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and Luigi.

Most important, I want to say thanks to the One to whi
h everyone

should say thanks for everything: the Lord our God, who 
reated us all,

and saved us dying for us. Too many times I kept my faith out of my \real

life", but now I want to re
ognise that nothing of what I did and obtained

in the past was possible without God's help, and He deserve the biggest

a
knowledgement for everything He did for me, He is doing for me every day,

and He will do in the future!!!

Finally, I want to say something that is 
ompletely unrelated with this

thesis, but is tragi
ally important in these days: let's say No to the War!!!

(Hey... Do you remember my RTSS and RTLWS presentations? ;) Remem-

ber: violen
e (and hen
e war) IS NEVER A SOLUTION !!!

And now, after this (hopefully not too boring) prefa
e, we are ready to

talk about more te
hni
al stu�. So,

W

el
ome in the dark kingdom of

real-time systems, where fearless

knights �ght against evil unpre-

di
tabilities to defend the QoS and guar-

antee system s
hedulability...
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Chapter 1

Introdu
tion

Don't believe in manuals!!!

Herman Haertig

Corollary: Don't believe in PhD dissertations...

Lu
a

T

he re
ent evolution of 
omputer te
hnology made personal 
omputers

powerful enough to perform new typologies of a
tivities, like manag-

ing multimedia streams in real-time. As a result, a modern work-

station 
an be used to run new kinds of appli
ations, su
h as MultiMedia

ones, as well as mixes of heterogeneous appli
ations, ea
h of them with dif-

ferent requirements. For example, it may be needed to 
on
urrently run a

word pro
essor (requiring a large amount of memory) together with an au-

dio/video streaming appli
ation, while a software mixer is mixing di�erent

audio sour
es in real time and the Operating System (OS) kernel is re
eiving

a stream of pa
kets from the network.

1.1 Motivation

The need to run etherogenous mixes of di�erent 
lasses of appli
ations in-

trodu
es new problems and requirements in handling hardware and software

resour
es. For example, 
onsider the most 
ommon abstra
tion provided in

traditional servers and workstations, that is multiprogramming: the exe
u-

tion of multiple appli
ation tasks is interleaved in su
h a way as to 
reate

the illusion of running simultaneously. The traditional requirement is that

all the appli
ations pro
eed fairly (eventually a

ording to some user spe
-

i�ed weights) to avoid starvation, that intera
tive appli
ations respond to

user input in a small time (but there is no 
lear de�nition of \small time"),
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and that the average response time of all appli
ations is minimised. When

dealing with (for example) multimedia appli
ations, these requirements have

to be revisited.

1.1.1 Time Sensitive Appli
ations

As said, some new appli
ations may be 
hara
terised by additional timing

requirements: for example, an audio MPEG player (su
h as the famous

WinAMP, or XAMP) should �ll the sound 
ard bu�er before the sound 
ard

needs the data. When this 
onstraint is not respe
ted, the result 
an be in-


orre
t, even if AMP de
odes the mpeg audio 
orre
tly, be
ause the de
oded

data are generated too late. As a result, the user will hear some unpleasant

noise instead of its favourite song. Hen
e, in these 
ases the 
orre
tness of a

result does not only depend on the output values, but also on the time when

the result is generated (sometime, an approximate value 
omputed on time


an be better than an exa
t value 
omputed late). In this dissertation, su
h

appli
ations are referred as time sensitive appli
ations.

As will be shown in Chapter 2, 
lassi
al real-time theory (pioneered by

Liu & Layland [LL73℄) provides te
hniques for dealing with temporal 
on-

straints, but its appli
ation to generi
 time sensitive appli
ations running on

a workstation OS 
an be diÆ
ult. For example, traditional real-time theory

mainly fo
uses on embedded 
ontrol appli
ations, whi
h is only a subset of

all possible time sensitive appli
ations 
onsidered in this work. In fa
t, dou-

ble thinking about it, it is possible to see that many appli
ations are time

sensitive, even if they are not traditionally 
onsidered real-time appli
ations.

An interesting example (that is also an \hot topi
" in 
urrent OS resear
h) is

represented by web servers: enabling an http server to respond to a request

in a spe
i�ed time is fundamental to ensure that the web server will provide

the required Quality of Servi
e (QoS).

Other notable examples of time sensitive appli
ations are multimedia ap-

pli
ations in general (streaming, video 
onferen
e, audio or video players, and

so on), digital signal pro
essing appli
ations (su
h as software mixers, soft-

ware modems, or audio synthesiser), virtual reality appli
ations, and many

others. Taking the above argument to the limit, we 
an say that all the appli-


ations are time sensitive: even a word pro
essor (an example of \traditional


omputer appli
ation") is quite useless if it takes too mu
h time to start or

to print a do
ument.

7



1.1.2 Current OS Support

From the previous dis
ussion it is easy to understand that time sensitive

appli
ations are be
oming more and more important, and supporting them

will be
ome a fundamental issues in future OSs. However, the most 
om-

mon OS kernels and appli
ations are not designed to support time sensitive

a
tivities nor to run heterogeneous mixes of appli
ations having 
ontrasting

requirements. As a result, resour
es are allo
ated (and tasks are s
heduled)

a

ording to \general purpose" goals, su
h as redu
ing the average laten
y,

and it is diÆ
ult for the appli
ations to provide a 
ontrollable QoS.

The most 
ommonly proposed solution is to in
rease the hardware power

(and the amount of available resour
es), overengineering the system so that

it will result to be underloaded and all the appli
ations will be served in a

reasonable way. As the power of the hardware is 
ontinuously in
reasing,

this solution is be
oming 
heaper and 
heaper, but it results in an ineÆ
ient

exploitation of the available resour
es and in underutilisation of the sys-

tem, en
ouraging a bad programming pra
ti
e. Moreover, every appli
ation

will likely run with the 
orre
t timing in the average 
ase, but it 
annot be

guaranteed that this will always happen. For example, if a resour
e greedy

appli
ation, su
h as Mi
rosoft Word, or SUN StarWord, is laun
hed when a

streaming appli
ation is running, it is almost sure that the streaming appli-


ation will experien
e a, hopefully transient, failure.

Hen
e, the inappropriateness of a traditional OS kernel for supporting

time sensitive appli
ations is generally due to design goals that did not 
on-

sider support for timed a
tivities. In parti
ular, there are both theoreti
al

and pra
ti
al issues, su
h as:

� task s
heduling. The general purpose s
hedulers provided by the

most 
ommon OS are not designed to properly serve time sensitive

a
tivities. Note that all the system resour
es (not only the CPU) must

be properly s
heduled;

� resour
e allo
ation poli
y. As a result of the inappropriate s
hedul-

ing algorithms, system resour
es 
annot be 
orre
tly allo
ated to the

various tasks in order to respe
t temporal 
onstraints;

� kernel stru
ture. Most of the 
urrent OS kernels are based on a

monolithi
 stru
ture derived from BSD. This results in a series of

problems in a

ounting resour
e usage to the 
orre
t tasks, and in as-

signing resour
es to tasks in a proper way;

� temporal resolution of the system. General purpose OS kernels are

generally based on a periodi
 interrupt that triggers a

ounting and
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s
heduling a
tivities, generally at a rate of 100 times per se
ond. This

solution often results in a poor s
heduling and a

ounting.

1.2 Contribution of this Dissertation

The thesis supported in this dissertation is that the appropriate s
heduling

of system resour
es and the use of proper resour
e allo
ations poli
ies in the

OS kernel

1

permit to 
orre
tly support time sensitive appli
ations without

over-engineering the system. The use of an appropriate kernel stru
ture (or a

a proper modi�
ation of the traditional monolithi
 stru
ture) is ne
essary to


orre
tly implement the s
heduling algorithm, to implement an a

urate re-

sour
e allo
ation poli
y, and to e�e
tively s
hedule all the system resour
es.

This enable to perform QoS guarantees in a workstation OS, enabling less

powerful 
omputers to support time sensitive appli
ations in a more pre-

di
table way.

1.2.1 S
heduling and Resour
e Allo
ation

Generi
 resour
e s
heduling te
hniques are often inadequate for respe
ting

time 
onstraints, hen
e the �rst element to support time sensitive appli
a-

tions is an appropriate s
heduling algorithm. The algorithm of 
hoi
e must

provide a theoreti
al foundation that permits to provide some kind of QoS

guarantee.

Using real-time theory it is possible to provide time guarantees under

some (very stri
t) assumptions, su
h as the 
omplete a-priori knowledge of

the system. This in
ludes a-priori knowledge of the task exe
ution times (or

of their upper bounds), arrival times, and so on. While this assumption is

reasonable in an embedded system, where all the tasks are known in advan
e

and 
an be adequately analysed, any assumption regarding a-priori informa-

tion is not reasonable in a desktop operating system. In fa
t, in su
h a system

the number of a
tive tasks 
an vary, and 
annot be predi
ted; moreover, the

same appli
ation may need to run on a big number of di�erent ma
hines,

making impossible to know the exe
ution times in advan
e. These systems

are often referred as Open Systems [DLS97, DL97℄, to distinguish them from

Closed Systems, in whi
h all the tasks that will run in the system are known

in advan
e. An Open System is a general purpose 
omputer system in whi
h

it is not possible to know a-priori neither the number nor the 
hara
teristi
s

1

eventually asso
iated with user level QoS management and appli
ation-level adapta-

tion

9



of the appli
ations that will be run. Typi
ally, in an Open System appli
a-

tions with di�erent levels of Quality of Servi
e may 
oexists: hard real-time,

multimedia and intera
tive non-real-time appli
ations.

Hen
e, in an Open System it is ne
essary to prote
t appli
ations from

the misbehaviours of other appli
ations. This property is 
alled Temporal

Isolation: the net e�e
t is that ea
h appli
ation exe
utes as it were on a

slower dedi
ated pro
essor. The Resour
e Reservation approa
h [MRT93℄ is

a good way to implement temporal isolation using real-time te
hniques, and

has been proven to be very e�e
tive in the joint s
heduling of Hard Real Time

(HRT) and Soft Real Time (SRT) appli
ations in Open Systems. Another

possible way for implementing temporal isolation is Proportional Share (PS)

s
heduling [PG93, PG94℄.

All those s
heduling algorithms are 
hara
terised by low-level s
heduling

parameters, that 
an be diÆ
ult to tune in the proper way. In parti
ular,

the s
heduling algorithm 
onstitutes a me
hanism provided by the kernel to

allo
ate resour
es to appli
ations in a spe
i�ed way, and a poli
y for allo
ating

resour
es must be spe
i�ed at a higher level. For this reason, a QoS manager

that exports some high-level task model is needed to implement the resour
e

allo
ation poli
y by 
ontrolling the low-level parameters of the s
heduler.

1.2.2 Kernel Stru
ture

Most of the s
heduling algorithms presented in the literature assume that

the s
heduler has the total 
ontrol of the system, and 
an de
ide when to

preempt the 
urrently running task and to s
hedule a new task. Moreover,

s
heduling de
isions are assumed to be immediate, and no interferen
e from

external fa
tors is 
onsidered.

A real OS is more 
omplex: to preserve the integrity of some data stru
-

tures and the atomi
ity of some operations, tasks 
annot be arbitrarily pre-

empted, the s
heduler 
annot be invoked at arbitrary time instants, but only

when spe
i�
 events (su
h as a timer interrupt) o

ur, and exa
tly measuring

the exe
ution time used by a task is not easy. Moreover, external events su
h

as hardware interrupts add another level of 
omplexity, 
onsuming exe
ution

time and de
reasing the predi
tability of the system.

The in
uen
e of these fa
tors on task s
heduling depend on how the

kernel is internally organised. In parti
ular, traditional OS kernels (based on

the monolithi
 kernel stru
ture) are not able to preempt a task when it is

exe
uting a system 
all, and interrupts have the pre
eden
e over all the user

appli
ations. This 
reates a dis
repan
y between the theoreti
al s
hedule and

the a
tual one produ
ed by the system. This dis
repan
y 
an be redu
ed by

using an alternative kernel design, that redu
es the the system 
alls size and

10



permits to serve interrupts and external events in tasks s
heduled by the

kernel. Some real-time systems su
h as Real-Time Ma
h [TNR90℄, DROPS

[HBB

+

98℄, and similar are based on a so 
alled �kernel ar
hite
ture, that

a
hieve those goals, but at the 
ost of a de
reased eÆ
ien
y. Other alternative

kernel ar
hite
tures that 
an be used to improve real-time performan
e are

represented by the so 
alled verti
ally stru
tured kernels (su
h as Nemesis

[Re97℄), multithreaded kernels, or real-time exe
utives.

Alternatively, the monolithi
 stru
ture 
an be modi�ed introdu
ing kernel

preemptability to redu
e the system 
alls' size, and to introdu
e a more pre
ise

a

ounting me
hanism, high-resolution timers, and other me
hanisms that

permit to in
rease the s
heduler's a

ura
y.

1.3 Organisation of the Dissertation

This dissertation introdu
es some 
ontributions both in the �eld of s
heduling

theory and resour
e allo
ation (more related to real-time resear
h) and in the

OS �eld (implementation, kernel stru
ture, and so on).

The �rst is 
on
erned with the use of a proper s
heduling algorithm and

the implementation of a QoS aware resour
e allo
ation poli
y. With the

latter implemented either at system level or at user level.

In Chapter 2 it will be shown that in order to enable QoS aware s
heduling

and resour
e allo
ation a pre
ise des
ription of the tasks' 
hara
teristi
s and

requirements is needed, and the 
on
epts of task model and guarantee will be

introdu
ed to solve this problem.

Chapter 3 will review some s
heduling algorithms that 
an be used to

properly serve a time-sensitive appli
ation (namely, real-time and propor-

tional share s
hedulers). Moreover, it will be shown that reservation te
h-

niques are the 
orre
t 
hoi
e for a workstation OS, and the s
heduling algo-

rithm used in this dissertation (namely the CBS) will be introdu
ed as well

as some extensions used to syn
hronise time sensitive appli
ations. The pro-

posed s
heduling te
hniques will be then analysed providing a formal model

of the CBS, and the 
on
ept of QoS guarantee will be introdu
ed.

Chapter 4 will address the problem of managing the system resour
es in

a proper way, based on the task models and guarantees presented in Chapter

2 and on the s
heduling algorithms presented in Chapter 3. Some adaptive

te
hniques will be introdu
ed.

The issues related to the implementation will be addressed in Chapter

5, where the most important kernel stru
tures will be reviewed, and their

appropriateness to serve time sensitive appli
ations will be evaluated. Some

of the most important problems and solutions will be presented, and some

11



implementations of the te
hniques introdu
ed in this dissertation will be

des
ribed, showing how a general-purpose kernels (su
h as Linux) 
an be

modi�ed to support time-sensitive appli
ations.

Finally, Chapter 6 will 
on
lude the dissertation.
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Chapter 2

Fundamental Con
epts

Any suÆ
iently advan
ed te
hnology is indistinguishable from magi


Clarke's law

Any suÆ
iently advan
ed magi
 is indistinguishable from

te
hnology

Murphy's reformulation of Clarke's law

Any suÆ
iently advan
ed magi
 is indistinguishable from a rigged

demonstration

Programmer's restatement of Murphy's reformulation of Clarke's law

T

he OS kernel is the manager of all the hardware and software resour
es

that are available in the system, and its rule is to assign resour
es

to appli
ations in order to properly exe
ute them. The a
tivities


omposing a time sensitive appli
ations are 
hara
terised by some temporal


onstraints, and the desired QoS 
an be a
hieved only if the kernel kernel

allo
ates the resour
es so that those 
onstraints are respe
ted. Hen
e, the

kernel should be aware of the tasks' 
hara
teristi
s and requirements.

In this 
hapter, some basi
 de�nitions and two abstra
tions used to de-

s
ribe appli
ations' 
hara
teristi
s and requirements (task models and guar-

antees) will be introdu
ed.

2.1 De�nitions

In a multiprogrammed system, the kernel assigns resour
es to the appli
a-

tions so that di�erent appli
ations give the impression to exe
ute simultane-

ously. In other words, system resour
es have to be multiplexed between all

the appli
ations that are running in the system; depending on the kind of re-

sour
es, the OS kernel 
an perform spatial multiplexing or time multiplexing.
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Spatial multiplexing is used when the same resour
e 
an be divided in

di�erent parts, ea
h of whi
h 
an be assigned to a di�erent appli
ation. A

typi
al example is the system memory: when several appli
ations are running

in the system, the memory 
an be divided in regions, and ea
h appli
ation

is assigned a di�erent region. When the resour
e 
annot be split in several

parts, time multiplexing must be used, and the resour
e is allo
ated to ea
h

appli
ation at di�erent times, using a time sharing te
hnique.

To better understand these 
on
epts, some de�nitions are needed:

De�nition 1 An algorithm is the logi
al pro
edure that is used to solve a

problem, and it 
an be expressed using a spe
ial formalism 
alled program-

ming language.

