupts for this purpose.
Thus, high resolution timers could reduce L*™" to the interrupt service time
without significantly increasing the kernel overhead, because these interrupts
are generated only when a timer expires.

5.2.2 Non-Preemptable Sections

The second term contributing to the maximum kernel latency is the non-
preemptable section latency max{L"P}. According to the previous descrip-
tion of the various kernel structures, in a monolithic kernel max{L"} is
equal to the maximum length of a system call (which, we recall, is non-
preemptable) plus the processing time of all the interrupts that fire before
returning to user mode. Unfortunately, in a standard monolithic kernel such
a Linux this value can be as large as 28ms as shown in Section 5.2.3. In a
pkernel system, system calls are still non-preemptable, but they are shorter
(because of the simplicity of the pkernel), and the interrupt processing time
does not affect L™. This is the reason why some real-time systems such
as RT-Mach [TNR90], QNX [Hil92], and DROPS [HBB"98] are based on
a pkernel. Multithreaded kernels can also be used to reduce the effect of
non-preemptable sections by removing the effect of ISR and bottom halves,
but this solution also affects the throughput of the system.

An alternative solution to decrease L"P is to modify the monolithic ap-
proach by decreasing the size of the kernel non-preemptable sections or by
introducing full kernel preemptability. Hence, three new kernel structures
have to be considered:

Low-Latency kernel: This approach “corrects” the monolithic structure
by inserting explicit preemption points (also called rescheduling points)
inside the kernel. In this approach, when a task is executing inside the
kernel it can explicitly decide to yield the CPU to some other task.
In this way, the size of non-preemptable sections is reduced, thus de-
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creasing L™. In a low-latency kernel, the consistency of kernel data
is enforced by using cooperative scheduling (instead of non-preemptive
scheduling) when the execution flow enters the kernel. This approach is
used by some real-time versions of Linux, such as RED Linux [YCL98|,
and by Andrew Morton’s low-latency patch [Mor]. In a low-latency ker-
nel, max{L""} decreases to the maximum time between two reschedul-
ing points.

Preemptable kernel: The preemptable approach, used in most real-time
systems, removes the constraint of a single execution flow inside the
kernel. Thus it is not necessary to disable preemption when an execu-
tion flow enters the kernel. To support full kernel preemptability, ker-
nel data must be explicitly protected using mutexes or spinlocks. The
Linux preemptable kernel patch [Lov| uses this approach and makes
the kernel fully preemptable. Kernel preemption is disabled only when
a spinlock is held.! In a preemptable kernel, max{L""} is determined
by the maximum amount of time for which a spinlock is held inside the
kernel (maximum size of a kernel non-preemptable section), plus the
maximum time taken by ISRs and bottom halves.

Preemptable Lock-Breaking kernel: The kernel latency can be high in
Preemptable Linux when some spinlock is held for a long time. Lock
breaking addresses this problem by “breaking” long spinlocks, i.e.,
by releasing spinlocks at strategic points. Breaking spinlocks into
smaller non-preemptable sections is similar to the approach used by
Low-Latency Linux. This approach reduces the size of kernel non-
preemptable sections, but, of course, does not decrease the amount of
time “stolen” by ISRs and bottom halves. Looking at the code, we
verified that most of the Andrew Morton’s preemption points are in
this patch in the form of “lock breaking points”.

As a final note, we would like to point out that the preemption patch has
been recently accepted in the development (unstable) branch of the Linux
kernel, and is now present in version 2.5.4 of the kernel.

5.2.3 Experimental Evaluation

To show the effects of the kernel structure on the real-time performance,
the latency of a standard monolithic kernel, Linux 2.4.18 in particular, have

!There is also a different patch, from Timesys [Inc], based on mutexes and priority
inheritance instead of on spinlocks.
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been evaluated and compared with a low-latency, a preemptable, and a lock-
breaking preemptable version of the same kernel. One method for experi-
mentally measuring the latency is to use a task that invokesusleep to sleep
for a specified amount of time and then measures the time that it actually
slept. The latency L, as previously defined, is then the difference between
these two times. Unfortunately, this approach measures the sum of all the
latency components and thus does not give us an insight into the causes of
latency.

The individual latency components can be measured in isolation, by mea-
suring each source of latency while eliminating the others. To measure L!™er
L" is eliminated by running the experiment on an idle system. After that,
L™ is measured by eliminating L“™" through the use of high resolution
timers. The following sections describe this approach in more detail.

Measuring Timer Resolution Latency

The OS non-preemptable section latency L™ can be reduced significantly by
running experiments on a lightly-loaded system. In this case, few system
calls will be invoked and a limited number of interrupts will fire and thus
long non-preemptable execution paths or drivers’ activations are not likely
to be triggered.

The latency L™ can be measured by using a typical periodic time-
sensitive application, for example a process that sets up a periodic signal
(using the itimer () system call) with a period T ranging from 100us to
100ms. The process measures the time when it is woken up by the signal
and then immediately returns to sleep after computing the difference between
two successive process activations, called inter-activation time. Note that in
theory the inter-activation times should be equal to the period T'. Hence,
the deviation of the inter-activation n times from 7" is a measure of L!#™mer,
Since Linux ensures that a timer will never fire before the correct time, this
value can be expected to be 10ms on standard Linux kernel, and to be close
to the interrupt processing time while using high resolution timers.

