
Supporting Time-Sensitive Ativities in a

Desktop Environment

Lua Abeni

Deember 16, 2002



Contents

1 Introdution 6

1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.1.1 Time Sensitive Appliations . . . . . . . . . . . . . . . 7

1.1.2 Current OS Support . . . . . . . . . . . . . . . . . . . 8

1.2 Contribution of this Dissertation . . . . . . . . . . . . . . . . 9

1.2.1 Sheduling and Resoure Alloation . . . . . . . . . . . 9

1.2.2 Kernel Struture . . . . . . . . . . . . . . . . . . . . . 10

1.3 Organisation of the Dissertation . . . . . . . . . . . . . . . . . 11

2 Fundamental Conepts 13

2.1 De�nitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.2 Task Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.2.1 The Real-Time Task Model . . . . . . . . . . . . . . . 15

2.2.2 The GPS Model . . . . . . . . . . . . . . . . . . . . . . 16

2.3 High Level Task Models . . . . . . . . . . . . . . . . . . . . . 17

2.4 Guarantees . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.4.1 Hard Real-Time Guarantee . . . . . . . . . . . . . . . 20

2.4.2 QoS Guarantees . . . . . . . . . . . . . . . . . . . . . . 21

2.4.3 GPS Guarantee . . . . . . . . . . . . . . . . . . . . . . 22

2.4.4 Reservation Guarantees . . . . . . . . . . . . . . . . . 23

3 Sheduling 25

3.1 Task Sheduling . . . . . . . . . . . . . . . . . . . . . . . . . . 25

3.2 Classial Real-Time Sheduling . . . . . . . . . . . . . . . . . 26

3.3 Proportional Share Sheduling . . . . . . . . . . . . . . . . . . 28

3.3.1 Weighted Fair Queuing . . . . . . . . . . . . . . . . . . 29

3.3.2 Start Fair Queuing . . . . . . . . . . . . . . . . . . . . 30

3.3.3 Earliest Eligible Virtual Deadline First . . . . . . . . . 30

3.4 Reservation Based Sheduling . . . . . . . . . . . . . . . . . . 31

3.4.1 Reservation Systems on Dynami Priority Systems . . 32

3.4.2 The Constant Bandwidth Server . . . . . . . . . . . . . 34

1



3.4.3 CBS Properties . . . . . . . . . . . . . . . . . . . . . . 38

3.4.4 A Model of the CBS . . . . . . . . . . . . . . . . . . . 44

3.5 Stohasti Analysis of a Reservation Based System . . . . . . 45

3.5.1 Stability Considerations . . . . . . . . . . . . . . . . . 47

3.5.2 Relaxing the hypothesis on interarrival times . . . . . . 48

4 Adaptive Sheduling 51

4.1 The Feedbak Mehanism: Adaptive Bandwidth Reservations 52

4.2 Performane of Adaptive Reservations . . . . . . . . . . . . . 55

4.2.1 Analysis of a Simple Feedbak Sheme . . . . . . . . . 55

4.2.2 A Control Theoretial Approah . . . . . . . . . . . . . 57

4.3 The QoS Manager . . . . . . . . . . . . . . . . . . . . . . . . 69

4.3.1 Implementation on the HARTIK kernel . . . . . . . . . 71

4.3.2 Portable Reimplementation . . . . . . . . . . . . . . . 71

4.3.3 Experimental Evaluation . . . . . . . . . . . . . . . . . 73

4.4 User Level Adaptation . . . . . . . . . . . . . . . . . . . . . . 74

4.4.1 Hierarhial QoS feedbak ontrol . . . . . . . . . . . . 77

5 OS 79

5.1 Kernel Strutures . . . . . . . . . . . . . . . . . . . . . . . . . 79

5.1.1 Exeutives . . . . . . . . . . . . . . . . . . . . . . . . . 79

5.1.2 DOS-like Systems . . . . . . . . . . . . . . . . . . . . . 80

5.1.3 Monolitihi Kernels . . . . . . . . . . . . . . . . . . . . 80

5.1.4 Multithread Kernels . . . . . . . . . . . . . . . . . . . 82

5.1.5 �kernel systems . . . . . . . . . . . . . . . . . . . . . . 82

5.1.6 RTLinux-like systems . . . . . . . . . . . . . . . . . . . 84

5.2 Sheduling Lateny . . . . . . . . . . . . . . . . . . . . . . . . 85

5.2.1 Timer Resolution . . . . . . . . . . . . . . . . . . . . . 85

5.2.2 Non-Preemptable Setions . . . . . . . . . . . . . . . . 86

5.2.3 Experimental Evaluation . . . . . . . . . . . . . . . . . 87

5.2.4 Non-Preemptable Setion Lateny . . . . . . . . . . . . 92

5.3 Interrupt Proessing Time . . . . . . . . . . . . . . . . . . . . 98

5.3.1 The Problem . . . . . . . . . . . . . . . . . . . . . . . 99

5.3.2 A Possible Way Out . . . . . . . . . . . . . . . . . . . 100

6 Conlusions 104

6.1 OS Support . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

6.2 Sheduling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

6.3 Adaptive Resoure Alloation . . . . . . . . . . . . . . . . . . 106

6.4 Final Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

2



A GNU Free Doumentation Liense 107

A.1 Appliability and De�nitions . . . . . . . . . . . . . . . . . . . 108

A.2 Verbatim Copying . . . . . . . . . . . . . . . . . . . . . . . . . 109

A.3 Copying in Quantity . . . . . . . . . . . . . . . . . . . . . . . 109

A.4 Modi�ations . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

A.5 Combining Douments . . . . . . . . . . . . . . . . . . . . . . 112

A.6 Colletions of Douments . . . . . . . . . . . . . . . . . . . . . 113

A.7 Aggregation With Independent Works . . . . . . . . . . . . . 113

A.8 Translation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

A.9 Termination . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

A.10 Future Revisions of This Liense . . . . . . . . . . . . . . . . . 114

B Misellaneous 116

3



Prefae

This PhD thesis represents the end of an important part of my life, in whih

I have been involved in real-time researh. In this dissertation, you an �nd

a summary of what I did during these 4 years, and I hope that you will �nd

it interesting. I release my PhD thesis under the FDL (see Appendix A) as

an aknowledgement to the Open Soure ommunity, and to enourage the

di�usion of its ontents. After all, researh is sharing results.

Before going on, I ask you all, my readers, to forgive me for my terrible

english and for all the linguisti and grammar errors that you will �nd in this

manusript. During my PhD, I learned many things and my english improved

a lot, but it is still not good enough for writing a whole dissertation.

I had a very good time as a PhD student, I had the oasion to travel

around the world, meeting new people and knowing new ultures. In some

moments, I worked hard (and I hope I obtained some deent results), but

most of the time doing real-time researh has been a pleasure. Hene, I'd like

to thank everyone whih helped me and worked with me during this period,

starting from the good old ReTiS guys, Gerardo and Peppe, who showed

me how real-time researh an be interesting, and an be fun.

During my PhD, I have been a visiting student in the US for two times:

�rst in CMU, and then in OGI. I thank professor Raj Rajkumar, who

permitted me to have a great experiene in CMU and taught me many things

about real-time systems and about researh in general, all the members of the

Real-Time Multimedia Lab (Sourav Ghosh, Saowanee - Apple - Saewong,

Dionisio De Niz, and Akihiko Miyoshi) for their friendship and their help.

Thanks to professor Jonathan Walpole, who hosted me in OGI and gave

me the possibility to have a great time in Portland and to learn a lot of

things about Operating Systems, Ashvin Goel, for his friendship and help

(hey Ash, thanks for working on it!), and all the other members of the SysL

in OGI.

Also, thanks to my advisorGiorgio Buttazzo, and to all the people who

believed in me. A �nal speial \thank you" to the brave guys who helped

me in making this dissertation less unreadable, and in partiular to Tonino

4



and Luigi.

Most important, I want to say thanks to the One to whih everyone

should say thanks for everything: the Lord our God, who reated us all,

and saved us dying for us. Too many times I kept my faith out of my \real

life", but now I want to reognise that nothing of what I did and obtained

in the past was possible without God's help, and He deserve the biggest

aknowledgement for everything He did for me, He is doing for me every day,

and He will do in the future!!!

Finally, I want to say something that is ompletely unrelated with this

thesis, but is tragially important in these days: let's say No to the War!!!

(Hey... Do you remember my RTSS and RTLWS presentations? ;) Remem-

ber: violene (and hene war) IS NEVER A SOLUTION !!!

And now, after this (hopefully not too boring) prefae, we are ready to

talk about more tehnial stu�. So,

W

elome in the dark kingdom of

real-time systems, where fearless

knights �ght against evil unpre-

ditabilities to defend the QoS and guar-

antee system shedulability...

5



Chapter 1

Introdution

Don't believe in manuals!!!

Herman Haertig

Corollary: Don't believe in PhD dissertations...

Lua

T

he reent evolution of omputer tehnology made personal omputers

powerful enough to perform new typologies of ativities, like manag-

ing multimedia streams in real-time. As a result, a modern work-

station an be used to run new kinds of appliations, suh as MultiMedia

ones, as well as mixes of heterogeneous appliations, eah of them with dif-

ferent requirements. For example, it may be needed to onurrently run a

word proessor (requiring a large amount of memory) together with an au-

dio/video streaming appliation, while a software mixer is mixing di�erent

audio soures in real time and the Operating System (OS) kernel is reeiving

a stream of pakets from the network.

1.1 Motivation

The need to run etherogenous mixes of di�erent lasses of appliations in-

trodues new problems and requirements in handling hardware and software

resoures. For example, onsider the most ommon abstration provided in

traditional servers and workstations, that is multiprogramming: the exeu-

tion of multiple appliation tasks is interleaved in suh a way as to reate

the illusion of running simultaneously. The traditional requirement is that

all the appliations proeed fairly (eventually aording to some user spe-

i�ed weights) to avoid starvation, that interative appliations respond to

user input in a small time (but there is no lear de�nition of \small time"),

6



and that the average response time of all appliations is minimised. When

dealing with (for example) multimedia appliations, these requirements have

to be revisited.

1.1.1 Time Sensitive Appliations

As said, some new appliations may be haraterised by additional timing

requirements: for example, an audio MPEG player (suh as the famous

WinAMP, or XAMP) should �ll the sound ard bu�er before the sound ard

needs the data. When this onstraint is not respeted, the result an be in-

orret, even if AMP deodes the mpeg audio orretly, beause the deoded

data are generated too late. As a result, the user will hear some unpleasant

noise instead of its favourite song. Hene, in these ases the orretness of a

result does not only depend on the output values, but also on the time when

the result is generated (sometime, an approximate value omputed on time

an be better than an exat value omputed late). In this dissertation, suh

appliations are referred as time sensitive appliations.

As will be shown in Chapter 2, lassial real-time theory (pioneered by

Liu & Layland [LL73℄) provides tehniques for dealing with temporal on-

straints, but its appliation to generi time sensitive appliations running on

a workstation OS an be diÆult. For example, traditional real-time theory

mainly fouses on embedded ontrol appliations, whih is only a subset of

all possible time sensitive appliations onsidered in this work. In fat, dou-

ble thinking about it, it is possible to see that many appliations are time

sensitive, even if they are not traditionally onsidered real-time appliations.

An interesting example (that is also an \hot topi" in urrent OS researh) is

represented by web servers: enabling an http server to respond to a request

in a spei�ed time is fundamental to ensure that the web server will provide

the required Quality of Servie (QoS).

Other notable examples of time sensitive appliations are multimedia ap-

pliations in general (streaming, video onferene, audio or video players, and

so on), digital signal proessing appliations (suh as software mixers, soft-

ware modems, or audio synthesiser), virtual reality appliations, and many

others. Taking the above argument to the limit, we an say that all the appli-

ations are time sensitive: even a word proessor (an example of \traditional

omputer appliation") is quite useless if it takes too muh time to start or

to print a doument.

7



1.1.2 Current OS Support

From the previous disussion it is easy to understand that time sensitive

appliations are beoming more and more important, and supporting them

will beome a fundamental issues in future OSs. However, the most om-

mon OS kernels and appliations are not designed to support time sensitive

ativities nor to run heterogeneous mixes of appliations having ontrasting

requirements. As a result, resoures are alloated (and tasks are sheduled)

aording to \general purpose" goals, suh as reduing the average lateny,

and it is diÆult for the appliations to provide a ontrollable QoS.

The most ommonly proposed solution is to inrease the hardware power

(and the amount of available resoures), overengineering the system so that

it will result to be underloaded and all the appliations will be served in a

reasonable way. As the power of the hardware is ontinuously inreasing,

this solution is beoming heaper and heaper, but it results in an ineÆient

exploitation of the available resoures and in underutilisation of the sys-

tem, enouraging a bad programming pratie. Moreover, every appliation

will likely run with the orret timing in the average ase, but it annot be

guaranteed that this will always happen. For example, if a resoure greedy

appliation, suh as Mirosoft Word, or SUN StarWord, is launhed when a

streaming appliation is running, it is almost sure that the streaming appli-

ation will experiene a, hopefully transient, failure.

Hene, the inappropriateness of a traditional OS kernel for supporting

time sensitive appliations is generally due to design goals that did not on-

sider support for timed ativities. In partiular, there are both theoretial

and pratial issues, suh as:

� task sheduling. The general purpose shedulers provided by the

most ommon OS are not designed to properly serve time sensitive

ativities. Note that all the system resoures (not only the CPU) must

be properly sheduled;

� resoure alloation poliy. As a result of the inappropriate shedul-

ing algorithms, system resoures annot be orretly alloated to the

various tasks in order to respet temporal onstraints;

� kernel struture. Most of the urrent OS kernels are based on a

monolithi struture derived from BSD. This results in a series of

problems in aounting resoure usage to the orret tasks, and in as-

signing resoures to tasks in a proper way;

� temporal resolution of the system. General purpose OS kernels are

generally based on a periodi interrupt that triggers aounting and

8



sheduling ativities, generally at a rate of 100 times per seond. This

solution often results in a poor sheduling and aounting.

1.2 Contribution of this Dissertation

The thesis supported in this dissertation is that the appropriate sheduling

of system resoures and the use of proper resoure alloations poliies in the

OS kernel

1

permit to orretly support time sensitive appliations without

over-engineering the system. The use of an appropriate kernel struture (or a

a proper modi�ation of the traditional monolithi struture) is neessary to

orretly implement the sheduling algorithm, to implement an aurate re-

soure alloation poliy, and to e�etively shedule all the system resoures.

This enable to perform QoS guarantees in a workstation OS, enabling less

powerful omputers to support time sensitive appliations in a more pre-

ditable way.

1.2.1 Sheduling and Resoure Alloation

Generi resoure sheduling tehniques are often inadequate for respeting

time onstraints, hene the �rst element to support time sensitive applia-

tions is an appropriate sheduling algorithm. The algorithm of hoie must

provide a theoretial foundation that permits to provide some kind of QoS

guarantee.

Using real-time theory it is possible to provide time guarantees under

some (very strit) assumptions, suh as the omplete a-priori knowledge of

the system. This inludes a-priori knowledge of the task exeution times (or

of their upper bounds), arrival times, and so on. While this assumption is

reasonable in an embedded system, where all the tasks are known in advane

and an be adequately analysed, any assumption regarding a-priori informa-

tion is not reasonable in a desktop operating system. In fat, in suh a system

the number of ative tasks an vary, and annot be predited; moreover, the

same appliation may need to run on a big number of di�erent mahines,

making impossible to know the exeution times in advane. These systems

are often referred as Open Systems [DLS97, DL97℄, to distinguish them from

Closed Systems, in whih all the tasks that will run in the system are known

in advane. An Open System is a general purpose omputer system in whih

it is not possible to know a-priori neither the number nor the harateristis

1

eventually assoiated with user level QoS management and appliation-level adapta-

tion

9



of the appliations that will be run. Typially, in an Open System applia-

tions with di�erent levels of Quality of Servie may oexists: hard real-time,

multimedia and interative non-real-time appliations.

Hene, in an Open System it is neessary to protet appliations from

the misbehaviours of other appliations. This property is alled Temporal

Isolation: the net e�et is that eah appliation exeutes as it were on a

slower dediated proessor. The Resoure Reservation approah [MRT93℄ is

a good way to implement temporal isolation using real-time tehniques, and

has been proven to be very e�etive in the joint sheduling of Hard Real Time

(HRT) and Soft Real Time (SRT) appliations in Open Systems. Another

possible way for implementing temporal isolation is Proportional Share (PS)

sheduling [PG93, PG94℄.

All those sheduling algorithms are haraterised by low-level sheduling

parameters, that an be diÆult to tune in the proper way. In partiular,

the sheduling algorithm onstitutes a mehanism provided by the kernel to

alloate resoures to appliations in a spei�ed way, and a poliy for alloating

resoures must be spei�ed at a higher level. For this reason, a QoS manager

that exports some high-level task model is needed to implement the resoure

alloation poliy by ontrolling the low-level parameters of the sheduler.

1.2.2 Kernel Struture

Most of the sheduling algorithms presented in the literature assume that

the sheduler has the total ontrol of the system, and an deide when to

preempt the urrently running task and to shedule a new task. Moreover,

sheduling deisions are assumed to be immediate, and no interferene from

external fators is onsidered.

A real OS is more omplex: to preserve the integrity of some data stru-

tures and the atomiity of some operations, tasks annot be arbitrarily pre-

empted, the sheduler annot be invoked at arbitrary time instants, but only

when spei� events (suh as a timer interrupt) our, and exatly measuring

the exeution time used by a task is not easy. Moreover, external events suh

as hardware interrupts add another level of omplexity, onsuming exeution

time and dereasing the preditability of the system.

The inuene of these fators on task sheduling depend on how the

kernel is internally organised. In partiular, traditional OS kernels (based on

the monolithi kernel struture) are not able to preempt a task when it is

exeuting a system all, and interrupts have the preedene over all the user

appliations. This reates a disrepany between the theoretial shedule and

the atual one produed by the system. This disrepany an be redued by

using an alternative kernel design, that redues the the system alls size and

10



permits to serve interrupts and external events in tasks sheduled by the

kernel. Some real-time systems suh as Real-Time Mah [TNR90℄, DROPS

[HBB

+

98℄, and similar are based on a so alled �kernel arhiteture, that

ahieve those goals, but at the ost of a dereased eÆieny. Other alternative

kernel arhitetures that an be used to improve real-time performane are

represented by the so alled vertially strutured kernels (suh as Nemesis

[Re97℄), multithreaded kernels, or real-time exeutives.

Alternatively, the monolithi struture an be modi�ed introduing kernel

preemptability to redue the system alls' size, and to introdue a more preise

aounting mehanism, high-resolution timers, and other mehanisms that

permit to inrease the sheduler's auray.

1.3 Organisation of the Dissertation

This dissertation introdues some ontributions both in the �eld of sheduling

theory and resoure alloation (more related to real-time researh) and in the

OS �eld (implementation, kernel struture, and so on).

The �rst is onerned with the use of a proper sheduling algorithm and

the implementation of a QoS aware resoure alloation poliy. With the

latter implemented either at system level or at user level.

In Chapter 2 it will be shown that in order to enable QoS aware sheduling

and resoure alloation a preise desription of the tasks' harateristis and

requirements is needed, and the onepts of task model and guarantee will be

introdued to solve this problem.

Chapter 3 will review some sheduling algorithms that an be used to

properly serve a time-sensitive appliation (namely, real-time and propor-

tional share shedulers). Moreover, it will be shown that reservation teh-

niques are the orret hoie for a workstation OS, and the sheduling algo-

rithm used in this dissertation (namely the CBS) will be introdued as well

as some extensions used to synhronise time sensitive appliations. The pro-

posed sheduling tehniques will be then analysed providing a formal model

of the CBS, and the onept of QoS guarantee will be introdued.

Chapter 4 will address the problem of managing the system resoures in

a proper way, based on the task models and guarantees presented in Chapter

2 and on the sheduling algorithms presented in Chapter 3. Some adaptive

tehniques will be introdued.

The issues related to the implementation will be addressed in Chapter

5, where the most important kernel strutures will be reviewed, and their

appropriateness to serve time sensitive appliations will be evaluated. Some

of the most important problems and solutions will be presented, and some

11



implementations of the tehniques introdued in this dissertation will be

desribed, showing how a general-purpose kernels (suh as Linux) an be

modi�ed to support time-sensitive appliations.

Finally, Chapter 6 will onlude the dissertation.

12



Chapter 2

Fundamental Conepts

Any suÆiently advaned tehnology is indistinguishable from magi

Clarke's law

Any suÆiently advaned magi is indistinguishable from

tehnology

Murphy's reformulation of Clarke's law

Any suÆiently advaned magi is indistinguishable from a rigged

demonstration

Programmer's restatement of Murphy's reformulation of Clarke's law

T

he OS kernel is the manager of all the hardware and software resoures

that are available in the system, and its rule is to assign resoures

to appliations in order to properly exeute them. The ativities

omposing a time sensitive appliations are haraterised by some temporal

onstraints, and the desired QoS an be ahieved only if the kernel kernel

alloates the resoures so that those onstraints are respeted. Hene, the

kernel should be aware of the tasks' harateristis and requirements.

In this hapter, some basi de�nitions and two abstrations used to de-

sribe appliations' harateristis and requirements (task models and guar-

antees) will be introdued.

2.1 De�nitions

In a multiprogrammed system, the kernel assigns resoures to the applia-

tions so that di�erent appliations give the impression to exeute simultane-

ously. In other words, system resoures have to be multiplexed between all

the appliations that are running in the system; depending on the kind of re-

soures, the OS kernel an perform spatial multiplexing or time multiplexing.

13



Spatial multiplexing is used when the same resoure an be divided in

di�erent parts, eah of whih an be assigned to a di�erent appliation. A

typial example is the system memory: when several appliations are running

in the system, the memory an be divided in regions, and eah appliation

is assigned a di�erent region. When the resoure annot be split in several

parts, time multiplexing must be used, and the resoure is alloated to eah

appliation at di�erent times, using a time sharing tehnique.

To better understand these onepts, some de�nitions are needed:

De�nition 1 An algorithm is the logial proedure that is used to solve a

problem, and it an be expressed using a speial formalism alled program-

ming language.

De�nition 2 A program is a partiular oding (implementation) of an al-

gorithm in a well de�ned programming language.

A program an exeute as a sequential ow of operations, or an be omposed

by more than one onurrent ativities, that are alled threads or proesses.

Informally speaking, we an de�ne threads and proesses as follows:

De�nition 3 A thread is a single ow of exeution, haraterised by a

small set of private resoures, suh as the CPU ontext, a stak and few

other variables. Hene, a thread has not a large set of private resoures, but

generally works on publi resoures that it an share with other threads. In

order to exeute, a thread must be assoiated to a set of resoures suh as for

example a memory spae.

De�nition 4 A proess is omposed by one or more threads, plus all the

resoures that they need to exeute (memory spae, some desriptor tables,

and so on). These resoures are private to the proess, and annot be aessed

by other proesses (unless they are expliitly shared).

In this dissertation, the di�erene between threads and proesses is not par-

tiularly important, and the word task will be used to identify an exeutable

entity, that an be a thread or a proess.

2.2 Task Models

To understand what a task model is, let's onsider, for example, a task

reproduing a so alled Continuous Media (CM) stream

1

: the player task

1

A Continuous Media is a stream of frames that should be played in a timely fashion,

suh as a video or an audio stream.

14



should deode and reprodue the stream frames periodially at a stable rate.

If this rate is not maintained, the experiened QoS dereases. As we will

see in Chapter 3, the use of an appropriate sheduling algorithm an help

to respet temporal onstraints. However, the sheduling algorithm alone is

not enough sine, in order to properly serve the appliation, the sheduling

parameters should be assigned adequately. Hene, the OS should provide

some way to speify the tasks' requirements and parameters: this is the

role of the task model. A task model is an abstration that an be used to

ommuniate to the OS kernel the tasks' requirements and parameters, and

is neessary to deouple the sheduling algorithm from the appliation.

Unfortunately, the traditional task model (used by general purpose OSs

suh as Windows or all the unix avours) is not very useful for time sen-

sitive appliations, sine it haraterise a task as a ontinuous stream of

instrutions, optionally assigning an additional parameter (suh as a �xed

priority or a \nie" value) to the task for desribing the its importane. As a

result, real-time tasks an be sheduled using �xed priorities (Rate or Dead-

line Monotoni), dynami priorities (Earliest Deadline First), or using some

form of Proportional Share, and the sheduling parameters are assigned giv-

ing the programmer a diret visibility of those low-level parameters suh as

priorities, WCETs, deadlines, weights, and so on. As an be easily seen,

this approah tends to mix the task model and the sheduling parameters,

exposing a diret visibility of the algorithm to the user.

2.2.1 The Real-Time Task Model

Returning to the previous example of a task reproduing a CM stream: to

provide a ontrolled QoS, frames have to be deoded periodially. This an be

done by splitting the player task into instanes (using eah instane to proess

a single frame), and by exeuting task instanes at a onstant rate that is

ompatible with the CM requirements. This result an be obtained using the

real-time task model, and using temporal onstraints alled deadlines to do

performane monitoring.

A real-time task �

i

is a stream of instanes, or jobs, eah of them per-

forming an independent ativity, suh as deoding a frame, reeiving a paket

from the network, serving an interrupt, and so on.

Eah job J

i;j

is haraterised by an arrival time (or release time) r

i;j

, an

exeution time 

i;j

, and a deadline d

i;j

; in general d

i;j

= r

i;j

+D

i

, where D

i

is

the tasks's relative deadline. When a new job J

i;j

arrives (at time r

i;j

) task �

i

is inserted into the sheduler ready queue and is ready to exeute when the

sheduler selets it. After exeuting for a time 

i;j

, the job �nishes at time

f

i;j

; in order the temporal onstraints to be respeted, eah job J

i;j

should

15



�nish before its deadline d

i;j

.

In general, to perform some kind of guarantee about the respet of job's

deadline it is neessary to have some information about the exeution and

interarrival times. The simplest way to provide those information is to speify

a Worst Case Exeution time (WCET) C

i

= max

j

f

i;j

g and a minimum

interarrival time T

i

= min

j

fr

i;j+1

� r

i;j

g for the task. In this ase, a task

�

i

an be haraterised by the parameters (C

i

; T

i

; D

i

). For example, if the

arrivals are periodi and the relative deadline is equal to the period (that is

to say, if r

i;j+1

= r

i;j

+ T

i

and D

i

= T

i

), the task is said to be periodi, and

is desribed by the tuple (C

i

; T

i

) (the periodi task model was introdued by

Liu & Layland [LL73℄).

A task haraterised by periodi arrivals (�xed interarrival times) but

unknown exeution times is referred to as a semiperiodi task in this dis-

sertation. The distintion between periodi tasks and semiperiodi tasks

has been introdued to distinguish the ase in whih a WCET C

i

is known

(the Liu & Layland periodi model) from a more realisti ase in whih no

assumption on the exeution times an be done.