De�nition 2 A program is a parti
ular 
oding (implementation) of an al-

gorithm in a well de�ned programming language.

A program 
an exe
ute as a sequential 
ow of operations, or 
an be 
omposed

by more than one 
on
urrent a
tivities, that are 
alled threads or pro
esses.

Informally speaking, we 
an de�ne threads and pro
esses as follows:

De�nition 3 A thread is a single 
ow of exe
ution, 
hara
terised by a

small set of private resour
es, su
h as the CPU 
ontext, a sta
k and few

other variables. Hen
e, a thread has not a large set of private resour
es, but

generally works on publi
 resour
es that it 
an share with other threads. In

order to exe
ute, a thread must be asso
iated to a set of resour
es su
h as for

example a memory spa
e.

De�nition 4 A pro
ess is 
omposed by one or more threads, plus all the

resour
es that they need to exe
ute (memory spa
e, some des
riptor tables,

and so on). These resour
es are private to the pro
ess, and 
annot be a

essed

by other pro
esses (unless they are expli
itly shared).

In this dissertation, the di�eren
e between threads and pro
esses is not par-

ti
ularly important, and the word task will be used to identify an exe
utable

entity, that 
an be a thread or a pro
ess.

2.2 Task Models

To understand what a task model is, let's 
onsider, for example, a task

reprodu
ing a so 
alled Continuous Media (CM) stream

1

: the player task

1

A Continuous Media is a stream of frames that should be played in a timely fashion,

su
h as a video or an audio stream.

14



should de
ode and reprodu
e the stream frames periodi
ally at a stable rate.

If this rate is not maintained, the experien
ed QoS de
reases. As we will

see in Chapter 3, the use of an appropriate s
heduling algorithm 
an help

to respe
t temporal 
onstraints. However, the s
heduling algorithm alone is

not enough sin
e, in order to properly serve the appli
ation, the s
heduling

parameters should be assigned adequately. Hen
e, the OS should provide

some way to spe
ify the tasks' requirements and parameters: this is the

role of the task model. A task model is an abstra
tion that 
an be used to


ommuni
ate to the OS kernel the tasks' requirements and parameters, and

is ne
essary to de
ouple the s
heduling algorithm from the appli
ation.

Unfortunately, the traditional task model (used by general purpose OSs

su
h as Windows or all the unix 
avours) is not very useful for time sen-

sitive appli
ations, sin
e it 
hara
terise a task as a 
ontinuous stream of

instru
tions, optionally assigning an additional parameter (su
h as a �xed

priority or a \ni
e" value) to the task for des
ribing the its importan
e. As a

result, real-time tasks 
an be s
heduled using �xed priorities (Rate or Dead-

line Monotoni
), dynami
 priorities (Earliest Deadline First), or using some

form of Proportional Share, and the s
heduling parameters are assigned giv-

ing the programmer a dire
t visibility of those low-level parameters su
h as

priorities, WCETs, deadlines, weights, and so on. As 
an be easily seen,

this approa
h tends to mix the task model and the s
heduling parameters,

exposing a dire
t visibility of the algorithm to the user.

2.2.1 The Real-Time Task Model

Returning to the previous example of a task reprodu
ing a CM stream: to

provide a 
ontrolled QoS, frames have to be de
oded periodi
ally. This 
an be

done by splitting the player task into instan
es (using ea
h instan
e to pro
ess

a single frame), and by exe
uting task instan
es at a 
onstant rate that is


ompatible with the CM requirements. This result 
an be obtained using the

real-time task model, and using temporal 
onstraints 
alled deadlines to do

performan
e monitoring.

A real-time task �

i

is a stream of instan
es, or jobs, ea
h of them per-

forming an independent a
tivity, su
h as de
oding a frame, re
eiving a pa
ket

from the network, serving an interrupt, and so on.

Ea
h job J

i;j

is 
hara
terised by an arrival time (or release time) r

i;j

, an

exe
ution time 


i;j

, and a deadline d

i;j

; in general d

i;j

= r

i;j

+D

i

, where D

i

is

the tasks's relative deadline. When a new job J

i;j

arrives (at time r

i;j

) task �

i

is inserted into the s
heduler ready queue and is ready to exe
ute when the

s
heduler sele
ts it. After exe
uting for a time 


i;j

, the job �nishes at time

f

i;j

; in order the temporal 
onstraints to be respe
ted, ea
h job J

i;j

should
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�nish before its deadline d

i;j

.

In general, to perform some kind of guarantee about the respe
t of job's

deadline it is ne
essary to have some information about the exe
ution and

interarrival times. The simplest way to provide those information is to spe
ify

a Worst Case Exe
ution time (WCET) C

i

= max

j

f


i;j

g and a minimum

interarrival time T

i

= min

j

fr

i;j+1

� r

i;j

g for the task. In this 
ase, a task

�

i


an be 
hara
terised by the parameters (C

i

; T

i

; D

i

). For example, if the

arrivals are periodi
 and the relative deadline is equal to the period (that is

to say, if r

i;j+1

= r

i;j

+ T

i

and D

i

= T

i

), the task is said to be periodi
, and

is des
ribed by the tuple (C

i

; T

i

) (the periodi
 task model was introdu
ed by

Liu & Layland [LL73℄).

A task 
hara
terised by periodi
 arrivals (�xed interarrival times) but

unknown exe
ution times is referred to as a semiperiodi
 task in this dis-

sertation. The distin
tion between periodi
 tasks and semiperiodi
 tasks

has been introdu
ed to distinguish the 
ase in whi
h a WCET C

i

is known

(the Liu & Layland periodi
 model) from a more realisti
 
ase in whi
h no

assumption on the exe
ution times 
an be done.

2.2.2 The GPS Model

Returning to the CM player example, it is worth noting that to be properly

served, i.e. to respe
t the CM temporal 
onstraints, the CM de
oding task

must be assigned a proper amount of the CPU and of the other needed

resour
es. Hen
e, as an alternative to the real-time task model it is possible

to allow time sensitive tasks to exe
ute at a 
onstant rate, whi
h permits to

respe
t their time 
onstraints.

Exe
uting ea
h task �

i

at a 
onstant rate is the essen
e of the Generalised

Pro
essor Sharing (GPS) [PG93, PG94℄ approa
h: in this model, ea
h shared

resour
e needed by tasks (su
h as the CPU) is 
onsidered as a 
uid that 
an

be partitioned among the appli
ations. Ea
h task will instantaneously re
eive

a fra
tion f

i

(t) of the resour
e at time t, where f

i

(t) is de�ned as the share.

Note that the GPS model 
an be seen as the limiting form of a Weighted

Round Robin poli
y.

To 
ompute the share of the resour
e that ea
h task �

i

will re
eive, in the

GPS model �

i

is assigned a weight w

i

, and its share is 
omputed as

f

i

(t) =

w

i

P

�

j

2�(t)

w

j

where �(t) is the set of tasks a
tive at time t.

Sin
e ea
h task 
onsists of one or more requests for shared resour
es su
h

as the CPU, tasks 
an blo
k and unblo
k, and the �(t) set 
an vary with time.
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Hen
e, the share f

i

(t) is a time varying quantity. The minimum guaranteed

share is de�ned as the rate

F

i

=

w

i

P

�

j

2�

w

j

:

Note that a 
orre
t assignment of the tasks weights permits to guarantee

real-time performan
e to all the time sensitive tasks in the system. In fa
t,

based on the task share, it is possible to 
ompute a response time for ea
h

task request. The problem with this task model is that the task response

time and the task throughput are not independent.

2.3 High Level Task Models

The RT and PS task model presented in the previous se
tion 
an be useful

to model the tasks' requirements and 
hara
teristi
s, but in some 
ases they

exports some too low-level parameters. Sin
e a user is not generally inter-

ested in the s
heduling algorithm and its details, and does not often knows all

the tasks parameters, in many 
ases the RT or PS models are very di�erent

from what the users really needs and using su
h models for
es the program-

mer to assign low-level parameters a

ording to 
omplex mapping fun
tions.

Moreover, a similar approa
h presents the following disadvantages:

� the system s
hedulability strongly relies on the exa
t knowledge of

WCETs, whi
h 
annot always be easily estimated;

� in some 
ases tasks' parameters (e.g., the PS weights) have not an easy

interpretation, so the user 
an only assign them using heuristi
 rules;

� tasks' parameters are too low-level to support 
omplex features, su
h

as bandwidth adaptation or advan
ed syn
hronisation.

The problems mentioned above 
an be addressed by introdu
ing high-level

task models whi
h provide an interfa
e 
loser to the real needs. For example,

in a multimedia environment the following features 
an be identi�ed for the

appli
ation tasks:

� ea
h task is 
hara
terised by an importan
e value with respe
t to all the

other tasks: when the system resour
es are not enough to ful�l ea
h task

request, the resour
es will be shared a

ording to tasks' importan
e;

� some tasks need to exe
ute with a 
onstant rate, without respe
ting

any expli
it time 
onstraint;
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J(i,2)J(i,1) J(i,3) J(i,4)

J(i,1) J(i,2) J(i,3)

1/Ri 1/Ri

executed / T = wi / sum(wj)

MM task

Event Driven task

PseudoPS task

Ti

Figure 2.1: Example of the three 
lasses of tasks.

� some tasks need to exe
ute periodi
ally: the task is 
omposed of jobs,

ea
h of them have to be a
tivated at a period boundary and must �nish

within the period end. This is a time 
onstraint that 
an be expressed

in terms of deadlines;

� some tasks need to respond to internal or external events, serving a

minimum number of events per time unit.

To ful�l these requirements, a task �

i


an be 
hara
terised by a weight

w

i

, representing the task's importan
e with respe
t to the others. Moreover,

tasks 
an be 
hara
terised by some temporal 
onstraints (su
h as a period

T

i

). Based on these 
hara
teristi
s, three 
lasses of tasks 
an be de�ned (see

Figure 2.1):

� PseudoPS (PPS) Tasks �

i

= (w

i

) are 
ows of instru
tions that

exe
ute uniformly, re
eiving a pro
essor share proportional to the task

weight w

i

;

� MultiMedia (MM) Tasks �

i

= (w

i

; T

i

) are streams of jobs J

i;j

pe-

riodi
ally a
tivated with a period T

i

, so that job J

i;j

arrives in the

system at time r

i;j

= r

i;j�1

+ T

i

, and should �nish before the next

job starts (see the semiperiodi
 task model in the previous se
tion).

Using the real-time terminology, we say that J

i;j

has a soft deadline

d

i;j

= r

i;j+1

= r

i;j

+ T

i

. The goal of the system is to assign ea
h task a

fra
tion of the pro
essor bandwidth suÆ
ient to meet this requirement;

� Event Driven (ED) Tasks �

i

= (w

i

; R

i

) are streams of aperiodi
 jobs

J

i;j

a
tivated by external or internal events. The user spe
i�es the av-
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erage number R

i

of jobs that should be exe
uted per time unit, and the

goal of the system is to automati
ally adjust the fra
tion of pro
essor

bandwidth assigned to ea
h task in order to meet this requirement.

PseudoPS tasks are equivalent to GPS tasks: they exe
ute at a uniform

rate, but, sin
e their exe
ution time is not known, no temporal 
onstraint 
an

be guaranteed, although a suitable (system dependent) tuning of the tasks'

weights may allow to serve 
onventional appli
ations in a timely fashion,

without modifying them.

MM tasks are designed to manage CM streams. Sin
e they are 
omposed

of distin
t jobs, the system 
an monitor ea
h job's exe
ution time to arrange

the CPU bandwidth reserved to the task. Using this task model, the pro-

grammer has to spe
ify the task period, but the task exe
ution time does

not need to be estimated.

ED tasks are similar to MM Tasks, in the sense that the programmer

is not bound to spe
ify the task exe
ution time: the only mandatory task

parameter is the number R

i

of jobs that must exe
ute in a time unit. The

di�eren
e with MM Tasks is that Event Driven Tasks are not periodi
ally

a
tivated by the system, but are a
tivated by external events.

If the system is overloaded, and the CPU bandwidth is not suÆ
ient to

ful�l ea
h task's requirement, an expli
it bandwidth 
ompression algorithm


orre
ts the fra
tion of CPU bandwidth assigned to ea
h task using the task

weight w

i

(the tasks with the higher weights will re
eive a bandwidth nearest

to the requested one). This model permits to distinguish the task temporal


onstraint (the period T

i

or the rate R

i

= 1=T

i

) from the task importan
e,

expressed by the weight w

i

. In fa
t, one of the biggest problems of 
lassi
al

real-time s
heduling algorithms (su
h as Rate Monotoni
 or Earliest Deadline

First) was that the task importan
e resulted to be proportional to the inverse

of the task period.

2.4 Guarantees

As shown in Se
tion 2.2, a time sensitive appli
ation should be served so that

some temporal 
onstraints are respe
ted. Those 
onstraints are expressed by

the task model: for example, in the real-time task model ea
h job J

i;j

is asso-


iated a deadline d

i;j

. Hen
e, the goal of the OS kernel is to allo
ate resour
es

in order to provide some guarantees about the temporal 
onstraints: in the

previous example, a simple guarantee 
an be that ea
h job J

i;j

terminates

before its deadline (8i; j; f

i;j

� d

i;j

).

De�nition 5 A guarantee is a 
ontra
t between the system and a 
lient
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(generally a task), regarding the amount of resour
es that the 
lient will re-


eive from the system, and the timing of this resour
e allo
ation.

In other words, the guarantee abstra
tion 
on
erns the task performan
e,

and is used to de
ouple it from the s
heduling algorithm an the implemen-

tation details (that is to say, a guarantee abstra
ts the behaviour provided

by a s
heduler from the s
heduling algorithm itself). In Chapter 3 it will be

shown that the most important issue in s
heduling analysis is to prove that

a s
heduling algorithm provides a parti
ular kind of guarantee. In this way,

a programmer is allowed to reason in terms of model of resour
e allo
ation,

instead of 
oping with the resour
e allo
ation algorithm itself.

The guarantee abstra
tion is parti
ularly important in real-time systems,

be
ause it permits spe
ify the QoS that a task will re
eive from the system.

In this 
ontext, it is important to know if the system will be able to provide

a spe
i�ed guarantee, to determine if a task 
an be a

epted in the system

(without 
ompromising the guarantee of the other tasks). This is done using

an admission test.

De�nition 6 The admission test, or s
hedulability test is a 
ondition

that must be veri�ed to provide a spe
i�ed guarantee.

Informally speaking, the admission test states that the amount of resour
es

needed to respe
t a spe
i�ed guarantee is less or equal than the amount of

available resour
es. The admission test depends on the s
heduling algorithm,

and is used to pass from a task set and a s
heduling algorithm to a guarantee

that will be provided by the system. In Chapter 3 some examples of admission

tests will be presented together with some real-time s
heduling algorithms.

2.4.1 Hard Real-Time Guarantee

Real-time te
hniques were originally developed for implementing embedded


ontrol system for whi
h the 
onsequen
e of a deadline miss was 
onsidered

to be 
atastrophi
. For this reason, the �rst kind of guarantee that has been

presented in literature is the Hard Real-Time Guarantee, requiring that all

the deadlines in the system are respe
ted.

More formally, a hard guarantee ensures that

8(i; j); f

i;j

� d

i;j

: (2.1)

In order to analyse the feasibility of a hard guarantee, some additional

de�nitions are needed:
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De�nition 7 Given a real-time task �

i

, its demanded time D

i

(t

1

; t

2

) is

de�ned as

D

i

(t

1

; t

2

) =

X

j:r

i;j

�t

1

^d

i;j

�t

2




i;j

De�nition 8 In a similar way, the time demanded by a task set � = f�

1

; : : : �

n

g


an be de�ned as

D(t

1

; t

2

) =

X

i

D

i

The 
on
ept of demanded time is fundamental to test if a task set � is

s
hedulable or not, as stated by the following theorem:

Theorem 1 A ne
essary 
ondition for the task set � = f�

1

; : : : �

n

g to be

s
hedulable is that

8t

1

; t

2

: t

2

> t

1

; D(t

1

; t

2

) � (t

2

� t

1

)

2.4.2 QoS Guarantees

In re
ent years, it has been shown that a more relaxed guarantee 
an be

useful too. In fa
t, respe
ting all the appli
ations' deadline 
an often be

overkilling, and aiming to that goal 
an lead to system underutilisation.

For this reason, the 
on
ept of soft real-time tasks has been proposed: a

soft real-time task is a task that should respe
t its deadlines, but that 
an

tolerate a \reasonable amount" of missed deadlines. It is easy to see that this

de�nition is too vague, and the \reasonable amount" should be quanti�ed

in order to use this 
on
ept in a systemati
 way. In fa
ts, the problem with

soft real-time is that it is often diÆ
ult to give a formal de�nition of a QoS

guarantee (soft guarantee). For this reason, the terms \QoS" and \soft real-

time" or \soft guarantee" are often used informally, and their meaning is

not well understood (for example, in all the real-time theory there is a big


onfusion between soft real-time tasks and aperiodi
 tasks).