Measuring OS Non-Preemptable Section Latency

Once the timer resolution latency is eliminated with high resolution timers,
L™ can be measured in isolation. Unfortunately, a periodic process is not
suitable for measuring this latency. For example, to measure the effects
of disabling preemption for a time S, the latency must be sampled with a
period T < S or else the non-preemptive code could execute between two
consecutive measurements. More precisely, if £ is the measured latency, then
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L < L" < L+T. Hence, to reliably measure L"P, the test task should have a

period T" such that T" << L™. In practice, this requirement is hard to achieve

and thus we use an aperiodic test application that uses the usleep() call.
The test task is based on a loop that:

1. reads the current time ¢,
2. sleeps for a time T
3. reads the time t5, and computes L™ =ty — (t; + T)

Times ¢, and t, are read using the Pentium Time Stamp Counter (TSC), a
CPU register that is increased at every CPU clock cycle and can be accessed
in a few cycles. Hence, the measurements introduce very low overhead and
are very accurate.

To investigate how various system activities contribute to L™ various
load-generating tasks are were run in background. The following tasks are
known to invoke long system calls or cause frequent interrupts and thus were
selected as background load to trigger long non-preemptable sections:

Memory Stress: One potential way to increase L"? involves accessing large
amounts of memory so that several page faults are generated in suc-
cession. The kernel invokes the page fault handler repeatedly and can
thus execute long non-preemptable code sections.

Caps-Lock Stress: A quick inspection of the kernel code reveals that when
the num-lock or caps-lock LED is switched, the keyboard driver sends
a command to the keyboard controller and then spins while waiting for
an acknowledgement interrupt. This process can potentially disable
preemption for a long time.

Console-Switch Stress: The console driver code also seems to contain long
non-preemptable paths that are triggered when switching virtual con-
soles.

I/O Stress: When the kernel or the drivers have to transfer chunks of data,
they generally move this data inside non-preemptable sections. Hence,
system calls that move large amounts of data from user space to kernel
space (and vice-versa) and from kernel memory to a hardware periph-
eral, such as the disk, can cause large latencies.

Procfs Stress: Other potential latency problems in Linux are caused by the
/proc file system. The /proc file system is a pseudo file system used by
Linux to share data between the kernel and user programs. Concurrent
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T(us) | 100|200 ]300 |400 |500 |600 |700 ]800 | 900
L(ps) |47 |51 3 [44 |49 |53 |50 |52 50
T(us) | 1000 | 2000 | 3000 | 4000 | 5000 | 6000 | 7000 | 8000 | 9000
L(ps) | 46 |47 |52 |48 |51 |49 |55 |50 |57
T(us) | 10000 | 20000 | 30000 | 40000 | 50000 | 60000 | 70000 | 80000 | 90000
L(ps) |52 |46 |51 19 |54 |50 |43 |47 |51

Table 5.1: The table shows L, the maximum difference between the inter-
activation times and the task period, for different values of the task period
T on a high resolution timer Linux.

accesses to the shared data structures in the proc file system must be
protected by non-preemptable sections. Hence, we expect that reading
large amounts of data from the /proc file system can increase the
latency.

Fork Stress: The fork() system call can generate high latencies for two
reasons. First, the new process is created inside a non-preemptable
section and involves copying large amounts of data including page ta-
bles. Second, the overhead of the scheduler increases with increasing
number of active processes in the system.

Experience and careful code analysis by various members of the Linux
community (for example, see Senoner [Sen]) confirms that the above list of
latency sources is comprehensive, i.e., it triggers a representative subset of
long non-preemptable sections in the kernel and in the drivers.

Results

The first set of experiments measures L¥™¢" and shows that it can be eas-
ily eliminated from the OS non-preemptable section latency by using high
resolution timers. The high-resolution timers mechanism was evaluated and
compared with the timer mechanism of a standard kernel. Figure 5.1 shows
the inter-activation times on a standard Linux kernel when T = 11ms. Since
the task period is not a multiple of T | the difference between the inter-
activation times and T is not 0: the timer will fire at the next multiple of
the system tick and thus an inter-activation time is 20ms. In fact, the inter-
activation times in Figure 5.1 is close to this value, and the difference between
the inter-activation times and the period is close to 20 — 11 = 9ms. As ex-
plained, this problem is solved by the high-resolution timer kernel, which we
demonstrate through experiments described below.
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Figure 5.1: Inter-Activation times for a task that is woken up by a periodic
signal with period 11ms on a standard Linux kernel. Note that the task
period is greater than T** = 10ms.

Figure 5.2 shows the inter-activation times measured with period 7" =
100us on the high-resolution timer kernel. Note that after 1000 activations
the maximum difference between the period and the actual inter-activation
time is less that 25us. Hence, it can be conjectured that the 9ms latency
shown in Figure 5.1 is almost completely due to the timer resolution.

Table 5.1 shows the maximum absolute value of the difference between
the period and the inter-activation times for various values of 7" on a high
resolution timer kernel. Each of these maximum values has been measured
over 1,000,000 activations. The table shows that the maximum difference
does not significantly depend on the period T and its maximum value is
about 57us. We hypothesise that this value is due to the OS latency L"P.
However, we do not know the precise cause of this latency since we did not
specifically control the background task set.

This experiment has been repeated with different periods where each ex-
periment was run for 10,000,000 activations, showing that the difference
between the period and the inter-activation time does not significantly de-
pend on the period T'. Figure 5.3 plots the Probability Distribution Function
(PDF) of the inter-activation times when 7" = 1000us. The maximum mea-
sured inter-activation time is about 1300us, whereas the minimum is about
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Figure 5.2: Inter-Activation times for a task that is woken up by a periodic
signal with period 100us on a high resolution timer Linux.

6304us, and this distribution does not significantly vary with increasing num-
ber of activations.

The maximum deviation between inter-activation times (about 370us) is
due to the OS non-preemptable section latency L". However, the precise
cause of this latency is not precisely known, since in the previous experiments
there was not any specific control on the background task set.

5.2.4 Non-Preemptable Section Latency

Hence, a new set of experiments was performed to measure latencies due to
the various activities that can trigger long non-preemptable paths. In this set
of experiments, the usleep() test program described in Section 5.2.3 was run
with 7" = 100us to measure and identify the causes of the non-preemptable
section latency.