2.2.2 The GPS Model

Returning to the CM player example, it is worth noting that to be properly

served, i.e. to respet the CM temporal onstraints, the CM deoding task

must be assigned a proper amount of the CPU and of the other needed

resoures. Hene, as an alternative to the real-time task model it is possible

to allow time sensitive tasks to exeute at a onstant rate, whih permits to

respet their time onstraints.

Exeuting eah task �

i

at a onstant rate is the essene of the Generalised

Proessor Sharing (GPS) [PG93, PG94℄ approah: in this model, eah shared

resoure needed by tasks (suh as the CPU) is onsidered as a uid that an

be partitioned among the appliations. Eah task will instantaneously reeive

a fration f

i

(t) of the resoure at time t, where f

i

(t) is de�ned as the share.

Note that the GPS model an be seen as the limiting form of a Weighted

Round Robin poliy.

To ompute the share of the resoure that eah task �

i

will reeive, in the

GPS model �

i

is assigned a weight w

i

, and its share is omputed as

f

i

(t) =

w

i

P

�

j

2�(t)

w

j

where �(t) is the set of tasks ative at time t.

Sine eah task onsists of one or more requests for shared resoures suh

as the CPU, tasks an blok and unblok, and the �(t) set an vary with time.

16



Hene, the share f

i

(t) is a time varying quantity. The minimum guaranteed

share is de�ned as the rate

F

i

=

w

i

P

�

j

2�

w

j

:

Note that a orret assignment of the tasks weights permits to guarantee

real-time performane to all the time sensitive tasks in the system. In fat,

based on the task share, it is possible to ompute a response time for eah

task request. The problem with this task model is that the task response

time and the task throughput are not independent.

2.3 High Level Task Models

The RT and PS task model presented in the previous setion an be useful

to model the tasks' requirements and harateristis, but in some ases they

exports some too low-level parameters. Sine a user is not generally inter-

ested in the sheduling algorithm and its details, and does not often knows all

the tasks parameters, in many ases the RT or PS models are very di�erent

from what the users really needs and using suh models fores the program-

mer to assign low-level parameters aording to omplex mapping funtions.

Moreover, a similar approah presents the following disadvantages:

� the system shedulability strongly relies on the exat knowledge of

WCETs, whih annot always be easily estimated;

� in some ases tasks' parameters (e.g., the PS weights) have not an easy

interpretation, so the user an only assign them using heuristi rules;

� tasks' parameters are too low-level to support omplex features, suh

as bandwidth adaptation or advaned synhronisation.

The problems mentioned above an be addressed by introduing high-level

task models whih provide an interfae loser to the real needs. For example,

in a multimedia environment the following features an be identi�ed for the

appliation tasks:

� eah task is haraterised by an importane value with respet to all the

other tasks: when the system resoures are not enough to ful�l eah task

request, the resoures will be shared aording to tasks' importane;

� some tasks need to exeute with a onstant rate, without respeting

any expliit time onstraint;

17



J(i,2)J(i,1) J(i,3) J(i,4)

J(i,1) J(i,2) J(i,3)

1/Ri 1/Ri

executed / T = wi / sum(wj)

MM task

Event Driven task

PseudoPS task

Ti

Figure 2.1: Example of the three lasses of tasks.

� some tasks need to exeute periodially: the task is omposed of jobs,

eah of them have to be ativated at a period boundary and must �nish

within the period end. This is a time onstraint that an be expressed

in terms of deadlines;

� some tasks need to respond to internal or external events, serving a

minimum number of events per time unit.

To ful�l these requirements, a task �

i

an be haraterised by a weight

w

i

, representing the task's importane with respet to the others. Moreover,

tasks an be haraterised by some temporal onstraints (suh as a period

T

i

). Based on these harateristis, three lasses of tasks an be de�ned (see

Figure 2.1):

� PseudoPS (PPS) Tasks �

i

= (w

i

) are ows of instrutions that

exeute uniformly, reeiving a proessor share proportional to the task

weight w

i

;

� MultiMedia (MM) Tasks �

i

= (w

i

; T

i

) are streams of jobs J

i;j

pe-

riodially ativated with a period T

i

, so that job J

i;j

arrives in the

system at time r

i;j

= r

i;j�1

+ T

i

, and should �nish before the next

job starts (see the semiperiodi task model in the previous setion).

Using the real-time terminology, we say that J

i;j

has a soft deadline

d

i;j

= r

i;j+1

= r

i;j

+ T

i

. The goal of the system is to assign eah task a

fration of the proessor bandwidth suÆient to meet this requirement;

� Event Driven (ED) Tasks �

i

= (w

i

; R

i

) are streams of aperiodi jobs

J

i;j

ativated by external or internal events. The user spei�es the av-

18



erage number R

i

of jobs that should be exeuted per time unit, and the

goal of the system is to automatially adjust the fration of proessor

bandwidth assigned to eah task in order to meet this requirement.

PseudoPS tasks are equivalent to GPS tasks: they exeute at a uniform

rate, but, sine their exeution time is not known, no temporal onstraint an

be guaranteed, although a suitable (system dependent) tuning of the tasks'

weights may allow to serve onventional appliations in a timely fashion,

without modifying them.

MM tasks are designed to manage CM streams. Sine they are omposed

of distint jobs, the system an monitor eah job's exeution time to arrange

the CPU bandwidth reserved to the task. Using this task model, the pro-

grammer has to speify the task period, but the task exeution time does

not need to be estimated.

ED tasks are similar to MM Tasks, in the sense that the programmer

is not bound to speify the task exeution time: the only mandatory task

parameter is the number R

i

of jobs that must exeute in a time unit. The

di�erene with MM Tasks is that Event Driven Tasks are not periodially

ativated by the system, but are ativated by external events.

If the system is overloaded, and the CPU bandwidth is not suÆient to

ful�l eah task's requirement, an expliit bandwidth ompression algorithm

orrets the fration of CPU bandwidth assigned to eah task using the task

weight w

i

(the tasks with the higher weights will reeive a bandwidth nearest

to the requested one). This model permits to distinguish the task temporal

onstraint (the period T

i

or the rate R

i

= 1=T

i

) from the task importane,

expressed by the weight w

i

. In fat, one of the biggest problems of lassial

real-time sheduling algorithms (suh as Rate Monotoni or Earliest Deadline

First) was that the task importane resulted to be proportional to the inverse

of the task period.

2.4 Guarantees

As shown in Setion 2.2, a time sensitive appliation should be served so that

some temporal onstraints are respeted. Those onstraints are expressed by

the task model: for example, in the real-time task model eah job J

i;j

is asso-

iated a deadline d

i;j

. Hene, the goal of the OS kernel is to alloate resoures

in order to provide some guarantees about the temporal onstraints: in the

previous example, a simple guarantee an be that eah job J

i;j

terminates

before its deadline (8i; j; f

i;j

� d

i;j

).

De�nition 5 A guarantee is a ontrat between the system and a lient

19



(generally a task), regarding the amount of resoures that the lient will re-

eive from the system, and the timing of this resoure alloation.

In other words, the guarantee abstration onerns the task performane,

and is used to deouple it from the sheduling algorithm an the implemen-

tation details (that is to say, a guarantee abstrats the behaviour provided

by a sheduler from the sheduling algorithm itself). In Chapter 3 it will be

shown that the most important issue in sheduling analysis is to prove that

a sheduling algorithm provides a partiular kind of guarantee. In this way,

a programmer is allowed to reason in terms of model of resoure alloation,

instead of oping with the resoure alloation algorithm itself.

The guarantee abstration is partiularly important in real-time systems,

beause it permits speify the QoS that a task will reeive from the system.

In this ontext, it is important to know if the system will be able to provide

a spei�ed guarantee, to determine if a task an be aepted in the system

(without ompromising the guarantee of the other tasks). This is done using

an admission test.

De�nition 6 The admission test, or shedulability test is a ondition

that must be veri�ed to provide a spei�ed guarantee.

Informally speaking, the admission test states that the amount of resoures

needed to respet a spei�ed guarantee is less or equal than the amount of

available resoures. The admission test depends on the sheduling algorithm,

and is used to pass from a task set and a sheduling algorithm to a guarantee

that will be provided by the system. In Chapter 3 some examples of admission

tests will be presented together with some real-time sheduling algorithms.

2.4.1 Hard Real-Time Guarantee

Real-time tehniques were originally developed for implementing embedded

ontrol system for whih the onsequene of a deadline miss was onsidered

to be atastrophi. For this reason, the �rst kind of guarantee that has been

presented in literature is the Hard Real-Time Guarantee, requiring that all

the deadlines in the system are respeted.

More formally, a hard guarantee ensures that

8(i; j); f

i;j

� d

i;j

: (2.1)

In order to analyse the feasibility of a hard guarantee, some additional

de�nitions are needed:

20



De�nition 7 Given a real-time task �

i

, its demanded time D

i

(t

1

; t

2

) is

de�ned as

D

i

(t

1

; t

2

) =

X

j:r

i;j

�t

1

^d

i;j

�t

2



i;j

De�nition 8 In a similar way, the time demanded by a task set � = f�

1

; : : : �

n

g

an be de�ned as

D(t

1

; t

2

) =

X

i

D

i

The onept of demanded time is fundamental to test if a task set � is

shedulable or not, as stated by the following theorem:

Theorem 1 A neessary ondition for the task set � = f�

1

; : : : �

n

g to be

shedulable is that

8t

1

; t

2

: t

2

> t

1

; D(t

1

; t

2

) � (t

2

� t

1

)

2.4.2 QoS Guarantees

In reent years, it has been shown that a more relaxed guarantee an be

useful too. In fat, respeting all the appliations' deadline an often be

overkilling, and aiming to that goal an lead to system underutilisation.

For this reason, the onept of soft real-time tasks has been proposed: a

soft real-time task is a task that should respet its deadlines, but that an

tolerate a \reasonable amount" of missed deadlines. It is easy to see that this

de�nition is too vague, and the \reasonable amount" should be quanti�ed

in order to use this onept in a systemati way. In fats, the problem with

soft real-time is that it is often diÆult to give a formal de�nition of a QoS

guarantee (soft guarantee). For this reason, the terms \QoS" and \soft real-

time" or \soft guarantee" are often used informally, and their meaning is

not well understood (for example, in all the real-time theory there is a big

onfusion between soft real-time tasks and aperiodi tasks).

A possible way to de�ne the onept of QoS guarantee in a more formal

way is to use probabilisti deadlines. Using this model,

�

i

= (U

i

(); V

i

(t))

where U

i

() is the probability that job J

i;j

has exeution time , and V

i

(t) is

the probability that jobs' interarrival time is t. Hene,

U

i

() = Pf

i;j

= g

V

i

(t) = Pfr

i;j+1

� r

i;j

= tg:

21



In Chapter 3 it will be shown that a proper assignment of the sheduling

parameters permits to respet all the task's deadlines. This orresponds to

the Liu and Layland priority assignment and to the hard real-time guarantee.

On the ontrary, a probabilisti guarantee permits to assign the shedul-

ing parameters (Q

s

i

; T

s

i

) to �

i

in a less onservative way, still maintaining

some ontrol on the QoS experiened by �

i

. In this ase, the onept of prob-

abilisti deadline an be used to quantify the QoS experiened by eah task.

A probabilisti deadline Æ is not required to be always respeted, but an be

respeted by task �

i

with a probability

X

i

(Æ) = Pff

i;j

� r

i;j

+ Æg < 1:

Performing a QoS guarantee with a probabilisti deadline Æ means to

guarantee that:

� if task �

i

is desribed by the PDFs (U

i

(); V

i

(t))

� if the assigned sheduling parameters are (Q

s

i

; T

s

i

)

� then, eah job J

i;j

of task �

i

has probability X

i

(Æ) of �nishing within a

relative deadline Æ.

2.4.3 GPS Guarantee

As explained in Setion 2.2.2, the GPS model desribes a task system as a

uid ow system, in whih eah task �

i

is modelled as an in�nitely divisible

uid, and exeutes at a minimum rate F

i

that is proportional to a user

spei�ed weight w

i

.

Hene, task �

i

is guaranteed to exeute for a time s

i

(t

1

; t

2

) > (t

2

� t

1

)F

i

in eah baklogged interval [t

1

; t

2

℄. The exat de�nition of the GPS exeuted

time s

i

is s

i

=

R

t

2

t

1

f

i

(t)dt. Hene, in the ideal uid ow ase, the tasks'

exeution an be desribed through the GPS guarantee:

8�

i

ative in [t

1

; t

2

℄;

exe

i

(t

1

; t

2

)

exe

j

(t

1

; t

2

)

�

w

i

w

j

j = 1; 2; :::; n (2.2)

where exe

i

(t

1

; t

2

) is the exeution time of �

i

in the interval [t

1

; t

2

℄.

It an be easily seen that Equation 2.2 is equivalent to exe

i

(t

1

; t

2

) =

s

i

(t

1

; t

2

).

In a real system, resoures are alloated in disrete time quanta of size

Q. This quantum based alloation auses an alloation error: given two

22



ative tasks �

1

and �

2

, the alloation error in the time interval [t

1

; t

2

℄ an be

expressed as

exe

i

(t

1

; t

2

)

w

i

�

exe

j

(t

1

; t

2

)

w

j

:

An alternative way to express this alloation error is themaximum lag Lag

i

=

max

t

1

;t

2

fjexe

i

(t

1

; t

2

)�s

i

(t

1

; t

2

)jg. Hene, a more realisti version of the GPS

guarantee is the following:

exe

i

(t

1

; t

2

) =

Z

t

2

t

1

f

i

(t)dt+�Lag

i

2.4.4 Reservation Guarantees

An important onept that emerged in the last years is the temporal isola-

tion, ensuring that the temporal behaviour of a task is not inuened by the

temporal behaviour of other tasks in the system.

In other words, if a task requires \too muh" resoures, it must be slowed

down in order not to jeopardize the other tasks' guarantee. A similar property

is very important, sine it permits to provide di�erent guarantees to di�erent

tasks: for example, it is possible to perform an hard guarantee on a task,

while other tasks are provided a probabilisti guarantee, or no guarantee at

all.

Looking at the previous setion, it is possible to see that a PS guaran-

tee provides some form of temporal protetion: if task �

i

is guaranteed to

reeive f

i

(t

2

� t

1

) time units in the time interval (t

1

; t

2

), it means that it is

possible to guarantee �

i

's performane independently from all the other tasks.

Of ourse, tasks' weights w

i

need to be properly arranged, and an admission

test is needed, as shown in [SAWJ97℄. However, imposing

exe(t

1

;t

2

)

t

2

�t

1

to be on-

stant for all the (t

1

; t

2

) intervals an be a too stringent requirement (in fats,

Setion 2.4.3 shows that a real sheduling algorithm an only approximate a

PS guarantee).

A better solution would be to guarantee that the ratio

exe(t

1

;t

2

)

t

2

�t

1

is onstant

over well spei�ed intervals, for example between deadlines in a real-time

task. This is the essene of the reservation guarantee. More formally, a

reservation (Q; T;D) guarantees that an amount Q of a resoure will be

available to the reserved task every period T , within a deadline D from the

beginning of the period. Hene,

8j

2

� j

1

exe(j

1

T; j

2

T +D

i

) � (j

2

� j

1

+ 1)Q

If T = D, the reservation simpli�es to a (Q; T ) model, and the guarantee

23



beomes

8j

2

> j

1

exe(j

1

T; j

2

T +D

i

)

(j

2

� j

1

)T

�

Q

T

(2.3)

Some authors tend to distinguish hard reservation guarantees from soft

real-time guarantees: following this de�nition, a soft reservation guarantee is

based on the previous formula, whereas a hard reservation guarantees that

8j

2

> j

1

exe(j

1

T; j

2

T +D

i

)

(j

2

� j

1

)T

=

Q

T

(2.4)

Sine a reservation guarantee ensures that Q time units will be served

within a relative deadline D at eah period T , it is possible to restate its

requirements as a hard real-time guarantee, requiring that a periodi task �

with 

i;j

� Q, period T and relative deadline D respets all its deadlines.

Hene, an admission test similar to the one of Theorem 1 is required.

24



Chapter 3

Sheduling

My VCR is a real-time system;

it fails all the time.

I'm still alive

Rih Gerber

A

s said in Chapter 2, in a multiprogrammed system the kernel is re-

sponsible for multiplexing the system resoures between onurrent

appliations. More formally, the kernel has to shedule resoures, de-

iding whih resoure is assigned to whih appliation. In this hapter, it will

be shown that in order to properly serve time sensitive appliations (that is

to say, in order to respet temporal onstraints of a given task model and ful-

�l a spei�ed guarantee) the sheduling algorithm must be arefully hosen,

and some of the most important sheduling algorithms will be presented.

3.1 Task Sheduling

To exeute, eah task � needs some resoures to be assigned to it (in general,

it will need at least the CPU and some amount of memory); when time

multiplexing is used, a resoure R is assigned to a single task �

i

at

time t, hene it is possible to desribe the resoure alloation using a funtion

�

R

: R

+

! �, where � = f�

1

; : : : �

n

g is the set of all the tasks in the system.

More formally,

De�nition 9 A shedule �

R

(t) is an assignment of a resoure R to a set

of tasks � = f�

1

; : : : �

n

g. Hene, �

R

(t) is a funtion from the time domain

R

+

to the task set �. Note that it is possible that at time t resoure R is

not assigned to any task; in this ase the resoure is said to be idle. To ope

with this situation, the shedule an be de�ned as �

R

: R

+

! �[ f�g, where

�

R

(t) = � means that R is idle at time t.

25



De�nition 10 A sheduling algorithm is an algorithm that is used to

deide to whih task �

i

resoure R will be assigned at time t.

Most of the sheduling algorithms are priority based: all the ative tasks

(that is to say, all the tasks that are ompeting for a resoure) are listed

in a ready task queue �

ready

, and a sheduling priority P (�

i

) is assigned to

eah task �

i

. At eah time, the task having the highest priority is seleted

(is sheduled), and the resoure is alloated to it:

�

R

(t) = �

i

: P (�

i

) = max

�

j

2�

ready

fP (�

j

)g

If the sheduler does not hange the sheduling priorities (but they are as-

signed at task reation and an only be hanged by using an expliit system

all), the sheduler is said to be based on stati priorities. Otherwise (if

the sheduling priorities an be hanged by the sheduler during the task

exeution), the sheduler is referred as a dynami priority based one. For

example, the lassial Unix sheduler is based on dynami priorities, sine a

task's priority derease during task exeution to avoid starvation.

3.2 Classial Real-Time Sheduling

As previously said, the sheduling algorithm is used for deiding to whih task

to alloate a system resoure. When dealing with time sensitive appliations,

the goal of a sheduling algorithm is to alloate resoures to a task set � so

that some kind of guarantee is respeted. Of ourse, the sheduler an provide

a guarantee (for example, the hard real-time guarantee - all the deadlines are

respeted) only if the task models desribing � are known. From this point

of view, a sheduling algorithm transforms a task model (or a set of task

models) into a guarantee. This an be done by using a shedulability test to

hek if given set of tasks is ompatible with a spei�ed guarantee.

To simplify the disussion, let's assume that eah task in the system only

needs the CPU to exeute. Hene, the only sheduler present in the OS kernel

is the CPU sheduler, and it is responsible to shedule tasks so that their

time onstraints are respeted. The simplest way to do this is to onsider

the periodi real-time task model, and the hard real-time guarantee: in this

ase, eah task �

i

is desribed by two parameters (C

i

; T

i

), and the goal of the

sheduler is to meet all the deadlines d

i;j

= jT

i

. Moreover, sine all tasks are

periodi, Theorem 1 an be simpli�ed in the following lemma:

Lemma 1 If � = f�

1

; : : : �

n

g is a set of periodi tasks �

i

= (C

i

; T

i

), then a

26



neessary ondition for its hard shedulability is that

n

X

i=1

C

i

T

i

� 1

That is to say, if the system utilization

P

n

i=1

C

i

T

i

is greater than 1, then it is

impossible to respet all the deadlines.

The �rst attempt to shedule suh a task system an be to use a priority

based sheduler: for example, an intuitive hoie an be to use �xed priorities

and to assign higher priorities to tasks haraterised by shortest deadlines

(smallest periods):

P (�

i

) =

1

T

i

this is the Rate Monotoni (RM) priority assignment, that has been analysed

by Liu & Layland in [LL73℄. As a on�rmation of the goodness of the previous

intuition, RM turns out to be an optimal stati priorities assignment. That

is to say, if a periodi task set is shedulable using �xed priorities,

then RM will shedule it properly.

As explained above, in order to provide a guarantee a shedulability test

is needed. The simplest kind of shedulability test is the utilization based

one, that is expressed by the following theorem:

Theorem 2 If � = f�

1

; : : : �

n

g is a set of periodi tasks �

i

= (C

i

; T

i

), then

RM will shedule it respeting all the deadlines if

n

X

i=1

C

i

T

i

� U

lub

where U

lub

is the utilization least upper bound and is de�ned as U

lub

=

n(2

1

n

� 1).

Unfortunately, the ondition expressed by Theorem 2 only is a suÆient

ondition, and it is not a neessary one. That is to say, if

P

n

i=1

C

i

T

i

� U

lub

then the task set will be surely shedulable with RM, but if the system

utilization is greater than U

lub

nothing an be said. Hene, restating the

previous sentene, if the RM priority assignment is used and if the admission

test

P

n

i=1

C

i

T

i

� U

lub

is passed, then eah task in the system will respet all

its deadlines. If the admission test fails, then some deadlines an be missed;

sine RM is based on stati priorities, it is possible to foreast that the tasks

missing deadlines will be the lowest priority ones.

Theorem 3 If a sheduling algorithm based on stati priorities is used to

shedule the periodi task set � = f�

1

; : : : �

n

g and task �

i

does not miss any

deadline, then eah task �

j

: P (�

j

) > P (�

i

) will not miss any deadline.

27



Unfortunately, the utilization least upper bound for RM is quite low (0:69

in the worst ase); this problem an be addressed by using a di�erent guar-

antee test based on the tasks' �nishing times, as explained in [ABRT93℄.

Using this exat analysis, it is possible to perform a less pessimisti admis-

sion test, but there are still some task sets that are shedulable in theory

(sine

P

n

i=1

C

i

T

i

� 1) and are not shedulable by RM. Sine RM is optimal

between all the �xed priority assignments, those task sets an be sheduled

only using dynami priorities. In this ase, the priority of a task does not

only depend on the task but it also depends on a seond parameter, that

an be the time t, the job number j, or a generi index i (hene, it will be

expressed as P (�

i

; x)). The most intuitive dynami priority assignment is

Earliest Deadline First (EDF), based on assigning priorities to the jobs, and

on assigning higher priorities to jobs with the shortest absolute deadline:

P (�

i

; j) = P (J

i;j

) =

1

d

i;j

EDF is an optimal sheduling algorithm, meaning that if a task set �

is shedulable (that is, if an algorithm apable of sheduling � in order to

respet every deadline exists), then EDF an shedule it respeting all the

deadlines.

This onept is expressed by the following theorem:

Theorem 4 A task set � is shedulable by EDF if and only if

8t

1

; t

2

: t

2

> t

1

; D(t

1

; t

2

) � (t

2

� t

1

)

Comparing Theorem 4 with Theorem 1, it is easy to see the optimality of

EDF.

3.3 Proportional Share Sheduling

A Proportional Share (PS) sheduling algorithm emulates the GPS alloation

model in a real system, where multiple tasks annot exeute simultaneously

on the same CPU.

Hene, the ideal uid-ow alloation is approximated using a quantum-

based alloation. That is to say, in a Proportional Share sheduler the re-

soure is alloated in disrete time quanta having maximum size Q: a proess

aquires a resoure at the beginning of a time quantum and releases the re-

soure at the end of the quantum (a new request is posted) or before (the

28



proess have to be expressly re-ativated); this is done dividing eah task �

i

in requests q

k

i

of dimension Q.

As already noted in Setion 2.4.3, quantum based alloation introdues

an alloation error respet to the uid ow model. The minimum theoretial

error bound is H

i;j

=

1

2

(

Q

i

w

i

+

Q

j

w

j

), where Q

i

is the maximum dimension

for �

i

requests and Q

j

is the maximum dimension for �

j

requests. This

alloation error inuene the performane of time sensitive tasks in a way

that is desribed by the lag. In order to understand this, onsider that in

the ideal GPS system task �

i

exeutes for a time

R

t

2

t

1

f

i

(t)dt in the interval

[t

1

; t

2

℄; in a real system this is impossible (beause tasks are not uid), so the

alloation error experimented by a task an be measured by the lag

1

:

lag

i

(t

1

) =

Z

t

1

t

0

f

i

(t)dt� exe

i

(t

0

; t

1

);

where t

0

is the ativation time of the task.

In the following of this setion, some of the most important PS sheduling

algorithm are analysed, showing how they emulates the ideal GPS alloation,

and evaluating their performane in terms of alloation error and lag.

3.3.1 Weighted Fair Queuing

The �rst known Proportional Share sheduling algorithm is Weighted Fair

Queuing (WFQ), that emulate the behaviour of a GPS system using the

onept of virtual time. The virtual time v(t) is de�ned by inrements as

follows:

8

<

:

v(0) = 0

dv(t) =

1

P

�

i

2�(t)

w

i

dt

:

Eah quantum request q

k

i

is assigned a virtual start time S(q

k

i

) and a virtual

�nish time F (q

k

i

) de�ned as follows:

S(q

k

i

) = maxfv(r

i;k

); F (q

k�1

i

)g

F (q

k

i

) = S(q

k

i

) +

Q

i;k

w

i

where r

i;k

is the time at whih request q

k

i

is generated and Q

i;k

is the request

dimension (required exeution time); sine Q

i;k

is not known a priori (a task

may release the CPU before the end of the time quantum), it is assumed

equal to the maximum value Q

i

.

1

remember that the maximum lag has already be ited a measure of the alloation

error

29



Tasks' requests are sheduled in order of inreasing virtual �nish time:

in the virtual time domain, eah request will �nish before the virtual �nish

time.

WFQ provide fairness (bounding the alloation error) in stati systems,

where all the tasks are always ative, but presents some problems:

� it needs the frequent realulation of v(t);

� it does not perform well in dynami systems (when a task ativates or

bloks, the fairness of the shedule is ompromised);

� it assumes eah requests size equal the maximum value (sheduling

quantum): in a real situation this assumption is not orret;

3.3.2 Start Fair Queuing

In [GGV96℄, a proportional share sheduler is used to subdivide the CPU

bandwidth between various appliation lasses: the proposed algorithm, Start

Fair Queuing (SFQ), is similar to WFQ but de�nes the virtual time in a dif-

ferent manner and shedules the requests in order of inreasing virtual start

time. The virtual time v(t) is de�ned as follows:

v(t) =

8

>

<

>

:

0 if t = 0

0 or any value if the CPU is idle

S(q

k

i

) if request q

k

i

is exeuting

SFQ guarantees an alloation error bound of 2H

i;j

, so it is near-optimal.

Moreover, SFQ alulates v(t) in a simpler way (introduing less overhead)

and does not need the virtual �nish time of a request to shedule it, so it

does not require any a priori knowledge of the request exeution time (F (q

k

i

)

an be alulated at the end of q

k

i

exeution).

A Proportional Share algorithm shedules the tasks in order to redue

the alloation error experimented by eah of them; to provide some form of

real-time exeution it is important to guarantee that lag

i

(t) is bounded.