A possible way to de�ne the 
on
ept of QoS guarantee in a more formal

way is to use probabilisti
 deadlines. Using this model,

�

i

= (U

i

(
); V

i

(t))

where U

i

(
) is the probability that job J

i;j

has exe
ution time 
, and V

i

(t) is

the probability that jobs' interarrival time is t. Hen
e,

U

i

(
) = Pf


i;j

= 
g

V

i

(t) = Pfr

i;j+1

� r

i;j

= tg:
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In Chapter 3 it will be shown that a proper assignment of the s
heduling

parameters permits to respe
t all the task's deadlines. This 
orresponds to

the Liu and Layland priority assignment and to the hard real-time guarantee.

On the 
ontrary, a probabilisti
 guarantee permits to assign the s
hedul-

ing parameters (Q

s

i

; T

s

i

) to �

i

in a less 
onservative way, still maintaining

some 
ontrol on the QoS experien
ed by �

i

. In this 
ase, the 
on
ept of prob-

abilisti
 deadline 
an be used to quantify the QoS experien
ed by ea
h task.

A probabilisti
 deadline Æ is not required to be always respe
ted, but 
an be

respe
ted by task �

i

with a probability

X

i

(Æ) = Pff

i;j

� r

i;j

+ Æg < 1:

Performing a QoS guarantee with a probabilisti
 deadline Æ means to

guarantee that:

� if task �

i

is des
ribed by the PDFs (U

i

(
); V

i

(t))

� if the assigned s
heduling parameters are (Q

s

i

; T

s

i

)

� then, ea
h job J

i;j

of task �

i

has probability X

i

(Æ) of �nishing within a

relative deadline Æ.

2.4.3 GPS Guarantee

As explained in Se
tion 2.2.2, the GPS model des
ribes a task system as a


uid 
ow system, in whi
h ea
h task �

i

is modelled as an in�nitely divisible


uid, and exe
utes at a minimum rate F

i

that is proportional to a user

spe
i�ed weight w

i

.

Hen
e, task �

i

is guaranteed to exe
ute for a time s

i

(t

1

; t

2

) > (t

2

� t

1

)F

i

in ea
h ba
klogged interval [t

1

; t

2

℄. The exa
t de�nition of the GPS exe
uted

time s

i

is s

i

=

R

t

2

t

1

f

i

(t)dt. Hen
e, in the ideal 
uid 
ow 
ase, the tasks'

exe
ution 
an be des
ribed through the GPS guarantee:

8�

i

a
tive in [t

1

; t

2

℄;

exe


i

(t

1

; t

2

)

exe


j

(t

1

; t

2

)

�

w

i

w

j

j = 1; 2; :::; n (2.2)

where exe


i

(t

1

; t

2

) is the exe
ution time of �

i

in the interval [t

1

; t

2

℄.

It 
an be easily seen that Equation 2.2 is equivalent to exe


i

(t

1

; t

2

) =

s

i

(t

1

; t

2

).

In a real system, resour
es are allo
ated in dis
rete time quanta of size

Q. This quantum based allo
ation 
auses an allo
ation error: given two

22



a
tive tasks �

1

and �

2

, the allo
ation error in the time interval [t

1

; t

2

℄ 
an be

expressed as

exe


i

(t

1

; t

2

)

w

i

�

exe


j

(t

1

; t

2

)

w

j

:

An alternative way to express this allo
ation error is themaximum lag Lag

i

=

max

t

1

;t

2

fjexe


i

(t

1

; t

2

)�s

i

(t

1

; t

2

)jg. Hen
e, a more realisti
 version of the GPS

guarantee is the following:

exe


i

(t

1

; t

2

) =

Z

t

2

t

1

f

i

(t)dt+�Lag

i

2.4.4 Reservation Guarantees

An important 
on
ept that emerged in the last years is the temporal isola-

tion, ensuring that the temporal behaviour of a task is not in
uen
ed by the

temporal behaviour of other tasks in the system.

In other words, if a task requires \too mu
h" resour
es, it must be slowed

down in order not to jeopardize the other tasks' guarantee. A similar property

is very important, sin
e it permits to provide di�erent guarantees to di�erent

tasks: for example, it is possible to perform an hard guarantee on a task,

while other tasks are provided a probabilisti
 guarantee, or no guarantee at

all.

Looking at the previous se
tion, it is possible to see that a PS guaran-

tee provides some form of temporal prote
tion: if task �

i

is guaranteed to

re
eive f

i

(t

2

� t

1

) time units in the time interval (t

1

; t

2

), it means that it is

possible to guarantee �

i

's performan
e independently from all the other tasks.

Of 
ourse, tasks' weights w

i

need to be properly arranged, and an admission

test is needed, as shown in [SAWJ97℄. However, imposing

exe
(t

1

;t

2

)

t

2

�t

1

to be 
on-

stant for all the (t

1

; t

2

) intervals 
an be a too stringent requirement (in fa
ts,

Se
tion 2.4.3 shows that a real s
heduling algorithm 
an only approximate a

PS guarantee).

A better solution would be to guarantee that the ratio

exe
(t

1

;t

2

)

t

2

�t

1

is 
onstant

over well spe
i�ed intervals, for example between deadlines in a real-time

task. This is the essen
e of the reservation guarantee. More formally, a

reservation (Q; T;D) guarantees that an amount Q of a resour
e will be

available to the reserved task every period T , within a deadline D from the

beginning of the period. Hen
e,

8j

2

� j

1

exe
(j

1

T; j

2

T +D

i

) � (j

2

� j

1

+ 1)Q

If T = D, the reservation simpli�es to a (Q; T ) model, and the guarantee
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be
omes

8j

2

> j

1

exe
(j

1

T; j

2

T +D

i

)

(j

2

� j

1

)T

�

Q

T

(2.3)

Some authors tend to distinguish hard reservation guarantees from soft

real-time guarantees: following this de�nition, a soft reservation guarantee is

based on the previous formula, whereas a hard reservation guarantees that

8j

2

> j

1

exe
(j

1

T; j

2

T +D

i

)

(j

2

� j

1

)T

=

Q

T

(2.4)

Sin
e a reservation guarantee ensures that Q time units will be served

within a relative deadline D at ea
h period T , it is possible to restate its

requirements as a hard real-time guarantee, requiring that a periodi
 task �

with 


i;j

� Q, period T and relative deadline D respe
ts all its deadlines.

Hen
e, an admission test similar to the one of Theorem 1 is required.
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Chapter 3

S
heduling

My VCR is a real-time system;

it fails all the time.

I'm still alive

Ri
h Gerber

A

s said in Chapter 2, in a multiprogrammed system the kernel is re-

sponsible for multiplexing the system resour
es between 
on
urrent

appli
ations. More formally, the kernel has to s
hedule resour
es, de-


iding whi
h resour
e is assigned to whi
h appli
ation. In this 
hapter, it will

be shown that in order to properly serve time sensitive appli
ations (that is

to say, in order to respe
t temporal 
onstraints of a given task model and ful-

�l a spe
i�ed guarantee) the s
heduling algorithm must be 
arefully 
hosen,

and some of the most important s
heduling algorithms will be presented.

3.1 Task S
heduling

To exe
ute, ea
h task � needs some resour
es to be assigned to it (in general,

it will need at least the CPU and some amount of memory); when time

multiplexing is used, a resour
e R is assigned to a single task �

i

at

time t, hen
e it is possible to des
ribe the resour
e allo
ation using a fun
tion

�

R

: R

+

! �, where � = f�

1

; : : : �

n

g is the set of all the tasks in the system.

More formally,

De�nition 9 A s
hedule �

R

(t) is an assignment of a resour
e R to a set

of tasks � = f�

1

; : : : �

n

g. Hen
e, �

R

(t) is a fun
tion from the time domain

R

+

to the task set �. Note that it is possible that at time t resour
e R is

not assigned to any task; in this 
ase the resour
e is said to be idle. To 
ope

with this situation, the s
hedule 
an be de�ned as �

R

: R

+

! �[ f�g, where

�

R

(t) = � means that R is idle at time t.
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De�nition 10 A s
heduling algorithm is an algorithm that is used to

de
ide to whi
h task �

i

resour
e R will be assigned at time t.

Most of the s
heduling algorithms are priority based: all the a
tive tasks

(that is to say, all the tasks that are 
ompeting for a resour
e) are listed

in a ready task queue �

ready

, and a s
heduling priority P (�

i

) is assigned to

ea
h task �

i

. At ea
h time, the task having the highest priority is sele
ted

(is s
heduled), and the resour
e is allo
ated to it:

�

R

(t) = �

i

: P (�

i

) = max

�

j

2�

ready

fP (�

j

)g

If the s
heduler does not 
hange the s
heduling priorities (but they are as-

signed at task 
reation and 
an only be 
hanged by using an expli
it system


all), the s
heduler is said to be based on stati
 priorities. Otherwise (if

the s
heduling priorities 
an be 
hanged by the s
heduler during the task

exe
ution), the s
heduler is referred as a dynami
 priority based one. For

example, the 
lassi
al Unix s
heduler is based on dynami
 priorities, sin
e a

task's priority de
rease during task exe
ution to avoid starvation.

3.2 Classi
al Real-Time S
heduling

As previously said, the s
heduling algorithm is used for de
iding to whi
h task

to allo
ate a system resour
e. When dealing with time sensitive appli
ations,

the goal of a s
heduling algorithm is to allo
ate resour
es to a task set � so

that some kind of guarantee is respe
ted. Of 
ourse, the s
heduler 
an provide

a guarantee (for example, the hard real-time guarantee - all the deadlines are

respe
ted) only if the task models des
ribing � are known. From this point

of view, a s
heduling algorithm transforms a task model (or a set of task

models) into a guarantee. This 
an be done by using a s
hedulability test to


he
k if given set of tasks is 
ompatible with a spe
i�ed guarantee.

To simplify the dis
ussion, let's assume that ea
h task in the system only

needs the CPU to exe
ute. Hen
e, the only s
heduler present in the OS kernel

is the CPU s
heduler, and it is responsible to s
hedule tasks so that their

time 
onstraints are respe
ted. The simplest way to do this is to 
onsider

the periodi
 real-time task model, and the hard real-time guarantee: in this


ase, ea
h task �

i

is des
ribed by two parameters (C

i

; T

i

), and the goal of the

s
heduler is to meet all the deadlines d

i;j

= jT

i

. Moreover, sin
e all tasks are

periodi
, Theorem 1 
an be simpli�ed in the following lemma:

Lemma 1 If � = f�

1

; : : : �

n

g is a set of periodi
 tasks �

i

= (C

i

; T

i

), then a

26



ne
essary 
ondition for its hard s
hedulability is that

n

X

i=1

C

i

T

i

� 1

That is to say, if the system utilization

P

n

i=1

C

i

T

i

is greater than 1, then it is

impossible to respe
t all the deadlines.

The �rst attempt to s
hedule su
h a task system 
an be to use a priority

based s
heduler: for example, an intuitive 
hoi
e 
an be to use �xed priorities

and to assign higher priorities to tasks 
hara
terised by shortest deadlines

(smallest periods):

P (�

i

) =

1

T

i

this is the Rate Monotoni
 (RM) priority assignment, that has been analysed

by Liu & Layland in [LL73℄. As a 
on�rmation of the goodness of the previous

intuition, RM turns out to be an optimal stati
 priorities assignment. That

is to say, if a periodi
 task set is s
hedulable using �xed priorities,

then RM will s
hedule it properly.

As explained above, in order to provide a guarantee a s
hedulability test

is needed. The simplest kind of s
hedulability test is the utilization based

one, that is expressed by the following theorem:

Theorem 2 If � = f�

1

; : : : �

n

g is a set of periodi
 tasks �

i

= (C

i

; T

i

), then

RM will s
hedule it respe
ting all the deadlines if

n

X

i=1

C

i

T

i

� U

lub

where U

lub

is the utilization least upper bound and is de�ned as U

lub

=

n(2

1

n

� 1).

Unfortunately, the 
ondition expressed by Theorem 2 only is a suÆ
ient


ondition, and it is not a ne
essary one. That is to say, if

P

n

i=1

C

i

T

i

� U

lub

then the task set will be surely s
hedulable with RM, but if the system

utilization is greater than U

lub

nothing 
an be said. Hen
e, restating the

previous senten
e, if the RM priority assignment is used and if the admission

test

P

n

i=1

C

i

T

i

� U

lub

is passed, then ea
h task in the system will respe
t all

its deadlines. If the admission test fails, then some deadlines 
an be missed;

sin
e RM is based on stati
 priorities, it is possible to fore
ast that the tasks

missing deadlines will be the lowest priority ones.

Theorem 3 If a s
heduling algorithm based on stati
 priorities is used to

s
hedule the periodi
 task set � = f�

1

; : : : �

n

g and task �

i

does not miss any

deadline, then ea
h task �

j

: P (�

j

) > P (�

i

) will not miss any deadline.
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Unfortunately, the utilization least upper bound for RM is quite low (0:69

in the worst 
ase); this problem 
an be addressed by using a di�erent guar-

antee test based on the tasks' �nishing times, as explained in [ABRT93℄.

Using this exa
t analysis, it is possible to perform a less pessimisti
 admis-

sion test, but there are still some task sets that are s
hedulable in theory

(sin
e

P

n

i=1

C

i

T

i

� 1) and are not s
hedulable by RM. Sin
e RM is optimal

between all the �xed priority assignments, those task sets 
an be s
heduled

only using dynami
 priorities. In this 
ase, the priority of a task does not

only depend on the task but it also depends on a se
ond parameter, that


an be the time t, the job number j, or a generi
 index i (hen
e, it will be

expressed as P (�

i

; x)). The most intuitive dynami
 priority assignment is

Earliest Deadline First (EDF), based on assigning priorities to the jobs, and

on assigning higher priorities to jobs with the shortest absolute deadline:

P (�

i

; j) = P (J

i;j

) =

1

d

i;j

EDF is an optimal s
heduling algorithm, meaning that if a task set �

is s
hedulable (that is, if an algorithm 
apable of s
heduling � in order to

respe
t every deadline exists), then EDF 
an s
hedule it respe
ting all the

deadlines.

This 
on
ept is expressed by the following theorem:

Theorem 4 A task set � is s
hedulable by EDF if and only if

8t

1

; t

2

: t

2

> t

1

; D(t

1

; t

2

) � (t

2

� t

1

)

Comparing Theorem 4 with Theorem 1, it is easy to see the optimality of

EDF.

3.3 Proportional Share S
heduling

A Proportional Share (PS) s
heduling algorithm emulates the GPS allo
ation

model in a real system, where multiple tasks 
annot exe
ute simultaneously

on the same CPU.

Hen
e, the ideal 
uid-
ow allo
ation is approximated using a quantum-

based allo
ation. That is to say, in a Proportional Share s
heduler the re-

sour
e is allo
ated in dis
rete time quanta having maximum size Q: a pro
ess

a
quires a resour
e at the beginning of a time quantum and releases the re-

sour
e at the end of the quantum (a new request is posted) or before (the
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pro
ess have to be expressly re-a
tivated); this is done dividing ea
h task �

i

in requests q

k

i

of dimension Q.

As already noted in Se
tion 2.4.3, quantum based allo
ation introdu
es

an allo
ation error respe
t to the 
uid 
ow model. The minimum theoreti
al

error bound is H

i;j

=

1

2

(

Q

i

w

i

+

Q

j

w

j

), where Q

i

is the maximum dimension

for �

i

requests and Q

j

is the maximum dimension for �

j

requests. This

allo
ation error in
uen
e the performan
e of time sensitive tasks in a way

that is des
ribed by the lag. In order to understand this, 
onsider that in

the ideal GPS system task �

i

exe
utes for a time

R

t

2

t

1

f

i

(t)dt in the interval

[t

1

; t

2

℄; in a real system this is impossible (be
ause tasks are not 
uid), so the

allo
ation error experimented by a task 
an be measured by the lag

1

:

lag

i

(t

1

) =

Z

t

1

t

0

f

i

(t)dt� exe


i

(t

0

; t

1

);

where t

0

is the a
tivation time of the task.

In the following of this se
tion, some of the most important PS s
heduling

algorithm are analysed, showing how they emulates the ideal GPS allo
ation,

and evaluating their performan
e in terms of allo
ation error and lag.