The usleep() test program started on an unloaded machine. Then the
load-generating tasks described in Section 5.2.3 were run in the background to
trigger long non-preemptable paths. To easily represent the latency results in
a single plot per Linux variant, we used a background load that was generated
as follows:

1. The memory stress test allocates a large integer array with a total size

92



01 E

0.01 E

0.001 E

T
gy —
P —
1

0.0001

Distribution

le-05 | E

le-06 -

le-08 | I “WL_“W“‘ 1 I

400 600 800 1000 1200 1400 1600
Inter-Activation Times (usec)

1e-07 |

Figure 5.3: PDF of the difference between inter-activation times and period,
when 7" = 1000pus.

6.

of 128 MB and accesses it sequentially. This test starts at 1000ms, and
finishes around 2000ms.

. The caps-lock stress test runs a program that switches the caps-lock

LED twice. This test turns on the LED at 7000ms and then turns it
off at 8000ms.

. The console-switch stress test runs a program that switches virtual

consoles on Linux twice, first at 9000ms and then at 10000ms.

. The I/O stress test uses the read() and write() system calls and

accesses 2 MB of data. This test starts at 11000ms and finishes around
13000ms.

. The procfs stress test reads a 512 MB file in the /proc file system. It

runs from 17000ms to around 18000ms.

The fork test forks 512 processes. This test starts at 20000ms.

Figure 5.4 shows the latency measured on a standard (monolithic) Linux
kernel (version 2.4.16). Due to the implementation of the usleep() call
on Linux, L¥™° is around 19.9ms instead of 9.9ms. The memory access
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Figure 5.4: Latency measured on a standard Linux kernel. This test is
performed with background load. Note that the L¥™¢" component dominates
the latency most of the time.

test, starting at ¢ = 1000ms does not seem to create any additional latency.
However, it is possible to notice a small spike at the end of the test around
t = 5000ms (explained in the next experiment). In this experiment, no
variation in the latency during the caps-lock stress test or the console-switch
test can be noticed. On the other hand, there are some large spikes (up to
100ms) from t = 11000ms to ¢ = 13000ms during the the I/O stress test.
Note that the Y axis is shown on a logarithmic scale. None of the other
tests present any significant contribution to kernel latency. Hence, it can be
argued that in a standard Linux kernel the timer resolution latency L™ ig
generally larger than L™ and hides the effects of non-preemptable sections.
This is probably one reason why latency problems have not been previously
addressed by the Linux community. These results show that high resolution
timers mechanism is needed to investigate L™P.

Figure 5.5 reports the results obtained when high resolution timers are
used in the usleep() implementation. It shows that in this case L!me
is almost completely removed. Hence, the effects of long non-preemptable
sections are more visible. For instance, when the system is unloaded (¢ <
1000ms) the latency lies between 4ps and 6us. This latency is due to the
resolution of the timing mechanism and it matches the expected value of the
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Figure 5.5: Latency measured on a Linux kernel with high resolution timers.
This test is performed with background load. Now, L"? is visible.

interrupt service time. It increases to 20us during the memory stress test.
This result is surprising because contrary to common belief it shows that
page faults of other processes in Linux are not a serious problem for real-
time performance. However, the end of the memory stress test generates a
spike of about 20ms in kernel latency. A deeper investigation permits to
discover that the source of this latency is the munmap() system call when
large memory buffers are unmapped.

The caps-lock shift significantly increases kernel latency. During the caps-
lock stress test (t = 7000ms and ¢ = 8000ms) the latency rises to 7ms. On
the other hand, the console switch test (¢ = 9000ms and ¢t = 10000ms) only
increases the latency to 900us. Again, the longest critical paths seem to be
triggered by the I/O stress test between ¢ = 11000ms and ¢ = 13000ms when
the latency increases to 100ms, similar to the previous experiment. Finally,
the procfs stress test can contribute about 4ms to latency, whereas the fork
test contributes up to about 300us. Again, note that in a standard Linux
kernel, the 10ms resolution of the timers hides most of these values except
the latency caused by file accesses.

From Figure 5.5, a expect reduction in the latency is expected if the
length or granularity of the kernel non-preemptable sections is reduced. As
explained in Section 5.2.2, there are several ways in which non-preemptable
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Figure 5.6: Latency measured on a Low-Latency Linux kernel with high
resolution timers. The munmap() and I/O latencies are reduced.

kernel sections can be shortened. First, preemption points can be manually
placed to break long non-preemptable paths, such as in the low-latency ker-
nel. Second, the kernel can be made fully preemptable, where preemption
is disabled only when spinlocks are held. Finally, the first technique can
be used to reduce the length of spinlocks in a preemptable kernel. These
techniques are explored in the next sections.

Figure 5.6 shows the latency measured on a high resolution timers kernel
with the Andrew Morton low-latency patch.

First, note that the latency experienced during the memory stress test
does not change significantly, but the 20ms spike caused by unmapping the
large memory buffer has been removed. Now the munmap () latency is about
200us. However, the latency caused by the caps-lock and console stress
tests is not changed, and in this experiment the worst latency is caused by
toggling the caps-lock key! The latency spikes between ¢ = 11000ms and
t = 13000ms have disappeared and thus the 1/O stress test does not cause
serious problems for real-time performance anymore. However, the latency
caused by the procfs stress test and by the fork stress test is unchanged as
compared to the monolithic kernel.

In summary, the latency caused by all the activities except the procfs
stress test and the caps-lock stress test is under 1ms.
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Figure 5.7: Latency measured on a Preemptable-Linux kernel with high res-
olution timers. The procfs latency is reduced, but the munmap() latency
becomes high again.