SFQ andWFQ provides an optimal upper bound for the lag: max

t

flag

i

(t)g =

Q

i

, but do not provide an optimal bound for the absolute value of the lag:

for example, for SFQ this bound max

t

fjlag

i

(t)jg = Q

i

+f

i

P

Q

j

that depends

on the number of ative tasks.

3.3.3 Earliest Eligible Virtual Deadline First

In [SAWJ

+

96℄ the authors propose a sheduling algorithm, alled Earliest

Eligible Deadline First (EEVDF), that provide a bound on the lag experi-

mented by eah task.

30



EEVDF de�nes the virtual time as WFQ and shedules the requests by

virtual �nish times (in this ase alled virtual deadlines), but use the virtual

start time (alled virtual eligible time) to deide if a task an be sheduled (is

eligible): if the virtual eligible time is grater than the atual virtual time, the

request is not eligible. Virtual eligible and �nish time are de�ned as follows:

S(q

k

i

) = maxfv(r

i;k

); E(q

k�1

i

+

Q

i;k�1

w

i

g

F (q

k

i

) = S(q

k

i

) +

Q

i;k

w

i

:

When a task joins or leaves the ompetition (ativates or bloks), v(t) is

adjusted in order to maintain the fairness in dynami system.

The minimum theoretial bound for the lag absolute value is Q, that is

guaranteed by the EEVDF algorithm; for this reason, EEVDF is said to be

optimal. EEVDF an also shedule dynami task sets and an use frational

and non uniform quantum size, so it an be used in a real operating system.

To the best knowledge of the authors, EEVDF is the only algorithm that

provides a �xed lag bound.

If the lag is bounded, real-time exeution an be obtained maintaining

onstant the share of eah real-time task:

f

i

(t) =

C

i

+max

t

flag

i

(t)g

D

i

:

3.4 Reservation Based Sheduling

Based on lassial real-time sheduling (EDF or RM priority assignment), it

is possible to implement a reservation guarantee by simply enabling a task

� to exeute as a real-time task (sheduled, for example, by EDF or RM)

for a time Q, and then bloking it (or sheduling it in bakground as a non

real-time task) until the next period. In this way, a task is reshaped so that

it behaves like a periodi real-time task with parameters (Q; T ) and an be

properly sheduled by a lassial real-time sheduler. A similar tehnique is

used in omputer networks by the traÆ shapers, suh as the leaky buket

or the token buket. More formally,

� a reservation sheduler is haraterised by two parameters (Q; T )

� a budget, or apaity is assoiated to eah reservation

� at the beginning of eah reservation period, the budget is reharged to

Q

31



Missed Deadline!!!

Figure 3.1: Resoure Reservations with aperiodi arrivals.

� when the reserved task exeutes, the budget is dereased aordingly

� when the budget arrives to 0, the reservation is said to be depleted, and

an appropriate ation should be taken.

As previously said, when a reservation is depleted the reserved task an be

bloked, or it an be \downgraded" to be a non real-time task. By bloking

the task, it is possible to implement a hard reservation, whereas if the task

is downgraded to non real-time a soft reservation behaviour an be imple-

mented.

Note that the reservation parameters (Q; T ) are di�erent from the task

parameters (C; T ), and this separation an be useful to ontrol the tasks'

QoS (as it will be shown in the next setions). In order to avoid onfusion,

the reservation's parameters will be indiated with (Q

s

; T

s

), whereas the task

parameters will be indiated with (C; T ) as usual.

3.4.1 Reservation Systems on Dynami Priority Sys-

tems

A generi reservation based sheduling algorithm an in general have some

problems in handling aperiodi task's arrivals. For example, let's onsider two

tasks �

1

= (2; 4) and �

2

= (1:5; 3) served by two reservations RSV

1

= (2; 4),

and RSV

2

= (1:5; 3). As shown in Figure 3.1, if the EDF priority assignment

is used to implement the reservation sheme, then the task set is shedulable

(and eah task will respet all its deadlines). However, if an instane of one

of the two tasks is ativated later (the third instane of �

1

in the example), a

task may miss a deadline. Other similar problems an be highlighted when

a lot of reservation are reated and immediately destroyed onseutively in

a short time.

When implementing reservations over a dynami priority sheme (suh

as the EDF priority assignment), it is possible to take advantage of dynami

priorities in order to �x all these problems, and to better exploit the CPU

32



time. This an be done by properly assigning a dynami sheduling deadline

to eah task and by sheduling tasks by EDF based on their sheduling

deadlines.

De�nition 11 A sheduling deadline d

s

i;j

is a dynami deadline assigned

to a job J

i;j

in order to shedule it by EDF.

Note that a sheduling deadline is something ompletely di�erent from the

job deadline d

i;j

, that in this ase is only used for performane monitoring.

The abstrat entity that is responsible for assigning a orret sheduling

deadline to eah job is alled aperiodi server.

De�nition 12 A server is a mehanism used to assign sheduling dead-

lines to jobs in order to shedule them so that some properties (suh as the

reservation guarantee) are respeted.

Hene, the server assigns to eah job J

i;j

an absolute time-varying deadline

d

s

i;j

whih an be dynamially hanged. This fat an be modelled by splitting

eah job J

i;j

in hunks H

i;j;k

, eah of whose is assigned a �xed sheduling

deadline d

s

i;j;k

.

De�nition 13 A hunk H

i;j;k

is a part of the job J

i;j

haraterised by a �xed

sheduling deadline d

s

i;j;k

. Eah hunk H

i;j;k

is haraterised by an arrival

time a

i;j;k

, an exeution time e

i;j;k

and by its sheduling deadline. Note that

the arrival time a

i;j;0

of the �rst hunk of a job J

i;j

is equal to the job release

time: a

i;j;0

= r

i;j

.

In order to be useful to implement a resoure reservation strategy, an

aperiodi server must assign sheduling deadlines to tasks so that the uti-

lization of the served task is less than a server utilization U

s

. This onept

an be better understood by extending the demanded time de�nition given

in Setion 2.4.1

2

.

De�nition 14 Given a server S

i

, its demanded time D

s

i

(t

1

; t

2

) is de�ned

as

D

s

i

(t

1

; t

2

) =

X

j:r

i;j

�t

1

^d

s

i;j

�t

2

e

i;j

Where d

s

i;j

is the j

t

h deadline generated by server S

i

, and e

i;j

is the amount

of time that the served task will exeute with deadline d

s

i;j

.

2

note that the demanded time was de�ned in the ontext of the real-time guarantee,

and we are extending the de�nition to the reservation guarantee

33



Based on these de�nitions, a server must generate sheduling deadlines

so that

D

s

i

(t

1

; t

2

) � (t

2

� t

1

)B

s

i

in this way, a set of servers is shedulable (that is to say, eah sheduling

deadline is respeted) if

P

n

i=1

B

s

i

� 1.

3.4.2 The Constant Bandwidth Server

The servie mehanism proposed in this dissertation is the Constant Band-

width Server (CBS), a work onserving server (implementing soft reserva-

tions) that has been inspired by the Total Bandwidth Server and by the

Dynami Sporadi Server (for a better omparison between these servie

mehanisms, see [Abe98, AB98℄.

The CBS algorithm is formally de�ned as follows:

� A CBS S is haraterised by a budget 

s

and by a ordered pair (Q

s

; T

s

),

where Q

s

is the server maximum budget and T

s

is the server period. The

ratio B

s

= Q

s

=T

s

is denoted as the server bandwidth. At eah instant,

a �xed deadline d

s

k

is assoiated with the server. At the beginning

d

s

0

= 0.

� Eah served job J

i;j

is assigned a dynami deadline d

i;j

equal to the

urrent server deadline d

s

k

.

� Whenever a served job J

i;j

exeutes, the budget 

s

of the server S

serving �

i

is dereased by the same amount.

� When 

s

= 0, the server budget is reharged to the maximum value

Q

s

and a new server deadline is generated as d

s

k+1

= d

s

k

+ T

s

. Notie

that there are no �nite intervals of time in whih the budget is equal

to zero.

� A CBS is said to be ative at time t if there are pending jobs (remember

the budget 

s

is always greater than 0); that is, if there exists a served

job J

i;j

suh that r

i;j

� t < f

i;j

. A CBS is said to be idle at time t if it

is not ative.

� When a job J

i;j

arrives and the server is ative the request is en-

queued in a queue of pending jobs aording to a given (arbitrary)

non-preemptive disipline (e.g., FIFO).

34



τ1 (2,3)
HARD

τ2
SOFT

CBS
(2,7)

t

t

t
c1=3 c2=2

r1 r2 r3

t1 t2 t3

d2 d3c3=1d1

Figure 3.2: Simple example of CBS sheduling.

� When a job J

i;j

arrives and the server is idle, if 

s

� (d

s

k

� r

i;j

)B

s

the

server generates a new deadline d

s

k+1

= r

i;j

+ T

s

and 

s

is reharged to

the maximum value Q

s

, otherwise the job is served with the last server

deadline d

s

k

using the urrent budget.

� When a job �nishes, the next pending job, if any, is served using the

urrent budget and deadline. If there are no pending jobs, the server

beomes idle.

� At any instant, a job is assigned the last deadline generated by the

server.

Figure 3.2 illustrates an example in whih a hard periodi task (diretly

sheduled by EDF) �

1

is sheduled together with a soft task �

2

, served by a

CBS having a budget Q

s

= 2 and a period T

s

= 7. The �rst job of �

2

arrives

at time r

1

= 2, when the server is idle. Being 

s

� (d

s

0

� r

1

)B

s

, the deadline

assigned to the job is d

s

1

= r

1

+ T

s

= 9 and 

s

is reharged at Q

s

= 2. At

time t

1

= 6 the budget is exhausted, so a new deadline d

s

2

= d

s

1

+ T

s

= 16 is

generated and 

s

is replenished. At time r

2

the seond job arrives when the

server is ative, so the request is enqueued. When the �rst job �nishes the

seond job is served with the atual server deadline (d

s

2

= 16). At time t

2

= 16

the server budget is exhausted so a new server deadline d

s

3

= d

s

2

+ T

s

= 23

is generated and 

s

is replenished to Q

s

. The third job arrives at time 17,

when the server is idle and 

s

= 1 < (d

s

3

� r

3

)B

s

= (23� 17)

2

7

= 1:71, so it is

sheduled with the atual server deadline d

s

3

without hanging the budget.

In Figure 3.3, a hard periodi task �

1

is sheduled together with a soft

task �

2

, having �xed inter-arrival time (T

2

= 7) and variable omputation

time, with a mean value equal to C

2

= 2. This situation is typial in appli-

ations that manage ontinuous media: for example, a video stream requires

35



τ1 (2,3)
HARD

τ2
SOFT

CBS
(2,7)

t

t

t
c1=2

d1 d3d2

c3=2c2=3

t1 t2 t3

Figure 3.3: Example of CBS serving a task with variable exeution time and

onstant inter-arrival time.

to be played periodially, but the deoding/playing time of eah frame is not

onstant. In order to optimise the proessor utilization, �

2

is served by a

CBS with a maximum budget equal to the mean omputation time of the

task (Q

s

= 2) and a period equal to the task period (T

s

= T

2

= 7).

As we an see from Figure 3.3, the seond job of task �

2

is �rst assigned a

deadline d

s

2

= r

2

+T

s

. At time t

2

, however, sine 

s

is exhausted and the job

is not �nished, the job is sheduled with a new deadline d

s

3

= d

s

2

+ T

s

. As a

result of a longer exeution, only the soft task is delayed, while the hard task

meets all its deadlines. Moreover, the exeeding portion of the late job is not

exeuted in bakground, but is sheduled with a suitable dynami priority.

In other situations, frequently enountered in CM appliations, tasks have

�xed omputation times but variable inter-arrival times. For example, this is

the ase of a task ativated by external events, suh a driver proess ativated

by interrupts oming from a ommuniation network. In this ase, the CBS

behaves exatly like a TBS with a bandwidth B

s

= Q

s

=T

s

. In fat, if C

i

= Q

s

eah job �nishes exatly when the budget arrives to 0, so the server deadline

is inreased of T

s

. It is also interesting to observe that, in this situation, the

CBS is also equivalent to a Rate-Based Exeution (RBE) model [JB95℄ with

parameters x = 1; y = T

i

; D = T

i

. An example of suh a senario is depited

in Figure 3.4.

Finally, Figure 3.5 shows how the tasks presented in Figure 3.1 are shed-

uled by a CBS when an instane arrives late. Sine the CBS assigns a orret

deadline to the instane arriving late (the third instane of �

1

), �

2

does not

miss any deadline, and temporal protetion is preserved.

36



τ1 (2,3)
HARD

τ2
SOFT

CBS
(2,7)

t

t

t
c3=2d2 d3c1=2 c2=2 d1

t1 t2 t3

Figure 3.4: Example of CBS serving a task with onstant exeution time and

variable inter-arrival time.

Figure 3.5: CBS with aperiodi arrivals.

37



H 1,1

J1

a
1,1

d1,1 d2,2

1,2H

J2

a
2,1

a
2,2

d1,2 =d 2,1

H 2,2

a
1,2

H

c=4 c=4

2,1

Figure 3.6: Serving some jobs divided in hunks.

3.4.3 CBS Properties

The proposed CBS servie mehanism presents some interesting properties

that make it suitable for supporting CM appliations. The most important

one, the the isolation property is formally expressed by the following theorem.

Theorem 5 A CBS with parameters (Q

s

; T

s

) demands a bandwidth U

s

=

Q

s

T

s

Proof.

In order to prove that a CBS with parameters (Q

s

; T

s

) annot demand a

bandwidth greater than B

s

= Q

s

=T

s

, it is suÆient to prove that

8t

1

; t

2

2 N : t

2

> t

1

; D

s

(t

1

; t

2

) � B

s

(t

2

� t

1

):

Remember that eah job J

j

an be thought as onsisting of a number of

hunks H

j;k

, eah haraterised by a release time a

j;k

and a �xed deadline d

s

j;k

.

An example of hunks produed by a CBS is shown in Figure 3.6. To simplify

the notation, all the hunks generated by a server will be referred with an

inreasing index k (in the example of Figure 3.6, H

1;1

= H

1

, H

1;2

= H

2

,

H

2;1

= H

3

, and so on).

The release time and the deadline of the k

th

hunk generated by the server

will be denoted by a

k

and d

k

,  will indiate the atual budget and n the

number of requests in server queue. These variables are initialised in the

following manner:

d

s

0

= 0



s

= 0

n = 0

k = 0

Using these notations, the server behaviour an be expressed as in Figure

3.7.

38



When job J

j

arrives at time r

j

enqueue the request in the server pending request queue;

n = n + 1;

if (n == 1) /* (the server is idle) */

if (r

j

+ (

s

/ Q

s

) * T

s

>= d

s

k

)

/*---------------Rule 1---------------*/

k = k + 1;

a

k

= r

j

;

d

s

k

= a

k

+ T

s

;



s

= Q

s

;

else

/*---------------Rule 2---------------*/

k = k + 1;

a

k

= r

j

;

d

s

k

= d

s

k�1

;

/* 

s

remains unhanged */

When job J

j

terminates

dequeue J

j

from the server queues;

n = n - 1;

if (n != 0) begin to serve the next job in queue with deadline d

s

k

;

When job J

j

served by S

s

exeutes for a time unit



s

= 

s

- 1;

When (

s

== 0)

/*---------------Rule 3---------------*/

k = k + 1;

a

k

= atual time();

d

s

k

= d

s

k�1

+ T

s

;



s

= Q

s

;

Figure 3.7: The CB algorithm.

39



Note that the exeution time of hunk H

k

, e

k

, is the server time demanded

in the interval [a

k

; d

s

k

℄: e

k

= D

s

(a

k

; d

s

k

). Hene,

8t

1

; t

2

; 9k

1

; k

2

: D

s

(t

1

; t

2

) =

X

k:a

k

�t

1

^d

s

k

�t

2

e

k

=

k2

X

k=k

1

e

k

:

If 

s

(t) is the server budget at time t and f

k

is the time at whih hunk H

k

ends to exeute, it is possible to see that 

s

(f

k

) = 

s

(a

k

)� e

k

, while 

s

(a

k+1

)

is alulated from 

s

(f

k

) in the following manner:



s

(a

k+1

) =

(



s

(f

k

) if d

s

k+1

was generated by Rule 2

Q

s

if d

s

k+1

was generated by Rule 1 or 3:

Based on these observations, the theorem an be proved by showing that:

D

s

(a

k

1

; d

s

k

2

) + 

s

(f

k

2

) � (d

s

k

2

� a

k

1

)

Q

s

T

s

;

and this property an be proved by proeeding by indution on k

2

�k

1

, using

the algorithmi de�nition of CBS shown in Figure 3.7.

Indutive base. If in [t

1

; t

2

℄ there is only one ative hunk (k

1

= k

2

= k),

then two ases have to be onsidered.

Case a: d

s

k

< a

k

+ T

s

.

If d

s

k

< a

k

+ T

s

, then d

s

k

is generated by Rule 2, so a

k

+



s

(f

k�1

)

Q

s

T

s

< d

s

k

and a

k

= f

k�1

, that is

a

k

+



s

(a

k

)

Q

s

T

s

< d

s

k

:

Being 

s

(f

k

) = 

s

(a

k

)� e

k

= 

s

(a

k

)�D

s

(a

k

; d

s

k

), it is possible to see that

a

k

+

D

s

(a

k

; d

s

k

) + 

s

(f

k

)

Q

s

T

s

< d

s

k

hene

D

s

(a

k

; d

s

k) + 

s

(f

k

) < (d

s

k

� a

k

)

Q

s

T

s

:

Case b: d

s

k

= a

k

+ T

s

.

If d

s

k

= a

k

+ T

s

, then D

s

(a

k

; d

s

k

) + 

s

(f

k

) = e

k

+ 

s

(f

k

) = Q

s

.

Hene, in both ases

D

s

(a

k

1

; d

s

k

2

) + 

s

(f

k

2

) = D

s

(a

k

; d

s

k

) + 

s

(f

k

) � (d

s

k

� a

k

)

Q

s

T

s

= (d

s

k

2

� a

k

1

)

Q

s

T

s

:

40



Indutive step. The indutive hypothesis

D

s

(a

k

1

; d

s

k

2

�1

) + 

s

(f

k

2

�1

) � (d

s

k

2

�1

� a

k

1

)

Q

s

T

s

is used to prove that

D

s

(a

k

1

; d

s

k

2

) + 

s

(f

k

2

) � (d

s

k

2

� a

k

1

)

Q

s

T

s

:

Given the possible relations between d

s

k

and d

s

k�1

, three ases have to be

onsidered:

� d

s

k

� d

s

k�1

+ T

s

. That is, d

s

k

is generated by Rule 3 or Rule 1 when

r

j

� d

s

j�1

.

� d

s

k

= d

s

k�1

. That is, d

s

k

is generated by Rule 2.

� d

s

k�1

< d

s

k

< d

s

k�1

+ T

s

. That is, d

s

k

is generated by Rule 1 when

r

j

< d

s

j�1

.

Case a: d

k

2

= d

k

2

�1

+ T

s

.

In this ase d

s

k

2

an be generated only by Rule 1 or 3. Adding e

k

2

to both

sides of the indutive hypothesis, the following disequation an be obtained:

k

2

�1

X

k=k

1

e

k

+ e

k

2

� (d

s

k

2

�1

� a

k

1

)

Q

s

T

s

� 

s

(f

k

2

�1

) + e

k

2

and from 

s

(f

k

) = 

s

(a

k

)� e

k

it follows that

k

2

X

k=k

1

e

k

� (d

s

k

2

�1

� a

k

1

)

Q

s

T

s

� 

s

(f

k

2

�1

) + 

s

(a

k

2

)� 

s

(f

k

2

):

Sine d

s

k

2

is generated by Rule 1 or 3, it must be 

s

(a

k

2

) = Q

s

, therefore:

k

2

X

k=k

1

e

k

� (d

s

k

2

�1

� a

k

1

)

Q

s

T

s

� 

s

(f

k

2

�1

) +Q

s

� 

s

(f

k

2

)

k

2

X

k=k

1

e

k

+ 

s

(f

k

2

) � (d

s

k2�1

� a

k

1

)

Q

s

T

s

� 

s

(f

k

2

�1

) +Q

s

� (d

s

k

2

�1

� a

k

1

)

Q

s

T

s

+Q

s

and �nally

D

s

(a

k

1

; d

s

k

2

) + 

s

(f

k

2

) � (d

s

k2�1

� a

k

1

)

Q

s

T

s

+Q

s

= (d

s

k2�1

+ T

s

� a

k

1

)

Q

s

T

s

41



D

s

(a

k

1

; d

s

k

2

) + 

s

(f

k

2

) � (d

s

k

2

� a

k

1

)

Q

s

T

s

:

Case b: d

s

k

2

= d

s

k

2

�1

.

If d

s

k

2

= d

s

k

2

�1

, then d

s

k

2

is generated by Rule 2. In this ase,

k

2

�1

X

k=k

1

e

k

+ e

k

2

� (d

s

k

2

�1

� a

k

1

)

Q

s

T

s

� 

s

(f

k

2

�1

) + e

k

2

but, being d

s

k

2

= d

s

k

2

�1

, 

s

(f

k

2

) + e

k

= 

s

(a

k

2

) and 

s

(a

k

2

) = 

s

(f

k

2

�1

) (by

Rule 2), it results:

k

2

X

k=k

1

e

k

� (d

s

k

2

� a

k

1

)

Q

s

T

s

� 

s

(a

k

2

) + e

k

2

= (d

s

k

2

� a

k

1

)

Q

s

T

s

� 

s

(f

k

2

)

hene

D

s

(k

1

; k

2

) + 

s

(f

k

2

) =

k

2

X

k=k

1

e

k

� (d

s

k

2

� a

k

1

)

Q

s

T

s

:

Case : d

s

k

2

�1

< d

s

k

2

< d

s

k

2

�1

+ T

s

.

If d

s

k

2

< d

s

k

2

�1

+T

s

, then d

s

k

2

is generated by Rule 1, hene a

k

2

+



s

(f

k

2

�1

)

Q

s

T

s

�

d

s

k

2

�1

, and (f

k

2

�1

) � (d

s

k

2

�1

� a

k

2

)

Q

s

T

s

. Applying the indutive hypothesis,

the following disequation an be obtained:

k

2

�1

X

k=k

1

e

k

+ e

k

2

� (d

s

k

2

�1

� a

k

1

)

Q

s

T

s

� 

s

(f

k

2

�1

) + e

k

2

from whih it follows that

k

2

X

k=k

1

e

k

� (d

s

k

2

�1

� a

k

1

)

Q

s

T

s

� (d

s

k

2

�1

� a

k

2

)

Q

s

T

s

+ e

k

2

k

2

X

k=k

1

e

k

� (d

s

k

2

�1

� d

s

k

2

�1

� a

k

1

+ a

k

2

)

Q

s

T

s

+ e

k

2

:

Now, being e

k

2

= Q

s

� 

s

(f

k

2

), we have:

k

2

X

k=k

1

e

k

� (�a

k

1

+ a

k

2

)

Q

s

T

s

+Q

s

� 

s

(f

k

2

) = (a

k

2

+ T

s

� a

k

1

)

Q

s

T

s

� 

s

(f

k

2

)

42



but, from Rule 1 and 3, it results that d

s

k

= a

k

+ T

s

, hene

k

2

X

k=k

1

e

k

� (d

s

k

2

� a

k

1

)

Q

s

T

s

� 

s

(f

k

2

)

hene

D

s

(k

1

; k

2

) + 

s

(f

k

2

) =

k

2

X

k=k

1

e

k

� (d

s

k

2

� a

k

1

)

Q

s

T

s

:

2

The isolation property allows to use a bandwidth reservation strategy to

alloate a fration of the CPU time to eah task that annot be guaranteed a

priori. The most important onsequene of this result is that soft tasks an be

sheduled together with hard tasks without a�eting the a priori guarantee

even in the ase in whih soft requests exeed the expeted load.

In addition to the isolation property, the CBS has the following hara-

teristis:

� No hypothesis are required on the WCET and the minimum inter-

arrival time of the served tasks: this allows the same program to be

used on di�erent systems without realulating the omputation times.

In other words, this property is the one that permits to deouple the

task model from the sheduling parameters.

� If the task's parameters are known in advane, a hard real-time guar-

antee an be performed. This is the hard shedulability property, ex-

pressed by the following lemma:

Lemma 2 A hard task �

i

with parameters (C

i

; T

i

) is shedulable by

a CBS with parameters Q

s

i

= C

i

and T

s

i

= T

i

if and only if �

i

is

shedulable without the CBS.

Proof.

For any job of �

i

, r

i;j+1

�r

i;j

� T

i

and 

i;j

� Q

i

. Hene, by de�nition of

the CBS, eah job J

i;j

is assigned a sheduling deadline d

s

i;j

= r

i;j

+ T

s

i

(sine r

i;j

is always greater than d

s

i;j�1

) and it is sheduled with a budget

Q

s

i

= C

i

. Moreover, sine 

i;j

� Q

s

i

, eah job �nishes no later than the

budget is exhausted, hene the deadline assigned to a job does not

hange and is exatly the same as the one used by EDF. 2

43



� The CBS automatially relaims any spare time aused by early om-

pletions. This is due to the fat that whenever the budget is exhausted,

it is always immediately replenished at its full value and the server

deadline is postponed. In this way, the server remains eligible and

the budget an be exploited by the pending requests with the urrent

deadline.

� Knowing the statistial distribution of the omputation time of a task

served by a CBS, it is possible to perform a statistial guarantee, ex-

pressed in terms of probability for eah served job to meet its deadline.

3.4.4 A Model of the CBS

In order to perform a formal analysis of a reservation based sheduler (and

of the CBS in partiular), a mathematial model of the system is needed. If

a task �

i

is sheduled by a reservation based sheduler (for example, if it is

served by a CBS) with parameters (Q

s

i

; T

s

i

), then �

i

an be modelled with a

queue. Moreover, if the task's interarrival times are multiple of T

s

i

, they an

be expressed as r

i;j+1

� r

i;j

= z

i;j

T

s

i

, hene:

1. eah T

s

i

units of time, Q

s

i

= B

i

T

s

units of time of task �

i

an be served;

2. the arrival of job J

i;j

orresponds to a request of 

i;j

units of time

entering the queue;

3. when a job arrives, the next request of 

j+1

units will arrive after r

j+1

�

r

j

= z

i;j

T

s

i

units of time.

Using this model, the evolution of task �

i

an be desribed by a state

variable x

i;j

de�ned as follows:

(

x

i;1

= 

i;1

x

i;j

= maxf0; x

i;j�1

� z

i;j

Q

s

i

g+ 

i;j

(3.1)

where x

i;j

indiates the length of the queue (in time units) immediately after

job J

i;j

arrival.