3.3.1 Weighted Fair Queuing

The �rst known Proportional Share s
heduling algorithm is Weighted Fair

Queuing (WFQ), that emulate the behaviour of a GPS system using the


on
ept of virtual time. The virtual time v(t) is de�ned by in
rements as

follows:

8

<

:

v(0) = 0

dv(t) =

1

P

�

i

2�(t)

w

i

dt

:

Ea
h quantum request q

k

i

is assigned a virtual start time S(q

k

i

) and a virtual

�nish time F (q

k

i

) de�ned as follows:

S(q

k

i

) = maxfv(r

i;k

); F (q

k�1

i

)g

F (q

k

i

) = S(q

k

i

) +

Q

i;k

w

i

where r

i;k

is the time at whi
h request q

k

i

is generated and Q

i;k

is the request

dimension (required exe
ution time); sin
e Q

i;k

is not known a priori (a task

may release the CPU before the end of the time quantum), it is assumed

equal to the maximum value Q

i

.

1

remember that the maximum lag has already be 
ited a measure of the allo
ation

error
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Tasks' requests are s
heduled in order of in
reasing virtual �nish time:

in the virtual time domain, ea
h request will �nish before the virtual �nish

time.

WFQ provide fairness (bounding the allo
ation error) in stati
 systems,

where all the tasks are always a
tive, but presents some problems:

� it needs the frequent re
al
ulation of v(t);

� it does not perform well in dynami
 systems (when a task a
tivates or

blo
ks, the fairness of the s
hedule is 
ompromised);

� it assumes ea
h requests size equal the maximum value (s
heduling

quantum): in a real situation this assumption is not 
orre
t;

3.3.2 Start Fair Queuing

In [GGV96℄, a proportional share s
heduler is used to subdivide the CPU

bandwidth between various appli
ation 
lasses: the proposed algorithm, Start

Fair Queuing (SFQ), is similar to WFQ but de�nes the virtual time in a dif-

ferent manner and s
hedules the requests in order of in
reasing virtual start

time. The virtual time v(t) is de�ned as follows:

v(t) =

8

>

<

>

:

0 if t = 0

0 or any value if the CPU is idle

S(q

k

i

) if request q

k

i

is exe
uting

SFQ guarantees an allo
ation error bound of 2H

i;j

, so it is near-optimal.

Moreover, SFQ 
al
ulates v(t) in a simpler way (introdu
ing less overhead)

and does not need the virtual �nish time of a request to s
hedule it, so it

does not require any a priori knowledge of the request exe
ution time (F (q

k

i

)


an be 
al
ulated at the end of q

k

i

exe
ution).

A Proportional Share algorithm s
hedules the tasks in order to redu
e

the allo
ation error experimented by ea
h of them; to provide some form of

real-time exe
ution it is important to guarantee that lag

i

(t) is bounded.

SFQ andWFQ provides an optimal upper bound for the lag: max

t

flag

i

(t)g =

Q

i

, but do not provide an optimal bound for the absolute value of the lag:

for example, for SFQ this bound max

t

fjlag

i

(t)jg = Q

i

+f

i

P

Q

j

that depends

on the number of a
tive tasks.

3.3.3 Earliest Eligible Virtual Deadline First

In [SAWJ

+

96℄ the authors propose a s
heduling algorithm, 
alled Earliest

Eligible Deadline First (EEVDF), that provide a bound on the lag experi-

mented by ea
h task.
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EEVDF de�nes the virtual time as WFQ and s
hedules the requests by

virtual �nish times (in this 
ase 
alled virtual deadlines), but use the virtual

start time (
alled virtual eligible time) to de
ide if a task 
an be s
heduled (is

eligible): if the virtual eligible time is grater than the a
tual virtual time, the

request is not eligible. Virtual eligible and �nish time are de�ned as follows:

S(q

k

i

) = maxfv(r

i;k

); E(q

k�1

i

+

Q

i;k�1

w

i

g

F (q

k

i

) = S(q

k

i

) +

Q

i;k

w

i

:

When a task joins or leaves the 
ompetition (a
tivates or blo
ks), v(t) is

adjusted in order to maintain the fairness in dynami
 system.

The minimum theoreti
al bound for the lag absolute value is Q, that is

guaranteed by the EEVDF algorithm; for this reason, EEVDF is said to be

optimal. EEVDF 
an also s
hedule dynami
 task sets and 
an use fra
tional

and non uniform quantum size, so it 
an be used in a real operating system.

To the best knowledge of the authors, EEVDF is the only algorithm that

provides a �xed lag bound.

If the lag is bounded, real-time exe
ution 
an be obtained maintaining


onstant the share of ea
h real-time task:

f

i

(t) =

C

i

+max

t

flag

i

(t)g

D

i

:

3.4 Reservation Based S
heduling

Based on 
lassi
al real-time s
heduling (EDF or RM priority assignment), it

is possible to implement a reservation guarantee by simply enabling a task

� to exe
ute as a real-time task (s
heduled, for example, by EDF or RM)

for a time Q, and then blo
king it (or s
heduling it in ba
kground as a non

real-time task) until the next period. In this way, a task is reshaped so that

it behaves like a periodi
 real-time task with parameters (Q; T ) and 
an be

properly s
heduled by a 
lassi
al real-time s
heduler. A similar te
hnique is

used in 
omputer networks by the traÆ
 shapers, su
h as the leaky bu
ket

or the token bu
ket. More formally,

� a reservation s
heduler is 
hara
terised by two parameters (Q; T )

� a budget, or 
apa
ity is asso
iated to ea
h reservation

� at the beginning of ea
h reservation period, the budget is re
harged to

Q
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Missed Deadline!!!

Figure 3.1: Resour
e Reservations with aperiodi
 arrivals.

� when the reserved task exe
utes, the budget is de
reased a

ordingly

� when the budget arrives to 0, the reservation is said to be depleted, and

an appropriate a
tion should be taken.

As previously said, when a reservation is depleted the reserved task 
an be

blo
ked, or it 
an be \downgraded" to be a non real-time task. By blo
king

the task, it is possible to implement a hard reservation, whereas if the task

is downgraded to non real-time a soft reservation behaviour 
an be imple-

mented.

Note that the reservation parameters (Q; T ) are di�erent from the task

parameters (C; T ), and this separation 
an be useful to 
ontrol the tasks'

QoS (as it will be shown in the next se
tions). In order to avoid 
onfusion,

the reservation's parameters will be indi
ated with (Q

s

; T

s

), whereas the task

parameters will be indi
ated with (C; T ) as usual.

3.4.1 Reservation Systems on Dynami
 Priority Sys-

tems

A generi
 reservation based s
heduling algorithm 
an in general have some

problems in handling aperiodi
 task's arrivals. For example, let's 
onsider two

tasks �

1

= (2; 4) and �

2

= (1:5; 3) served by two reservations RSV

1

= (2; 4),

and RSV

2

= (1:5; 3). As shown in Figure 3.1, if the EDF priority assignment

is used to implement the reservation s
heme, then the task set is s
hedulable

(and ea
h task will respe
t all its deadlines). However, if an instan
e of one

of the two tasks is a
tivated later (the third instan
e of �

1

in the example), a

task may miss a deadline. Other similar problems 
an be highlighted when

a lot of reservation are 
reated and immediately destroyed 
onse
utively in

a short time.

When implementing reservations over a dynami
 priority s
heme (su
h

as the EDF priority assignment), it is possible to take advantage of dynami


priorities in order to �x all these problems, and to better exploit the CPU
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time. This 
an be done by properly assigning a dynami
 s
heduling deadline

to ea
h task and by s
heduling tasks by EDF based on their s
heduling

deadlines.

De�nition 11 A s
heduling deadline d

s

i;j

is a dynami
 deadline assigned

to a job J

i;j

in order to s
hedule it by EDF.

Note that a s
heduling deadline is something 
ompletely di�erent from the

job deadline d

i;j

, that in this 
ase is only used for performan
e monitoring.

The abstra
t entity that is responsible for assigning a 
orre
t s
heduling

deadline to ea
h job is 
alled aperiodi
 server.

De�nition 12 A server is a me
hanism used to assign s
heduling dead-

lines to jobs in order to s
hedule them so that some properties (su
h as the

reservation guarantee) are respe
ted.

Hen
e, the server assigns to ea
h job J

i;j

an absolute time-varying deadline

d

s

i;j

whi
h 
an be dynami
ally 
hanged. This fa
t 
an be modelled by splitting

ea
h job J

i;j

in 
hunks H

i;j;k

, ea
h of whose is assigned a �xed s
heduling

deadline d

s

i;j;k

.

De�nition 13 A 
hunk H

i;j;k

is a part of the job J

i;j


hara
terised by a �xed

s
heduling deadline d

s

i;j;k

. Ea
h 
hunk H

i;j;k

is 
hara
terised by an arrival

time a

i;j;k

, an exe
ution time e

i;j;k

and by its s
heduling deadline. Note that

the arrival time a

i;j;0

of the �rst 
hunk of a job J

i;j

is equal to the job release

time: a

i;j;0

= r

i;j

.

In order to be useful to implement a resour
e reservation strategy, an

aperiodi
 server must assign s
heduling deadlines to tasks so that the uti-

lization of the served task is less than a server utilization U

s

. This 
on
ept


an be better understood by extending the demanded time de�nition given

in Se
tion 2.4.1

2

.

De�nition 14 Given a server S

i

, its demanded time D

s

i

(t

1

; t

2

) is de�ned

as

D

s

i

(t

1

; t

2

) =

X

j:r

i;j

�t

1

^d

s

i;j

�t

2

e

i;j

Where d

s

i;j

is the j

t

h deadline generated by server S

i

, and e

i;j

is the amount

of time that the served task will exe
ute with deadline d

s

i;j

.

2

note that the demanded time was de�ned in the 
ontext of the real-time guarantee,

and we are extending the de�nition to the reservation guarantee
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Based on these de�nitions, a server must generate s
heduling deadlines

so that

D

s

i

(t

1

; t

2

) � (t

2

� t

1

)B

s

i

in this way, a set of servers is s
hedulable (that is to say, ea
h s
heduling

deadline is respe
ted) if

P

n

i=1

B

s

i

� 1.

3.4.2 The Constant Bandwidth Server

The servi
e me
hanism proposed in this dissertation is the Constant Band-

width Server (CBS), a work 
onserving server (implementing soft reserva-

tions) that has been inspired by the Total Bandwidth Server and by the

Dynami
 Sporadi
 Server (for a better 
omparison between these servi
e

me
hanisms, see [Abe98, AB98℄.

The CBS algorithm is formally de�ned as follows:

� A CBS S is 
hara
terised by a budget 


s

and by a ordered pair (Q

s

; T

s

),

where Q

s

is the server maximum budget and T

s

is the server period. The

ratio B

s

= Q

s

=T

s

is denoted as the server bandwidth. At ea
h instant,

a �xed deadline d

s

k

is asso
iated with the server. At the beginning

d

s

0

= 0.

� Ea
h served job J

i;j

is assigned a dynami
 deadline d

i;j

equal to the


urrent server deadline d

s

k

.

� Whenever a served job J

i;j

exe
utes, the budget 


s

of the server S

serving �

i

is de
reased by the same amount.

� When 


s

= 0, the server budget is re
harged to the maximum value

Q

s

and a new server deadline is generated as d

s

k+1

= d

s

k

+ T

s

. Noti
e

that there are no �nite intervals of time in whi
h the budget is equal

to zero.

� A CBS is said to be a
tive at time t if there are pending jobs (remember

the budget 


s

is always greater than 0); that is, if there exists a served

job J

i;j

su
h that r

i;j

� t < f

i;j

. A CBS is said to be idle at time t if it

is not a
tive.

� When a job J

i;j

arrives and the server is a
tive the request is en-

queued in a queue of pending jobs a

ording to a given (arbitrary)

non-preemptive dis
ipline (e.g., FIFO).

34



τ1 (2,3)
HARD

τ2
SOFT

CBS
(2,7)

t

t

t
c1=3 c2=2

r1 r2 r3

t1 t2 t3

d2 d3c3=1d1

Figure 3.2: Simple example of CBS s
heduling.

� When a job J

i;j

arrives and the server is idle, if 


s

� (d

s

k

� r

i;j

)B

s

the

server generates a new deadline d

s

k+1

= r

i;j

+ T

s

and 


s

is re
harged to

the maximum value Q

s

, otherwise the job is served with the last server

deadline d

s

k

using the 
urrent budget.

� When a job �nishes, the next pending job, if any, is served using the


urrent budget and deadline. If there are no pending jobs, the server

be
omes idle.

� At any instant, a job is assigned the last deadline generated by the

server.

Figure 3.2 illustrates an example in whi
h a hard periodi
 task (dire
tly

s
heduled by EDF) �

1

is s
heduled together with a soft task �

2

, served by a

CBS having a budget Q

s

= 2 and a period T

s

= 7. The �rst job of �

2

arrives

at time r

1

= 2, when the server is idle. Being 


s

� (d

s

0

� r

1

)B

s

, the deadline

assigned to the job is d

s

1

= r

1

+ T

s

= 9 and 


s

is re
harged at Q

s

= 2. At

time t

1

= 6 the budget is exhausted, so a new deadline d

s

2

= d

s

1

+ T

s

= 16 is

generated and 


s

is replenished. At time r

2

the se
ond job arrives when the

server is a
tive, so the request is enqueued. When the �rst job �nishes the

se
ond job is served with the a
tual server deadline (d

s

2

= 16). At time t

2

= 16

the server budget is exhausted so a new server deadline d

s

3

= d

s

2

+ T

s

= 23

is generated and 


s

is replenished to Q

s

. The third job arrives at time 17,

when the server is idle and 


s

= 1 < (d

s

3

� r

3

)B

s

= (23� 17)

2

7

= 1:71, so it is

s
heduled with the a
tual server deadline d

s

3

without 
hanging the budget.

In Figure 3.3, a hard periodi
 task �

1

is s
heduled together with a soft

task �

2

, having �xed inter-arrival time (T

2

= 7) and variable 
omputation

time, with a mean value equal to C

2

= 2. This situation is typi
al in appli-


ations that manage 
ontinuous media: for example, a video stream requires
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τ1 (2,3)
HARD

τ2
SOFT

CBS
(2,7)

t

t

t
c1=2

d1 d3d2

c3=2c2=3

t1 t2 t3

Figure 3.3: Example of CBS serving a task with variable exe
ution time and


onstant inter-arrival time.

to be played periodi
ally, but the de
oding/playing time of ea
h frame is not


onstant. In order to optimise the pro
essor utilization, �

2

is served by a

CBS with a maximum budget equal to the mean 
omputation time of the

task (Q

s

= 2) and a period equal to the task period (T

s

= T

2

= 7).

As we 
an see from Figure 3.3, the se
ond job of task �

2

is �rst assigned a

deadline d

s

2

= r

2

+T

s

. At time t

2

, however, sin
e 


s

is exhausted and the job

is not �nished, the job is s
heduled with a new deadline d

s

3

= d

s

2

+ T

s

. As a

result of a longer exe
ution, only the soft task is delayed, while the hard task

meets all its deadlines. Moreover, the ex
eeding portion of the late job is not

exe
uted in ba
kground, but is s
heduled with a suitable dynami
 priority.

In other situations, frequently en
ountered in CM appli
ations, tasks have

�xed 
omputation times but variable inter-arrival times. For example, this is

the 
ase of a task a
tivated by external events, su
h a driver pro
ess a
tivated

by interrupts 
oming from a 
ommuni
ation network. In this 
ase, the CBS

behaves exa
tly like a TBS with a bandwidth B

s

= Q

s

=T

s

. In fa
t, if C

i

= Q

s

ea
h job �nishes exa
tly when the budget arrives to 0, so the server deadline

is in
reased of T

s

. It is also interesting to observe that, in this situation, the

CBS is also equivalent to a Rate-Based Exe
ution (RBE) model [JB95℄ with

parameters x = 1; y = T

i

; D = T

i

. An example of su
h a s
enario is depi
ted

in Figure 3.4.

Finally, Figure 3.5 shows how the tasks presented in Figure 3.1 are s
hed-

uled by a CBS when an instan
e arrives late. Sin
e the CBS assigns a 
orre
t

deadline to the instan
e arriving late (the third instan
e of �

1

), �

2

does not

miss any deadline, and temporal prote
tion is preserved.
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τ1 (2,3)
HARD

τ2
SOFT

CBS
(2,7)

t

t

t
c3=2d2 d3c1=2 c2=2 d1

t1 t2 t3

Figure 3.4: Example of CBS serving a task with 
onstant exe
ution time and

variable inter-arrival time.

Figure 3.5: CBS with aperiodi
 arrivals.
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H 1,1

J1

a
1,1

d1,1 d2,2

1,2H

J2

a
2,1

a
2,2

d1,2 =d 2,1

H 2,2

a
1,2

H

c=4 c=4

2,1

Figure 3.6: Serving some jobs divided in 
hunks.

3.4.3 CBS Properties

The proposed CBS servi
e me
hanism presents some interesting properties

that make it suitable for supporting CM appli
ations. The most important

one, the the isolation property is formally expressed by the following theorem.