Figure 5.7 shows the results obtained using a Preemptable-Linux kernel.
The big difference that can be noticed as compared to the Low-Latency kernel
is that the munmap () system call causes high latency once again (about 20ms
around time ¢ = 5000ms). The latency caused by the I/O stress test is also
increased with spikes up to 1ms. On the other hand, the procfs stress test
does not cause significant latency. In particular, the big spike in latency at
time t = 17000ms has been removed. In this experiment, the worst latency
is caused by the munmap() system call and is due to the kernel holding a
spinlock for a long time.

Figure 5.8 shows the results obtained when the lock-breaking preempt-
able kernel is used. Note that breaking long spinlocks solves the munmap ()
problem. The kernel behaviour during the memory stress (and during the
final unmap()) is similar to the behaviour of the low-latency kernel. More-
over, this kernel also has the benefits of the preemptive kernel. For instance,
compared to the low-latency kernel, there are improvements in the latency
caused by the console switch stress test and by the procfs stress test.

In summary, the largest latency is caused by the caps-lock stress test
and all other latencies are within 1ms. File accesses are still not as low
as in Figure 5.6. This latency is caused by heavy interrupt loads and long
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Figure 5.8: Latency measured on a Lock-Breaking Preemptable-Linux kernel
with high resolution timers. Note that most of the latencies are under 1ms.

non-preemptable interrupt processing times inside BHs. In fact, BHs are
serialised using a spinlock, that can disable preemption for a long time.

5.3 Interrupt Processing Time

Until this point, the CPU as been considered as the only hardware resource in
the system (hence, as the only resource that has to be scheduled). However,
a modern PC is connected to a lot of peripherals, that can be considered as
hardware resources that the OS kernel has to manage. In most case, these
resources can produce events (in the form of hardware interrupts), and the
kernel properly manages them, or forwards them to an appropriate handler
task. In a pkernel based system, an hardware interrupt can be converted
in an IPC to a server task, that will properly handle the hardware device;
in a multithreaded kernel, a kernel thread can be used to properly serve
the interrupt, whereas in a monolithic kernel a bottom half (or a DPC) is
generally used to this task.
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5.3.1 The Problem

Independently from the kernel structure, a hardware interrupt will be gener-
ally served in two phases:

e a short Interrupt Service Routine (ISR) generally executes with
interrupts disabled, and is responsible for acknowledging the hardware
interrupt mechanism and activating a proper DPC, bottom half, kernel
thread, or server task.

e a longer routine (running in a kernel thread, server task, bottom half,
or DPC) is responsible for correctly manage the device. Note that
kernel threads and server tasks are generally scheduled, whereas DPCs
and bottom halves are not.

As noted above, if a pkernel or a multithreaded kernel is used, the code
handling the device can be scheduled like all the other tasks in the system.
This solution can present a slightly higher overhead, and requires a more
careful synchronisation, but permits to correctly account the handler code
in a time sensitive system. In facts, the handler code requires some CPU
time to execute, and it must be correctly accounted in order not to break the
system’s guarantees.

To better understand this fact, let’s consider a monolithic kernel: as
explained before, the handler code runs in a bottom half, that is invoked
by the CPU scheduler before selecting the next application task and is not
preemptable with respect to the application tasks. This fact can introduce
two sources of unpredictability:

e the handler code is execute at apparently random times (depending
on the interrupts’ arrival pattern) and is not scheduled, introducing
anomalies in the CPU scheduling that can be seen as stolen time

e bottom halves are not preemptable, violating one of the assumptions
of a priority based scheduler (at each time, the task having the higher
priority is scheduled).

As a result of these scheduling anomalies, the real-time guarantees pro-
vided by the system may be broken. From a practical point of view, the
system behaves like if some execution time has been stolen to application
tasks, hence this problem will be referred as the stolen time problem.

Some solutions to the stolen time problem have been proposed, ranging
from accounting the interrupt and bottom half time in the schedulability
guarantee [JS93] to scheduling the bottom half code [JSMA98, DBI6| or
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temporally disabling the hardware interrupts [MR97, IMS97]. However, none
of those solution can be easily and practically implemented in an usable OS
kernel.

In order to show the impact of this problem, some experiments have
been performed using Linux/RK. The version of Linux/RK used for these
experiments provides predictable guarantees for CPU reservations, outgoing
network reservations, and disk reservations, but does not account properly
the time stolen by network bottom halves.

5.3.2 A Possible Way Out

If a reservation based scheduler is used, another possible solution to the stolen
time problem could be to use the augmented reservation abstraction [RS01],
that permits to resize the system reservations in order to compensate the
effects of the stolen time.

The augmented reservations approach results to be very effective and easy
to implement, but it requires to monitor the time stolen by DPCs or bottom
halves (hence, it requires additional modifications to the OS kernel), in order
to sum it to the reserved time. This requirement is due to the fact that
augmented reservations have been designed to support a generic task model;
if, on the other hand, the real-time task model is used, then the requirement
of instrumenting the kernel can be relaxed. In fact, using the real-time task
model each task is divided in jobs, and each job is characterised by an abso-
lute deadline that can be used to monitor application performance. In this
way, an implicit monitoring of the effects of the interrupt handlers execution
can performed by simply measuring the number of missed deadlines, and the
DPC or bottom half time does not have to be explicitly monitored.

This idea is used by Adaptive Reservations, presented in Section 4.1: the
adaptive reservation abstraction was originally developed in order to cope
with tasks characterised by unknown or highly variable execution times, but
it can be successfully used to mitigate the effects of stolen time. In fact,
the time stolen by ISRs and bottom halves can be modelled as a variance in
tasks’ execution times, and adaptive reservations will properly cope with it.