When job J

i;j

arrives, it will be served at a rate of Q

s

i

units of time eah

T

s

i

, hene, if there are x

i;j

units of time to serve immediately after J

i;j

arrival

(at time r

i;j

), J

i;j

is guaranteed to be served in

l

x

i;j

Q

s

i

m

T

s

i

time units. As a

result, job J

i;j

will �nish before time

r

i;j

+

&

x

i;j

Q

s

i

'

T

s

i

= = r

i;j

+

&

x

i;j

T

s

i

B

i

'

T

s

i

: (3.2)

44



3.5 Stohasti Analysis of a Reservation Based

System

One of the advantages of using a reservation based sheduling approah suh

as the CBS, is that the sheduling parameters (Q

s

i

; T

s

i

) an be separated

from the task harateristis (suh as exeution and interarrival times). In

this way, if task �

i

is desribed by a pair of Probability Distribution Funtions

(PDFs) of the exeution and interarrival times, then it is possible to perform

a probabilisti guarantee, as de�ned in Setion 2.4.2. A simpli�ed stohasti

analisys of the CBS (only onsidering semiperiodi tasks and generalized spo-

radi tasks) is presented in [AB99℄; this setion extends the previous results

by generalizing the analisys to tasks haraterized a stohasti behaviour in

both exeution and interarrival times.

In order to perform a stohasti analysis of a generi reservation based

sheduling algorithm, the simpli�ed ase in whih r

i;j+1

� r

i;j

is a multiple

of T

s

i

is onsidered �rst, and the model presented in Equation 3.1 is used.

Sine the exeution and interarrival times are random variables desribed by

the PDFs U

i

() and V

i

(t), the state variable x is a random variable too, and

is desribed by a PDF �

(i;j)

k

= Pfx

i;j

= kg.

Aording to Equation 3.2, job J

i;j

will �nish before time

r

i;j

+

&

v

i;j

Q

s

i

'

T

s

hene the probability �

(i;j)

k

that the queue length x

i;j

is k immediately after

a job arrival is a lower bound to the probability that the job �nishes before

the probabilisti deadline

Æ

i

=

&

k

Q

s

i

'

T

s

i

:

Being the interarrival times multiple of T

s

i

, it is possible to de�ne V

0

i

(z) =

Pfr

i;j

� r

i;j�1

= zT

S

g as probability that the interarrival time between two

onseutive jobs is zT

s

i

. Hene,

V (t) =

(

0 if t mod T

S

6= 0

V

0

(

t

T

S

) otherwise.

(3.3)

Note that sine 

i;j

and r

i;j+1

� r

i;j

are time invariant, U

i

() and V

0

i

(z) do

not depend on j. Under these assumptions, it is possible to ompute �

(i;j)

k

as follows:

�

(i;j)

k

= Pfx

i;j

= kgPfmaxf0; x

i;j�1

� z

i;j

Q

s

g+ 

i;j

= kg =

45



=

1

X

h=�1

Pfmaxf0; x

i;j�1

� z

i;j

Q

s

g+ 

i;j

= k ^ x

i;j�1

= hg =

=

1

X

z=�1

1

X

h=�1

Pfmaxf0; x

i;j�1

� z

i;j

Q

s

g+ 

i;j

= k ^ x

i;j�1

= h ^ z

i;j

= zg:

Being x

i;j

and z

i;j

greater than 0 by de�nition, the sums an be omputed

for h and z going from 0 to in�nity:

�

(i;j)

k

=

1

X

z=0

1

X

h=0

Pfmaxf0; h� zQ

s

g+ 

i;j

= kgPfx

i;j�1

= hgPfz

i;j

= zg

=

1

X

h=0

1

X

z=0

Pfmaxf0; h� zQ

s

g+ 

i;j

= kgV

0

i

(z)�

(i;j�1)

h

=

=

1

X

h=0

1

X

z=0

Pf

i;j

= k �maxf0; h� zQ

s

ggV

0

i

(z)�

(i;j�1)

h

=

=

1

X

h=0

1

X

z=0

U(k �maxf0; h� zQ

s

g)V

0

i

(z)�

(i;j�1)

h

Hene,

�

(i;j)

h

=

1

X

h=0

m

h;k

�

(i;j�1)

h

with

m

i

h;k

=

1

X

z=0

U

i

(k �maxf0; h� zQ

s

i

g)V

0

i

(z): (3.4)

Considering m

i

h;k

as an element of a matrix M

i

, �

(i;i)

k

an be omputed

by solving the equation

�

(i;j)

=M

i

�

(i;j�1)

(3.5)

where

�

(i;j)

=

0

B

B

B

B

B

B

B

B

B

B

B

B

�

�

(i;j)

0

�

(i;j)

1

�

(i;j)

2

�

(i;j)

3

:

:

:

1

C

C

C

C

C

C

C

C

C

C

C

C

A

:

46



3.5.1 Stability Considerations

For a generi queue, it is known that the queue is stable (i.e., the number of

elements in the queue do not diverge to in�nity) if

� =

mean interarrival time

mean servie time

< 1:

Hene, the stability an be ahieved under the ondition

E[C

i

℄

E[T

i

℄

<

Q

s

i

T

s

i

where E[C

i

℄ is the exeution time expetation and E[T

i

℄ is the interarrival

time expetation.

If this ondition is not satis�ed the di�erene f

i;j

� r

i;j

between the �n-

ishing time f

i;j

and arrival the time r

i;j

of eah job J

i;j

of task �

i

will inrease

inde�nitely diverging to in�nity as j inreases:

lim

j!1

f

i;j

� r

i;j

=1:

This means that, for preserving the shedulability of the other tasks, �

i

will

slow down in an unpreditable manner.

If a queue is stable, a stationary solution of the Markov hain desribing

the queue an be found; that is, there exists a �nite solution �

i

suh that

�

i

= lim

j!1

�

(i;j)

. Sine �

(i;j)

=M

i

�

(i;j�1)

, we an ompute � as follows:

�

i

= lim

j!1

�

(i;j)

=

= lim

j!1

M

i

�

(i;j�1)

=

=M

i

lim

j!1

�

(i;j�1)

=M

i

�

i

:

Hene, �

i

an be omputed by solving the eigenvetor problem

�

i

=M

i

�

i

:

This solution an be approximated by trunating the in�nite dimension ma-

trixM

i

to an nxn matrix

~

M

i

and solving the eigenvetor problem

~

�

i

=

~

M

i
~

�

i

with some numerial alulus tehnique.

47



3.5.2 Relaxing the hypothesis on interarrival times

In the previous analysis, task interarrival times are assumed to be multiple

of an integer value T

s

i

so that Equation 3.3 is veri�ed. This assumption

results to be very useful in order to simplify the queue analysis, but an be

unrealisti in some pratial situations.

Using some appropriate approximation, it is possible to relax the assump-

tion on the interarrival times without ompromising the analysis based on

it. When Equation 3.3 is not respeted, it is onvenient to introdue a new

distribution

~

V

i

(t) whih approximates V

i

(t) for enabling the previously devel-

oped analysis. In this way, it is possible to analyse the task behaviour based

on the approximate PDF

~

V

i

(t) instead of the atual PDF V

i

(t). In order this

approximation to be orret,

~

V

i

(t) must:

� be onservative (pessimisti);

� verify Equation (3.3).

\Being onservative" means that if a probabilisti deadline an be guaranteed

using

~

V

i

(t), it is guaranteed also aording to the real distribution V

i

(t). Sine

the opposite is not true, this approah is pessimisti.

The new PDF

~

V

i

(t) is onservative if

8k;

k

X

n=0

~

V

i

(n) �

k

X

n=0

V

i

(n); (3.6)

while the seond requirement states that

~

V

i

(t) =

(

0 if t mod T

s

i

6= 0

V

0

i

(

t

T

s

i

) otherwise.

Equation (3.6) states that the approximated interarrival times Cumulative

Distribution Funtion (CDF)

~

W

i

(t) omputed from

~

V

i

(t) must be greater

than or equal to the interarrival times CDF W

i

(t) omputed from V

i

(t).

Reall that the CDF of a stohasti variable expresses the probability that

the variable is less than or equal to a given value. The CDF W (t) of a

stohasti variable t an be omputed as W (t) =

P

t

n=0

V (n), where V (t) is

the PDF of t, as shown in Figure 3.8.

In pratie, the intuitive interpretation of Equation 3.6 is that a

~

V

i

(t)

is onservative if the probability that the interarrival time is smaller than t

aording to

~

V

i

(t) is bigger than aording to V

i

(t). Figure 3.9 explains this

onept.

48



1

PDF

CDF

Random Variable

Pr
ob

ab
ili

ty

Figure 3.8: CDF vs PDF.

Given a generi interarrival times PDF V

i

(t), it is possible to generate a

onservative approximation

~

V

i

(t) if 9k : t < k ) V

i

(t) = 0. In this ase, it is

possible to set T

s

i

< k and to ompute

~

V

i

(t) =

(

0 if t mod T

s

i

6= 0

P

t

i=t�T

s

i

+1

V

i

(t) otherwise.

(3.7)

It an be easily veri�ed that if

~

V

i

(t) is omputed aording to Equation 3.7,

then it will have both the required properties. However, every onservative

approximation

~

V

i

(t) respeting Equation (3.6) an be used: an extreme ase

is using

~

V

i

(t) =

(

1 if t = T

S

0 otherwise.

This is a very pessimisti approximation and orresponds to the worst ase

sporadi task analysis, based on onsidering task �

i

as a periodi task with

period equal to the MIT. In this ase,

V

0

i

(z) =

(

1 if z = 1

0 otherwise

and Equation (3.4) beomes

m

i

h;k

= U

i

(k �maxf0; h�Q

s

i

g)

that is oherent with the results in [AB99℄.

49



Conservative Approximation

Actual CDF

Figure 3.9: Conservative approximation of a CDF.

The 9k : t < k ) V

i

(t) = 0 assumption is realisti (an interarrival

time must have a lower bound) and does not impose serious limits to the

appliability of the analysis. However, in some oasions the lower bound an

be too small, resulting in a small T

s

i

value that unneessarily inreases the

number of ontext swithes; in some other ases, a ontinuous distribution

an be used to approximate V

i

(t), making diÆult to ompute the lower

bound.

In these ases, some approximation an be introdued by trunating the

interarrival times PDF. In pratie, this an be done by onsidering V

i

(t) = 0

if t < t

0

, with V

i

(t

0

) << 1; in this way, it is possible to assign T

s

i

� t

0

.

50



Chapter 4

Adaptive Sheduling

When something does not work, reboot the system and restart from

beginning.

Computer Sientist approah

When something does not work, try to deompose the problem in

smaller problems, so that you will have many problems instead of

one.

Computer Engineer approah

When something does not work, keep randomly hanging things

until it works...

Lua's approah

I

n Setion 2.3, three high-level task models have been introdued (PPS

tasks, MM tasks, and ED tasks). Those high level models assoiate a

weight w

i

to eah task �

i

, and haraterise time-sensitive tasks (MM

and ED Tasks) with proper temporal onstraints. In Chapter 3 some shedul-

ing algorithm that are suitable for managing time sensitive appliations have

been introdued; however, it is not lear how PPS, MM, and ED tasks an

be implemented in terms of those sheduling algorithms.

For example, to guarantee the respet of tasks deadlines (when using pri-

ority based sheduling), or to reserve the orret amount of resoures to eah

task (when using a reservation strategy or a PS sheduler), some knowledge

about the tasks' exeution times is required. But sine the tasks' WCETs

are not spei�ed in the PPS, MM or ED model, some form of adaptation is

needed for performing a orret tuning of the sheduling parameters.

51



Scheduling
System

f()
Value (0)

Reference

Algorithm
Compression

CBS Scheduling

Error

+

-

Reserved
Bandwidth

Figure 4.1: The ontrol sheme.

4.1 The FeedbakMehanism: Adaptive Band-

width Reservations

When the task exeution or interarrival times are unknown, some form of

adaptation is needed to estimate them. Suh an adaptation mehanism an

be designed following these steps:

1. hoose a suitable low-level sheduling algorithm, on top of whih

the adaptive mehanism will be implemented;

2. map the task model's parameters to the sheduling algorithm param-

eters;

3. design a feedbak mehanism to adjust the tasks' reserved band-

width on line.

Sine the basi idea is to ontrol eah task independently from the others,

the proposed feedbak sheme is based on a sheduler providing temporal

protetion between tasks. Every algorithm that provides temporal protetion

(suh as a reservation sheme or a PS sheduler) an be used to implement

the low-level sheduler, whose sheduling parameters are adapted by the

feedbak mehanism so that the user does not have to ope with them. The

sheduling algorithm used in this work is based on the Earliest Deadline

First (EDF) [LL73℄, sine it ahieves full CPU utilization. Based on EDF,

temporal protetion is provided using a bandwidth reservation mehanism,

hene serving eah task with a dediated CBS is the natural hoie. Sine

a CBS S

i

is haraterised by the pair (Q

s

i

; T

s

i

) (or (B

s

i

; T

s

i

)), the PPS, MM,

and ED task models must be mapped to suh server parameters.

For what onerns PPS tasks, Q

s

i

an be onsidered as the sheduling

quantum, and it is assigned an initial default value of

~

Q

s

, whih an be

hanged using a spei� system all. Then, eah PPS task �

i

is assigned a

bandwidth

B

i

=

w

i

P

j:�

j

2PPS

w

j

B

PPS

(4.1)

52



where B

PPS

is the total bandwidth assigned to PPS tasks. Thus, T

s

i

is

omputed as T

s

i

=

Q

s

i

B

i

.

Equation 4.1 shows how the total PPS bandwidth is shared among the

PPS tasks aording to the tasks weights (hene, it results to be idential to

the share f

i

in a PS system). In this way, the fration of CPU bandwidth

B

PPS

assigned to PPS tasks will be shared among them proportionally to

the weights, like in a PS system

1

.

For what onerns MM and ED tasks, the T

s

i

parameter is �xed and

equal to T

i

= 1=R

i

, where R

i

is the task rate spei�ed by the user. The Q

s

i

parameter is adjusted by the system in order to meet the tasks' temporal

requirements. As said, this an be done using a feedbak mehanism that

ontrols the sheduling parameters based on an observed value. When

a CBS is used to serve a time sensitive task �

i

, the natural hoie for the

observed value is the the CBS sheduling error

�

s

i;j

= d

s

i;j

� (r

i;j

+ T

i

)

de�ned as the di�erene between the last CBS sheduling deadline d

s

i;j

as-

signed to job J

i;j

and the task's soft deadline d

i;j

= r

i;j

+ T

i

.

Sine the underlying priority assignment is based on EDF, if the server is

shedulable eah instane J

i;j

is guaranteed to �nish within the last assigned

server deadline d

s

i;j

. Hene, the CBS sheduling error �

s

i;j

represents the

di�erene between the deadline d

s

i;j

that J

i;j

is guaranteed to respet and the

deadline d

i;j

= r

i;j

+ T

i

that it should respet. When this value is 0, the task

is guaranteed to respet its soft deadline, whereas when the sheduling error

is di�erent from 0, some task instane an terminate after its (soft) deadline

beause the reserved bandwidth

Q

s

i

T

s

i

is not enough to properly serve it.

Hene, the objetive of the system is to ontrol the sheduling error �

s

to

0: if this value inreases, Q

s

i

has to be inreased aordingly, otherwise it an

be left unhanged. Based on this idea, a feedbak ontrol mehanism an

be used to adapt the amount of resoures reserved to eah task. In pratie,

the amount of CPU bandwidth B

i;j

reserved to job J

i;j

an be di�erent from

the amount of CPU bandwidth reserved to other jobs of the same task, and

is adjusted aording to a feedbak funtion B

i;j

= f(B

i;j�1

; �

s

i;j�1

). Di�erent

kinds of feedbak funtions an be used, but the intuitive requirement is that

�

s

i;j

> 0) f(B

i;j

; �

s

i;j

) > B

i;j

.

Note that all this mehanism works orretly under the assumption that

all the sheduling deadlines d

s

i;j

are respeted, and this is true if and only

1

Eah PPS task will reeive an amount Q

s

i

of CPU time every T

s

i

, so Q

s

i

an be

onsidered as the sheduling quantum in a onventional time sharing system, as said

above.

53



if a shedulability ondition

P

B

s

i

� 1 is veri�ed. To better express this

requirement, some additional de�nitions are needed:

De�nition 15 Given a task set � = f�

1

; : : : �

n

g omposed of n tasks, a

bandwidth assignment

^

B is a vetor

^

B = (B

s

1

; : : : B

s

n

) 2 R

n

suh that

8i � n; 0 � B

s

i

� 1, and at every time B

s

i

= B

i;j

.

De�nition 16 A bandwidth assignment

^

B is said to be feasible if

P

i

B

s

i

�

1.

The feasibility of a bandwidth assignment is a global ondition, beause

it depends on all the servers S

i

in the system. However, the feedbak

funtion f() only performs a loal adaptation, sine it operates only on a

single task and does not onsider any shedulability (or feasibility) ondi-

tion

2

. As a result, it is possible that the reserved bandwidths are inreased

\too muh" and the bandwidth assignment is not feasible (that is to say,

P

j:�

j

2MM[ED

B

j

> B

max

). In this ase, some form of global mehanism is

neessary to derease the tasks' reserved bandwidths so that the assignment

is feasible. This ompression of the reserved bandwidths is performed by the

ompression funtion

^

B

0

= g(

^

B).

The ompression funtion is a funtion g : R

n

! R

n

that transforms an

infeasible bandwidth assignment into a feasible one; in pratie, if

^

B

0

= g(

^

B),

then

P

i

B

s

i

0

� 1. In partiular,

B

s

i

0

=

(

B

s

i

if

P

i

B

s

i

� 1

g

i

(

^

B) otherwise

It is worth noting that aording to these onsiderations it is possible

to de�ne a feedbak mehanism in whih the reserved CPU bandwidth B

s

is dereased only in overload onditions (when

P

i

B

s

i

> 1). The spei�ed

task weights w

i

an be used to derease the tasks' reserved bandwidth in

overload onditions. This solution has the advantage of avoiding unneessary

bandwidth adaptations, but ould be more diÆult to analyse.

A simple solution to perform suh a bandwidth ompression is to sale

the tasks' utilizations in a proportional way:

B

s

i

0

= B

s

i

s

i

being s

i

the saling fator. Sine the ompression must be done aording

to the tasks' weights, s

i

must be proportional to w

i

: s

i

= w

i

M . Imposing

2

beause it is not aware of all the other reserved tasks in the system.

54



P

j:�

j

2MM[ED

B

s

j

0

= B

max

, it results:

X

j:�

j

2MM[ED

B

s

j

0

= B

max

)

X

j:�

j

2MM[ED

B

s

j

s

j

= B

max

)

X

j:�

j

2MM[ED

B

s

j

w

j

M = B

max

)

M

X

j:�

j

2MM[ED

B

s

j

w

j

= B

max

)

M =

B

max

P

j:�

j

2MM[ED

B

s

j

w

j

Hene,

B

s

i

0

= B

s

i

w

i

B

max

P

j:�

j

2MM[ED

B

s

j

w

j

(4.2)

This simple rule an be slightly modi�ed to guarantee a minimum bandwidth

B

min

to eah task.

The desribed losed loop ontrol used to adjust the reserved bandwidth

is shown in Figure 4.1.

4.2 Performane of Adaptive Reservations

When implementing an Adaptive Reservation abstration, it is important

to design the feedbak funtion so that the resulting adaptive sheduler is

able to assign the orret amount of resoure to eah task (when possible)

in a short time and with an aeptable auray. Using the ontrol theory

terminology, the losed loop system must be stable, and the response time,

overshoot, and steady-state error must be ompliant with some spei�ations.

Although designing a proper feedbak funtion f() might seem to be

simple, things are more ompliated than what appears at a �rst glane

[Goe02℄. Hene, a areful analysis of the losed loop sheduler is needed; in

this setion, after a simple analysis based on the CBS model developed in

Setion 3.4.4, a ontrol theoretial approah will be proposed.

4.2.1 Analysis of a Simple Feedbak Sheme

Using Adaptive Reservations, the bandwidth reserved to an adaptive task

�

i

varies from instane to instane, hene it will be indiated as B

i;j

. If the

55



bandwidth assignment is feasible, B

i;j+1

= f(B

i;j

; �

i;j

); hene, aording to

Equations 3.1 and 3.2, eah task dynamis is desribed as follows:

8

>

>

>

>

<

>

>

>

>

:

x

i;1

= 

i;1

x

i;j

= maxf0; x

i;j�1

� z

i;j

B

i;j

T

s

i

g+ 

i;j

�

i;j

=

l

x

i;j

T

s

i

B

i;j

m

T

s

i

� T

i

B

i;j+1

= f(B

i;j

; �

i;j

)

If the feedbak funtion f(B; �) is properly designed, it is possible to

prove that B

i;j

will onverge to a orret value

~

B

i

>



i

T

i

. For example, if the

feedbak equation is f(B; �) = B + �

�

T

B, then the new bandwidth assigned

to job J

i;j+1

results to be

B

i;j+1

= B

i;j

+ �

�

i;j

T

i

B

i;j

= B

i;j

+ �

l

x

i;j

T

s

i

B

i;j

m

T

s

i

� T

i

T

i

B

i;j

=

= B

i;j

+ �

 &

x

i;j

T

s

i

B

i;j

'

T

s

i

T

i

� 1

!

B

i;j

But if the task is semiperiodi, then T

i

= zT

s

i

(remember that T

i

is a

multiple of T

s

i

), hene

B

i;j+1

= B

i;j

+ �

 &

x

i;j

T

s

i

B

i;j

'

1

z

� 1

!

B

i;j

Now, de�ning S

i;j

=

l

x

i;j

T

s

i

B

i;j

m

B

i;j

, it is possible to obtain

B

i;j+1

= B

i;j

+ �(

S

i;j

z

� B

i;j

) = (1� �)B

i;j

+ �

S

i;j

z

(4.3)

Note that S

i;j

is an estimation of the CPU bandwidth required to serve J

i;j

in a server period, hene

S

i;j

z

is an estimation of the CPU bandwidth needed

to shedule J

i;j

in zT

s

i

= T

i

time units (that is, S

i;j

should onverge to the

amount

~

S

i

of CPU bandwidth needed by the task to ontrol the sheduling

error to 0). Sine a suession a(n + 1) = (1 � �)a(n) + �S onverges to

S for n ! 1, lim

j!1

B

i;j

=

~

B

i

will be equal to the estimated bandwidth

requirement

~

S

i

z

if the ompression equation is not used. Hene, if a feasible

bandwidth assignment that ontrols all the sheduling errors to 0 exists, the

reserved bandwidths will onverge to it.

More formally, given � > 0 it exists j

0

suh that 8j � j

0

; jB

i;j

�S

i;j

j � �.

Hene,

S

i;j

z

� � � B

i;j

�

S

i;j

z

+ � )

l

x

i;j

T

s

i

B

i;j

m

B

i;j

z

� � � B

i;j

�

l

x

i;j

T

s

i

B

i;j

m

B

i;j

z

+ � )

56



&

x

i;j

T

s

i

B

i;j

'

� � � z �

&

x

i;j

T

s

i

B

i;j

'

+ � )

8

<

:

x

i;j

T

s

i

B

i;j

� � � z

x

i;j

T

s

i

B

i;j

+ � � z � 1

)

8

<

:

B

i;j

�

x

i;j

zT

s

i

� �

B

i;j

�

x

i;j

(z�1)T

s

i

+ �

If j � j

0

, then B

i;j

will be onstrained into the interval

x

i;j

zT

s

i

� B

i;j

�

x

i;j

(z�1)T

s

i

of size

x

i;j

(z�1)T

s

i

�

x

i;j

zT

s

i

=

x

z(z�1)T

s

i

. It is easy to see that inreasing z the reserved

bandwidth will onverge to a better estimation of the requested bandwidth.

On the other hand, inreasing z will derease the server period, inreasing

the number of ontext swithes and the kernel overhead.

From this argument, it is possible to understand that the server period

has to be arefully hosen in order to �nd a good trade-o� between a more

preise resoure alloation and a low kernel overhead.

4.2.2 A Control Theoretial Approah

The feedbak funtion an be designed using di�erent approahes, either

theoretially founded or empirially proven to be e�etive. Sine losed-loop

systems similar to an adaptive reservation have been studied at long in ontrol

theory, an idea for properly designing the feedbak funtion is to apply some

results form ontrol theory. In fat, ontrol theory provides powerful tools

that are very useful in analysing losed-loop systems, proving their stability,

and evaluating their dynami properties.

Additional De�nitions

To extend the sheduling error onept t a generi reservation based system,

it is useful to de�ne the latest possible �nishing time for a job. The latest

possible �nishing time LFT

i;j

for job J

i;j�1

is the end of the latest reservation

period used by the job, minus the job arrival time: for example, if J

i;j�1

has

exeution time 

i;j�1

= 5, it has been reserved a bandwidth B

i

= 0:5, and

the reservation period is T

s

i

= 4, then it uses

l

5

0:5�4

m

= 3 reservation periods,

and its latest possible �nishing time is 15.

Note that, for CBS, when a job �nishes the deadline of the server minus

the job arrival time is equal to the latest possible �nishing time: LFT

i;j

=

d

s

i

� r

i;j�1

.

Mathematial Model of a Reservation

A proper feedbak sheme providing the required harateristis an be de-

signed only based on an aurate model of the system. In this setion, a

57



model of a reservation system alternative to the one presented in Setion

3.4.4 will be developed.

The notation will be simpli�ed by removing the task index from all the

quantities: hene, Q will be used instead of Q

i

, T

s

will be used instead of

T

s

i

, J

j

will be used instead of J

i;j

, and so on.

The goal of the feedbak sheduler is to ontrol LFT to T ; thus, the

sheduling error �

k

is de�ned as the di�erene between the latest possible

�nishing time LFT

k

and the job relative deadline T . Note that, if LFT

k

> T ,

then job J

k�1

onsumes some of the time that should be used by the next

job, whih will have less time to exeute. In this ase, jobs J

j�1

and J

j

share a reservation period, and LFT

j+1

depends on LFT

j

. To express this

dependeny, and write the dynami equations of our system, it is useful to

introdue another state variable that represents the amount of time used by

J

j�1

in its last reservation that it shares with J

j

.

As said, the sheduling error is de�ned as the di�erene between the latest

possible �nishing time and the task period:

�

k

= LFT

k

� T:

Notie that the sheduling error is a disrete variable and it is multiple of

T

s

.

It is also useful to de�ne a state variable x

k

that represents the amount

time onsumed by job J

k�1

on the latest reservation period, if shared with

job J

k

. To help larify the meaning of x

k

, an example is shown in Figure 4.2.

In Figure 4.2.a, J

1

uses only 2 reservation periods and �nishes before the end

of its period: J

1

and J

2

do not share any reservation, and x

2

= 0. In Figure

4.2.b, J

1

uses 3 reservation periods: therefore, x

2

= 1. In the following, x

k

will be assumed to be not measurable.