Theorem 5 A CBS with parameters (Q

s

; T

s

) demands a bandwidth U

s

=

Q

s

T

s

Proof.

In order to prove that a CBS with parameters (Q

s

; T

s

) 
annot demand a

bandwidth greater than B

s

= Q

s

=T

s

, it is suÆ
ient to prove that

8t

1

; t

2

2 N : t

2

> t

1

; D

s

(t

1

; t

2

) � B

s

(t

2

� t

1

):

Remember that ea
h job J

j


an be thought as 
onsisting of a number of


hunks H

j;k

, ea
h 
hara
terised by a release time a

j;k

and a �xed deadline d

s

j;k

.

An example of 
hunks produ
ed by a CBS is shown in Figure 3.6. To simplify

the notation, all the 
hunks generated by a server will be referred with an

in
reasing index k (in the example of Figure 3.6, H

1;1

= H

1

, H

1;2

= H

2

,

H

2;1

= H

3

, and so on).

The release time and the deadline of the k

th


hunk generated by the server

will be denoted by a

k

and d

k

, 
 will indi
ate the a
tual budget and n the

number of requests in server queue. These variables are initialised in the

following manner:

d

s

0

= 0




s

= 0

n = 0

k = 0

Using these notations, the server behaviour 
an be expressed as in Figure

3.7.
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When job J

j

arrives at time r

j

enqueue the request in the server pending request queue;

n = n + 1;

if (n == 1) /* (the server is idle) */

if (r

j

+ (


s

/ Q

s

) * T

s

>= d

s

k

)

/*---------------Rule 1---------------*/

k = k + 1;

a

k

= r

j

;

d

s

k

= a

k

+ T

s

;




s

= Q

s

;

else

/*---------------Rule 2---------------*/

k = k + 1;

a

k

= r

j

;

d

s

k

= d

s

k�1

;

/* 


s

remains un
hanged */

When job J

j

terminates

dequeue J

j

from the server queues;

n = n - 1;

if (n != 0) begin to serve the next job in queue with deadline d

s

k

;

When job J

j

served by S

s

exe
utes for a time unit




s

= 


s

- 1;

When (


s

== 0)

/*---------------Rule 3---------------*/

k = k + 1;

a

k

= a
tual time();

d

s

k

= d

s

k�1

+ T

s

;




s

= Q

s

;

Figure 3.7: The CB algorithm.
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Note that the exe
ution time of 
hunk H

k

, e

k

, is the server time demanded

in the interval [a

k

; d

s

k

℄: e

k

= D

s

(a

k

; d

s

k

). Hen
e,

8t

1

; t

2

; 9k

1

; k

2

: D

s

(t

1

; t

2

) =

X

k:a

k

�t

1

^d

s

k

�t

2

e

k

=

k2

X

k=k

1

e

k

:

If 


s

(t) is the server budget at time t and f

k

is the time at whi
h 
hunk H

k

ends to exe
ute, it is possible to see that 


s

(f

k

) = 


s

(a

k

)� e

k

, while 


s

(a

k+1

)

is 
al
ulated from 


s

(f

k

) in the following manner:




s

(a

k+1

) =

(




s

(f

k

) if d

s

k+1

was generated by Rule 2

Q

s

if d

s

k+1

was generated by Rule 1 or 3:

Based on these observations, the theorem 
an be proved by showing that:

D

s

(a

k

1

; d

s

k

2

) + 


s

(f

k

2

) � (d

s

k

2

� a

k

1

)

Q

s

T

s

;

and this property 
an be proved by pro
eeding by indu
tion on k

2

�k

1

, using

the algorithmi
 de�nition of CBS shown in Figure 3.7.

Indu
tive base. If in [t

1

; t

2

℄ there is only one a
tive 
hunk (k

1

= k

2

= k),

then two 
ases have to be 
onsidered.

Case a: d

s

k

< a

k

+ T

s

.

If d

s

k

< a

k

+ T

s

, then d

s

k

is generated by Rule 2, so a

k

+




s

(f

k�1

)

Q

s

T

s

< d

s

k

and a

k

= f

k�1

, that is

a

k

+




s

(a

k

)

Q

s

T

s

< d

s

k

:

Being 


s

(f

k

) = 


s

(a

k

)� e

k

= 


s

(a

k

)�D

s

(a

k

; d

s

k

), it is possible to see that

a

k

+

D

s

(a

k

; d

s

k

) + 


s

(f

k

)

Q

s

T

s

< d

s

k

hen
e

D

s

(a

k

; d

s

k) + 


s

(f

k

) < (d

s

k

� a

k

)

Q

s

T

s

:

Case b: d

s

k

= a

k

+ T

s

.

If d

s

k

= a

k

+ T

s

, then D

s

(a

k

; d

s

k

) + 


s

(f

k

) = e

k

+ 


s

(f

k

) = Q

s

.

Hen
e, in both 
ases

D

s

(a

k

1

; d

s

k

2

) + 


s

(f

k

2

) = D

s

(a

k

; d

s

k

) + 


s

(f

k

) � (d

s

k

� a

k

)

Q

s

T

s

= (d

s

k

2

� a

k

1

)

Q

s

T

s

:
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Indu
tive step. The indu
tive hypothesis

D

s

(a

k

1

; d

s

k

2

�1

) + 


s

(f

k

2

�1

) � (d

s

k

2

�1

� a

k

1

)

Q

s

T

s

is used to prove that

D

s

(a

k

1

; d

s

k

2

) + 


s

(f

k

2

) � (d

s

k

2

� a

k

1

)

Q

s

T

s

:

Given the possible relations between d

s

k

and d

s

k�1

, three 
ases have to be


onsidered:

� d

s

k

� d

s

k�1

+ T

s

. That is, d

s

k

is generated by Rule 3 or Rule 1 when

r

j

� d

s

j�1

.

� d

s

k

= d

s

k�1

. That is, d

s

k

is generated by Rule 2.

� d

s

k�1

< d

s

k

< d

s

k�1

+ T

s

. That is, d

s

k

is generated by Rule 1 when

r

j

< d

s

j�1

.

Case a: d

k

2

= d

k

2

�1

+ T

s

.

In this 
ase d

s

k

2


an be generated only by Rule 1 or 3. Adding e

k

2

to both

sides of the indu
tive hypothesis, the following disequation 
an be obtained:

k

2

�1

X

k=k

1

e

k

+ e

k

2

� (d

s

k

2

�1

� a

k

1

)

Q

s

T

s

� 


s

(f

k

2

�1

) + e

k

2

and from 


s

(f

k

) = 


s

(a

k

)� e

k

it follows that

k

2

X

k=k

1

e

k

� (d

s

k

2

�1

� a

k

1

)

Q

s

T

s

� 


s

(f

k

2

�1

) + 


s

(a

k

2

)� 


s

(f

k

2

):

Sin
e d

s

k

2

is generated by Rule 1 or 3, it must be 


s

(a

k

2

) = Q

s

, therefore:

k

2

X

k=k

1

e

k

� (d

s

k

2

�1

� a

k

1

)

Q

s

T

s

� 


s

(f

k

2

�1

) +Q

s

� 


s

(f

k

2

)

k

2

X

k=k

1

e

k

+ 


s

(f

k

2

) � (d

s

k2�1

� a

k

1

)

Q

s

T

s

� 


s

(f

k

2

�1

) +Q

s

� (d

s

k

2

�1

� a

k

1

)

Q

s

T

s

+Q

s

and �nally

D

s

(a

k

1

; d

s

k

2

) + 


s

(f

k

2

) � (d

s

k2�1

� a

k

1

)

Q

s

T

s

+Q

s

= (d

s

k2�1

+ T

s

� a

k

1

)

Q

s

T

s

41



D

s

(a

k

1

; d

s

k

2

) + 


s

(f

k

2

) � (d

s

k

2

� a

k

1

)

Q

s

T

s

:

Case b: d

s

k

2

= d

s

k

2

�1

.

If d

s

k

2

= d

s

k

2

�1

, then d

s

k

2

is generated by Rule 2. In this 
ase,

k

2

�1

X

k=k

1

e

k

+ e

k

2

� (d

s

k

2

�1

� a

k

1

)

Q

s

T

s

� 


s

(f

k

2

�1

) + e

k

2

but, being d

s

k

2

= d

s

k

2

�1

, 


s

(f

k

2

) + e

k

= 


s

(a

k

2

) and 


s

(a

k

2

) = 


s

(f

k

2

�1

) (by

Rule 2), it results:

k

2

X

k=k

1

e

k

� (d

s

k

2

� a

k

1

)

Q

s

T

s

� 


s

(a

k

2

) + e

k

2

= (d

s

k

2

� a

k

1

)

Q

s

T

s

� 


s

(f

k

2

)

hen
e

D

s

(k

1

; k

2

) + 


s

(f

k

2

) =

k

2

X

k=k

1

e

k

� (d

s

k

2

� a

k

1

)

Q

s

T

s

:

Case 
: d

s

k

2

�1

< d

s

k

2

< d

s

k

2

�1

+ T

s

.

If d

s

k

2

< d

s

k

2

�1

+T

s

, then d

s

k

2

is generated by Rule 1, hen
e a

k

2

+




s

(f

k

2

�1

)

Q

s

T

s

�

d

s

k

2

�1

, and 
(f

k

2

�1

) � (d

s

k

2

�1

� a

k

2

)

Q

s

T

s

. Applying the indu
tive hypothesis,

the following disequation 
an be obtained:

k

2

�1

X

k=k

1

e

k

+ e

k

2

� (d

s

k

2

�1

� a

k

1

)

Q

s

T

s

� 


s

(f

k

2

�1

) + e

k

2

from whi
h it follows that

k

2

X

k=k

1

e

k

� (d

s

k
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� a

k

1

)

Q

s

T
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s

k
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� a

k
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Q

s

T

s
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k

2

k
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1

e

k

� (d

s

k

2

�1

� d

s

k

2
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� a

k

1

+ a

k
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)

Q

s

T

s

+ e

k

2

:

Now, being e

k

2

= Q

s

� 


s

(f

k

2

), we have:

k

2

X

k=k

1

e

k

� (�a

k

1

+ a

k

2

)

Q

s

T

s

+Q

s
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s

(f

k

2

) = (a

k

2
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s

� a

k
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)

Q

s

T

s
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s

(f

k
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but, from Rule 1 and 3, it results that d

s

k

= a

k

+ T

s

, hen
e

k

2

X

k=k

1

e

k

� (d

s

k

2

� a

k

1

)

Q

s

T

s

� 


s

(f

k

2

)

hen
e

D

s

(k

1

; k

2

) + 


s

(f

k

2

) =

k

2

X

k=k

1

e

k

� (d

s

k

2

� a

k

1

)

Q

s

T

s

:

2

The isolation property allows to use a bandwidth reservation strategy to

allo
ate a fra
tion of the CPU time to ea
h task that 
annot be guaranteed a

priori. The most important 
onsequen
e of this result is that soft tasks 
an be

s
heduled together with hard tasks without a�e
ting the a priori guarantee

even in the 
ase in whi
h soft requests ex
eed the expe
ted load.

In addition to the isolation property, the CBS has the following 
hara
-

teristi
s:

� No hypothesis are required on the WCET and the minimum inter-

arrival time of the served tasks: this allows the same program to be

used on di�erent systems without re
al
ulating the 
omputation times.

In other words, this property is the one that permits to de
ouple the

task model from the s
heduling parameters.

� If the task's parameters are known in advan
e, a hard real-time guar-

antee 
an be performed. This is the hard s
hedulability property, ex-

pressed by the following lemma:

Lemma 2 A hard task �

i

with parameters (C

i

; T

i

) is s
hedulable by

a CBS with parameters Q

s

i

= C

i

and T

s

i

= T

i

if and only if �

i

is

s
hedulable without the CBS.

Proof.

For any job of �

i

, r

i;j+1

�r

i;j

� T

i

and 


i;j

� Q

i

. Hen
e, by de�nition of

the CBS, ea
h job J

i;j

is assigned a s
heduling deadline d

s

i;j

= r

i;j

+ T

s

i

(sin
e r

i;j

is always greater than d

s

i;j�1

) and it is s
heduled with a budget

Q

s

i

= C

i

. Moreover, sin
e 


i;j

� Q

s

i

, ea
h job �nishes no later than the

budget is exhausted, hen
e the deadline assigned to a job does not


hange and is exa
tly the same as the one used by EDF. 2
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� The CBS automati
ally re
laims any spare time 
aused by early 
om-

pletions. This is due to the fa
t that whenever the budget is exhausted,

it is always immediately replenished at its full value and the server

deadline is postponed. In this way, the server remains eligible and

the budget 
an be exploited by the pending requests with the 
urrent

deadline.

� Knowing the statisti
al distribution of the 
omputation time of a task

served by a CBS, it is possible to perform a statisti
al guarantee, ex-

pressed in terms of probability for ea
h served job to meet its deadline.

3.4.4 A Model of the CBS

In order to perform a formal analysis of a reservation based s
heduler (and

of the CBS in parti
ular), a mathemati
al model of the system is needed. If

a task �

i

is s
heduled by a reservation based s
heduler (for example, if it is

served by a CBS) with parameters (Q

s

i

; T

s

i

), then �

i


an be modelled with a

queue. Moreover, if the task's interarrival times are multiple of T

s

i

, they 
an

be expressed as r

i;j+1

� r

i;j

= z

i;j

T

s

i

, hen
e:

1. ea
h T

s

i

units of time, Q

s

i

= B

i

T

s

units of time of task �

i


an be served;

2. the arrival of job J

i;j


orresponds to a request of 


i;j

units of time

entering the queue;

3. when a job arrives, the next request of 


j+1

units will arrive after r

j+1

�

r

j

= z

i;j

T

s

i

units of time.

Using this model, the evolution of task �

i


an be des
ribed by a state

variable x

i;j

de�ned as follows:

(

x

i;1

= 


i;1

x

i;j

= maxf0; x

i;j�1

� z

i;j

Q

s

i

g+ 


i;j

(3.1)

where x

i;j

indi
ates the length of the queue (in time units) immediately after

job J

i;j

arrival.

When job J

i;j

arrives, it will be served at a rate of Q

s

i

units of time ea
h

T

s

i

, hen
e, if there are x

i;j

units of time to serve immediately after J

i;j

arrival

(at time r

i;j

), J

i;j

is guaranteed to be served in

l

x

i;j

Q

s

i

m

T

s

i

time units. As a

result, job J

i;j

will �nish before time

r

i;j

+

&

x

i;j

Q

s

i

'

T

s

i

= = r

i;j

+

&

x

i;j

T

s

i

B

i

'

T

s

i

: (3.2)
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3.5 Sto
hasti
 Analysis of a Reservation Based

System

One of the advantages of using a reservation based s
heduling approa
h su
h

as the CBS, is that the s
heduling parameters (Q

s

i

; T

s

i

) 
an be separated

from the task 
hara
teristi
s (su
h as exe
ution and interarrival times). In

this way, if task �

i

is des
ribed by a pair of Probability Distribution Fun
tions

(PDFs) of the exe
ution and interarrival times, then it is possible to perform

a probabilisti
 guarantee, as de�ned in Se
tion 2.4.2. A simpli�ed sto
hasti


analisys of the CBS (only 
onsidering semiperiodi
 tasks and generalized spo-

radi
 tasks) is presented in [AB99℄; this se
tion extends the previous results

by generalizing the analisys to tasks 
hara
terized a sto
hasti
 behaviour in

both exe
ution and interarrival times.

In order to perform a sto
hasti
 analysis of a generi
 reservation based

s
heduling algorithm, the simpli�ed 
ase in whi
h r

i;j+1

� r

i;j

is a multiple

of T

s

i

is 
onsidered �rst, and the model presented in Equation 3.1 is used.

Sin
e the exe
ution and interarrival times are random variables des
ribed by

the PDFs U

i

(
) and V

i

(t), the state variable x is a random variable too, and

is des
ribed by a PDF �

(i;j)

k

= Pfx

i;j

= kg.

A

ording to Equation 3.2, job J

i;j

will �nish before time

r

i;j

+

&

v

i;j

Q

s

i

'

T

s

hen
e the probability �

(i;j)

k

that the queue length x

i;j

is k immediately after

a job arrival is a lower bound to the probability that the job �nishes before

the probabilisti
 deadline

Æ

i

=

&

k

Q

s

i

'

T

s

i

:

Being the interarrival times multiple of T

s

i

, it is possible to de�ne V

0

i

(z) =

Pfr

i;j

� r

i;j�1

= zT

S

g as probability that the interarrival time between two


onse
utive jobs is zT

s

i

. Hen
e,

V (t) =

(

0 if t mod T

S

6= 0

V

0

(

t

T

S

) otherwise.