This is a simple explanation of how adaptive reservations compensate
the effect of the time stolen by interrupt processing: when the network load
increases, the bottom halves begin to consume a significant amount of CPU
time, stealing it to reserved processes. Hence, a reserved process will miss
some deadline, and if the process is attached to an adaptive reservation its
reserved time will be increased. In this way, the amount of time reserved
to a process increases when the network traffic increases, compensating the
effects of the bottom halves execution.
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init = rdtsc();
for (1 = 0; i < MAX; i++) {
for (j = 0; j < COUNT; j++) {
for (k = 0; k < 100; k++) {
/* Just to spend some time... */
time = rdtsc();
}
}
timevect[i] = CLOCK2USEC(time - init);
task_endcycle(); /* Blocks until the next period */

Figure 5.9: The test process

Note that, in contrast with augmented CPU reservations, adaptive reser-
vations can be implemented in user space, without requiring modifications to
the kernel. The only requirement is that the kernel provides temporal protec-
tion in the CPU scheduler; as a proof of concept, adaptive reservations have
been implemented through a portable QoS Manager, that has been ported on
the HARTIK kernel [AB00] and Linux/RK [RAANT00] (as already explained
in Section 4.3); in this work, the RK version has been used.

In order to prove the effectiveness of Adaptive Reservations in compen-
sating the effects of the stolen time, some experiments have been run in
Linux/RK;, a Resource Kernel based on Linux. A Resource Kernel in general
permits to reserve an hardware resource to a process: based on some reserve
abstractions, a process can be guaranteed to receive the resource for a time ()
each period T. The version of Linux/RK used for these experiments provides
predictable guarantees for CPU reservations, outgoing network reservations,
and disk reservations, but does not properly account the time stolen by the
bottom halves.

The influence of the bottom halves on the CPU scheduling can be easily
seen by simply causing a lot of bottom halves execution and measuring the
impact on the execution of a reserved process, as shown by the following
experiments. First of all, the periodic process shown in Figure 5.9 has been
run with period T'= 20ms on an AMD-KG6 at 333 MHz, attached to a proper
CPU reservation. Since the COUNT constant is tuned so that the j loop takes
about 4ms, when attached to a (4ms,20ms) reservation this process does
not miss any deadline. In fact, the difference between two consecutive values
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Figure 5.10: Reserved process running in regular network load conditions:
job inter finishing times.

of timevect (referred as job inter finishing time in this dissertation) is about
constant, and equal to 20ms (the process & reserve period), as shown in
Figure 5.10. Hence, as forecasted, all the jobs finishes within their deadlines
(in facts, Linux/RK is able to provide a reliable real-time or reservation
guarantee if bottom halves do not steal too much time). After that, a heavy
network traffic has been sent to the test machine, in order to increase the
CPU time consumed by bottom halves. When the network load is increased,
the bottom halves steal execution time to the reserved process, hence the
difference between two consecutive values of the timevect array increases,
and the process starts to miss deadlines, as shown in Figure 5.11.

Adaptive reservations can nicely solve this problem: in order to prove the
effectiveness of such a solution, the previous experiment has been repeated
attaching an adaptive reservation with period 20ms to the user process. As
a result, the process parameters were adapted so that the number of missed
deadlines resulted to be controlled to 0 after a short transient. In fact,
the difference between two consecutive values of timevect resulted to be
controlled below 40ms, as shown in Figure 5.12.
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Figure 5.11: Reserved process running in high network load conditions: job
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Chapter 6

Conclusions

I've seen things you people wouldn’t believe.

Attack ships on fire off the shoulder of Orion.

I watched C-beams glitter in the dark near the Tannhauser gate.
All those moments will be lost in time, like tears in rain.

Time to die.

Blade Runner

his dissertation showed how to support time sensitive activities in a
general purpose operating system. In particular, it was argued that
sthe use of appropriate kernel techniques enables advanced scheduling
and resource allocation to better exploit system resources and to provide
more predictable QoS for time sensitive applications.

The thesis supported in this dissertation is that three different require-
ments can be identified:

1. low kernel latencies and high-resolution timers are needed to implement
a correct and accurate scheduler;

2. temporal protection must be provided by the scheduler so that a precise
and effective resource allocation can be implemented;

3. dynamic adaptation of the amount of reserved resources is needed to
cope with varying and unpredictable workloads.

6.1 OS Support

An evaluation of the latencies of a general-purpose kernel such as Linux
showed that the traditional monolithic design on which traditional OSs are
based can introduce big errors in resource allocation. This is due to various
factors, such as:
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the non-preemptive sections used by the kernel to ensure the consis-
tency of internal structures;

the low temporal resolution provided by traditional kernel timers, based
on a periodic interrupt source;

the inaccurate resource accounting provided by traditional OSs;

the anomalies produced by interrupt service.

The kernel latency can be reduced by using preemptable kernels, by intro-
ducing preemption points in the kernel, and by using high-resolution timers,
based on an aperiodic interrupt source. When these solutions are used to
reduce the latency, the scheduler can be precise enough to properly allocate
system resources so that each application can achieve the desired QoS.

To prove that accurate scheduling is possible on Linux, the influence of
the kernel latency on the scheduler accuracy has been measured through an
extensive set of experiments. Then, the kernel latency has been accurately
analysed and evaluated, showing the effectiveness of kernel preemption in
reducing it.

6.2 Scheduling

Once the kernel provide low latencies, the scheduling algorithm becomes im-
portant. However, the fixed priority algorithm implemented in the standard
Linux scheduler is not suitable for scheduling generic time-sensitive activi-
ties, because it does not provide Temporal Isolation: temporal isolation (also
known as temporal protection) is important for ensuring that the temporal
behaviour of a task does not affect the schedulability of the other tasks in
the system.