By de�nition,

(

x

0

= 0

LFT

1

=

l

C

0

B

0

T

s

m

T

s

The general equations for x

k

and LFT

k

are the following:

x

k

=

(



k�1

+ x

k�1

� (LFT

k

� T

s

)B

k�1

LFT

k

> T

0 LFT

k

� T

LFT

k

=

8

<

:

LFT

k�1

� T � T

s

+

l



k�1

+x

k�1

B

k�1

T

s

m

T

s

LFT

k�1

> T

l



k�1

B

k�1

T

s

m

T

s

LFT

k�1

� T

From the previous equation, it is possible to derive the sheduling error:

�

k

=

8

<

:

�

k�1

� T � T

s

+

l



k�1

+x

k�1

B

k�1

T

s

m

T

s

�

k�1

� T

s

l



k�1

B

k�1

T

s

m

T

s

� T �

k�1

< T

s

(4.4)

58



T
s

T

J 1 J 2

a)

b)

3 3

35

Figure 4.2: Internal state x

j

. In ase a), the �rst job �nishes before the end

of its period, hene x

2

= 0; in ase b), the �rst job onsumes 3 reservation

periods, and onsumes 1 apaity unit in the last reservation period, hene

x

2

= 1.

Now, a quantisation errorQE

k

an be introdued onsidering two di�erent

ases: �

k�1

� T

s

and �

k�1

< T

s

. In the �rst ase, �

k

depends on x

k�1

that

is not measurable. However, x

k�1

is always in the range [0; B

k�1

T

s

℄. Hene,

the following upper bound for the sheduling error holds:

�

k

= �

k�1

� T � T

s

+

&



k�1

+B

k�1

T

s

B

k�1

T

s

'

T

s

The quantisation error an be de�ned as:

QE

k

=

&



k�1

+B

k�1

T

s

B

k�1

T

s

'

�



k�1

+B

k�1

T

s

B

k�1

T

s

In the seond ase, the quantisation error is de�ned as follows:

QE

k

=

&



k�1

B

k�1

T

s

'

�



k�1

B

k�1

T

s

Finally, the sheduling error is rede�ned as follows:

~�

k

= �

k

� QE

k

T

s

:

By substituting,

~�

k+1

=

(

~�

k

+



k

B

k

� T ~�

k

� T

s



k

B

k

� T ~�

k

< T

s

(4.5)

59



Controller Design

As shown, a reservation-based sheduler with period T

s

an be dealt with as

a dynamial system desribed by the following equations:

�

k+1

=

(

�

k

+



k

B

k

� T if �

k

� T

s



k

B

k

� T if �

k

< T

s

(4.6)

where �

k

represents the sheduling error. Equation 4.6 desribes an approxi-

mation of the sheduling error where the quantisation error QE

j

is negleted

(in the this issue will be addressed in the sequel). The goal of this setion

is to propose tehniques for e�etively designing feedbak ontrollers for this

system. This task is hindered by the possibility for the system dynamis of

swithing between two di�erent modes orresponding to �

k

� T

s

and �

k

< T

s

.

The lassial \pole-plaement" tehnique an be used to synthesise a on-

troller in eah mode; in this way it is possible both to omply with require-

ments on the losed loop dynamis (i.e. the evolution of the sheduler under

the ation of a feedbak ontroller).

Let's start to design the ontroller for the �rst operating mode (the same

onsideration apply to the seond one): if �

k

� T

s

, then

�

k+1

= �

k

+ 

k

u

k

� T

where u

k

is de�ned as

1

B

k

.

Quantities �

k

, 

k

, and B

k

an be expressed as a onstant value plus a

variation: �

k

= ��

k

+ �, 

k

= +�

k

and u

k

= u+�u

k

. At the steady state

it must hold  =

T

u

.

Assuming small variations around the linearization point, the relation

between the variations an be found via di�erentiation:

��

k+1

= ��

k

+  �u

k

+ u �

k

= ��

k

+

T

u

�u

k

+ u �

k

: (4.7)

For notational simpliity and with a slight abuse of notation, in the rest of

the setion the symbol � will be dropped. Hene, unless otherwise stated,

�

k

, u

k

and 

k

represent variations of the original quantities around the �; u; 

respetively.

As the di�erene Equation 4.7 is linear, it is possible to ompute the Z

transform:

�(Z) = H



(Z)(Z) +H

u

(Z)u(Z);

where H



(Z) =

u

Z�1

and H

u

(Z) =

T

u(Z�1)

.

60



H

−

++ BRef

c

+F Hu

c

Figure 4.3: Dynami system representing a linearised reservation with a feed-

bak mehanism.

To ahieve the ontrol goals, a feedbak ontroller F (Z) is used as in

Figure 4.3: u(Z) = �F (Z)�(Z). The losed loop dynamis is desribed by

the transfer funtion H(Z) between (Z) and �(Z):

�(Z) = H(Z)(Z) =

H



(Z)

1 + F (Z)H

u

(Z)

(Z) (4.8)

The simpliity of the system (whose dynami equations are similar to

those of a tank) suggested the use of a PI ontroller. A PI ontroller is

desribed by:

u

k

= 

1

(��

k

) + 

2

k�1

X

j=0

(��

k�1

)

where 

1

and 

2

are the oeÆients of the proportional and integral ations

respetively. By subtrating the expression for u

k�1

from the expression for

u

k

the equation an be written as:

u

k

= u

k�1

+ �(��

k

) + �(��

k�1

):

where � = 

1

and � = 

2

� 

1

. The transfer funtion F (Z) is given by:

F (Z) =

�Z + �

Z � 1

:

Plugging F (Z) into Equation 4.8,

�(Z) = H(Z)(Z) =

u(Z � 1)

Z

2

+ (

T

u

�� 2)Z + �

T

u

+ 1

(Z): (4.9)

The losed loop system is stable if the zeros Z

i

of the denominator in

Equation 4.9 (i.e. the poles of the losed loop system), have norm stritly

61



lower than 1: jjZ

i

jj < 1. Observe that the use of the PI ontroller enables

the hoie of the two losed loop poles poles. As a matter of fat, to plae

the losed loop poles in Z

1

and Z

2

it is suÆient to impose:

Z

2

+ (

T

u

�� 2)Z + �

T

u

+ 1 = Z

2

� (Z

1

+ Z

2

)Z + Z

1

Z

2

:

Solving for �; � yields:

� =

u(2� (Z

1

+ Z

2

))

T

� =

u(Z

1

Z

2

� 1)

T

:

Moreover, the deay rate � is given by the maximum norm of the poles.

Repeating the omputations for �

k�1

< T

s

, it is possible to obtain:

� =

u(1� (Z

1

+ Z

2

))

T

� =

u(Z

1

Z

2

)

T

:

All subsequent results an similarly be rephrased.

Aounting for the Quantisation Error

Aording to Equation 4.5

�

k

= ~�

k

+QE

k

T

s

:

Let's onsider an equilibrium point where the quantisation error has a value

~

QE

k

and repeat the analysis onsidering the variation around the equilibrium

QE

k

=

~

QE

k

T

s

+ �QE

k

, where T

s

has been absorbed into �QE

k

. Hene,

0 � �QE

k

� T

s

. Considering now the linearised system, it is possible to

treat �QE

k

as an additional norm-bounded disturbane (see Figure 4.4).

The transfer funtion from suh a disturbane to �

k

is given by

1

1+F

u

(Z) G(Z)

.

Thereby, it is possible to use standard results from ontrol theory to

ompute a bound for the e�et of quantisation. Considering for simpliity

the ase of distint and real poles, suh a bound is provided by

2 T

s

u

jjZ

2

�Z

1

jj

.

This bound has to be added to the one omputed for the unertainties of the

omputation time 

k

. As one would expet, diminishing T

s

(and hene the

quantisation grain) results into higher and higher preision for the ontrol.

Again, observe that a less onservative bound an be obtained by numerially

omputing E =

P

jjf

k

jj.

62



Fu

Fc

−

++ BRef

c Qantization Error

+G

Figure 4.4: Dynami system representing a linearised CBS with a feedbak

mehanism.

Moreover, if the ontroller is able to stabilise the system into a point

rather than into a set, it is possible to apply the Steady State Worst Case

Analysis developed by Slaughter [Sla64℄: the worst ase steady state quanti-

sation error on � is lower than or equal to j

1

1+H

u

(Z)F (Z)

j

Z=1

T

s

. Replaing H

u

and F with the expressions provided above, it is possible to onlude that

j

1

1+H

u

(Z)F (Z)

j

Z=1

T

s

= 0. Therefore, if it is possible to stabilise the system

into a point then the steady state value for the e�et of the quantisation

error is 0. The e�et of quantisation is, in this ase, an overestimation of

the bandwidth

~

B assigned to the task. In fat, imposing the equilibrium

ondition �

k+1

= �

k

in equation 4.4 it is possible to obtain:

�



~

BT

s

�

T

s

� T = 0:

Observing that x � dxe < x + 1, this results in



T

�

~

B �



T � T

s

:

Experimental Results

To test the e�etiveness of the proposed adaptive sheme, an adaptive reser-

vation ontrolled by the PI designed in Setion 4.2.2 was simulated, ompar-

ing the results obtained with di�erent poles assignments and di�erent server

periods. These �rst experiments were performed using syntheti workloads

(as proposed in [LSA

+

00℄) to estimate the performane of a feedbak shed-

uler. Then, a more realisti workload (suh as the exeution times of an

MPEG deoder) was simulated to show how a ontroller that gives good

responses to a step an have problems with real workloads. In this ase, a

proper assignment of the poles is a ritial task that needs further investiga-

tions.

63



0

5

10

15

20

25

30

35

40

290 295 300 305 310 315 320 325 330

E

Job Number

Scheduling Error (T = 40, Ts = 20)

Z2 = 0.2
Z2 = 0.6
Z2 = 0.9

Figure 4.5: Sheduling Error obtained using an adaptive reservation with

T

s

= 20 in response to a step in the load.

Evaluating the performane of a feedbak sheduler is not trivial: shed-

ulers that seem to work properly at a �rst glane [LSTS99℄ may result to be

unstable when evaluated more systematially [LSA

+

00℄. To properly evalu-

ate our adaptive reservation mehanism, the system response to a step and

a ramp in the system load were used, sine they have been proved to be a

good test ase [LSA

+

00℄.

Although a wide set of experiments was performed, for the sake of brevity

only some meaningful experiments are reported here. In partiular, in the

following results onsider a task � with period T = 40 and exeution time



j

= 5 if j < 300, 

j

= 15 otherwise.

Figure 4.5 shows �

j

when T

s

= 20 (the losed loop poles are assigned as

in the previous simulation). When, at job J

299

, the exeution time inreases

from 5 to 15, the sheduling error raises to 40 (two times the reservation

period), and it is ontrolled to 0 in a short time. Note that in this ase

the overshot is smaller than in the previous experiment: this is due to the

quantisation error aused by the non-aessible internal state. However, when

the system reahes the steady state, the quantisation error is 0, as expeted.

As in the previous ase, moving Z

2

from 0:2 to 0:9 the deay rate is higher.

Figure 4.6 shows the evolution of the reserved time, and is probably more

interesting. In this ase, the impat of the quantisation error is an overestima-

64



5

10

15

20

25

30

290 295 300 305 310 315 320 325 330

B
 *

 T

Job Number

Reserved Time (T = 40, Ts = 20)

Execution Time
Z2 = 0.2
Z2 = 0.6
Z2 = 0.9

Figure 4.6: Bandwidth reserved by an adaptive reservation with T

s

= 20 in

response to a step in the load.

tion of the reserved bandwidth, whih in the worst ase results to be 0:747198

instead of 0:375 = 15=40. Hene, the overestimation is 0:747198� 0:375 =

0:37220; this value is ompatible with the worst ase estimation developed in

Setion 4.2.2, whih is B

0

(T

s

=(T �T

s

)) = 0:375(20=(40�20)) = 0:375. Note

that, in this ase, the quantisation error tends to inrease when Z

2

moves to

0:2: in fat, a faster ontroller tends to \overreat" to the exeution times

variation, and the quantisation error prevents B

j

from dereasing after the

�rst adaptation.

Figures 4.7 and 4.8 plot the evolution of the sheduling error and of B

j

T

s

when T

s

= 10, respetively. In this ase, the quantisation error is lower and

the response beomes loser to the one of model without quantisation. In

this ase, faster ontrollers (Z

2

= 0:2 and Z

2

= 0:5) have an underrun in the

sheduling error, that was previously masked by the quantisation error.

The same experiments were repeated using a ramp on the input, and gave

similar results.

As previously stated, the �rst set of experiments was performed based

on a syntheti workload that has been reognised as partiularly signi�ant

for evaluating system performane [LSA

+

00℄. However, some experiments

performed using a more realisti workload highlighted new problems.

To generate a realisti workload, an MPEG player running on Linux has

65



-10

0

10

20

30

40

50

60

290 295 300 305 310 315 320 325 330

E

Job Number

Scheduling Error (T = 40, Ts = 10)

Z2 = 0.2
Z2 = 0.6
Z2 = 0.9

Figure 4.7: Sheduling Error obtained using an adaptive reservation with

T

s

= 10 in response to a step in the load.

5

10

15

20

25

30

290 295 300 305 310 315 320 325 330

B
 *

 T

Job Number

Reserved Time (T = 40, Ts = 10)

Execution Time
Z2 = 0.2
Z2 = 0.6
Z2 = 0.9

Figure 4.8: Bandwidth reserved by an adaptive reservation with T

s

= 10 in

response to a step in the load.

66



0

5

10

15

20

0 200 400 600 800 1000

E
xe

cu
tio

n 
T

im
e 

(m
s)

Frame Number

Frame Decoding Times

Figure 4.9: Frame deoding times for the Star Wars Episode 1 trailer, mea-

sured on a P4 1.80GHz CPU running Linux and XFree86.

0

5

10

15

20

0 200 400 600 800 1000

B
 *

 T
 (

m
s)

Job Number

Reserved Time

Fast Controller (Z1 = 0.1, Z2 = 0.2)

Figure 4.10: Reserved amount of time under a realisti workload (fast PI

ontroller).

67



0

5

10

15

20

0 200 400 600 800 1000

B
 *

 T
 (

m
s)

Job Number

Reserved Time

Slow Controller (Z1 = 0.1, Z2 = 0.9)

Figure 4.11: Reserved amount of time under a realisti workload (slow PI

ontroller).

been instrumented to measure the frame deoding times for the trailer of

Star Wars Episode 1 [Lu99℄, shown in Figure 4.9. As it is possible to see,

the exeution times are highly variable. Sine the goal of the PI ontroller is

to ontrol the sheduling error to 0, it an be expeted that this variability

in the exeution times will be reeted in a high variability in the reserved

time. Figure 4.10 shows the evolution of the reserved time for a PI ontroller

(the simulation was performed setting T = 33ms - 33:3 frames per seond,

T

s

= T=4 = 8:25ms, Z

1

= 0:1 and Z

2

= 0:2. By omparing the two �gures,

it is lear that the reserved bandwidth does not stabilise properly; as a result,

the sheduling error does not stabilise to 0, but ontinues to osillate. This

kind of problem an be expeted from the theory of ontrol, beause the

system's input is highly variable. Sine the system is pratially stable and

the variations in the input are bounded, the variations on the sheduling

error are also bounded (and the average of the sheduling error is 0).

This problem an be addressed by �ltering out the higher frequenies

(this an be done by moving one of the two poles near to 1). The results are

shown in Figure 4.11. By omparing Figures 4.11 and 4.9, it is lear that

the reserved bandwidth results to be more stable, and this permits to better

ontrol the sheduling error. The �rst ontroller (with Z

2

= 0:2) tends to

\over-reat" to exeution time variations, presenting a bigger overshot: even

68



after the initial transient, the sheduling error raises to more than 33ms. On

the ontrary, moving the seond pole to Z

2

= 0:9, the maximum sheduling

error registered after the initial transient is 8:75ms.

Summing up, while onsidering the response to a step or to a ramp the

position of the poles Z

1

and Z

2

only inuenes the overshoot and the response

time, when a more realisti workload is applied as input to the system, the

position of the poles beomes ritial for the system performane.

4.3 The QoS Manager

To test the e�etiveness of the proposed approah, the adaptive reservation

abstration desribed in the previous setions has been implemented through

a QoS Manager that realizes the ontrol loop used to adjust the sheduling

parameters.

Most of the funtionalities of the ontrol loop are oded in the user-level

QoS manager; in this way, the kernel is only required to:

� provide temporal protetion (hene, the kernel sheduler has to use an

appropriate sheduling algorithm;

� give the possibility of hanging the sheduling parameters of eah task;

� export some kind of performane parameter that an be used as an

observed value for the ontrol loop. As said, if the kernel implements

the CBS algorithm, it an export the CBS sheduling error.

In this vision, the kernel provides a mehanism, the sheduling algorithm,

that is used by the QoS manager to implement a resoure management poliy.

The tasks whose sheduling parameters are ontrolled by the QoS Manager

are referred as adaptive tasks, whereas the other tasks (haraterised by �xed

sheduling parameters) will be referred as regular tasks.

Sine the QoS Manager needs to have a global system visibility to im-

plement the ompression equation (and to eliminate the problems desribed

in [CT94℄), it is a regular task (indiated as qosman in Figure 4.12). The

QoS Manager task is used to reate adaptive tasks and to manage their

bandwidths aording to some user de�ned poliy.

All the adaptive appliations have to be linked against the QoS library,

that interfaes them with the QoS manager, providing some library alls to

ommuniate with it.

When the qosman task is reated, it asks the system for all the available

CPU bandwidth in order to distribute it among adaptive tasks. When an

appliation needs to reate a new adaptive task, it must issue a request to the

69



B max

Q,T

Scheduling  Error

B B

B i

21

CBS

HARTIK

EDF

Interrupt
Management

Bandwidth
CPU

QoS lib

Task
Adaptive 

QoS lib

Task
Adaptive 

QoS Manager

Activations

End Instance

Figure 4.12: The Adaptive QoS Manager.

70



qosman (through the qset addtask() library all). After this all the task

is reated and added to the set of the tasks handled by the QoS Manager.

At the beginning of eah period, the adaptive task is ativated (i.e., a new

job is reated for that task). When the job �nishes, the task has to notify this

event to the qosman task (through the qtask endinstane() library all);

in this way, qosman has the possibility to monitor the performane of the

adaptive task. In this ase, performane monitoring is done by measuring

the sheduling error, that will be used to ompute the new requested band-

width by applying the feedbak funtion f(). After that, the QoS manager

will apply the ompression funtion g(), and will adjust the parameters of

all the adaptive tasks in the system (note that if the requested bandwidth

assignment is feasible, the sheduling parameters of only one task need to be

hanged).

4.3.1 Implementation on the HARTIK kernel

A �rst version of the QoS manager has been oded on HARTIK [AB00℄ (that

diretly provides the CBS sheduling inside the kernel), taking advantage of

the partiular HARTIK struture to simplify and making more eÆient the

implementation.

HARTIK is in fat a real-time exeutive that must be diretly linked to the

appliation program, sharing ode and data with it. In partiular, the kernel

strutures are not proteted from the appliation, and all the appliation

threads share the same address spae. The �rst prototypal implementation

of the QoS Manager, based on HARTIK, took advantage of these peuliarities

of the HARTIK kernel to improve the eÆieny and redue the overhead. On

the other hand, this implementation is not portable.

After that the �rst prototype showed the e�etiveness of adaptive reser-

vations, the QoS manager has been reimplemented in a portable way, to

provide support for di�erent kinds of kernels.

4.3.2 Portable Reimplementation

To make the QoS manager independent from the OS kernel, its funtionalities

have been split between user tasks (inside the QoS Library) and the qosman

task. In this way, the adaptation mehanism is distributed between the

appliation address spae and the QoS manager address spae, and some

IPC mehanism is used to allow ommuniation between the QoS library

(in the appliation spae) and the QoS manager. In a unix-like system,

suh as Linux, this mehanism an be provided through some form of IPC

(for example, a FIFO, or named pipe); in non-proteted systems, suh as

71



Feedback
Function

f()

Scheduling
SystemAlgorithm

Compression

QoS ManagerAdaptive Application
User Space Space Kernel Space

Figure 4.13: The losed-loop ontroller: Client/Server arhiteture.

HARTIK, this ommuniation an be more eÆiently performed using shared

memory.

Hene, the portable implementation of the QoS manager and library is

based on a two-layer approah, in whih the upper layer is system indepen-

dent, whereas the lower layer is system defendant and is responsible for:

� providing a simple and eÆient ommuniation mehanism between the

QoS library and the qosman task;

� implementing the interations between the QoS manager and the ker-

nel (that is to say, reading the sheduling error and modifying the

sheduling parameters).

This new implementation results in a lient/server struture, and this

approah also helps to better isolate the various funtionalities into spei�

modules, as shown in Figure 4.13:

1. the QoS library ode, running in the adaptive appliation address spae,

is responsible for reading the observed value and omputing the feed-

bak funtion,

2. the QoS manager reeives requests from the adaptive appliations, and

performs the resoure assignment applying the ompression funtion,

3. the kernel shedules the tasks aording to the parameters set by the

QoS manager, and produes a new sheduling error.

All the interfae alls are implemented by QoS library funtions that send

the appropriate requests to qosman. In partiular, the qman endinstane()

all reads the sheduling error (using an appropriate all to the OS kernel,

or passing through the QoS manager), omputes the feedbak funtion (only

72



-40

-20

0

20

40

60

80

100

120

0 50 100 150 200 250

E

Job Number

Scheduling Error (T = 33, Ts = 6.25)

Figure 4.14: Sheduling Error for an MPEG player with T = 33ms and

T

s

= 6:75ms.

using the read value and the status information ontained in the appliation's

address spae), and sends the new bandwidth requirement to qosman.

The QoS Manager task reeives bandwidth requests from the appliation

tasks, and serves them by adapting the tasks' sheduling parameters. If

the sum of the CPU bandwidths requested by all the lients (the adaptive

tasks) through the QoS library is greater than U

lub

, then the ompression

funtion is applied, and the CPU bandwidth assigned to all the adaptive

tasks is updated. Otherwise, only the CPU bandwidth reserved to the task

performing the request is hanged. Note that qosman is the only task that

an modify the sheduling parameters in the kernel.

The portable reimplementation of the QoS manager urrently runs on

HARTIK and on the Linux kernel (Linux/RK [RAdN

+

00℄ in partiular).

4.3.3 Experimental Evaluation

The e�etiveness of the QoS Manager was tested implementing the ontroller

desribed in Setion 4.2.2; the implementation of the PI ontroller was a

simple task and required less than half an hour.

Using this implementation, the feedbak sheduler was tested by running

two simultaneous MPEG players (at 33:3Fps and 20Fps) attahed to two

73



-50

0

50

100

150

200

250

300

350

400

0 50 100 150 200 250

E

Job Number

Scheduling Error (T = 15, Ts = 12.5)

Figure 4.15: Sheduling Error for an MPEG player with T = 50ms and

T

s

= 12:5ms.

adaptive reservations, with periods 33=4 = 8:25ms and 50=4 = 12:5ms. The

sheduling errors for the two players are shown in Figures 4.14 and 4.15.

These experiments were performed setting Z

1

= 0:1 and Z

2

= 0:8.

After an initial transient, the feedbak ontroller is able to adapt the re-

served bandwidths so that the sheduling error is ontrolled to about 0. Sine

the exeution times are highly variable, the sheduling error annot be on-

stant, but it is important to note that � � 0 most of the time (remember that

a negative sheduling error is not bad for the pereived QoS). In oinidene

with big variations in the exeution times, the sheduling error inreases, but

it is immediately ontrolled to 0 again. It is important to note that these

plots refer to real experiments performed on a real Linux system, and that

the two players run simultaneously and share some important resoure, suh

as the X server.

4.4 User Level Adaptation

In this setion, the previously introdued adaptation mehanism will be de-

sribed from a di�erent point of view, analysing it in terms of demanded

bandwidth and requested bandwidth. The onepts of demanded bandwidth

74



and reserved bandwidth have been informally used in the previous setions,

and will be more formally de�ned here.

The demanded bandwidth an be de�ned based on the time D

s

i

(t

1

; t

2

)

demanded by server S

i

. In fat, it has been proved that D

s

i

(t

1

; t

2

) � (t

2

�

t

1

)B

s

i

, hene

De�nition 17 The demanded bandwidth is be de�ned as

B

demanded

i

= max

(t

1

;t

2

)

D

s

i

(t

1

; t

2

)

t

2

� t

1

:

First of all, note that

B

demanded

i

= max

(t

1

;t

2

)

D

s

i

(t

1

; t

2

)

t

2

� t

1

) B

demanded

i

�

(t

2

� t

1

)B

s

i

t

2

� t

1

= B

s

i

:

Moreover, it is easy to �nd a ase (a ontinuously baklogged task) in whih

the demanded bandwidth is equal to the reserved bandwidth, hene B

demanded

i

�

B

s

i

.

As a result, we obtain

(

B

demanded

i

� B

s

i

B

demanded

i

� B

s

i

) B

demanded

i

= B

s

i

Sine the demanded bandwidth results to be equal to the reserved bandwidth,

they will be both referened as B

s

i

in the future.

The requested bandwidth an be de�ned based on the tasks' soft dead-

lines, in order to desribe the amount of the CPU bandwidth that the task

should be reserved to ful�l its time onstraints.

De�nition 18 Given a task �

i

, its requested bandwidth B

R

i

is de�ned as

max

t

1

;t

2

D

i

(t

1

; t

2

)

t

2

� t

1

Where D

i

(t

1

; t

2

) is the time demanded by the tasks' soft deadlines, as previ-

ously de�ned in Chapter 2.

Now, let's remember that a task served by a CBS S

i

annot demand

more than the reserved bandwidth B

s

i

: if the task requested bandwidth B

i

is greater than B

s

i

, the task will slow down in order not to a�et the others.

This an be better understood in the following way:

B

req

i

= lim

t!1

D

i

(0; t)

t

= lim

t!1

P

d

i;j

�t



i;j

t

= lim

k!1

P

k

j=0



i;j

t

=

75



= lim

k!1

P

k

j=0



i;j

r

i;k

+ a

= lim

k!1

P

k

j=0



i;j

k

k

r

i;k

+ a

= lim

k!1

P

k

j=0



i;j

k

lim

k!1

k

r

i;k

+ a

)

B

req

i

= E[U()℄

1

E[V (t)℄

=

E[U(t)℄

E[V (t)℄

As shown in Setion 3.5, if

E[U(t)

E[V (t)℄

< B

s

i

, the task QoS an be ontrolled,

otherwise the sheduling deadline will be postponed in an unpreditable way.

Sine

E[U(t)

E[V (t)℄

< B

req

i

, the previous ondition an be rewritten as B

req

i

< B

s

i

.

Hene, if a task \requests too muh bandwidth" (i.e., if the requested

bandwidth is greater than the reserved bandwidth: B

req

i

> B

s

i

) its shedule

is no more preditable, and its QoS annot be ontrolled. In this dissertation,

a task requiring too muh bandwidth is referred as an overloaded task.