(3.3)

Note that sin
e 


i;j

and r

i;j+1

� r

i;j

are time invariant, U

i

(
) and V

0

i

(z) do

not depend on j. Under these assumptions, it is possible to 
ompute �

(i;j)

k

as follows:

�

(i;j)

k

= Pfx

i;j

= kgPfmaxf0; x

i;j�1

� z

i;j

Q

s

g+ 


i;j

= kg =
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=

1

X

h=�1

Pfmaxf0; x

i;j�1

� z

i;j

Q

s

g+ 


i;j

= k ^ x

i;j�1

= hg =

=

1

X

z=�1

1

X

h=�1

Pfmaxf0; x

i;j�1

� z

i;j

Q

s

g+ 


i;j

= k ^ x

i;j�1

= h ^ z

i;j

= zg:

Being x

i;j

and z

i;j

greater than 0 by de�nition, the sums 
an be 
omputed

for h and z going from 0 to in�nity:

�

(i;j)

k

=

1

X

z=0

1

X

h=0

Pfmaxf0; h� zQ

s

g+ 


i;j

= kgPfx

i;j�1

= hgPfz

i;j

= zg

=

1

X

h=0

1

X

z=0

Pfmaxf0; h� zQ

s

g+ 


i;j

= kgV

0

i

(z)�

(i;j�1)

h

=

=

1

X

h=0

1

X

z=0

Pf


i;j

= k �maxf0; h� zQ

s

ggV

0

i

(z)�

(i;j�1)

h

=

=

1

X

h=0

1

X

z=0

U(k �maxf0; h� zQ

s

g)V

0

i

(z)�

(i;j�1)

h

Hen
e,

�

(i;j)

h

=

1

X

h=0

m

h;k

�

(i;j�1)

h

with

m

i

h;k

=

1

X

z=0

U

i

(k �maxf0; h� zQ

s

i

g)V

0

i

(z): (3.4)

Considering m

i

h;k

as an element of a matrix M

i

, �

(i;i)

k


an be 
omputed

by solving the equation

�

(i;j)

=M

i

�

(i;j�1)

(3.5)

where

�

(i;j)

=

0

B

B

B

B

B

B

B

B

B

B

B

B

�

�

(i;j)

0

�

(i;j)

1

�

(i;j)

2

�

(i;j)

3

:

:

:

1

C

C

C

C

C

C

C

C

C

C

C

C

A

:
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3.5.1 Stability Considerations

For a generi
 queue, it is known that the queue is stable (i.e., the number of

elements in the queue do not diverge to in�nity) if

� =

mean interarrival time

mean servi
e time

< 1:

Hen
e, the stability 
an be a
hieved under the 
ondition

E[C

i

℄

E[T

i

℄

<

Q

s

i

T

s

i

where E[C

i

℄ is the exe
ution time expe
tation and E[T

i

℄ is the interarrival

time expe
tation.

If this 
ondition is not satis�ed the di�eren
e f

i;j

� r

i;j

between the �n-

ishing time f

i;j

and arrival the time r

i;j

of ea
h job J

i;j

of task �

i

will in
rease

inde�nitely diverging to in�nity as j in
reases:

lim

j!1

f

i;j

� r

i;j

=1:

This means that, for preserving the s
hedulability of the other tasks, �

i

will

slow down in an unpredi
table manner.

If a queue is stable, a stationary solution of the Markov 
hain des
ribing

the queue 
an be found; that is, there exists a �nite solution �

i

su
h that

�

i

= lim

j!1

�

(i;j)

. Sin
e �

(i;j)

=M

i

�

(i;j�1)

, we 
an 
ompute � as follows:

�

i

= lim

j!1

�

(i;j)

=

= lim

j!1

M

i

�

(i;j�1)

=

=M

i

lim

j!1

�

(i;j�1)

=M

i

�

i

:

Hen
e, �

i


an be 
omputed by solving the eigenve
tor problem

�

i

=M

i

�

i

:

This solution 
an be approximated by trun
ating the in�nite dimension ma-

trixM

i

to an nxn matrix

~

M

i

and solving the eigenve
tor problem

~

�

i

=

~

M

i
~

�

i

with some numeri
al 
al
ulus te
hnique.
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3.5.2 Relaxing the hypothesis on interarrival times

In the previous analysis, task interarrival times are assumed to be multiple

of an integer value T

s

i

so that Equation 3.3 is veri�ed. This assumption

results to be very useful in order to simplify the queue analysis, but 
an be

unrealisti
 in some pra
ti
al situations.

Using some appropriate approximation, it is possible to relax the assump-

tion on the interarrival times without 
ompromising the analysis based on

it. When Equation 3.3 is not respe
ted, it is 
onvenient to introdu
e a new

distribution

~

V

i

(t) whi
h approximates V

i

(t) for enabling the previously devel-

oped analysis. In this way, it is possible to analyse the task behaviour based

on the approximate PDF

~

V

i

(t) instead of the a
tual PDF V

i

(t). In order this

approximation to be 
orre
t,

~

V

i

(t) must:

� be 
onservative (pessimisti
);

� verify Equation (3.3).

\Being 
onservative" means that if a probabilisti
 deadline 
an be guaranteed

using

~

V

i

(t), it is guaranteed also a

ording to the real distribution V

i

(t). Sin
e

the opposite is not true, this approa
h is pessimisti
.

The new PDF

~

V

i

(t) is 
onservative if

8k;

k

X

n=0

~

V

i

(n) �

k

X

n=0

V

i

(n); (3.6)

while the se
ond requirement states that

~

V

i

(t) =

(

0 if t mod T

s

i

6= 0

V

0

i

(

t

T

s

i

) otherwise.

Equation (3.6) states that the approximated interarrival times Cumulative

Distribution Fun
tion (CDF)

~

W

i

(t) 
omputed from

~

V

i

(t) must be greater

than or equal to the interarrival times CDF W

i

(t) 
omputed from V

i

(t).

Re
all that the CDF of a sto
hasti
 variable expresses the probability that

the variable is less than or equal to a given value. The CDF W (t) of a

sto
hasti
 variable t 
an be 
omputed as W (t) =

P

t

n=0

V (n), where V (t) is

the PDF of t, as shown in Figure 3.8.

In pra
ti
e, the intuitive interpretation of Equation 3.6 is that a

~

V

i

(t)

is 
onservative if the probability that the interarrival time is smaller than t

a

ording to

~

V

i

(t) is bigger than a

ording to V

i

(t). Figure 3.9 explains this


on
ept.
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Figure 3.8: CDF vs PDF.

Given a generi
 interarrival times PDF V

i

(t), it is possible to generate a


onservative approximation

~

V

i

(t) if 9k : t < k ) V

i

(t) = 0. In this 
ase, it is

possible to set T

s

i

< k and to 
ompute

~

V

i

(t) =

(

0 if t mod T

s

i

6= 0

P

t

i=t�T

s

i

+1

V

i

(t) otherwise.

(3.7)

It 
an be easily veri�ed that if

~

V

i

(t) is 
omputed a

ording to Equation 3.7,

then it will have both the required properties. However, every 
onservative

approximation

~

V

i

(t) respe
ting Equation (3.6) 
an be used: an extreme 
ase

is using

~

V

i

(t) =

(

1 if t = T

S

0 otherwise.

This is a very pessimisti
 approximation and 
orresponds to the worst 
ase

sporadi
 task analysis, based on 
onsidering task �

i

as a periodi
 task with

period equal to the MIT. In this 
ase,

V

0

i

(z) =

(

1 if z = 1

0 otherwise

and Equation (3.4) be
omes

m

i

h;k

= U

i

(k �maxf0; h�Q

s

i

g)

that is 
oherent with the results in [AB99℄.
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Conservative Approximation

Actual CDF

Figure 3.9: Conservative approximation of a CDF.

The 9k : t < k ) V

i

(t) = 0 assumption is realisti
 (an interarrival

time must have a lower bound) and does not impose serious limits to the

appli
ability of the analysis. However, in some o

asions the lower bound 
an

be too small, resulting in a small T

s

i

value that unne
essarily in
reases the

number of 
ontext swit
hes; in some other 
ases, a 
ontinuous distribution


an be used to approximate V

i

(t), making diÆ
ult to 
ompute the lower

bound.

In these 
ases, some approximation 
an be introdu
ed by trun
ating the

interarrival times PDF. In pra
ti
e, this 
an be done by 
onsidering V

i

(t) = 0

if t < t

0

, with V

i

(t

0

) << 1; in this way, it is possible to assign T

s

i

� t

0

.
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Chapter 4

Adaptive S
heduling

When something does not work, reboot the system and restart from

beginning.

Computer S
ientist approa
h

When something does not work, try to de
ompose the problem in

smaller problems, so that you will have many problems instead of

one.

Computer Engineer approa
h

When something does not work, keep randomly 
hanging things

until it works...

Lu
a's approa
h

I

n Se
tion 2.3, three high-level task models have been introdu
ed (PPS

tasks, MM tasks, and ED tasks). Those high level models asso
iate a

weight w

i

to ea
h task �

i

, and 
hara
terise time-sensitive tasks (MM

and ED Tasks) with proper temporal 
onstraints. In Chapter 3 some s
hedul-

ing algorithm that are suitable for managing time sensitive appli
ations have

been introdu
ed; however, it is not 
lear how PPS, MM, and ED tasks 
an

be implemented in terms of those s
heduling algorithms.

For example, to guarantee the respe
t of tasks deadlines (when using pri-

ority based s
heduling), or to reserve the 
orre
t amount of resour
es to ea
h

task (when using a reservation strategy or a PS s
heduler), some knowledge

about the tasks' exe
ution times is required. But sin
e the tasks' WCETs

are not spe
i�ed in the PPS, MM or ED model, some form of adaptation is

needed for performing a 
orre
t tuning of the s
heduling parameters.
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Figure 4.1: The 
ontrol s
heme.

4.1 The Feedba
kMe
hanism: Adaptive Band-

width Reservations

When the task exe
ution or interarrival times are unknown, some form of

adaptation is needed to estimate them. Su
h an adaptation me
hanism 
an

be designed following these steps:

1. 
hoose a suitable low-level s
heduling algorithm, on top of whi
h

the adaptive me
hanism will be implemented;

2. map the task model's parameters to the s
heduling algorithm param-

eters;

3. design a feedba
k me
hanism to adjust the tasks' reserved band-

width on line.

Sin
e the basi
 idea is to 
ontrol ea
h task independently from the others,

the proposed feedba
k s
heme is based on a s
heduler providing temporal

prote
tion between tasks. Every algorithm that provides temporal prote
tion

(su
h as a reservation s
heme or a PS s
heduler) 
an be used to implement

the low-level s
heduler, whose s
heduling parameters are adapted by the

feedba
k me
hanism so that the user does not have to 
ope with them. The

s
heduling algorithm used in this work is based on the Earliest Deadline

First (EDF) [LL73℄, sin
e it a
hieves full CPU utilization. Based on EDF,

temporal prote
tion is provided using a bandwidth reservation me
hanism,

hen
e serving ea
h task with a dedi
ated CBS is the natural 
hoi
e. Sin
e

a CBS S

i

is 
hara
terised by the pair (Q

s

i

; T

s

i

) (or (B

s

i

; T

s

i

)), the PPS, MM,

and ED task models must be mapped to su
h server parameters.

For what 
on
erns PPS tasks, Q

s

i


an be 
onsidered as the s
heduling

quantum, and it is assigned an initial default value of

~

Q

s

, whi
h 
an be


hanged using a spe
i�
 system 
all. Then, ea
h PPS task �

i

is assigned a

bandwidth

B

i

=

w

i

P

j:�

j

2PPS

w

j

B

PPS

(4.1)
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where B

PPS

is the total bandwidth assigned to PPS tasks. Thus, T

s

i

is


omputed as T

s

i

=

Q

s

i

B

i

.

Equation 4.1 shows how the total PPS bandwidth is shared among the

PPS tasks a

ording to the tasks weights (hen
e, it results to be identi
al to

the share f

i

in a PS system). In this way, the fra
tion of CPU bandwidth

B

PPS

assigned to PPS tasks will be shared among them proportionally to

the weights, like in a PS system

1

.

For what 
on
erns MM and ED tasks, the T

s

i

parameter is �xed and

equal to T

i

= 1=R

i

, where R

i

is the task rate spe
i�ed by the user. The Q

s

i

parameter is adjusted by the system in order to meet the tasks' temporal

requirements. As said, this 
an be done using a feedba
k me
hanism that


ontrols the s
heduling parameters based on an observed value. When

a CBS is used to serve a time sensitive task �

i

, the natural 
hoi
e for the

observed value is the the CBS s
heduling error

�

s

i;j

= d

s

i;j

� (r

i;j

+ T

i

)

de�ned as the di�eren
e between the last CBS s
heduling deadline d

s

i;j

as-

signed to job J

i;j

and the task's soft deadline d

i;j

= r

i;j

+ T

i

.

Sin
e the underlying priority assignment is based on EDF, if the server is

s
hedulable ea
h instan
e J

i;j

is guaranteed to �nish within the last assigned

server deadline d

s

i;j

. Hen
e, the CBS s
heduling error �

s

i;j

represents the

di�eren
e between the deadline d

s

i;j

that J

i;j

is guaranteed to respe
t and the

deadline d

i;j

= r

i;j

+ T

i

that it should respe
t. When this value is 0, the task

is guaranteed to respe
t its soft deadline, whereas when the s
heduling error

is di�erent from 0, some task instan
e 
an terminate after its (soft) deadline

be
ause the reserved bandwidth

Q

s

i

T

s

i

is not enough to properly serve it.

Hen
e, the obje
tive of the system is to 
ontrol the s
heduling error �

s

to

0: if this value in
reases, Q

s

i

has to be in
reased a

ordingly, otherwise it 
an

be left un
hanged. Based on this idea, a feedba
k 
ontrol me
hanism 
an

be used to adapt the amount of resour
es reserved to ea
h task. In pra
ti
e,

the amount of CPU bandwidth B

i;j

reserved to job J

i;j


an be di�erent from

the amount of CPU bandwidth reserved to other jobs of the same task, and

is adjusted a

ording to a feedba
k fun
tion B

i;j

= f(B

i;j�1

; �

s

i;j�1

). Di�erent

kinds of feedba
k fun
tions 
an be used, but the intuitive requirement is that

�

s

i;j

> 0) f(B

i;j

; �

s

i;j

) > B

i;j

.

Note that all this me
hanism works 
orre
tly under the assumption that

all the s
heduling deadlines d

s

i;j

are respe
ted, and this is true if and only

1

Ea
h PPS task will re
eive an amount Q

s

i

of CPU time every T

s

i

, so Q

s

i


an be


onsidered as the s
heduling quantum in a 
onventional time sharing system, as said

above.

53



if a s
hedulability 
ondition

P

B

s

i

� 1 is veri�ed. To better express this

requirement, some additional de�nitions are needed:

De�nition 15 Given a task set � = f�

1

; : : : �

n

g 
omposed of n tasks, a

bandwidth assignment

^

B is a ve
tor

^

B = (B

s

1

; : : : B

s

n

) 2 R

n

su
h that

8i � n; 0 � B

s

i

� 1, and at every time B

s

i

= B

i;j

.

De�nition 16 A bandwidth assignment

^

B is said to be feasible if

P

i

B

s

i

�

1.

The feasibility of a bandwidth assignment is a global 
ondition, be
ause

it depends on all the servers S

i

in the system. However, the feedba
k

fun
tion f() only performs a lo
al adaptation, sin
e it operates only on a

single task and does not 
onsider any s
hedulability (or feasibility) 
ondi-

tion

2

. As a result, it is possible that the reserved bandwidths are in
reased

\too mu
h" and the bandwidth assignment is not feasible (that is to say,

P

j:�

j

2MM[ED

B

j

> B

max

). In this 
ase, some form of global me
hanism is

ne
essary to de
rease the tasks' reserved bandwidths so that the assignment

is feasible. This 
ompression of the reserved bandwidths is performed by the


ompression fun
tion

^

B

0

= g(

^

B).

The 
ompression fun
tion is a fun
tion g : R

n

! R

n

that transforms an

infeasible bandwidth assignment into a feasible one; in pra
ti
e, if

^

B

0

= g(

^

B),

then

P

i

B

s

i

0

� 1. In parti
ular,

B

s

i

0

=

(

B

s

i

if

P

i

B

s

i

� 1

g

i

(

^

B) otherwise

It is worth noting that a

ording to these 
onsiderations it is possible

to de�ne a feedba
k me
hanism in whi
h the reserved CPU bandwidth B

s

is de
reased only in overload 
onditions (when

P

i

B

s

i

> 1). The spe
i�ed

task weights w

i


an be used to de
rease the tasks' reserved bandwidth in

overload 
onditions. This solution has the advantage of avoiding unne
essary

bandwidth adaptations, but 
ould be more diÆ
ult to analyse.