In other words, the isolation property is necessary to protect applications
from the misbehaviours of the other applications: the net effect is that each
application executes as it were on a slower dedicated processor. The schedul-
ing technique chosen in this paper to provide temporal isolation is based on
resource reservation techniques, hence an efficient and effective scheduling al-
gorithm implementing resource reservations has been proposed. The service
mechanism proposed in this dissertation is the Constant Bandwidth Server
(CBS), a work conserving server (implementing soft reservations) that has
been inspired by the Total Bandwidth Server and by the Dynamic Sporadic
Server.

Together with temporal isolation, the CBS provides some other inter-
esting properties, such as reclaiming of unused time, some kind of fairness,
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hard schedulability for tasks with known parameters, and the possibility to
perform a probabilistic guarantee for soft real-time tasks.

6.3 Adaptive Resource Allocation

Resource reservations can be used to implement an adaptive mechanism
which reserves the correct amount of resources to each task. This feed-
back mechanism, which can dynamically adapt the reservation parameters,
is particularly useful to achieve the desired QoS when some tasks parameters
(such as the WCET) are not known in advance.

The adaptive reservation abstraction, obtained combining the reserva-
tion and the feedback mechanisms, uses a control function f() to compute
the amount of CPU time reserved to a task based on its scheduling error.
Control theory can be used to design the feedback function, and to prove
that the closed loop scheduler is stable (meaning that it is able to control
the scheduling error to a desired value), and can provide the desired QoS.

After introducing a formal definition of the adaptive reservations mecha-
nism, an accurate formal model of a reservation-based scheduler was devel-
oped and presented. Based on this model, control theory has been used to
develop a feedback function and the performance of the closed-loop system
has been evaluated. According to our model and to the control theoretical
analysis that we performed, a simple PI controller resulted to be the correct
choice for controlling the amount of time reserved to a task.

The proposed feedback scheme has been initially implemented by using
a simulator and a synthetic workload, then by using a realistic workload
obtained by profiling an MPEG player. After that, adaptive reservations have
been implemented on a real system (using Linux/RK), and the effectiveness
of the proposed scheme has been validated by performing experiments on a
real system.

6.4 Final Remarks

Well, this is the end of the dissertation. I hope you all enjoyed reading it.
I also hope that the contents of this dissertation will be useful for someone,
and could help the development of future research.

If you have comments, ideas, or questions about this dissertation and the
algorithms presented in it, feel free to write me at lucabe72@gmail.com

Luca
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Appendix A

GNU Free Documentation
License

Version 1.1, March 2000

Copyright (© 2000 Free Software Foundation, Inc.
59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
Everyone is permitted to copy and distribute verbatim copies of this license
document, but changing it is not allowed.

Preamble

The purpose of this License is to make a manual, textbook, or other written
document “free” in the sense of freedom: to assure everyone the effective
freedom to copy and redistribute it, with or without modifying it, either
commercially or noncommercially. Secondarily, this License preserves for the
author and publisher a way to get credit for their work, while not being
considered responsible for modifications made by others.

This License is a kind of “copyleft”, which means that derivative works
of the document must themselves be free in the same sense. It complements
the GNU General Public License, which is a copyleft license designed for free
software.

We have designed this License in order to use it for manuals for free
software, because free software needs free documentation: a free program
should come with manuals providing the same freedoms that the software
does. But this License is not limited to software manuals; it can be used
for any textual work, regardless of subject matter or whether it is published
as a printed book. We recommend this License principally for works whose
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purpose is instruction or reference.

A.1 Applicability and Definitions

This License applies to any manual or other work that contains a notice
placed by the copyright holder saying it can be distributed under the terms
of this License. The “Document”, below, refers to any such manual or work.
Any member of the public is a licensee, and is addressed as “you”.

A “Modified Version” of the Document means any work containing the
Document or a portion of it, either copied verbatim, or with modifications
and/or translated into another language.

A “Secondary Section” is a named appendix or a front-matter section of
the Document that deals exclusively with the relationship of the publishers
or authors of the Document to the Document’s overall subject (or to related
matters) and contains nothing that could fall directly within that overall
subject. (For example, if the Document is in part a textbook of mathematics,
a Secondary Section may not explain any mathematics.) The relationship
could be a matter of historical connection with the subject or with related
matters, or of legal, commercial, philosophical, ethical or political position
regarding them.

The “Invariant Sections” are certain Secondary Sections whose titles are
designated, as being those of Invariant Sections, in the notice that says that
the Document is released under this License.

The “Cover Texts” are certain short passages of text that are listed, as
Front-Cover Texts or Back-Cover Texts, in the notice that says that the
Document is released under this License.

A “Transparent” copy of the Document means a machine-readable copy,
represented in a format whose specification is available to the general pub-
lic, whose contents can be viewed and edited directly and straightforwardly
with generic text editors or (for images composed of pixels) generic paint
programs or (for drawings) some widely available drawing editor, and that is
suitable for input to text formatters or for automatic translation to a variety
of formats suitable for input to text formatters. A copy made in an other-
wise Transparent file format whose markup has been designed to thwart or
discourage subsequent modification by readers is not Transparent. A copy
that is not “Transparent” is called “Opaque”.

Examples of suitable formats for Transparent copies include plain ASCII
without markup, Texinfo input format, TEX input format, SGML or XML
using a publicly available DTD, and standard-conforming simple HTML de-
signed for human modification. Opaque formats include PostScript, PDF,
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proprietary formats that can be read and edited only by proprietary word
processors, SGML or XML for which the DTD and/or processing tools are
not generally available, and the machine-generated HTML produced by some
word processors for output purposes only.

The “Title Page” means, for a printed book, the title page itself, plus
such following pages as are needed to hold, legibly, the material this License
requires to appear in the title page. For works in formats which do not have
any title page as such, “Title Page” means the text near the most prominent
appearance of the work’s title, preceding the beginning of the body of the
text.