De�nition 19 Task �

i

is said to be overloaded if

B

req

i

� B

s

i

: (4.10)

The \task overload" situation an be removed in two ways (that may also

be ombined together):

1. By inreasing the reserved bandwidth B

s

i

2. By dereasing the task requested bandwidth B

req

i

The �rst strategy is used by adaptive reservations, where the sheduler or a

QoS manager adapts the reserved bandwidths in order to resolve all the task

overload situations (if possible). In the seond strategy, eah appliation

expliitly sales down its QoS (and onsequently its resoure requests), in

order to make B

req

i

< B

s

i

, thus removing the overload ondition. This is

referred as appliation level adaptation, sine in this ase eah appliation

has the responsibility to ope with its own overloads (eah appliation an

sale down its QoS in di�erent ways, and it is the only entity to know how

to perform suh a QoS adaptation). Numerous solutions for performing suh

an appliation level adaptation have been proposed in the literature and are

well known in the multimedia ommunity, ranging from enlarging the task's

period to skipping some tasks' instanes.

Note that if the sum of all the requested bandwidths

P

i

B

req

i

is less than

the maximum available CPU bandwidth B

max

, then the adaptive reservation

mehanism will be able to use the �rst strategy (global adaptation) to �nd

a feasible bandwidth assignment

^

B = (B

s

1

; : : :B

s

n

) suh that 8i; B

s

i

� B

req

i

.

If, on the other hand,

P

i

B

req

i

� B

max

, then the less important tasks an

su�er from loal overloads. Indeed, the goal of the global adaptive reser-

vation mehanism is to isolate task overloads in the less important tasks,

76



independently from their requirements and periods. In this aspet, adaptive

reservations di�er from lassial real-time tehniques, in whih task impor-

tane is inversely proportional to its period.

In this ase, an overloaded task an use appliation level adaptation to try

to sale down its requirements (by dereasing its QoS). If suh an adaptation

is performed, the task may exit the overload ondition, reahing a lower

QoS level in a ontrolled fashion, otherwise the QoS degradation an be

unpreditable.

If a task �

i

does not implement the appliation level adaptation, the less

important tasks (the tasks �

j

with w

j

� w

i

) will be more penalised in terms

of reserved bandwidth, sine the global adaptive reservation mehanism per-

forms the ompression based on task importanes w

i

. Hene, the bandwidth

of the less important tasks will be used to satisfy the QoS requirements of

the most important tasks. Suh a system behaviour is onsistent with the

proposed QoS model (avoiding overloads in the most important tasks). A

possible onern an be that a misbehaved task having a high importane

an ompromise the QoS experiened by all the appliations in the system.

However, the importane w

i

is assigned by the user, and an be used as a

mehanism to penalise misbehaved tasks or appliations that do not adapt

their QoS properly.

Sine the amount of resoures requested by a task to provide a spei�ed

level of QoS is not always known (and only a feedbak mehanism an be

used to ontrol the QoS) the global adaptive reservation mehanism alone

may not be able to guarantee a minimum QoS to eah task.

If appliation level QoS adaptation is implemented, the task an sale

down its resoure requirements in order to provide a minimumQoS, if the task

is guaranteed to reeive a minimum amount of resoures. For this reason, the

original adaptive reservations sheme an be enhaned in order to guarantee

a minimum fration of the CPU bandwidth to eah task. Note that this

modi�ation only a�ets the ompression equation, and does not hange

anything in the original feedbak sheme.

4.4.1 Hierarhial QoS feedbak ontrol

As shown, when appliation level adaptation is used together with the adap-

tive reservation approah, there are two orthogonal forms of adaptation:

� the reserved bandwidth adaptation realized by an ative entity having

a global system visibility, suh as a QoS manager or the sheduler itself;

� the appliation level QoS adaptation, as presented in the previous se-

tion.

77



Scheduling

SystemReserved
BandwidthValue (0)

Reference

Value (0)
Reference

Compression

CBS Scheduling

Error

+

−

Bandwidth
Requested

Algorithm

QoS Mapping
Algorithm

+

−

Feedback
Function

Figure 4.16: Two-Level Feedbak.

This integrated approah, referred in this dissertation as hierarhial

adaptation, presents the advantages of both methods, allowing the appli-

ations to sale their QoS when the bandwidth adaptation is not able to

serve them properly. In fat, it an be shown that adaptive reservations

an su�er when all the tasks require too muh resoures (basially, when

P

i

B

req

i

> B

max

), and the QoS adaptation mehanism an solve this prob-

lem. On the other hand, the bandwidth adaptation mehanism allows appli-

ations to obtain the desired QoS without requiring any a-priori knowledge

on their resoure requirements.

To use the hierarhial QoS management approah, a new level of feed-

bak has to be added to the feedbak sheme of Figure 4.1, as shown in Figure

4.16. The inner loop ontrols the bandwidth B

s

i

reserved by the global adap-

tive reservation, while the outer loop ontrols the bandwidth B

req

i

requested

by the appliation, using the loal method. As explained above, the goal of

the ontrol loops is to obtain B

s

i

> B

req

i

. One of the major problems with

this kind of hierarhy is that it an easily reah unstable onditions. For

example, let's onsider two tasks �

1

and �

2

: by reating to a transient over-

load, the global adaptive reservation mehanism an derease B

s

1

; if �

1

reats

immediately by dereasing its QoS, when the transient overload �nishes the

bandwidth adaptation mehanism an inrease B

s

2

. In this way, �

2

inreases

its QoS level, stealing bandwidth from �

1

, preventing it to reover its initial

QoS level.

To solve this problem, the appliation level QoS adaptation ation has

been made slower than the bandwidth adaptation one, so that QoS is hanged

only when the overload ondition is long (in most ases, the QoS is not saled

in response to transient overloads).

More information about hierarhial QoS adaptation an be found in

[AB01℄.

78



Chapter 5

OS

5 years from now everyone will be running free GNU on their 200

MIPS, 64M SPARCstation-5

Andrew S. Tanenbaum, 30 Jan 1992

I

n the �rst part of this dissertation, sheduling and resoure alloation

tehniques suitable for serving time sensitive appliations have been

presented. However, those issues have been addressed from a \purely

mathematial" point of view, without onsidering real implementations. In

this hapter, the implementation of the previously desribed tehniques will

be analysed, showing the most important problems and some possible solu-

tions.

5.1 Kernel Strutures

Sine the struture of the kernel an heavily inuene the auray of the

sheduler, imposing or removing onstraints and assumption on the resoure

alloation strategies, in this setion the most di�use kernel strutures will be

presented and evaluated from the real-time perspetive.

5.1.1 Exeutives

The simplest way to organise system and user ode is the one used by ex-

eutives. An exeutive is a bunh of library ode that an be linked to an

appliation, providing some \kernel funtionalities", suh as multithreading,

interrupt management, and so on. As for traditional kernels, the role of an

exeutive is to abstrat the hardware mahine, implementing a higher level

programming interfae.

79



The main di�erene with a kernel-based OS is that exeutives do not

reate a real distintion between appliation ode and system ode, and ev-

erything is mixed together. For this reason, someone tends to see an exeutive

as a LibOS (library Operating System).

Using an exeutive, the \system servies" an be invoked through simple

near or far alls: no interrupt, trap, or gate mehanism is needed. As a

result, an exeutive is generally more eÆient and introdues less overhead,

providing good real-time performane and introduing less unpreditabilities

in the sheduling. For this reason, exeutives are often hosen to implement

simple real time systems, suh as RTEM [rte℄, HARTIK/SHARK [AB00,

But93, LLB

+

97, GAGB01℄, and similar. On the other hand, the inreased

eÆieny ahieved by eliminating the barrier between system ode and user

ode results in a dereased exibility and in the total absene of any kind of

protetion.

5.1.2 DOS-like Systems

Respet to exeutives, in this kind of systems (sometime alled \systems

without kernel"), there is a better distintion between appliation ode and

system ode. However, the appliation still has omplete aess to the hard-

ware (and this fat permits to inrease the eÆieny and preditability of

devie drivers). In this way, system servies are only \failities" that appli-

ations may or may not use. Protetion is not enfored, and eah appliation

is free to do everything (even rash the system): someone sees this fat as a

drawbak (lak of protetion), someone else loves this kind of freedom (better

preditability).

Sine system ode and appliation ode are separated, appliations an

require system servies through system alls, that are implemented using an

INT/TRAP mehanism (as in MSDOS) or some system entry table (as in

Amiga OS). However, due to the lak of some onepts like protetion, and

similar, it is not appropriate to talk about a \real kernel".

Examples of this kind of systems are MSDOS and its lones (suh as

FreeDOS [fre℄), AmigaDOS, and similar. Note that, thanks to their simpli-

ity and preditability, these OSs are often used in embedded and real-time

systems.

5.1.3 Monolitihi Kernels

This is the most ommon OS struture: a single program, the kernel, running

in privileged mode (system mode), abstrats the hardware providing a high

level Appliation Binary Interfae (ABI). Sine protetion is enfored by the

80



kernel (using appropriate hardware failities suh as the MMU), appliations

annot diretly aess hardware resoures, but must require suh an aess

to the kernel.

The kernel is implemented as a single-threaded program, hene only one

single exeution ow an run in system mode at eah time. The kernel

responds to two di�erent kinds of requests, oming from up (appliation

requests) or down (hardware requests); appliation requests are the system

alls, onforming to the kernel exported ABI.

Appliation requests are often alled top halves in Unix terminology, while

bottom requests are alled bottom halves (in Linux), soft interrupts (in the

*BSD world), or Deferred Proedure Calls - DPCs - (in Windows & similia).

As said above, it is avoided to exeute more than one top half simultaneously;

this requirement is often enfored using non-preemptable system alls.

Sine a task annot be preempted during the exeution of a system all,

only one top half per time is ative. Moreover, top halves also need to syn-

hronise with bottom halves: bottom halves are exeuted atomially, aord-

ing to kernel-de�ned priorities, immediately before returning from system

mode to user mode. When a hardware interrupt �res, the system exeutes

an Interrupt Servie Routine (ISR) that aknowledges the hardware and

queues a request for a bottom half exeution. Sine the bottom half will be

exeuted immediately before returning to user mode, if the interrupt inter-

rupted a user mode program the bottom half will exeute immediately before

the ISR, whereas if the interrupt interrupted a top half the bottom half will

exeute after the top half. In this way the atomiity between top halves and

bottom halves is guaranteed; to synhronise with ISRs, a top half needs to

expliitly disable and reenable interrupts. For this reason, monolithi kernels

are often referened as non-preemptive and single-threaded kernels.

To orretly manage multiple proessors (I.E., SMP mahines), a mono-

lithi kernel requires strong modi�ations. This is due to the fat that in

a multiproessor environment the simple top half/bottom half synhronisa-

tion sheme does not work (for example, nothing in the sheme presented

above prevents two top halves from exeuting simultaneously on two di�er-

ent CPUs), and more omplex mehanisms (suh as spinloks) must be used.

Note that the modi�ations needed to use a monolithi kernel on an SMP

mahine make it more similar to a multithreaded kernel.

Finally, note that nonpreemptable system alls and bottom halves an

reate sheduling anomalies by removing the \full preemptability" hypothe-

sis used in real-time theory, and by introduing priority inversions. Hene,

although the monolithi struture permits to enfore protetion between user

appliations and to ahieve high throughput, it is not suitable for real-time

systems.

81



5.1.4 Multithread Kernels

This kind of kernels remove the limitation of having one single exeution ow

inside the kernel. In this way, the kernel an also be preemptable.

In a multithreaded kernel, di�erent exeution ows an be used for pro-

essing interrupt requests (without the need for making them atomi like the

bottom halves). Synhronisation between the various exeution ows must

be expliitly enfored using a ombination of interrupt disabling and busy

waiting named spinlok. For this reason, the extension to SMP mahines is

muh simpler.

A spinlok provides two operations, lok and unlok, and ats as a mu-

tex, ensuring the atomiity of setions ontained between lok and unlok.

The di�erene respet to mutexes is that a spinlok will not use the proess

blok/unblok mehanism. On a single proessor mahine, a lok operation

is equivalent to disabling interrupts (an x86 li instrution), whih will be

reenabled by the unlok operation. On a SMP mahine, a lok will disable

interrupts and, if the spinlok is loked, will perform a busy wait (with a

polling yle) until the spinlok is unloked.

Examples of multithreaded kernels are Solaris or AtheOS. Note that, due

to their internal struture and to the possibility of running interrupt handlers

in dediated thread, multithreaded kernels reates less sheduling anomalies

than monolithi kernels in real-time systems.

5.1.5 �kernel systems

The mukernel idea is not new, being born in '70s. The basi onept is to

redue the number of abstrations exported by the kernel to a minimum, im-

plementing in user spae the higher level abstrations provided by traditional

monolithi kernels. The minimum abstrations that the ukernel must provide

are address spaes, threads, and some IPC mehanism (hannels or ports).

All the rest of the OS an be implemented through user level programs.

Using suh a �kernel based design, an operating system kernel an be

implemented in two possible ways: as a single user proess (server), or as a

set of ooperating servers. An example of the �rst approah is the Lite server

[Hel94℄, implementing a BSD style kernel on top of Mah, or the mklinux

server [dPSR96℄, implementing Linux on top of OFS/Mah. An example of

the seond approah is the GNU Hurd [TB℄.

In a multi server implementation, kernel funtionalities are split in groups

implemented by di�erent servers (for example, a EXT2 �le system server,

a proess server, an authentiation serve, and so on). This approah an

result to be more exible, and has been reently disovered as more eÆient

82



[GJP

+

00℄.

Sine a �kernel only implements very simple funtionalities, its exeution

paths will be very short, hene it will not reate big anomalies in real-time

sheduling. Moreover, devie drivers an be implemented externally to the

kernel (in dediated server), so that they do not inuene the real-time per-

formane of the system. For this reason there are a lot of real-time systems

implemented over �kernels [TNR90, Hil92, HBB

+

98, Meh99℄.

Fat �kernels

First generation �kernels, suh as Mah and Chorus, were developed using

the \traditional kernel" design, with the result of obtaining big kernels (in

fat, the \�" does not mean \small"), often inorporating devie drivers (and

thus also loosing some real-time properties).

These \fat" �kernels resulted in a less eÆient (although more exible)

implementation of the OS funtionalities due to various problems like IPC

overhead and ahe e�ets.

As a result, a single server implementation of a monolithi kernel running

on Mah an inur in a 30% performane penalty. A possible solution are

o-loated servers that, running in the same �kernel address spae, do not

inur in the IPC overhead. In this way, one of the biggest advantages of

�kernel systems (protetion between servers) is lost. Windows NT uses a

similar design (NT drivers are in fat o-loated servers).

Small �kernels (Seond Generation)

To solve the problems enountered in fat �kernels, a seond generation of

�kernels has been designed. These new �kernels, suh as L4 and QNX, only

implements the basi needed funtionalities, that have been identi�ed in:

1. Threads

2. Address Spaes

3. an IPC mehanism

4. an Interrupt Handling mehanism.

By exporting a minimal interfae, that only provides few fundamental ser-

vies, the kernel size an be minimised so that the whole kernel �ts in ahe.

Moreover, the most ritial IPC paths an be optimized by using the CPU

registers to pass message data.

83



The performane improvement obtained by the seond generation �kernels

is remarkable, and these OSs result to be partiularly suited for real-time and

embedded systems.

5.1.6 RTLinux-like systems

As seen, the preditability requirements of a real-time system often ontrasts

with the throughput and exibility requirements of a general-purpose sys-

tem. Sometimes, a general-purpose system an be useful for development,

and being able to run real-time programs on if an greatly speed-up the de-

velopment proess. However, general-purpose systems are generally based on

a monolithi struture.

If real-time performane are not important for the appliations running

on the monolithi kernel, but are only important for tasks that do not use the

general-purpose kernel features, then it ould be possible to run the general-

purpose kernel over a real-time exeutive that diretly aesses the hardware.

This requires some kind of interrupt virtualization mehanism: interrupt are

diretly managed by the real-time exeutive, and are forwarded to the non

real-time kernel running over it when appropriate. Instead of disabling in-

terrupts, the non real-time kernel an ask the real-time exeutive to stop for-

warding interrupts, so that hardware interrupts are disabled/reenabled (and

managed) only by the real-time exeutive. In this way, real-time appliations

get very good real-time performane, and preditable delays and latenies,

as proved by RTLinux [BY96℄, RTAI [MBDP00℄, and similar systems.

Using this kind of solutions, two di�erent subsystems (an exeutive or

a DOS-like system used by real-time appliations, and a monolithi kernel

running in bakground over it) oexist in the same mahine, trying to ahieve

the best of the two worlds. Of ourse, things an also be seen in the other

way around: appliations running on the monolithi kernel will get very bad

real-time performane and a bad throughput (the non real-time monolithi

kernel is sheduled in bakground), and real-time appliations will not be

able to aess the servies provided by the monolithi kernel and will be able

to rash or starve the whole system (the real-time exeutive does not provide

any kind of protetion).

The seond problem (lak of protetion in the real-time exeutive) an

be solved by adopting a �kernel struture, and using a high-priority real-

time server instead of a real-time exeutive. In this way, interrupts are not

virtualized, but forwarded by the �kernel, and the non real-time server is

sheduled in bakground beause of its low priority. This solution has been

implemented in L4-RTL [Meh99℄, ahieving real-time performane ompa-

rable with the one of RTLinux/RTAI while enforing protetion between

84



real-time appliations [MHSH01℄.

5.2 Sheduling Lateny

As explained, real kernels often generate a shedule that is di�erent from

the expeted one, due to the strategies used to enfore mutual exlusion

or the guarantee the onsisteny of internal data. The di�erene between

the atual shedule produed by the kernel and the ideal shedule an be

quanti�ed using a metri alled kernel lateny.

De�nition 20 Let � be a task belonging to a time-sensitive appliation that

should be ideally sheduled at time t, and let t

0

be the time at whih � is

atually sheduled; the kernel lateny experiened by � is de�ned as L = t

0

�t.

Aording to the previous desription, several soures of kernel lateny

an be identi�ed; the two most important soures being timer resolution and

non-preemptive setions in the kernel. In this setion, the kernel lateny of

a monolithi kernel will be analysed, and some tehniques for reduing that

lateny will be desribed.

Timer resolution lateny ours beause kernel timers are generally im-

plemented using a periodi tik interrupt. For example, onsider a periodi

task � that needs to exeute every T�s. Typially, the task will be woken

up by a kernel timer that is triggered by the periodi tik interrupt with say,

period T

tik

. Hene, a task that sleeps for an arbitrary amount of time T

an experiene some timer resolution lateny L

timer

if its expeted ativation

time is not on a tik boundary.

Another soure of lateny, the non-preemptable setion lateny is aused

by non-preemptable setions in the kernel or in the drivers. In a monolithi

kernel, this omponent of lateny inludes the e�ets of ISRs and bottom

halves. Consider an example where interrupts are disabled at time t. Task

� an only enter the ready queue later when interrupts are re-enabled. In

addition, even if � enters the ready queue at the orret time t, it may still

not be sheduled if preemption is disabled for some reason. In this ase, �

will be sheduled when preemption is re-enabled at time t

0

, ontributing a

non-preemptable setion lateny L

np

= t

0

� t.

5.2.1 Timer Resolution

As said, in a traditional kernel, timers are triggered by a periodi tik in-

terrupt, whih on x86 mahines is generated by the Programmable Interval

Timer (PIT) and has a period T

tik

= 10ms. As a result, the maximum

85



lateny due to the timer resolution maxfL

timer

g is T

tik

= 10ms. Thus, this

value an be redued by reduing T

tik

. However, dereasing T

tik

inreases

system overhead beause more tik interrupts are generated. In addition,

there is a lower bound on L

timer

whih is equal to the exeution time re-

quired for serviing the tik interrupt.

The fat that a periodi timer interrupt is not an appropriate solution

for a real-time kernel is well known in the literature, and thus most of the

existing real-time kernels provide high resolution timers based on an aperiodi

interrupt soure[ST93℄. In an x86 arhiteture, the PIT or the CPU APIC

(Advaned Programmable Interrupt Controller present in many modern x86

CPUs) an be programmed to generate aperiodi interrupts for this purpose.

Thus, high resolution timers ould redue L

timer

to the interrupt servie time

without signi�antly inreasing the kernel overhead, beause these interrupts

are generated only when a timer expires.

5.2.2 Non-Preemptable Setions

The seond term ontributing to the maximum kernel lateny is the non-

preemptable setion lateny maxfL

np

g. Aording to the previous desrip-

tion of the various kernel strutures, in a monolithi kernel maxfL

np

g is

equal to the maximum length of a system all (whih, we reall, is non-

preemptable) plus the proessing time of all the interrupts that �re before

returning to user mode. Unfortunately, in a standard monolithi kernel suh

a Linux this value an be as large as 28ms as shown in Setion 5.2.3. In a

�kernel system, system alls are still non-preemptable, but they are shorter

(beause of the simpliity of the �kernel), and the interrupt proessing time

does not a�et L

np

. This is the reason why some real-time systems suh

as RT-Mah [TNR90℄, QNX [Hil92℄, and DROPS [HBB

+

98℄ are based on

a �kernel. Multithreaded kernels an also be used to redue the e�et of

non-preemptable setions by removing the e�et of ISR and bottom halves,

but this solution also a�ets the throughput of the system.

An alternative solution to derease L

np

is to modify the monolithi ap-

proah by dereasing the size of the kernel non-preemptable setions or by

introduing full kernel preemptability. Hene, three new kernel strutures

have to be onsidered:

Low-Lateny kernel: This approah \orrets" the monolithi struture

by inserting expliit preemption points (also alled resheduling points)

inside the kernel. In this approah, when a task is exeuting inside the

kernel it an expliitly deide to yield the CPU to some other task.

In this way, the size of non-preemptable setions is redued, thus de-

86



reasing L

np

. In a low-lateny kernel, the onsisteny of kernel data

is enfored by using ooperative sheduling (instead of non-preemptive

sheduling) when the exeution ow enters the kernel. This approah is

used by some real-time versions of Linux, suh as RED Linux [YCL98℄,

and by Andrew Morton's low-lateny path [Mor℄. In a low-lateny ker-

nel, maxfL

np

g dereases to the maximum time between two reshedul-

ing points.

Preemptable kernel: The preemptable approah, used in most real-time

systems, removes the onstraint of a single exeution ow inside the

kernel. Thus it is not neessary to disable preemption when an exeu-

tion ow enters the kernel. To support full kernel preemptability, ker-

nel data must be expliitly proteted using mutexes or spinloks. The

Linux preemptable kernel path [Lov℄ uses this approah and makes

the kernel fully preemptable. Kernel preemption is disabled only when

a spinlok is held.

1

In a preemptable kernel, maxfL

np

g is determined

by the maximum amount of time for whih a spinlok is held inside the

kernel (maximum size of a kernel non-preemptable setion), plus the

maximum time taken by ISRs and bottom halves.

Preemptable Lok-Breaking kernel: The kernel lateny an be high in

Preemptable Linux when some spinlok is held for a long time. Lok

breaking addresses this problem by \breaking" long spinloks, i.e.,

by releasing spinloks at strategi points. Breaking spinloks into

smaller non-preemptable setions is similar to the approah used by

Low-Lateny Linux. This approah redues the size of kernel non-

preemptable setions, but, of ourse, does not derease the amount of

time \stolen" by ISRs and bottom halves. Looking at the ode, we

veri�ed that most of the Andrew Morton's preemption points are in

this path in the form of \lok breaking points".

As a �nal note, we would like to point out that the preemption path has

been reently aepted in the development (unstable) branh of the Linux

kernel, and is now present in version 2.5.4 of the kernel.

5.2.3 Experimental Evaluation

To show the e�ets of the kernel struture on the real-time performane,

the lateny of a standard monolithi kernel, Linux 2.4.18 in partiular, have

1

There is also a di�erent path, from Timesys [In℄, based on mutexes and priority

inheritane instead of on spinloks.

87



been evaluated and ompared with a low-lateny, a preemptable, and a lok-

breaking preemptable version of the same kernel. One method for experi-

mentally measuring the lateny is to use a task that invokesusleep to sleep

for a spei�ed amount of time and then measures the time that it atually

slept. The lateny L, as previously de�ned, is then the di�erene between

these two times. Unfortunately, this approah measures the sum of all the

lateny omponents and thus does not give us an insight into the auses of

lateny.

The individual lateny omponents an be measured in isolation, by mea-

suring eah soure of lateny while eliminating the others. To measure L

timer

,

L

np

is eliminated by running the experiment on an idle system. After that,

L

np

is measured by eliminating L

timer

through the use of high resolution

timers. The following setions desribe this approah in more detail.

Measuring Timer Resolution Lateny

The OS non-preemptable setion lateny L

np

an be redued signi�antly by

running experiments on a lightly-loaded system. In this ase, few system

alls will be invoked and a limited number of interrupts will �re and thus

long non-preemptable exeution paths or drivers' ativations are not likely

to be triggered.

The lateny L

timer

an be measured by using a typial periodi time-

sensitive appliation, for example a proess that sets up a periodi signal

(using the itimer() system all) with a period T ranging from 100�s to

100ms. The proess measures the time when it is woken up by the signal

and then immediately returns to sleep after omputing the di�erene between

two suessive proess ativations, alled inter-ativation time. Note that in

theory the inter-ativation times should be equal to the period T . Hene,

the deviation of the inter-ativation n times from T is a measure of L

timer

.

Sine Linux ensures that a timer will never �re before the orret time, this

value an be expeted to be 10ms on standard Linux kernel, and to be lose

to the interrupt proessing time while using high resolution timers.

Measuring OS Non-Preemptable Setion Lateny

One the timer resolution lateny is eliminated with high resolution timers,

L

np

an be measured in isolation. Unfortunately, a periodi proess is not

suitable for measuring this lateny. For example, to measure the e�ets

of disabling preemption for a time S, the lateny must be sampled with a

period T � S or else the non-preemptive ode ould exeute between two

onseutive measurements. More preisely, if L is the measured lateny, then

88



L � L

np

� L+T: Hene, to reliably measure L

np

, the test task should have a

period T suh that T << L

np

. In pratie, this requirement is hard to ahieve

and thus we use an aperiodi test appliation that uses the usleep() all.

The test task is based on a loop that:

1. reads the urrent time t

1

2. sleeps for a time T

3. reads the time t

2

, and omputes L

np

= t

2

� (t

1

+ T )

Times t

1

and t

2

are read using the Pentium Time Stamp Counter (TSC), a

CPU register that is inreased at every CPU lok yle and an be aessed

in a few yles. Hene, the measurements introdue very low overhead and

are very aurate.

To investigate how various system ativities ontribute to L

np

various

load-generating tasks are were run in bakground. The following tasks are

known to invoke long system alls or ause frequent interrupts and thus were

seleted as bakground load to trigger long non-preemptable setions:

Memory Stress: One potential way to inrease L

np

involves aessing large

amounts of memory so that several page faults are generated in su-

ession. The kernel invokes the page fault handler repeatedly and an

thus exeute long non-preemptable ode setions.

Caps-Lok Stress: A quik inspetion of the kernel ode reveals that when

the num-lok or aps-lok LED is swithed, the keyboard driver sends

a ommand to the keyboard ontroller and then spins while waiting for

an aknowledgement interrupt. This proess an potentially disable

preemption for a long time.

Console-Swith Stress: The onsole driver ode also seems to ontain long

non-preemptable paths that are triggered when swithing virtual on-

soles.