A simple solution to perform su
h a bandwidth 
ompression is to s
ale

the tasks' utilizations in a proportional way:

B

s

i

0

= B

s

i

s

i

being s

i

the s
aling fa
tor. Sin
e the 
ompression must be done a

ording

to the tasks' weights, s

i

must be proportional to w

i

: s

i

= w

i

M . Imposing

2

be
ause it is not aware of all the other reserved tasks in the system.

54



P

j:�

j

2MM[ED

B

s

j

0

= B

max

, it results:

X

j:�

j

2MM[ED

B

s

j

0

= B

max

)

X

j:�

j

2MM[ED

B

s

j

s

j

= B

max

)

X

j:�

j

2MM[ED

B

s

j

w

j

M = B

max

)

M

X

j:�

j

2MM[ED

B

s

j

w

j

= B

max

)

M =

B

max

P

j:�

j

2MM[ED

B

s

j

w

j

Hen
e,

B

s

i

0

= B

s

i

w

i

B

max

P

j:�

j

2MM[ED

B

s

j

w

j

(4.2)

This simple rule 
an be slightly modi�ed to guarantee a minimum bandwidth

B

min

to ea
h task.

The des
ribed 
losed loop 
ontrol used to adjust the reserved bandwidth

is shown in Figure 4.1.

4.2 Performan
e of Adaptive Reservations

When implementing an Adaptive Reservation abstra
tion, it is important

to design the feedba
k fun
tion so that the resulting adaptive s
heduler is

able to assign the 
orre
t amount of resour
e to ea
h task (when possible)

in a short time and with an a

eptable a

ura
y. Using the 
ontrol theory

terminology, the 
losed loop system must be stable, and the response time,

overshoot, and steady-state error must be 
ompliant with some spe
i�
ations.

Although designing a proper feedba
k fun
tion f() might seem to be

simple, things are more 
ompli
ated than what appears at a �rst glan
e

[Goe02℄. Hen
e, a 
areful analysis of the 
losed loop s
heduler is needed; in

this se
tion, after a simple analysis based on the CBS model developed in

Se
tion 3.4.4, a 
ontrol theoreti
al approa
h will be proposed.

4.2.1 Analysis of a Simple Feedba
k S
heme

Using Adaptive Reservations, the bandwidth reserved to an adaptive task

�

i

varies from instan
e to instan
e, hen
e it will be indi
ated as B

i;j

. If the
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bandwidth assignment is feasible, B

i;j+1

= f(B

i;j

; �

i;j

); hen
e, a

ording to

Equations 3.1 and 3.2, ea
h task dynami
s is des
ribed as follows:

8

>

>

>

>

<

>

>

>

>

:

x

i;1

= 


i;1

x

i;j

= maxf0; x

i;j�1

� z

i;j

B

i;j

T

s

i

g+ 


i;j

�

i;j

=

l

x

i;j

T

s

i

B

i;j

m

T

s

i

� T

i

B

i;j+1

= f(B

i;j

; �

i;j

)

If the feedba
k fun
tion f(B; �) is properly designed, it is possible to

prove that B

i;j

will 
onverge to a 
orre
t value

~

B

i

>




i

T

i

. For example, if the

feedba
k equation is f(B; �) = B + �

�

T

B, then the new bandwidth assigned

to job J

i;j+1

results to be

B

i;j+1

= B

i;j

+ �

�

i;j

T

i

B

i;j

= B

i;j

+ �

l

x

i;j

T

s

i

B

i;j

m

T

s

i

� T

i

T

i

B

i;j

=

= B

i;j

+ �

 &

x

i;j

T

s

i

B

i;j

'

T

s

i

T

i

� 1

!

B

i;j

But if the task is semiperiodi
, then T

i

= zT

s

i

(remember that T

i

is a

multiple of T

s

i

), hen
e

B

i;j+1

= B

i;j

+ �

 &

x

i;j

T

s

i

B

i;j

'

1

z

� 1

!

B

i;j

Now, de�ning S

i;j

=

l

x

i;j

T

s

i

B

i;j

m

B

i;j

, it is possible to obtain

B

i;j+1

= B

i;j

+ �(

S

i;j

z

� B

i;j

) = (1� �)B

i;j

+ �

S

i;j

z

(4.3)

Note that S

i;j

is an estimation of the CPU bandwidth required to serve J

i;j

in a server period, hen
e

S

i;j

z

is an estimation of the CPU bandwidth needed

to s
hedule J

i;j

in zT

s

i

= T

i

time units (that is, S

i;j

should 
onverge to the

amount

~

S

i

of CPU bandwidth needed by the task to 
ontrol the s
heduling

error to 0). Sin
e a su

ession a(n + 1) = (1 � �)a(n) + �S 
onverges to

S for n ! 1, lim

j!1

B

i;j

=

~

B

i

will be equal to the estimated bandwidth

requirement

~

S

i

z

if the 
ompression equation is not used. Hen
e, if a feasible

bandwidth assignment that 
ontrols all the s
heduling errors to 0 exists, the

reserved bandwidths will 
onverge to it.

More formally, given � > 0 it exists j

0

su
h that 8j � j

0

; jB

i;j

�S

i;j

j � �.

Hen
e,

S

i;j

z

� � � B

i;j

�

S

i;j

z

+ � )

l

x

i;j

T

s

i

B

i;j

m

B

i;j

z

� � � B

i;j

�

l

x

i;j

T

s

i

B

i;j

m

B

i;j

z

+ � )
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&

x

i;j

T

s

i

B

i;j

'

� � � z �

&

x

i;j

T

s

i

B

i;j

'

+ � )

8

<

:

x

i;j

T

s

i

B

i;j

� � � z

x

i;j

T

s

i

B

i;j

+ � � z � 1

)

8

<

:

B

i;j

�

x

i;j

zT

s

i

� �

B

i;j

�

x

i;j

(z�1)T

s

i

+ �

If j � j

0

, then B

i;j

will be 
onstrained into the interval

x

i;j

zT

s

i

� B

i;j

�

x

i;j

(z�1)T

s

i

of size

x

i;j

(z�1)T

s

i

�

x

i;j

zT

s

i

=

x

z(z�1)T

s

i

. It is easy to see that in
reasing z the reserved

bandwidth will 
onverge to a better estimation of the requested bandwidth.

On the other hand, in
reasing z will de
rease the server period, in
reasing

the number of 
ontext swit
hes and the kernel overhead.

From this argument, it is possible to understand that the server period

has to be 
arefully 
hosen in order to �nd a good trade-o� between a more

pre
ise resour
e allo
ation and a low kernel overhead.

4.2.2 A Control Theoreti
al Approa
h

The feedba
k fun
tion 
an be designed using di�erent approa
hes, either

theoreti
ally founded or empiri
ally proven to be e�e
tive. Sin
e 
losed-loop

systems similar to an adaptive reservation have been studied at long in 
ontrol

theory, an idea for properly designing the feedba
k fun
tion is to apply some

results form 
ontrol theory. In fa
t, 
ontrol theory provides powerful tools

that are very useful in analysing 
losed-loop systems, proving their stability,

and evaluating their dynami
 properties.

Additional De�nitions

To extend the s
heduling error 
on
ept t a generi
 reservation based system,

it is useful to de�ne the latest possible �nishing time for a job. The latest

possible �nishing time LFT

i;j

for job J

i;j�1

is the end of the latest reservation

period used by the job, minus the job arrival time: for example, if J

i;j�1

has

exe
ution time 


i;j�1

= 5, it has been reserved a bandwidth B

i

= 0:5, and

the reservation period is T

s

i

= 4, then it uses

l

5

0:5�4

m

= 3 reservation periods,

and its latest possible �nishing time is 15.

Note that, for CBS, when a job �nishes the deadline of the server minus

the job arrival time is equal to the latest possible �nishing time: LFT

i;j

=

d

s

i

� r

i;j�1

.

Mathemati
al Model of a Reservation

A proper feedba
k s
heme providing the required 
hara
teristi
s 
an be de-

signed only based on an a

urate model of the system. In this se
tion, a
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model of a reservation system alternative to the one presented in Se
tion

3.4.4 will be developed.

The notation will be simpli�ed by removing the task index from all the

quantities: hen
e, Q will be used instead of Q

i

, T

s

will be used instead of

T

s

i

, J

j

will be used instead of J

i;j

, and so on.

The goal of the feedba
k s
heduler is to 
ontrol LFT to T ; thus, the

s
heduling error �

k

is de�ned as the di�eren
e between the latest possible

�nishing time LFT

k

and the job relative deadline T . Note that, if LFT

k

> T ,

then job J

k�1


onsumes some of the time that should be used by the next

job, whi
h will have less time to exe
ute. In this 
ase, jobs J

j�1

and J

j

share a reservation period, and LFT

j+1

depends on LFT

j

. To express this

dependen
y, and write the dynami
 equations of our system, it is useful to

introdu
e another state variable that represents the amount of time used by

J

j�1

in its last reservation that it shares with J

j

.

As said, the s
heduling error is de�ned as the di�eren
e between the latest

possible �nishing time and the task period:

�

k

= LFT

k

� T:

Noti
e that the s
heduling error is a dis
rete variable and it is multiple of

T

s

.

It is also useful to de�ne a state variable x

k

that represents the amount

time 
onsumed by job J

k�1

on the latest reservation period, if shared with

job J

k

. To help 
larify the meaning of x

k

, an example is shown in Figure 4.2.

In Figure 4.2.a, J

1

uses only 2 reservation periods and �nishes before the end

of its period: J

1

and J

2

do not share any reservation, and x

2

= 0. In Figure

4.2.b, J

1

uses 3 reservation periods: therefore, x

2

= 1. In the following, x

k

will be assumed to be not measurable.

By de�nition,

(

x

0

= 0

LFT

1

=

l

C

0

B

0

T

s

m

T

s

The general equations for x

k

and LFT

k

are the following:

x

k

=

(




k�1

+ x

k�1

� (LFT

k

� T

s

)B

k�1

LFT

k

> T

0 LFT

k

� T

LFT

k

=

8

<

:

LFT

k�1

� T � T

s

+

l




k�1

+x

k�1

B

k�1

T

s

m

T

s

LFT

k�1

> T

l




k�1

B

k�1

T

s

m

T

s

LFT

k�1

� T

From the previous equation, it is possible to derive the s
heduling error:

�

k

=

8

<

:

�

k�1

� T � T

s

+

l




k�1

+x

k�1

B

k�1

T

s

m

T

s

�

k�1

� T

s

l




k�1

B

k�1

T

s

m

T

s

� T �

k�1

< T

s

(4.4)
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T
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J 1 J 2

a)

b)

3 3

35

Figure 4.2: Internal state x

j

. In 
ase a), the �rst job �nishes before the end

of its period, hen
e x

2

= 0; in 
ase b), the �rst job 
onsumes 3 reservation

periods, and 
onsumes 1 
apa
ity unit in the last reservation period, hen
e

x

2

= 1.

Now, a quantisation errorQE

k


an be introdu
ed 
onsidering two di�erent


ases: �

k�1

� T

s

and �

k�1

< T

s

. In the �rst 
ase, �

k

depends on x

k�1

that

is not measurable. However, x

k�1

is always in the range [0; B

k�1

T

s

℄. Hen
e,

the following upper bound for the s
heduling error holds:

�

k

= �

k�1

� T � T

s

+

&




k�1

+B

k�1

T

s

B

k�1

T

s

'

T

s

The quantisation error 
an be de�ned as:

QE

k

=

&




k�1

+B

k�1

T

s

B

k�1

T

s

'

�




k�1

+B

k�1

T

s

B

k�1

T

s

In the se
ond 
ase, the quantisation error is de�ned as follows:

QE

k

=

&




k�1

B

k�1

T

s

'

�




k�1

B

k�1

T

s

Finally, the s
heduling error is rede�ned as follows:

~�

k

= �

k

� QE

k

T

s

:

By substituting,

~�

k+1

=

(

~�

k

+




k

B

k

� T ~�

k

� T

s




k

B

k

� T ~�

k

< T

s

(4.5)
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Controller Design

As shown, a reservation-based s
heduler with period T

s


an be dealt with as

a dynami
al system des
ribed by the following equations:

�

k+1

=

(

�

k

+




k

B

k

� T if �

k

� T

s




k

B

k

� T if �

k

< T

s

(4.6)

where �

k

represents the s
heduling error. Equation 4.6 des
ribes an approxi-

mation of the s
heduling error where the quantisation error QE

j

is negle
ted

(in the this issue will be addressed in the sequel). The goal of this se
tion

is to propose te
hniques for e�e
tively designing feedba
k 
ontrollers for this

system. This task is hindered by the possibility for the system dynami
s of

swit
hing between two di�erent modes 
orresponding to �

k

� T

s

and �

k

< T

s

.

The 
lassi
al \pole-pla
ement" te
hnique 
an be used to synthesise a 
on-

troller in ea
h mode; in this way it is possible both to 
omply with require-

ments on the 
losed loop dynami
s (i.e. the evolution of the s
heduler under

the a
tion of a feedba
k 
ontroller).

Let's start to design the 
ontroller for the �rst operating mode (the same


onsideration apply to the se
ond one): if �

k

� T

s

, then

�

k+1

= �

k

+ 


k

u

k

� T

where u

k

is de�ned as

1

B

k

.

Quantities �

k

, 


k

, and B

k


an be expressed as a 
onstant value plus a

variation: �

k

= ��

k

+ �, 


k

= 
+�


k

and u

k

= u+�u

k

. At the steady state

it must hold 
 =

T

u

.

Assuming small variations around the linearization point, the relation

between the variations 
an be found via di�erentiation:

��

k+1

= ��

k

+ 
 �u

k

+ u �


k

= ��

k

+

T

u

�u

k

+ u �


k

: (4.7)

For notational simpli
ity and with a slight abuse of notation, in the rest of

the se
tion the symbol � will be dropped. Hen
e, unless otherwise stated,

�

k

, u

k

and 


k

represent variations of the original quantities around the �; u; 


respe
tively.

As the di�eren
e Equation 4.7 is linear, it is possible to 
ompute the Z

transform:

�(Z) = H




(Z)
(Z) +H

u

(Z)u(Z);

where H




(Z) =

u

Z�1

and H

u

(Z) =

T

u(Z�1)

.

60



H

−

++ BRef

c

+F Hu

c

Figure 4.3: Dynami
 system representing a linearised reservation with a feed-

ba
k me
hanism.

To a
hieve the 
ontrol goals, a feedba
k 
ontroller F (Z) is used as in

Figure 4.3: u(Z) = �F (Z)�(Z). The 
losed loop dynami
s is des
ribed by

the transfer fun
tion H(Z) between 
(Z) and �(Z):

�(Z) = H(Z)
(Z) =

H




(Z)

1 + F (Z)H

u

(Z)


(Z) (4.8)

The simpli
ity of the system (whose dynami
 equations are similar to

those of a tank) suggested the use of a PI 
ontroller. A PI 
ontroller is

des
ribed by:

u

k

= 


1

(��

k

) + 


2

k�1

X

j=0

(��

k�1

)

where 


1

and 


2

are the 
oeÆ
ients of the proportional and integral a
tions

respe
tively. By subtra
ting the expression for u

k�1

from the expression for

u

k

the equation 
an be written as:

u

k

= u

k�1

+ �(��

k

) + �(��

k�1

):

where � = 


1

and � = 


2

� 


1

. The transfer fun
tion F (Z) is given by:

F (Z) =

�Z + �

Z � 1

:

Plugging F (Z) into Equation 4.8,

�(Z) = H(Z)
(Z) =

u(Z � 1)

Z

2

+ (

T

u

�� 2)Z + �

T

u

+ 1


(Z): (4.9)

The 
losed loop system is stable if the zeros Z

i

of the denominator in

Equation 4.9 (i.e. the poles of the 
losed loop system), have norm stri
tly
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lower than 1: jjZ

i

jj < 1. Observe that the use of the PI 
ontroller enables

the 
hoi
e of the two 
losed loop poles poles. As a matter of fa
t, to pla
e

the 
losed loop poles in Z

1

and Z

2

it is suÆ
ient to impose:

Z

2

+ (

T

u

�� 2)Z + �

T

u

+ 1 = Z

2

� (Z

1

+ Z

2

)Z + Z

1

Z

2

:

Solving for �; � yields:

� =

u(2� (Z

1

+ Z

2

))

T

� =

u(Z

1

Z

2

� 1)

T

:

Moreover, the de
ay rate � is given by the maximum norm of the poles.

Repeating the 
omputations for �

k�1

< T

s

, it is possible to obtain:

� =

u(1� (Z

1

+ Z

2

))

T

� =

u(Z

1

Z

2

)

T

:

All subsequent results 
an similarly be rephrased.