A.2 Verbatim Copying

You may copy and distribute the Document in any medium, either commer-
cially or noncommercially, provided that this License, the copyright notices,
and the license notice saying this License applies to the Document are re-
produced in all copies, and that you add no other conditions whatsoever to
those of this License. You may not use technical measures to obstruct or
control the reading or further copying of the copies you make or distribute.
However, you may accept compensation in exchange for copies. If you dis-
tribute a large enough number of copies you must also follow the conditions
in section 3.

You may also lend copies, under the same conditions stated above, and
you may publicly display copies.

A.3 Copying in Quantity

If you publish printed copies of the Document numbering more than 100,
and the Document’s license notice requires Cover Texts, you must enclose
the copies in covers that carry, clearly and legibly, all these Cover Texts:
Front-Cover Texts on the front cover, and Back-Cover Texts on the back
cover. Both covers must also clearly and legibly identify you as the publisher
of these copies. The front cover must present the full title with all words of
the title equally prominent and visible. You may add other material on the
covers in addition. Copying with changes limited to the covers, as long as
they preserve the title of the Document and satisfy these conditions, can be
treated as verbatim copying in other respects.

If the required texts for either cover are too voluminous to fit legibly,
you should put the first ones listed (as many as fit reasonably) on the actual
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cover, and continue the rest onto adjacent pages.

If you publish or distribute Opaque copies of the Document number-
ing more than 100, you must either include a machine-readable Transparent
copy along with each Opaque copy, or state in or with each Opaque copy a
publicly-accessible computer-network location containing a complete Trans-
parent copy of the Document, free of added material, which the general
network-using public has access to download anonymously at no charge us-
ing public-standard network protocols. If you use the latter option, you must
take reasonably prudent steps, when you begin distribution of Opaque copies
in quantity, to ensure that this Transparent copy will remain thus accessible
at the stated location until at least one year after the last time you distribute
an Opaque copy (directly or through your agents or retailers) of that edition
to the public.

It is requested, but not required, that you contact the authors of the
Document well before redistributing any large number of copies, to give them
a chance to provide you with an updated version of the Document.

A.4 Modifications

You may copy and distribute a Modified Version of the Document under the
conditions of sections 2 and 3 above, provided that you release the Modified
Version under precisely this License, with the Modified Version filling the
role of the Document, thus licensing distribution and modification of the
Modified Version to whoever possesses a copy of it. In addition, you must
do these things in the Modified Version:

e Use in the Title Page (and on the covers, if any) a title distinct from that
of the Document, and from those of previous versions (which should, if
there were any, be listed in the History section of the Document). You
may use the same title as a previous version if the original publisher of
that version gives permission.

e List on the Title Page, as authors, one or more persons or entities
responsible for authorship of the modifications in the Modified Version,
together with at least five of the principal authors of the Document (all
of its principal authors, if it has less than five).

e State on the Title page the name of the publisher of the Modified
Version, as the publisher.

e Preserve all the copyright notices of the Document.
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Add an appropriate copyright notice for your modifications adjacent to
the other copyright notices.

Include, immediately after the copyright notices, a license notice giving
the public permission to use the Modified Version under the terms of
this License, in the form shown in the Addendum below.

Preserve in that license notice the full lists of Invariant Sections and
required Cover Texts given in the Document’s license notice.

Include an unaltered copy of this License.

Preserve the section entitled “History”, and its title, and add to it an
item stating at least the title, year, new authors, and publisher of the
Modified Version as given on the Title Page. If there is no section
entitled “History” in the Document, create one stating the title, year,
authors, and publisher of the Document as given on its Title Page, then
add an item describing the Modified Version as stated in the previous
sentence.

Preserve the network location, if any, given in the Document for public
access to a Transparent copy of the Document, and likewise the network
locations given in the Document for previous versions it was based on.
These may be placed in the “History” section. You may omit a network
location for a work that was published at least four years before the
Document itself, or if the original publisher of the version it refers to
gives permission.

In any section entitled “Acknowledgements” or “Dedications”, preserve
the section’s title, and preserve in the section all the substance and tone
of each of the contributor acknowledgements and/or dedications given
therein.

Preserve all the Invariant Sections of the Document, unaltered in their
text and in their titles. Section numbers or the equivalent are not
considered part of the section titles.

Delete any section entitled “Endorsements”. Such a section may not
be included in the Modified Version.

Do not retitle any existing section as “Endorsements” or to conflict in
title with any Invariant Section.
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If the Modified Version includes new front-matter sections or appendices
that qualify as Secondary Sections and contain no material copied from the
Document, you may at your option designate some or all of these sections
as invariant. To do this, add their titles to the list of Invariant Sections in
the Modified Version’s license notice. These titles must be distinct from any
other section titles.

You may add a section entitled “Endorsements”, provided it contains
nothing but endorsements of your Modified Version by various parties — for
example, statements of peer review or that the text has been approved by
an organization as the authoritative definition of a standard.

You may add a passage of up to five words as a Front-Cover Text, and a
passage of up to 25 words as a Back-Cover Text, to the end of the list of Cover
Texts in the Modified Version. Only one passage of Front-Cover Text and
one of Back-Cover Text may be added by (or through arrangements made
by) any one entity. If the Document already includes a cover text for the
same cover, previously added by you or by arrangement made by the same
entity you are acting on behalf of, you may not add another; but you may
replace the old one, on explicit permission from the previous publisher that
added the old one.

The author(s) and publisher(s) of the Document do not by this License
give permission to use their names for publicity for or to assert or imply
endorsement of any Modified Version.

A.5 Combining Documents

You may combine the Document with other documents released under this
License, under the terms defined in section 4 above for modified versions,
provided that you include in the combination all of the Invariant Sections
of all of the original documents, unmodified, and list them all as Invariant
Sections of your combined work in its license notice.