I/O Stress: When the kernel or the drivers have to transfer hunks of data,

they generally move this data inside non-preemptable setions. Hene,

system alls that move large amounts of data from user spae to kernel

spae (and vie-versa) and from kernel memory to a hardware periph-

eral, suh as the disk, an ause large latenies.

Profs Stress: Other potential lateny problems in Linux are aused by the

/pro �le system. The /pro �le system is a pseudo �le system used by

Linux to share data between the kernel and user programs. Conurrent

89



T (�s) 100 200 300 400 500 600 700 800 900

L(�s) 47 51 43 44 49 53 50 52 50

T (�s) 1000 2000 3000 4000 5000 6000 7000 8000 9000

L(�s) 46 47 52 48 51 49 55 50 57

T (�s) 10000 20000 30000 40000 50000 60000 70000 80000 90000

L(�s) 52 46 51 49 54 50 43 47 51

Table 5.1: The table shows L, the maximum di�erene between the inter-

ativation times and the task period, for di�erent values of the task period

T on a high resolution timer Linux.

aesses to the shared data strutures in the pro �le system must be

proteted by non-preemptable setions. Hene, we expet that reading

large amounts of data from the /pro �le system an inrease the

lateny.

Fork Stress: The fork() system all an generate high latenies for two

reasons. First, the new proess is reated inside a non-preemptable

setion and involves opying large amounts of data inluding page ta-

bles. Seond, the overhead of the sheduler inreases with inreasing

number of ative proesses in the system.

Experiene and areful ode analysis by various members of the Linux

ommunity (for example, see Senoner [Sen℄) on�rms that the above list of

lateny soures is omprehensive, i.e., it triggers a representative subset of

long non-preemptable setions in the kernel and in the drivers.

Results

The �rst set of experiments measures L

timer

and shows that it an be eas-

ily eliminated from the OS non-preemptable setion lateny by using high

resolution timers. The high-resolution timers mehanism was evaluated and

ompared with the timer mehanism of a standard kernel. Figure 5.1 shows

the inter-ativation times on a standard Linux kernel when T = 11ms. Sine

the task period is not a multiple of T

tik

, the di�erene between the inter-

ativation times and T is not 0: the timer will �re at the next multiple of

the system tik and thus an inter-ativation time is 20ms. In fat, the inter-

ativation times in Figure 5.1 is lose to this value, and the di�erene between

the inter-ativation times and the period is lose to 20 � 11 = 9ms. As ex-

plained, this problem is solved by the high-resolution timer kernel, whih we

demonstrate through experiments desribed below.

90



19700

19800

19900

20000

20100

20200

20300

0 100 200 300 400 500 600 700 800 900 1000

In
te

r-
A

ct
iv

at
io

n 
T

im
es

 (
us

ec
)

Activation Number

Figure 5.1: Inter-Ativation times for a task that is woken up by a periodi

signal with period 11ms on a standard Linux kernel. Note that the task

period is greater than T

tik

= 10ms.

Figure 5.2 shows the inter-ativation times measured with period T =

100�s on the high-resolution timer kernel. Note that after 1000 ativations

the maximum di�erene between the period and the atual inter-ativation

time is less that 25�s. Hene, it an be onjetured that the 9ms lateny

shown in Figure 5.1 is almost ompletely due to the timer resolution.

Table 5.1 shows the maximum absolute value of the di�erene between

the period and the inter-ativation times for various values of T on a high

resolution timer kernel. Eah of these maximum values has been measured

over 1; 000; 000 ativations. The table shows that the maximum di�erene

does not signi�antly depend on the period T and its maximum value is

about 57�s. We hypothesise that this value is due to the OS lateny L

np

.

However, we do not know the preise ause of this lateny sine we did not

spei�ally ontrol the bakground task set.

This experiment has been repeated with di�erent periods where eah ex-

periment was run for 10; 000; 000 ativations, showing that the di�erene

between the period and the inter-ativation time does not signi�antly de-

pend on the period T . Figure 5.3 plots the Probability Distribution Funtion

(PDF) of the inter-ativation times when T = 1000�s. The maximum mea-

sured inter-ativation time is about 1300�s, whereas the minimum is about

91



80

85

90

95

100

105

110

115

120

125

0 100 200 300 400 500 600 700 800 900 1000

In
te

r-
A

ct
iv

at
io

n 
T

im
es

 (
us

ec
)

Activation Number

Figure 5.2: Inter-Ativation times for a task that is woken up by a periodi

signal with period 100�s on a high resolution timer Linux.

630�s, and this distribution does not signi�antly vary with inreasing num-

ber of ativations.

The maximum deviation between inter-ativation times (about 370�s) is

due to the OS non-preemptable setion lateny L

np

. However, the preise

ause of this lateny is not preisely known, sine in the previous experiments

there was not any spei� ontrol on the bakground task set.

5.2.4 Non-Preemptable Setion Lateny

Hene, a new set of experiments was performed to measure latenies due to

the various ativities that an trigger long non-preemptable paths. In this set

of experiments, the usleep() test program desribed in Setion 5.2.3 was run

with T = 100�s to measure and identify the auses of the non-preemptable

setion lateny.

The usleep() test program started on an unloaded mahine. Then the

load-generating tasks desribed in Setion 5.2.3 were run in the bakground to

trigger long non-preemptable paths. To easily represent the lateny results in

a single plot per Linux variant, we used a bakground load that was generated

as follows:

1. The memory stress test alloates a large integer array with a total size

92



 1e-08

 1e-07

 1e-06

 1e-05

 0.0001

 0.001

 0.01

 0.1

 1

 400  600  800  1000  1200  1400  1600

D
is

tr
ib

ut
io

n

Inter-Activation Times (usec)

Figure 5.3: PDF of the di�erene between inter-ativation times and period,

when T = 1000�s.

of 128 MB and aesses it sequentially. This test starts at 1000ms, and

�nishes around 2000ms.

2. The aps-lok stress test runs a program that swithes the aps-lok

LED twie. This test turns on the LED at 7000ms and then turns it

o� at 8000ms.

3. The onsole-swith stress test runs a program that swithes virtual

onsoles on Linux twie, �rst at 9000ms and then at 10000ms.

4. The I/O stress test uses the read() and write() system alls and

aesses 2 MB of data. This test starts at 11000ms and �nishes around

13000ms.

5. The profs stress test reads a 512 MB �le in the /pro �le system. It

runs from 17000ms to around 18000ms.

6. The fork test forks 512 proesses. This test starts at 20000ms.

Figure 5.4 shows the lateny measured on a standard (monolithi) Linux

kernel (version 2.4.16). Due to the implementation of the usleep() all

on Linux, L

timer

is around 19:9ms instead of 9:9ms. The memory aess

93



1

10

100

1000

10000

100000

10
00

70
00

80
00

90
00

10
00

0
11

00
0

17
00

0

20
00

0

La
te

nc
y 

(u
se

c)

Elapsed Time (msec)

m
em

or
y

ca
ps

 o
n

ca
ps

 o
ff

ch
vt

 3

ch
vt

 2

i/o pr
oc

 r
ea

d

fo
rk

Figure 5.4: Lateny measured on a standard Linux kernel. This test is

performed with bakground load. Note that the L

timer

omponent dominates

the lateny most of the time.

test, starting at t = 1000ms does not seem to reate any additional lateny.

However, it is possible to notie a small spike at the end of the test around

t = 5000ms (explained in the next experiment). In this experiment, no

variation in the lateny during the aps-lok stress test or the onsole-swith

test an be notied. On the other hand, there are some large spikes (up to

100ms) from t = 11000ms to t = 13000ms during the the I/O stress test.

Note that the Y axis is shown on a logarithmi sale. None of the other

tests present any signi�ant ontribution to kernel lateny. Hene, it an be

argued that in a standard Linux kernel the timer resolution lateny L

timer

is

generally larger than L

np

and hides the e�ets of non-preemptable setions.

This is probably one reason why lateny problems have not been previously

addressed by the Linux ommunity. These results show that high resolution

timers mehanism is needed to investigate L

np

.

Figure 5.5 reports the results obtained when high resolution timers are

used in the usleep() implementation. It shows that in this ase L

timer

is almost ompletely removed. Hene, the e�ets of long non-preemptable

setions are more visible. For instane, when the system is unloaded (t <

1000ms) the lateny lies between 4�s and 6�s. This lateny is due to the

resolution of the timing mehanism and it mathes the expeted value of the

94



 1

 10

 100

 1000

 10000

 100000

 1
00

0

 7
00

0

 8
00

0

 9
00

0

 1
00

00

 1
10

00

 1
70

00

 2
00

00

La
te

nc
y 

(u
se

c)

Elapsed Time (msec)

m
em

or
y

ca
ps

 o
n

ca
ps

 o
ff

ch
vt

 3

ch
vt

 2

i/o pr
oc

 r
ea

d

fo
rk

Figure 5.5: Lateny measured on a Linux kernel with high resolution timers.

This test is performed with bakground load. Now, L

np

is visible.

interrupt servie time. It inreases to 20�s during the memory stress test.

This result is surprising beause ontrary to ommon belief it shows that

page faults of other proesses in Linux are not a serious problem for real-

time performane. However, the end of the memory stress test generates a

spike of about 20ms in kernel lateny. A deeper investigation permits to

disover that the soure of this lateny is the munmap() system all when

large memory bu�ers are unmapped.

The aps-lok shift signi�antly inreases kernel lateny. During the aps-

lok stress test (t = 7000ms and t = 8000ms) the lateny rises to 7ms. On

the other hand, the onsole swith test (t = 9000ms and t = 10000ms) only

inreases the lateny to 900�s. Again, the longest ritial paths seem to be

triggered by the I/O stress test between t = 11000ms and t = 13000ms when

the lateny inreases to 100ms, similar to the previous experiment. Finally,

the profs stress test an ontribute about 4ms to lateny, whereas the fork

test ontributes up to about 300�s. Again, note that in a standard Linux

kernel, the 10ms resolution of the timers hides most of these values exept

the lateny aused by �le aesses.

From Figure 5.5, a expet redution in the lateny is expeted if the

length or granularity of the kernel non-preemptable setions is redued. As

explained in Setion 5.2.2, there are several ways in whih non-preemptable

95



1

10

100

1000

10000

100000

10
00

70
00

80
00

90
00

10
00

0
11

00
0

17
00

0

20
00

0

La
te

nc
y 

(u
se

c)

Elapsed Time (msec)

m
em

or
y

ca
ps

 o
n

ca
ps

 o
ff

ch
vt

 3

ch
vt

 2

i/o pr
oc

 r
ea

d

fo
rk

Figure 5.6: Lateny measured on a Low-Lateny Linux kernel with high

resolution timers. The munmap() and I/O latenies are redued.

kernel setions an be shortened. First, preemption points an be manually

plaed to break long non-preemptable paths, suh as in the low-lateny ker-

nel. Seond, the kernel an be made fully preemptable, where preemption

is disabled only when spinloks are held. Finally, the �rst tehnique an

be used to redue the length of spinloks in a preemptable kernel. These

tehniques are explored in the next setions.

Figure 5.6 shows the lateny measured on a high resolution timers kernel

with the Andrew Morton low-lateny path.

First, note that the lateny experiened during the memory stress test

does not hange signi�antly, but the 20ms spike aused by unmapping the

large memory bu�er has been removed. Now the munmap() lateny is about

200�s. However, the lateny aused by the aps-lok and onsole stress

tests is not hanged, and in this experiment the worst lateny is aused by

toggling the aps-lok key! The lateny spikes between t = 11000ms and

t = 13000ms have disappeared and thus the I/O stress test does not ause

serious problems for real-time performane anymore. However, the lateny

aused by the profs stress test and by the fork stress test is unhanged as

ompared to the monolithi kernel.

In summary, the lateny aused by all the ativities exept the profs

stress test and the aps-lok stress test is under 1ms.

96



1

10

100

1000

10000

100000

10
00

70
00

80
00

90
00

10
00

0
11

00
0

17
00

0

20
00

0

La
te

nc
y 

(u
se

c)

Elapsed Time (msec)

m
em

or
y

ca
ps

 o
n

ca
ps

 o
ff

ch
vt

 3

ch
vt

 2

i/o pr
oc

 r
ea

d

fo
rk

Figure 5.7: Lateny measured on a Preemptable-Linux kernel with high res-

olution timers. The profs lateny is redued, but the munmap() lateny

beomes high again.

Figure 5.7 shows the results obtained using a Preemptable-Linux kernel.

The big di�erene that an be notied as ompared to the Low-Lateny kernel

is that the munmap() system all auses high lateny one again (about 20ms

around time t = 5000ms). The lateny aused by the I/O stress test is also

inreased with spikes up to 1ms. On the other hand, the profs stress test

does not ause signi�ant lateny. In partiular, the big spike in lateny at

time t = 17000ms has been removed. In this experiment, the worst lateny

is aused by the munmap() system all and is due to the kernel holding a

spinlok for a long time.

Figure 5.8 shows the results obtained when the lok-breaking preempt-

able kernel is used. Note that breaking long spinloks solves the munmap()

problem. The kernel behaviour during the memory stress (and during the

�nal unmap()) is similar to the behaviour of the low-lateny kernel. More-

over, this kernel also has the bene�ts of the preemptive kernel. For instane,

ompared to the low-lateny kernel, there are improvements in the lateny

aused by the onsole swith stress test and by the profs stress test.

In summary, the largest lateny is aused by the aps-lok stress test

and all other latenies are within 1ms. File aesses are still not as low

as in Figure 5.6. This lateny is aused by heavy interrupt loads and long

97



1

10

100

1000

10000

100000

10
00

70
00

80
00

90
00

10
00

0
11

00
0

17
00

0

20
00

0

La
te

nc
y 

(u
se

c)

Elapsed Time (msec)

m
em

or
y

ca
ps

 o
n

ca
ps

 o
ff

ch
vt

 3

ch
vt

 2

i/o pr
oc

 r
ea

d

fo
rk

Figure 5.8: Lateny measured on a Lok-Breaking Preemptable-Linux kernel

with high resolution timers. Note that most of the latenies are under 1ms.

non-preemptable interrupt proessing times inside BHs. In fat, BHs are

serialised using a spinlok, that an disable preemption for a long time.

5.3 Interrupt Proessing Time

Until this point, the CPU as been onsidered as the only hardware resoure in

the system (hene, as the only resoure that has to be sheduled). However,

a modern PC is onneted to a lot of peripherals, that an be onsidered as

hardware resoures that the OS kernel has to manage. In most ase, these

resoures an produe events (in the form of hardware interrupts), and the

kernel properly manages them, or forwards them to an appropriate handler

task. In a �kernel based system, an hardware interrupt an be onverted

in an IPC to a server task, that will properly handle the hardware devie;

in a multithreaded kernel, a kernel thread an be used to properly serve

the interrupt, whereas in a monolithi kernel a bottom half (or a DPC) is

generally used to this task.

98



5.3.1 The Problem

Independently from the kernel struture, a hardware interrupt will be gener-

ally served in two phases:

� a short Interrupt Servie Routine (ISR) generally exeutes with

interrupts disabled, and is responsible for aknowledging the hardware

interrupt mehanism and ativating a proper DPC, bottom half, kernel

thread, or server task.

� a longer routine (running in a kernel thread, server task, bottom half,

or DPC) is responsible for orretly manage the devie. Note that

kernel threads and server tasks are generally sheduled, whereas DPCs

and bottom halves are not.

As noted above, if a �kernel or a multithreaded kernel is used, the ode

handling the devie an be sheduled like all the other tasks in the system.

This solution an present a slightly higher overhead, and requires a more

areful synhronisation, but permits to orretly aount the handler ode

in a time sensitive system. In fats, the handler ode requires some CPU

time to exeute, and it must be orretly aounted in order not to break the

system's guarantees.

To better understand this fat, let's onsider a monolithi kernel: as

explained before, the handler ode runs in a bottom half, that is invoked

by the CPU sheduler before seleting the next appliation task and is not

preemptable with respet to the appliation tasks. This fat an introdue

two soures of unpreditability:

� the handler ode is exeute at apparently random times (depending

on the interrupts' arrival pattern) and is not sheduled, introduing

anomalies in the CPU sheduling that an be seen as stolen time

� bottom halves are not preemptable, violating one of the assumptions

of a priority based sheduler (at eah time, the task having the higher

priority is sheduled).

As a result of these sheduling anomalies, the real-time guarantees pro-

vided by the system may be broken. From a pratial point of view, the

system behaves like if some exeution time has been stolen to appliation

tasks, hene this problem will be referred as the stolen time problem.

Some solutions to the stolen time problem have been proposed, ranging

from aounting the interrupt and bottom half time in the shedulability

guarantee [JS93℄ to sheduling the bottom half ode [JSMA98, DB96℄ or

99



temporally disabling the hardware interrupts [MR97, IMS97℄. However, none

of those solution an be easily and pratially implemented in an usable OS

kernel.

In order to show the impat of this problem, some experiments have

been performed using Linux/RK. The version of Linux/RK used for these

experiments provides preditable guarantees for CPU reservations, outgoing

network reservations, and disk reservations, but does not aount properly

the time stolen by network bottom halves.

5.3.2 A Possible Way Out

If a reservation based sheduler is used, another possible solution to the stolen

time problem ould be to use the augmented reservation abstration [RS01℄,

that permits to resize the system reservations in order to ompensate the

e�ets of the stolen time.

The augmented reservations approah results to be very e�etive and easy

to implement, but it requires to monitor the time stolen by DPCs or bottom

halves (hene, it requires additional modi�ations to the OS kernel), in order

to sum it to the reserved time. This requirement is due to the fat that

augmented reservations have been designed to support a generi task model;

if, on the other hand, the real-time task model is used, then the requirement

of instrumenting the kernel an be relaxed. In fat, using the real-time task

model eah task is divided in jobs, and eah job is haraterised by an abso-

lute deadline that an be used to monitor appliation performane. In this

way, an impliit monitoring of the e�ets of the interrupt handlers exeution

an performed by simply measuring the number of missed deadlines, and the

DPC or bottom half time does not have to be expliitly monitored.

This idea is used by Adaptive Reservations, presented in Setion 4.1: the

adaptive reservation abstration was originally developed in order to ope

with tasks haraterised by unknown or highly variable exeution times, but

it an be suessfully used to mitigate the e�ets of stolen time. In fat,

the time stolen by ISRs and bottom halves an be modelled as a variane in

tasks' exeution times, and adaptive reservations will properly ope with it.

This is a simple explanation of how adaptive reservations ompensate

the e�et of the time stolen by interrupt proessing: when the network load

inreases, the bottom halves begin to onsume a signi�ant amount of CPU

time, stealing it to reserved proesses. Hene, a reserved proess will miss

some deadline, and if the proess is attahed to an adaptive reservation its

reserved time will be inreased. In this way, the amount of time reserved

to a proess inreases when the network traÆ inreases, ompensating the

e�ets of the bottom halves exeution.

100



init = rdts();

for (i = 0; i < MAX; i++) f

for (j = 0; j < COUNT; j++) f

for (k = 0; k < 100; k++) f

/* Just to spend some time... */

time = rdts();

g

g

timevet[i℄ = CLOCK2USEC(time - init);

task endyle(); /* Bloks until the next period */

g

Figure 5.9: The test proess

Note that, in ontrast with augmented CPU reservations, adaptive reser-

vations an be implemented in user spae, without requiring modi�ations to

the kernel. The only requirement is that the kernel provides temporal prote-

tion in the CPU sheduler; as a proof of onept, adaptive reservations have

been implemented through a portable QoS Manager, that has been ported on

the HARTIK kernel [AB00℄ and Linux/RK [RAdN

+

00℄ (as already explained

in Setion 4.3); in this work, the RK version has been used.

In order to prove the e�etiveness of Adaptive Reservations in ompen-

sating the e�ets of the stolen time, some experiments have been run in

Linux/RK, a Resoure Kernel based on Linux. A Resoure Kernel in general

permits to reserve an hardware resoure to a proess: based on some reserve

abstrations, a proess an be guaranteed to reeive the resoure for a time Q

eah period T . The version of Linux/RK used for these experiments provides

preditable guarantees for CPU reservations, outgoing network reservations,

and disk reservations, but does not properly aount the time stolen by the

bottom halves.

The inuene of the bottom halves on the CPU sheduling an be easily

seen by simply ausing a lot of bottom halves exeution and measuring the

impat on the exeution of a reserved proess, as shown by the following

experiments. First of all, the periodi proess shown in Figure 5.9 has been

run with period T = 20ms on an AMD-K6 at 333 MHz, attahed to a proper

CPU reservation. Sine the COUNT onstant is tuned so that the j loop takes

about 4ms, when attahed to a (4ms; 20ms) reservation this proess does

not miss any deadline. In fat, the di�erene between two onseutive values

101



0

5000

10000

15000

20000

25000

30000

35000

40000

45000

50000

0 50 100 150 200 250 300 350 400

D
iff

er
en

ce
 B

et
w

ee
n 

Jo
bs

 (
us

ec
)

Job Number

No Network Activity

task1 = (4, 20)

Figure 5.10: Reserved proess running in regular network load onditions:

job inter �nishing times.

of timevet (referred as job inter �nishing time in this dissertation) is about

onstant, and equal to 20ms (the proess & reserve period), as shown in

Figure 5.10. Hene, as foreasted, all the jobs �nishes within their deadlines

(in fats, Linux/RK is able to provide a reliable real-time or reservation

guarantee if bottom halves do not steal too muh time). After that, a heavy

network traÆ has been sent to the test mahine, in order to inrease the

CPU time onsumed by bottom halves. When the network load is inreased,

the bottom halves steal exeution time to the reserved proess, hene the

di�erene between two onseutive values of the timevet array inreases,

and the proess starts to miss deadlines, as shown in Figure 5.11.

Adaptive reservations an niely solve this problem: in order to prove the

e�etiveness of suh a solution, the previous experiment has been repeated

attahing an adaptive reservation with period 20ms to the user proess. As

a result, the proess parameters were adapted so that the number of missed

deadlines resulted to be ontrolled to 0 after a short transient. In fat,

the di�erene between two onseutive values of timevet resulted to be

ontrolled below 40ms, as shown in Figure 5.12.

102



0

50000

100000

150000

200000

0 50 100 150 200 250 300 350 400

D
iff

er
en

ce
 B

et
w

ee
n 

Jo
bs

 (
us

ec
)

Job Number

High Network Load

task1 = (4, 20)

Figure 5.11: Reserved proess running in high network load onditions: job

inter �nishing times | the proess misses deadlines.

0

5000

10000

15000

20000

25000

30000

35000

40000

45000

50000

0 50 100 150 200 250 300 350 400

D
iff

er
en

ce
 B

et
w

ee
n 

Jo
bs

 (
us

ec
)

Job Number

High Network Load --- Adaptive Reservation

task1 = MM(20)

Figure 5.12: Adaptive Reservations in high network load onditions: job

inter �nishing times | the number of missed deadlines is ontrolled.

103



Chapter 6

Conlusions

I've seen things you people wouldn't believe.

Attak ships on �re o� the shoulder of Orion.

I wathed C-beams glitter in the dark near the Tannhauser gate.

All those moments will be lost in time, like tears in rain.

Time to die.

Blade Runner

T

his dissertation showed how to support time sensitive ativities in a

general purpose operating system. In partiular, it was argued that

the use of appropriate kernel tehniques enables advaned sheduling

and resoure alloation to better exploit system resoures and to provide

more preditable QoS for time sensitive appliations.

The thesis supported in this dissertation is that three di�erent require-

ments an be identi�ed:

1. low kernel latenies and high-resolution timers are needed to implement

a orret and aurate sheduler;

2. temporal protetion must be provided by the sheduler so that a preise

and e�etive resoure alloation an be implemented;

3. dynami adaptation of the amount of reserved resoures is needed to

ope with varying and unpreditable workloads.

6.1 OS Support

An evaluation of the latenies of a general-purpose kernel suh as Linux

showed that the traditional monolithi design on whih traditional OSs are

based an introdue big errors in resoure alloation. This is due to various

fators, suh as:

104



� the non-preemptive setions used by the kernel to ensure the onsis-

teny of internal strutures;

� the low temporal resolution provided by traditional kernel timers, based

on a periodi interrupt soure;

� the inaurate resoure aounting provided by traditional OSs;

� the anomalies produed by interrupt servie.

The kernel lateny an be redued by using preemptable kernels, by intro-

duing preemption points in the kernel, and by using high-resolution timers,

based on an aperiodi interrupt soure. When these solutions are used to

redue the lateny, the sheduler an be preise enough to properly alloate

system resoures so that eah appliation an ahieve the desired QoS.

To prove that aurate sheduling is possible on Linux, the inuene of

the kernel lateny on the sheduler auray has been measured through an

extensive set of experiments. Then, the kernel lateny has been aurately

analysed and evaluated, showing the e�etiveness of kernel preemption in

reduing it.

6.2 Sheduling

One the kernel provide low latenies, the sheduling algorithm beomes im-

portant. However, the �xed priority algorithm implemented in the standard

Linux sheduler is not suitable for sheduling generi time-sensitive ativi-

ties, beause it does not provide Temporal Isolation: temporal isolation (also

known as temporal protetion) is important for ensuring that the temporal

behaviour of a task does not a�et the shedulability of the other tasks in

the system.

In other words, the isolation property is neessary to protet appliations

from the misbehaviours of the other appliations: the net e�et is that eah

appliation exeutes as it were on a slower dediated proessor. The shedul-

ing tehnique hosen in this paper to provide temporal isolation is based on

resoure reservation tehniques, hene an eÆient and e�etive sheduling al-

gorithm implementing resoure reservations has been proposed. The servie

mehanism proposed in this dissertation is the Constant Bandwidth Server

(CBS), a work onserving server (implementing soft reservations) that has

been inspired by the Total Bandwidth Server and by the Dynami Sporadi

Server.

Together with temporal isolation, the CBS provides some other inter-

esting properties, suh as relaiming of unused time, some kind of fairness,

105



hard shedulability for tasks with known parameters, and the possibility to

perform a probabilisti guarantee for soft real-time tasks.

6.3 Adaptive Resoure Alloation

Resoure reservations an be used to implement an adaptive mehanism

whih reserves the orret amount of resoures to eah task. This feed-

bak mehanism, whih an dynamially adapt the reservation parameters,

is partiularly useful to ahieve the desired QoS when some tasks parameters

(suh as the WCET) are not known in advane.

The adaptive reservation abstration, obtained ombining the reserva-

tion and the feedbak mehanisms, uses a ontrol funtion f() to ompute

the amount of CPU time reserved to a task based on its sheduling error.

Control theory an be used to design the feedbak funtion, and to prove

that the losed loop sheduler is stable (meaning that it is able to ontrol

the sheduling error to a desired value), and an provide the desired QoS.

After introduing a formal de�nition of the adaptive reservations meha-

nism, an aurate formal model of a reservation-based sheduler was devel-

oped and presented. Based on this model, ontrol theory has been used to

develop a feedbak funtion and the performane of the losed-loop system

has been evaluated. Aording to our model and to the ontrol theoretial

analysis that we performed, a simple PI ontroller resulted to be the orret

hoie for ontrolling the amount of time reserved to a task.

The proposed feedbak sheme has been initially implemented by using

a simulator and a syntheti workload, then by using a realisti workload

obtained by pro�ling an MPEG player. After that, adaptive reservations have

been implemented on a real system (using Linux/RK), and the e�etiveness

of the proposed sheme has been validated by performing experiments on a

real system.

6.4 Final Remarks

Well, this is the end of the dissertation. I hope you all enjoyed reading it.

I also hope that the ontents of this dissertation will be useful for someone,

and ould help the development of future researh.

If you have omments, ideas, or questions about this dissertation and the

algorithms presented in it, feel free to write me at luabe72�gmail.om

Lua

106



Appendix A

GNU Free Doumentation

Liense

Version 1.1, Marh 2000

Copyright



 2000 Free Software Foundation, In.

59 Temple Plae, Suite 330, Boston, MA 02111-1307 USA

Everyone is permitted to opy and distribute verbatim opies of this liense

doument, but hanging it is not allowed.

Preamble

The purpose of this Liense is to make a manual, textbook, or other written

doument \free" in the sense of freedom: to assure everyone the e�etive

freedom to opy and redistribute it, with or without modifying it, either

ommerially or nonommerially. Seondarily, this Liense preserves for the

author and publisher a way to get redit for their work, while not being

onsidered responsible for modi�ations made by others.

This Liense is a kind of \opyleft", whih means that derivative works

of the doument must themselves be free in the same sense. It omplements

the GNU General Publi Liense, whih is a opyleft liense designed for free

software.

We have designed this Liense in order to use it for manuals for free

software, beause free software needs free doumentation: a free program

should ome with manuals providing the same freedoms that the software

does. But this Liense is not limited to software manuals; it an be used

for any textual work, regardless of subjet matter or whether it is published

as a printed book. We reommend this Liense prinipally for works whose

107



purpose is instrution or referene.

A.1 Appliability and De�nitions

This Liense applies to any manual or other work that ontains a notie

plaed by the opyright holder saying it an be distributed under the terms

of this Liense. The \Doument", below, refers to any suh manual or work.

Any member of the publi is a liensee, and is addressed as \you".

A \Modi�ed Version" of the Doument means any work ontaining the

Doument or a portion of it, either opied verbatim, or with modi�ations

and/or translated into another language.

A \Seondary Setion" is a named appendix or a front-matter setion of

the Doument that deals exlusively with the relationship of the publishers

or authors of the Doument to the Doument's overall subjet (or to related

matters) and ontains nothing that ould fall diretly within that overall

subjet. (For example, if the Doument is in part a textbook of mathematis,

a Seondary Setion may not explain any mathematis.) The relationship

ould be a matter of historial onnetion with the subjet or with related

matters, or of legal, ommerial, philosophial, ethial or politial position

regarding them.

The \Invariant Setions" are ertain Seondary Setions whose titles are

designated, as being those of Invariant Setions, in the notie that says that

the Doument is released under this Liense.

The \Cover Texts" are ertain short passages of text that are listed, as

Front-Cover Texts or Bak-Cover Texts, in the notie that says that the

Doument is released under this Liense.

A \Transparent" opy of the Doument means a mahine-readable opy,

represented in a format whose spei�ation is available to the general pub-

li, whose ontents an be viewed and edited diretly and straightforwardly

with generi text editors or (for images omposed of pixels) generi paint

programs or (for drawings) some widely available drawing editor, and that is

suitable for input to text formatters or for automati translation to a variety

of formats suitable for input to text formatters. A opy made in an other-

wise Transparent �le format whose markup has been designed to thwart or

disourage subsequent modi�ation by readers is not Transparent. A opy

that is not \Transparent" is alled \Opaque".

Examples of suitable formats for Transparent opies inlude plain ASCII

without markup, Texinfo input format, L

A

T

E

X input format, SGML or XML

using a publily available DTD, and standard-onforming simple HTML de-

signed for human modi�ation. Opaque formats inlude PostSript, PDF,

108



proprietary formats that an be read and edited only by proprietary word

proessors, SGML or XML for whih the DTD and/or proessing tools are

not generally available, and the mahine-generated HTML produed by some

word proessors for output purposes only.

The \Title Page" means, for a printed book, the title page itself, plus

suh following pages as are needed to hold, legibly, the material this Liense

requires to appear in the title page. For works in formats whih do not have

any title page as suh, \Title Page" means the text near the most prominent

appearane of the work's title, preeding the beginning of the body of the

text.

A.2 Verbatim Copying

You may opy and distribute the Doument in any medium, either ommer-

ially or nonommerially, provided that this Liense, the opyright noties,

and the liense notie saying this Liense applies to the Doument are re-

produed in all opies, and that you add no other onditions whatsoever to

those of this Liense. You may not use tehnial measures to obstrut or

ontrol the reading or further opying of the opies you make or distribute.

However, you may aept ompensation in exhange for opies. If you dis-

tribute a large enough number of opies you must also follow the onditions

in setion 3.

You may also lend opies, under the same onditions stated above, and

you may publily display opies.

A.3 Copying in Quantity

If you publish printed opies of the Doument numbering more than 100,

and the Doument's liense notie requires Cover Texts, you must enlose

the opies in overs that arry, learly and legibly, all these Cover Texts:

Front-Cover Texts on the front over, and Bak-Cover Texts on the bak

over. Both overs must also learly and legibly identify you as the publisher

of these opies. The front over must present the full title with all words of

the title equally prominent and visible. You may add other material on the

overs in addition. Copying with hanges limited to the overs, as long as

they preserve the title of the Doument and satisfy these onditions, an be

treated as verbatim opying in other respets.

If the required texts for either over are too voluminous to �t legibly,

you should put the �rst ones listed (as many as �t reasonably) on the atual

109



over, and ontinue the rest onto adjaent pages.

If you publish or distribute Opaque opies of the Doument number-

ing more than 100, you must either inlude a mahine-readable Transparent

opy along with eah Opaque opy, or state in or with eah Opaque opy a

publily-aessible omputer-network loation ontaining a omplete Trans-

parent opy of the Doument, free of added material, whih the general

network-using publi has aess to download anonymously at no harge us-

ing publi-standard network protools. If you use the latter option, you must

take reasonably prudent steps, when you begin distribution of Opaque opies

in quantity, to ensure that this Transparent opy will remain thus aessible

at the stated loation until at least one year after the last time you distribute

an Opaque opy (diretly or through your agents or retailers) of that edition

to the publi.

It is requested, but not required, that you ontat the authors of the

Doument well before redistributing any large number of opies, to give them

a hane to provide you with an updated version of the Doument.

A.4 Modi�ations

You may opy and distribute a Modi�ed Version of the Doument under the

onditions of setions 2 and 3 above, provided that you release the Modi�ed

Version under preisely this Liense, with the Modi�ed Version �lling the

role of the Doument, thus liensing distribution and modi�ation of the

Modi�ed Version to whoever possesses a opy of it. In addition, you must

do these things in the Modi�ed Version:

� Use in the Title Page (and on the overs, if any) a title distint from that

of the Doument, and from those of previous versions (whih should, if

there were any, be listed in the History setion of the Doument). You

may use the same title as a previous version if the original publisher of

that version gives permission.

� List on the Title Page, as authors, one or more persons or entities

responsible for authorship of the modi�ations in the Modi�ed Version,

together with at least �ve of the prinipal authors of the Doument (all

of its prinipal authors, if it has less than �ve).

� State on the Title page the name of the publisher of the Modi�ed

Version, as the publisher.

� Preserve all the opyright noties of the Doument.

110



� Add an appropriate opyright notie for your modi�ations adjaent to

the other opyright noties.

� Inlude, immediately after the opyright noties, a liense notie giving

the publi permission to use the Modi�ed Version under the terms of

this Liense, in the form shown in the Addendum below.

� Preserve in that liense notie the full lists of Invariant Setions and

required Cover Texts given in the Doument's liense notie.

� Inlude an unaltered opy of this Liense.

� Preserve the setion entitled \History", and its title, and add to it an

item stating at least the title, year, new authors, and publisher of the

Modi�ed Version as given on the Title Page. If there is no setion

entitled \History" in the Doument, reate one stating the title, year,

authors, and publisher of the Doument as given on its Title Page, then

add an item desribing the Modi�ed Version as stated in the previous

sentene.

� Preserve the network loation, if any, given in the Doument for publi

aess to a Transparent opy of the Doument, and likewise the network

loations given in the Doument for previous versions it was based on.

These may be plaed in the \History" setion. You may omit a network

loation for a work that was published at least four years before the

Doument itself, or if the original publisher of the version it refers to

gives permission.

� In any setion entitled \Aknowledgements" or \Dediations", preserve

the setion's title, and preserve in the setion all the substane and tone

of eah of the ontributor aknowledgements and/or dediations given

therein.

� Preserve all the Invariant Setions of the Doument, unaltered in their

text and in their titles. Setion numbers or the equivalent are not

onsidered part of the setion titles.

� Delete any setion entitled \Endorsements". Suh a setion may not

be inluded in the Modi�ed Version.

� Do not retitle any existing setion as \Endorsements" or to onit in

title with any Invariant Setion.

111



If the Modi�ed Version inludes new front-matter setions or appendies

that qualify as Seondary Setions and ontain no material opied from the

Doument, you may at your option designate some or all of these setions

as invariant. To do this, add their titles to the list of Invariant Setions in

the Modi�ed Version's liense notie. These titles must be distint from any

other setion titles.

You may add a setion entitled \Endorsements", provided it ontains

nothing but endorsements of your Modi�ed Version by various parties { for

example, statements of peer review or that the text has been approved by

an organization as the authoritative de�nition of a standard.

You may add a passage of up to �ve words as a Front-Cover Text, and a

passage of up to 25 words as a Bak-Cover Text, to the end of the list of Cover

Texts in the Modi�ed Version. Only one passage of Front-Cover Text and

one of Bak-Cover Text may be added by (or through arrangements made

by) any one entity. If the Doument already inludes a over text for the

same over, previously added by you or by arrangement made by the same

entity you are ating on behalf of, you may not add another; but you may

replae the old one, on expliit permission from the previous publisher that

added the old one.

The author(s) and publisher(s) of the Doument do not by this Liense

give permission to use their names for publiity for or to assert or imply

endorsement of any Modi�ed Version.

A.5 Combining Douments

You may ombine the Doument with other douments released under this

Liense, under the terms de�ned in setion 4 above for modi�ed versions,

provided that you inlude in the ombination all of the Invariant Setions

of all of the original douments, unmodi�ed, and list them all as Invariant

Setions of your ombined work in its liense notie.

The ombined work need only ontain one opy of this Liense, and mul-

tiple idential Invariant Setions may be replaed with a single opy. If there

are multiple Invariant Setions with the same name but di�erent ontents,

make the title of eah suh setion unique by adding at the end of it, in

parentheses, the name of the original author or publisher of that setion if

known, or else a unique number. Make the same adjustment to the setion

titles in the list of Invariant Setions in the liense notie of the ombined

work.

In the ombination, you must ombine any setions entitled \History"

in the various original douments, forming one setion entitled \History";

112



likewise ombine any setions entitled \Aknowledgements", and any se-

tions entitled \Dediations". You must delete all setions entitled \Endorse-

ments."

A.6 Colletions of Douments

You may make a olletion onsisting of the Doument and other douments

released under this Liense, and replae the individual opies of this Liense

in the various douments with a single opy that is inluded in the olletion,

provided that you follow the rules of this Liense for verbatim opying of eah

of the douments in all other respets.

You may extrat a single doument from suh a olletion, and distribute

it individually under this Liense, provided you insert a opy of this Liense

into the extrated doument, and follow this Liense in all other respets

regarding verbatim opying of that doument.

A.7 Aggregation With Independent Works

A ompilation of the Doument or its derivatives with other separate and in-

dependent douments or works, in or on a volume of a storage or distribution

medium, does not as a whole ount as a Modi�ed Version of the Doument,

provided no ompilation opyright is laimed for the ompilation. Suh a

ompilation is alled an \aggregate", and this Liense does not apply to the

other self-ontained works thus ompiled with the Doument, on aount of

their being thus ompiled, if they are not themselves derivative works of the

Doument.

If the Cover Text requirement of setion 3 is appliable to these opies of

the Doument, then if the Doument is less than one quarter of the entire

aggregate, the Doument's Cover Texts may be plaed on overs that sur-

round only the Doument within the aggregate. Otherwise they must appear

on overs around the whole aggregate.

A.8 Translation

Translation is onsidered a kind of modi�ation, so you may distribute trans-

lations of the Doument under the terms of setion 4. Replaing Invariant

Setions with translations requires speial permission from their opyright

holders, but you may inlude translations of some or all Invariant Setions

113



in addition to the original versions of these Invariant Setions. You may in-

lude a translation of this Liense provided that you also inlude the original

English version of this Liense. In ase of a disagreement between the trans-

lation and the original English version of this Liense, the original English

version will prevail.

A.9 Termination

You may not opy, modify, subliense, or distribute the Doument exept

as expressly provided for under this Liense. Any other attempt to opy,

modify, subliense or distribute the Doument is void, and will automatially

terminate your rights under this Liense. However, parties who have reeived

opies, or rights, from you under this Liense will not have their lienses

terminated so long as suh parties remain in full ompliane.

A.10 Future Revisions of This Liense

The Free Software Foundation may publish new, revised versions of the GNU

Free Doumentation Liense from time to time. Suh new versions will be

similar in spirit to the present version, but may di�er in detail to address

new problems or onerns. See http://www.gnu.org/opyleft/.

Eah version of the Liense is given a distinguishing version number. If

the Doument spei�es that a partiular numbered version of this Liense "or

any later version" applies to it, you have the option of following the terms

and onditions either of that spei�ed version or of any later version that

has been published (not as a draft) by the Free Software Foundation. If the

Doument does not speify a version number of this Liense, you may hoose

any version ever published (not as a draft) by the Free Software Foundation.

ADDENDUM: How to use this Liense for your

douments

To use this Liense in a doument you have written, inlude a opy of the

Liense in the doument and put the following opyright and liense noties

just after the title page:

Copyright



 YEAR YOUR NAME. Permission is granted to

opy, distribute and/or modify this doument under the terms of

the GNU Free Doumentation Liense, Version 1.1 or any later

114



version published by the Free Software Foundation; with the In-

variant Setions being LIST THEIR TITLES, with the Front-

Cover Texts being LIST, and with the Bak-Cover Texts being

LIST. A opy of the liense is inluded in the setion entitled

\GNU Free Doumentation Liense".

If you have no Invariant Setions, write \with no Invariant Setions"

instead of saying whih ones are invariant. If you have no Front-Cover Texts,

write \no Front-Cover Texts" instead of \Front-Cover Texts being LIST";

likewise for Bak-Cover Texts.

If your doument ontains nontrivial examples of program ode, we re-

ommend releasing these examples in parallel under your hoie of free soft-

ware liense, suh as the GNU General Publi Liense, to permit their use

in free software.

115



Appendix B

Misellaneous

Ok, sine Appendix titles go into the index, I ould not put the orret title

here, but this is the reipe that I promised to a lot of people: \Spaghetti al

Pomodoro".

To prepare good spaghetti al pomodoro, you will need:

� about 1/2 Kg of spaghetti (translation to lb is left as a simple exerise

for the reader). Pasta by \Barilla" an be easily found even in the US,

and is fairly good, hene I suggest it.

� 1 an of died tomatoes

� a small onion

� oil

� salt, pepper, oregano, and similar stu�

First of all, put about 3 litres of water in a pot, and put it on the stove.

When the water boils, add some salt and the spaghetti. At the same time,

put some oil in a pan, together with the onion ut in small piees. Cook it for

four/�ve minutes, and then add the tomatoes. Add salt, pepper, oregano,

red pepper, and whatever else you like, aording to your preferene.

After about 8 minutes that spaghetti are ooking in the boiling water,

remove them from the pot, and put them in the pan ontaining the tomatoes.

Also add 3 or 4 table spoons of the ooking water. Finish to ook the pasta

for about 4 minutes, and serve. Enjoy!!!

Remember, if you miss this deadline and you ook the spaghetti too

muh, they will result to be overooked, and will not be good. However,

the ritiality of this deadline depends on the Quality of the Pasta (QoP?).

If you use good-quality spaghetti (suh as Barilla) you an have a 1 or 2

116



minutes tolerane on the deadline, otherwise the deadline is hard!!! (ok, this

is just to maintain the appendix on-topi).

117



Bibliography

[AB98℄ Lua Abeni and Giorgio Buttazzo. Integrating multimedia ap-

pliations in hard real-time systems. In Proeedings of the IEEE

Real-Time Systems Symposium, Madrid, Spain, Deember 1998.

[AB99℄ Lua Abeni and Giorgio Buttazzo. Qos guarantee using proba-

bilisti dealines. In Proeedings of the IEEE Euromiro Confer-

ene on Real-Time Systems, York, England, June 1999.

[AB00℄ Lua Abeni and Giorgio Buttazzo. Support for dynami QoS

in the HARTIK kernel. In Proeedings of the IEEE Real Time

Computing Systems and Appliations, Cheju Island, South Ko-

rea, Deember 2000.

[AB01℄ Lua Abeni and Giorgio Buttazzo. Hierarhial qos management

for time sensitive appliations. In Proeedings of the IEEE Real-

Time Tehnology and Appliations Symposium (RTAS 2001),

Taipei, Taiwan, May 2001.

[Abe98℄ Lua Abeni. Server mehanisms for multimedia appliations.

Tehnial Report RETIS TR98-01, Suola Superiore S. Anna,

1998.

[ABRT93℄ A. N. Audsley, A. Burns, M. Rihardson, and K. Tindell. Apply-

ing new sheduling theory to stati priority pre-emptive shedul-

ing. Software Engineering Journal, 8(5):284{292, September

1993.

[But93℄ G. C. Buttazzo. Hartik: A real-time kernel for robotis appli-

ations. In Proeedings of the IEEE Real-Time Systems Sympo-

sium, Deember 1993.

[BY96℄ Mihael Barabanov and Vitor Yodaiken. Real-time linux. Linux

Journal, Marh 1996.

118



[CT94℄ Charles L. Compton and David L. Tennenhouse. Collabora-

tive load shedding for media-based appliations. In Proeedings

of the International Conferene on Multimedia Computing and

Systems, 1994.

[DB96℄ Peter Drushel and Gaurav Banga. Lazy reiver proessing

(LRP): A network subsystem arhiteture for server systems. In

Proeding of the 2nd USENIX Symposium on Operating System

Design and Implementation (OSDI), Seattle, WA, Ot 1996.

[DL97℄ Z. Deng and J. W. S. Liu. Sheduling real-time appliations

in open envirovment. In Proeedings of the IEEE Real-Time

Systems Symposium, Deember 1997.

[DLS97℄ Z. Deng, J. W. S. Liu, and J. Sun. A sheme for sheduling hard

real-time appliations in open system environment. In Proeed-

ings of the Ninth Euromiro Workshop on Real-Time Systems,

1997.

[dPSR96℄ F. B. des Plaes, N. Stephen, and F. D. Reynolds. Linux on

the osf mah3 mirokernel. In Proeedings of the Conferene on

Freely Distributable Software, Boston, MA, February 1996.

[fre℄ The freedos projet. http://www.freedos.org/.

[GAGB01℄ Paolo Gai, Lua Abeni, Massimiliano Giorgi, and Giorgio But-

tazzo. A new kernel approah for modular real-time systems

developmet. In Proeedings of the 13th IEEE Euromiro Confer-

ene on Real-Time Systems, Delft, The Netherlands, June 2001.

[GGV96℄ Pawan Goyal, Xingang Guo, and Harrik M. Vin. A hierarhial

pu sheduler for multimedia operating systems. In Proeedings

of the 2nd OSDI Symposium, Otober 1996.

[GJP

+

00℄ A. Ge�aut, T. Jaeger, Y. Park, J. Liedtke, K. Elphinstone,

V. Uhlig, J.E. Tidswell, L. Deller, and L. Reuther. The sawmill

multiserver approah. In Proeedings of the 9th SIGOPS Euro-

pean Workshop, Kolding, Denmark, September 2000.

[Goe02℄ Ashvin Goel. A hikenitarian operation. Private Communia-

tion, May 2002.

[HBB

+

98℄ H. Hartig, R. Baumgartl, M. Borriss, Cl.-J. Hamann,

M. Hohmuth, F. Mehnert, L. Reuther, S. Shonberg, and

119



J. Wolter. DROPS - os support for distributed multimedia ap-

pliations. In Proeedings of the Eigth ACM SIGOPS European

Workshop, Sintra, Portugal, September 1998.

[Hel94℄ J. Helander. Unix under mah: The lites server. Master's thesis,

Helsinki University of Tehnology, 1994.

[Hil92℄ Dan Hildebrand. An arhitetural overview of qnx. In Pro-

eedings of the USENIX Workshop on Miro-Kernels and Other

Kernel Arhitetures, Seattle, WA, April 1992.

[IMS97℄ A. Indiresan, A. Mehra, and K. G. Shin. Reeive livelok elim-

ination via dynami interrupt rate ontrol. Tehnial report,

University of Mihigan, June 1997.

[In℄ TimeSys In. Timesys linux. http://www.timesys.om.

[JB95℄ K. Je�ay and D. Bennet. A rate-based exeution abstration for

multimedia omputing. In Proeedings of Network and Operating

System Support for Digital Audio and Video, 1995.

[JS93℄ Kevin Je�ay and Donald L. Stone. Aounting for interrupt

handling osts in dynami priority task systems. In IEEE Real

Time System Symposium, pages 212{221, 1993.

[JSMA98℄ Kevin Je�ay, F.D. SMith, A. Moorthy, and J.H. Anderson.

Proportional share sheduling of operating system servies for

real-time appliations. In IEEE Real Time System Symposium,

Madrid, Spain, Deember 1998.

[LL73℄ C. L. Liu and J. Layland. Sheduling alghorithms for multipro-

gramming in a hard real-time environment. Journal of the ACM,

20(1), 1973.

[LLB

+

97℄ G. Lamastra, G. Lipari, G. Buttazzo, A. Casile, and F. Con-

tielli. Hartik 3.0: A portable system for developing real-time

appliations. In Proeedings of the IEEE Conferene on Real-

Time Computing Systems and Appliations, Otober 1997.

[Lov℄ Robert Love. The linux kernel preemption projet.

http://kpreempt.soureforge.net/.

[LSA

+

00℄ C. Lu, J. A. Stankovi, T. F. Abdelzaher, G. Tao, S. H. Son, and

M. Marley. Performane spei�ations and metris for adaptive

120



real-time systems. In Proeedings of the 21th IEEE Real-Time

Systems Symposium, Orlando, FL, Deember 2000.

[LSTS99℄ C. Lu, J. A. Stankovi, G. Tao, and S. H. Son. Design and

evaluation of a feedbak ontrol edf sheduling algorithm. In

Proeedings of the 20th IEEE Real-Time Systems Symposium,

Phoenix, AZ, Deember 1999.

[Lu99℄ George Luas. Star wars episode I: The phantom menae, May

1999.

[MBDP00℄ P. Mantegazza, E. Bianhi, L. Dozio, and S. Papaharalambous.

RTAI: Real time appliation interfae. Linux Journal, 72, 2000.

[Meh99℄ F. Mehnert. L4rtl - porting rtlinux api to l4/�aso. In Pro-

eedings of the Workshop on Common Mirokernel System Plat-

forms, Kiawah Island, Deember 1999.

[MHSH01℄ F. Mehnert, M. Hohmuth, S. Shonberg, and H. Hartig. Rtlinux

with address spaes. In Proeedings of the 3rd Real-Time Linux

Workshop, Milano, Italy, November 2001.

[Mor℄ Andrew Morton. Linux sheduling lateny.

http://www.zip.om.au/ akpm/linux/shedlat.html.

[MR97℄ Je�rey C. Mogul and K. K. Ramakrishnan. Eliminating reeive

livelok in an interrupt-driven kernel. ACM Transations on

Computer Systems, 15(3), August 1997.

[MRT93℄ Cli�ord W. Merer, Raguanathan Rajkumar, and Hideyuki

Tokuda. Applying hard real-time tehnology to multimedia

systems. In Workshop on the Role of Real-Time in Multime-

dia/Interative Computing System, 1993.

[PG93℄ A. K. Parekh and R. G. Gallager. A generalized proessor shar-

ing approah to ow ontrol in integrated servies networks:

the single-node ase. IEEE/ACM Transations on Networking,

1(3):344{357, June 1993.

[PG94℄ A. K. Parekh and R. G. Gallager. A generalized proessor shar-

ing approah to ow ontrol in intergrated servies networks: the

multiple node ase. IEEE/ACM Transantions on Networking,

2:137{150, April 1994.

121



[RAdN

+

00℄ Ragunathan (Raj) Rajkumar, Lua Abeni, Dionisio de Niz,

Sourav Ghosh, Akihiko Miyoshi, and Saowanee Saewong. Re-

ent developments with linux/rk. In Proeedings of the Seond

Real-Time Linux Workshop, Orlando, Florida, november 2000.

[Re97℄ Dikson Reed and Robin Fairbairns (eds.). Nemesis, the kernel

{ overview, May 1997.

[RS01℄ John Regehr and John A. Stankovi. Augmented CPU Reserva-

tions: Towards preditable exeution on general-purpose operat-

ing systems. In Proeedings of the IEEE Real-Time Tehnology

and Appliations Symposium (RTAS 2001), Taipei, Taiwan, May

2001.

[rte℄ The rtems real-time open-soure operating system.

http://www.rtems.om/RTEMS/rtems.html.

[SAWJ

+

96℄ Ian Stoia, Hussein Abdel-Wahab, Kevin Je�ay, Sanjoy K.

Baruah, Johannes E. Gehrke, and C. Greg Plaxton. A propor-

tional share resoure alloation algorithm for real-time, time-

shared systems. In Proeedings of the IEEE Real-Time Systems

Symposium, Deember 1996.

[SAWJ97℄ I. Stoia, H. Abdel-Wahab, and K. Je�ay. On the duality be-

tween resoure reservation and proportional share resoure allo-

ation. In Proeedings of the SPIE Conferene on Multimedia

Computing and Networking, volume 3020, pages 207{214, San

Jose, CA, February 1997.

[Sen℄ Benno Senoner. Audio lateny benhmark.

http://www.gardena.net/benno/linux/audio/.

[Sla64℄ J. Slaughter. Quantization errors in digital ontrol systems.

IEEE Transations on Automati Control, 1964.

[ST93℄ S. Savage and H. Tokuda. Rt-mah timers: Exporting time to

the user. In In Proeedings of USENIX 3rd Mah Symposium,

April 1993.

[TB℄ BSG Thomas Bushnell. Towards a new strategy of os design.

http://www.gnu.org/software/hurd/hurd-paper.html.

[TNR90℄ H. Tokuda, T. Nakajima, and P. Rao. Real-time mah: Toward

a preditable real-time system. In USENIX Mah Workshop,

pages 73{82, Otober 1990.

122



[YCL98℄ Yu-Chung and Kwei-Jay Lin. Enhaning the Real-Time Capa-

bility of the Linux Kernel. In Proeedings of the IEEE Real

Time Computing Systems and Appliations, Hiroshima, Japan,

Otober 1998.

123