The combined work need only contain one copy of this License, and mul-
tiple identical Invariant Sections may be replaced with a single copy. If there
are multiple Invariant Sections with the same name but different contents,
make the title of each such section unique by adding at the end of it, in
parentheses, the name of the original author or publisher of that section if
known, or else a unique number. Make the same adjustment to the section
titles in the list of Invariant Sections in the license notice of the combined
work.

In the combination, you must combine any sections entitled “History”
in the various original documents, forming one section entitled “History”;
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likewise combine any sections entitled “Acknowledgements”, and any sec-
tions entitled “Dedications”. You must delete all sections entitled “Endorse-
ments.”

A.6 Collections of Documents

You may make a collection consisting of the Document and other documents
released under this License, and replace the individual copies of this License
in the various documents with a single copy that is included in the collection,
provided that you follow the rules of this License for verbatim copying of each
of the documents in all other respects.

You may extract a single document from such a collection, and distribute
it individually under this License, provided you insert a copy of this License
into the extracted document, and follow this License in all other respects
regarding verbatim copying of that document.

A.7 Aggregation With Independent Works

A compilation of the Document or its derivatives with other separate and in-
dependent documents or works, in or on a volume of a storage or distribution
medium, does not as a whole count as a Modified Version of the Document,
provided no compilation copyright is claimed for the compilation. Such a
compilation is called an “aggregate”, and this License does not apply to the
other self-contained works thus compiled with the Document, on account of
their being thus compiled, if they are not themselves derivative works of the
Document.

If the Cover Text requirement of section 3 is applicable to these copies of
the Document, then if the Document is less than one quarter of the entire
aggregate, the Document’s Cover Texts may be placed on covers that sur-
round only the Document within the aggregate. Otherwise they must appear
on covers around the whole aggregate.

A.8 Translation

Translation is considered a kind of modification, so you may distribute trans-
lations of the Document under the terms of section 4. Replacing Invariant
Sections with translations requires special permission from their copyright
holders, but you may include translations of some or all Invariant Sections
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in addition to the original versions of these Invariant Sections. You may in-
clude a translation of this License provided that you also include the original
English version of this License. In case of a disagreement between the trans-
lation and the original English version of this License, the original English
version will prevail.

A.9 Termination

You may not copy, modify, sublicense, or distribute the Document except
as expressly provided for under this License. Any other attempt to copy,
modify, sublicense or distribute the Document is void, and will automatically
terminate your rights under this License. However, parties who have received
copies, or rights, from you under this License will not have their licenses
terminated so long as such parties remain in full compliance.

A.10 Future Revisions of This License

The Free Software Foundation may publish new, revised versions of the GNU
Free Documentation License from time to time. Such new versions will be
similar in spirit to the present version, but may differ in detail to address
new problems or concerns. See http://www.gnu.org/copyleft/.

Each version of the License is given a distinguishing version number. If
the Document specifies that a particular numbered version of this License ”or
any later version” applies to it, you have the option of following the terms
and conditions either of that specified version or of any later version that
has been published (not as a draft) by the Free Software Foundation. If the
Document does not specify a version number of this License, you may choose
any version ever published (not as a draft) by the Free Software Foundation.

ADDENDUM: How to use this License for your
documents

To use this License in a document you have written, include a copy of the
License in the document and put the following copyright and license notices
just after the title page:

Copyright © YEAR YOUR NAME. Permission is granted to
copy, distribute and/or modify this document under the terms of
the GNU Free Documentation License, Version 1.1 or any later
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version published by the Free Software Foundation; with the In-
variant Sections being LIST THEIR TITLES, with the Front-
Cover Texts being LIST, and with the Back-Cover Texts being
LIST. A copy of the license is included in the section entitled
“GNU Free Documentation License”.

If you have no Invariant Sections, write “with no Invariant Sections”
instead of saying which ones are invariant. If you have no Front-Cover Texts,
write “no Front-Cover Texts” instead of “Front-Cover Texts being LIST”;
likewise for Back-Cover Texts.

If your document contains nontrivial examples of program code, we rec-
ommend releasing these examples in parallel under your choice of free soft-
ware license, such as the GNU General Public License, to permit their use
in free software.
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Appendix B

Miscellaneous

Ok, since Appendix titles go into the index, I could not put the correct title
here, but this is the recipe that I promised to a lot of people: “Spaghetti al
Pomodoro”.

To prepare good spaghetti al pomodoro, you will need:

e about 1/2 Kg of spaghetti (translation to b is left as a simple exercise
for the reader). Pasta by “Barilla” can be easily found even in the US,
and is fairly good, hence I suggest it.

e 1 can of diced tomatoes

e a small onion

e 0il

e salt, pepper, oregano, and similar stuff

First of all, put about 3 litres of water in a pot, and put it on the stove.
When the water boils, add some salt and the spaghetti. At the same time,
put some oil in a pan, together with the onion cut in small pieces. Cook it for
four/five minutes, and then add the tomatoes. Add salt, pepper, oregano,
red pepper, and whatever else you like, according to your preference.

After about 8 minutes that spaghetti are cooking in the boiling water,
remove them from the pot, and put them in the pan containing the tomatoes.
Also add 3 or 4 table spoons of the cooking water. Finish to cook the pasta
for about 4 minutes, and serve. Enjoy!!!

Remember, if you miss this deadline and you cook the spaghetti too
much, they will result to be overcooked, and will not be good. However,
the criticality of this deadline depends on the Quality of the Pasta (QoP?).
If you use good-quality spaghetti (such as Barilla) you can have a 1 or 2
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minutes tolerance on the deadline, otherwise the deadline is hard!!! (ok, this
is just to maintain the appendix on-topic).
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