A

ounting for the Quantisation Error

A

ording to Equation 4.5

�

k

= ~�

k

+QE

k

T

s

:

Let's 
onsider an equilibrium point where the quantisation error has a value

~

QE

k

and repeat the analysis 
onsidering the variation around the equilibrium

QE

k

=

~

QE

k

T

s

+ �QE

k

, where T

s

has been absorbed into �QE

k

. Hen
e,

0 � �QE

k

� T

s

. Considering now the linearised system, it is possible to

treat �QE

k

as an additional norm-bounded disturban
e (see Figure 4.4).

The transfer fun
tion from su
h a disturban
e to �

k

is given by

1

1+F

u

(Z) G(Z)

.

Thereby, it is possible to use standard results from 
ontrol theory to


ompute a bound for the e�e
t of quantisation. Considering for simpli
ity

the 
ase of distin
t and real poles, su
h a bound is provided by

2 T

s

u

jjZ

2

�Z

1

jj

.

This bound has to be added to the one 
omputed for the un
ertainties of the


omputation time 


k

. As one would expe
t, diminishing T

s

(and hen
e the

quantisation grain) results into higher and higher pre
ision for the 
ontrol.

Again, observe that a less 
onservative bound 
an be obtained by numeri
ally


omputing E =

P

jjf

k

jj.
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 system representing a linearised CBS with a feedba
k

me
hanism.

Moreover, if the 
ontroller is able to stabilise the system into a point

rather than into a set, it is possible to apply the Steady State Worst Case

Analysis developed by Slaughter [Sla64℄: the worst 
ase steady state quanti-

sation error on � is lower than or equal to j

1

1+H

u

(Z)F (Z)

j

Z=1

T

s

. Repla
ing H

u

and F with the expressions provided above, it is possible to 
on
lude that

j

1

1+H

u

(Z)F (Z)

j

Z=1

T

s

= 0. Therefore, if it is possible to stabilise the system

into a point then the steady state value for the e�e
t of the quantisation

error is 0. The e�e
t of quantisation is, in this 
ase, an overestimation of

the bandwidth

~

B assigned to the task. In fa
t, imposing the equilibrium


ondition �

k+1

= �

k

in equation 4.4 it is possible to obtain:

�




~

BT

s

�

T

s

� T = 0:

Observing that x � dxe < x + 1, this results in




T

�

~

B �




T � T

s

:

Experimental Results

To test the e�e
tiveness of the proposed adaptive s
heme, an adaptive reser-

vation 
ontrolled by the PI designed in Se
tion 4.2.2 was simulated, 
ompar-

ing the results obtained with di�erent poles assignments and di�erent server

periods. These �rst experiments were performed using syntheti
 workloads

(as proposed in [LSA

+

00℄) to estimate the performan
e of a feedba
k s
hed-

uler. Then, a more realisti
 workload (su
h as the exe
ution times of an

MPEG de
oder) was simulated to show how a 
ontroller that gives good

responses to a step 
an have problems with real workloads. In this 
ase, a

proper assignment of the poles is a 
riti
al task that needs further investiga-

tions.
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Figure 4.5: S
heduling Error obtained using an adaptive reservation with

T

s

= 20 in response to a step in the load.

Evaluating the performan
e of a feedba
k s
heduler is not trivial: s
hed-

ulers that seem to work properly at a �rst glan
e [LSTS99℄ may result to be

unstable when evaluated more systemati
ally [LSA

+

00℄. To properly evalu-

ate our adaptive reservation me
hanism, the system response to a step and

a ramp in the system load were used, sin
e they have been proved to be a

good test 
ase [LSA

+

00℄.

Although a wide set of experiments was performed, for the sake of brevity

only some meaningful experiments are reported here. In parti
ular, in the

following results 
onsider a task � with period T = 40 and exe
ution time




j

= 5 if j < 300, 


j

= 15 otherwise.

Figure 4.5 shows �

j

when T

s

= 20 (the 
losed loop poles are assigned as

in the previous simulation). When, at job J

299

, the exe
ution time in
reases

from 5 to 15, the s
heduling error raises to 40 (two times the reservation

period), and it is 
ontrolled to 0 in a short time. Note that in this 
ase

the overshot is smaller than in the previous experiment: this is due to the

quantisation error 
aused by the non-a

essible internal state. However, when

the system rea
hes the steady state, the quantisation error is 0, as expe
ted.

As in the previous 
ase, moving Z

2

from 0:2 to 0:9 the de
ay rate is higher.

Figure 4.6 shows the evolution of the reserved time, and is probably more

interesting. In this 
ase, the impa
t of the quantisation error is an overestima-
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Figure 4.6: Bandwidth reserved by an adaptive reservation with T

s

= 20 in

response to a step in the load.

tion of the reserved bandwidth, whi
h in the worst 
ase results to be 0:747198

instead of 0:375 = 15=40. Hen
e, the overestimation is 0:747198� 0:375 =

0:37220; this value is 
ompatible with the worst 
ase estimation developed in

Se
tion 4.2.2, whi
h is B

0

(T

s

=(T �T

s

)) = 0:375(20=(40�20)) = 0:375. Note

that, in this 
ase, the quantisation error tends to in
rease when Z

2

moves to

0:2: in fa
t, a faster 
ontroller tends to \overrea
t" to the exe
ution times

variation, and the quantisation error prevents B

j

from de
reasing after the

�rst adaptation.

Figures 4.7 and 4.8 plot the evolution of the s
heduling error and of B

j

T

s

when T

s

= 10, respe
tively. In this 
ase, the quantisation error is lower and

the response be
omes 
loser to the one of model without quantisation. In

this 
ase, faster 
ontrollers (Z

2

= 0:2 and Z

2

= 0:5) have an underrun in the

s
heduling error, that was previously masked by the quantisation error.

The same experiments were repeated using a ramp on the input, and gave

similar results.

As previously stated, the �rst set of experiments was performed based

on a syntheti
 workload that has been re
ognised as parti
ularly signi�
ant

for evaluating system performan
e [LSA

+

00℄. However, some experiments

performed using a more realisti
 workload highlighted new problems.

To generate a realisti
 workload, an MPEG player running on Linux has
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been instrumented to measure the frame de
oding times for the trailer of

Star Wars Episode 1 [Lu
99℄, shown in Figure 4.9. As it is possible to see,

the exe
ution times are highly variable. Sin
e the goal of the PI 
ontroller is

to 
ontrol the s
heduling error to 0, it 
an be expe
ted that this variability

in the exe
ution times will be re
e
ted in a high variability in the reserved

time. Figure 4.10 shows the evolution of the reserved time for a PI 
ontroller

(the simulation was performed setting T = 33ms - 33:3 frames per se
ond,

T

s

= T=4 = 8:25ms, Z

1

= 0:1 and Z

2

= 0:2. By 
omparing the two �gures,

it is 
lear that the reserved bandwidth does not stabilise properly; as a result,

the s
heduling error does not stabilise to 0, but 
ontinues to os
illate. This

kind of problem 
an be expe
ted from the theory of 
ontrol, be
ause the

system's input is highly variable. Sin
e the system is pra
ti
ally stable and

the variations in the input are bounded, the variations on the s
heduling

error are also bounded (and the average of the s
heduling error is 0).

This problem 
an be addressed by �ltering out the higher frequen
ies

(this 
an be done by moving one of the two poles near to 1). The results are

shown in Figure 4.11. By 
omparing Figures 4.11 and 4.9, it is 
lear that

the reserved bandwidth results to be more stable, and this permits to better


ontrol the s
heduling error. The �rst 
ontroller (with Z

2

= 0:2) tends to

\over-rea
t" to exe
ution time variations, presenting a bigger overshot: even
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after the initial transient, the s
heduling error raises to more than 33ms. On

the 
ontrary, moving the se
ond pole to Z

2

= 0:9, the maximum s
heduling

error registered after the initial transient is 8:75ms.

Summing up, while 
onsidering the response to a step or to a ramp the

position of the poles Z

1

and Z

2

only in
uen
es the overshoot and the response

time, when a more realisti
 workload is applied as input to the system, the

position of the poles be
omes 
riti
al for the system performan
e.

4.3 The QoS Manager

To test the e�e
tiveness of the proposed approa
h, the adaptive reservation

abstra
tion des
ribed in the previous se
tions has been implemented through

a QoS Manager that realizes the 
ontrol loop used to adjust the s
heduling

parameters.

Most of the fun
tionalities of the 
ontrol loop are 
oded in the user-level

QoS manager; in this way, the kernel is only required to:

� provide temporal prote
tion (hen
e, the kernel s
heduler has to use an

appropriate s
heduling algorithm;

� give the possibility of 
hanging the s
heduling parameters of ea
h task;

� export some kind of performan
e parameter that 
an be used as an

observed value for the 
ontrol loop. As said, if the kernel implements

the CBS algorithm, it 
an export the CBS s
heduling error.

In this vision, the kernel provides a me
hanism, the s
heduling algorithm,

that is used by the QoS manager to implement a resour
e management poli
y.

The tasks whose s
heduling parameters are 
ontrolled by the QoS Manager

are referred as adaptive tasks, whereas the other tasks (
hara
terised by �xed

s
heduling parameters) will be referred as regular tasks.

Sin
e the QoS Manager needs to have a global system visibility to im-

plement the 
ompression equation (and to eliminate the problems des
ribed

in [CT94℄), it is a regular task (indi
ated as qosman in Figure 4.12). The

QoS Manager task is used to 
reate adaptive tasks and to manage their

bandwidths a

ording to some user de�ned poli
y.

All the adaptive appli
ations have to be linked against the QoS library,

that interfa
es them with the QoS manager, providing some library 
alls to


ommuni
ate with it.

When the qosman task is 
reated, it asks the system for all the available

CPU bandwidth in order to distribute it among adaptive tasks. When an

appli
ation needs to 
reate a new adaptive task, it must issue a request to the
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qosman (through the qset addtask() library 
all). After this 
all the task

is 
reated and added to the set of the tasks handled by the QoS Manager.

At the beginning of ea
h period, the adaptive task is a
tivated (i.e., a new

job is 
reated for that task). When the job �nishes, the task has to notify this

event to the qosman task (through the qtask endinstan
e() library 
all);

in this way, qosman has the possibility to monitor the performan
e of the

adaptive task. In this 
ase, performan
e monitoring is done by measuring

the s
heduling error, that will be used to 
ompute the new requested band-

width by applying the feedba
k fun
tion f(). After that, the QoS manager

will apply the 
ompression fun
tion g(), and will adjust the parameters of

all the adaptive tasks in the system (note that if the requested bandwidth

assignment is feasible, the s
heduling parameters of only one task need to be


hanged).

4.3.1 Implementation on the HARTIK kernel

A �rst version of the QoS manager has been 
oded on HARTIK [AB00℄ (that

dire
tly provides the CBS s
heduling inside the kernel), taking advantage of

the parti
ular HARTIK stru
ture to simplify and making more eÆ
ient the

implementation.

HARTIK is in fa
t a real-time exe
utive that must be dire
tly linked to the

appli
ation program, sharing 
ode and data with it. In parti
ular, the kernel

stru
tures are not prote
ted from the appli
ation, and all the appli
ation

threads share the same address spa
e. The �rst prototypal implementation

of the QoS Manager, based on HARTIK, took advantage of these pe
uliarities

of the HARTIK kernel to improve the eÆ
ien
y and redu
e the overhead. On

the other hand, this implementation is not portable.

After that the �rst prototype showed the e�e
tiveness of adaptive reser-

vations, the QoS manager has been reimplemented in a portable way, to

provide support for di�erent kinds of kernels.

4.3.2 Portable Reimplementation

To make the QoS manager independent from the OS kernel, its fun
tionalities

have been split between user tasks (inside the QoS Library) and the qosman

task. In this way, the adaptation me
hanism is distributed between the

appli
ation address spa
e and the QoS manager address spa
e, and some

IPC me
hanism is used to allow 
ommuni
ation between the QoS library

(in the appli
ation spa
e) and the QoS manager. In a unix-like system,

su
h as Linux, this me
hanism 
an be provided through some form of IPC

(for example, a FIFO, or named pipe); in non-prote
ted systems, su
h as
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HARTIK, this 
ommuni
ation 
an be more eÆ
iently performed using shared

memory.

Hen
e, the portable implementation of the QoS manager and library is

based on a two-layer approa
h, in whi
h the upper layer is system indepen-

dent, whereas the lower layer is system defendant and is responsible for:

� providing a simple and eÆ
ient 
ommuni
ation me
hanism between the

QoS library and the qosman task;

� implementing the intera
tions between the QoS manager and the ker-

nel (that is to say, reading the s
heduling error and modifying the

s
heduling parameters).

This new implementation results in a 
lient/server stru
ture, and this

approa
h also helps to better isolate the various fun
tionalities into spe
i�


modules, as shown in Figure 4.13:

1. the QoS library 
ode, running in the adaptive appli
ation address spa
e,

is responsible for reading the observed value and 
omputing the feed-

ba
k fun
tion,

2. the QoS manager re
eives requests from the adaptive appli
ations, and

performs the resour
e assignment applying the 
ompression fun
tion,

3. the kernel s
hedules the tasks a

ording to the parameters set by the

QoS manager, and produ
es a new s
heduling error.

All the interfa
e 
alls are implemented by QoS library fun
tions that send

the appropriate requests to qosman. In parti
ular, the qman endinstan
e()


all reads the s
heduling error (using an appropriate 
all to the OS kernel,

or passing through the QoS manager), 
omputes the feedba
k fun
tion (only
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using the read value and the status information 
ontained in the appli
ation's

address spa
e), and sends the new bandwidth requirement to qosman.

The QoS Manager task re
eives bandwidth requests from the appli
ation

tasks, and serves them by adapting the tasks' s
heduling parameters. If

the sum of the CPU bandwidths requested by all the 
lients (the adaptive

tasks) through the QoS library is greater than U

lub

, then the 
ompression

fun
tion is applied, and the CPU bandwidth assigned to all the adaptive

tasks is updated. Otherwise, only the CPU bandwidth reserved to the task

performing the request is 
hanged. Note that qosman is the only task that


an modify the s
heduling parameters in the kernel.

The portable reimplementation of the QoS manager 
urrently runs on

HARTIK and on the Linux kernel (Linux/RK [RAdN

+

00℄ in parti
ular).

4.3.3 Experimental Evaluation

The e�e
tiveness of the QoS Manager was tested implementing the 
ontroller

des
ribed in Se
tion 4.2.2; the implementation of the PI 
ontroller was a

simple task and required less than half an hour.

Using this implementation, the feedba
k s
heduler was tested by running

two simultaneous MPEG players (at 33:3Fps and 20Fps) atta
hed to two
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adaptive reservations, with periods 33=4 = 8:25ms and 50=4 = 12:5ms. The

s
heduling errors for the two players are shown in Figures 4.14 and 4.15.

These experiments were performed setting Z

1

= 0:1 and Z

2

= 0:8.

After an initial transient, the feedba
k 
ontroller is able to adapt the re-

served bandwidths so that the s
heduling error is 
ontrolled to about 0. Sin
e

the exe
ution times are highly variable, the s
heduling error 
annot be 
on-

stant, but it is important to note that � � 0 most of the time (remember that

a negative s
heduling error is not bad for the per
eived QoS). In 
oin
iden
e

with big variations in the exe
ution times, the s
heduling error in
reases, but

it is immediately 
ontrolled to 0 again. It is important to note that these

plots refer to real experiments performed on a real Linux system, and that

the two players run simultaneously and share some important resour
e, su
h

as the X server.

4.4 User Level Adaptation

In this se
tion, the previously introdu
ed adaptation me
hanism will be de-

s
ribed from a di�erent point of view, analysing it in terms of demanded

bandwidth and requested bandwidth. The 
on
epts of demanded bandwidth
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and reserved bandwidth have been informally used in the previous se
tions,

and will be more formally de�ned here.

The demanded bandwidth 
an be de�ned based on the time D

s

i

(t

1

; t

2

)

demanded by server S

i

. In fa
t, it has been proved that D

s

i

(t

1

; t

2

) � (t

2

�

t

1

)B

s

i

, hen
e

De�nition 17 The demanded bandwidth is be de�ned as

B

demanded

i

= max

(t

1

;t

2

)

D

s

i

(t

1

; t

2

)

t

2

� t

1

:

First of all, note that

B

demanded

i

= max

(t

1

;t

2

)

D

s

i

(t

1

; t

2

)

t

2

� t

1

) B

demanded

i

�

(t

2

� t

1

)B

s

i

t

2

� t

1

= B

s

i

:

Moreover, it is easy to �nd a 
ase (a 
ontinuously ba
klogged task) in whi
h

the demanded bandwidth is equal to the reserved bandwidth, hen
e B

demanded

i

�

B

s

i

.

As a result, we obtain

(

B

demanded

i

� B

s

i

B

demanded

i

� B

s

i

) B

demanded

i

= B

s

i

Sin
e the demanded bandwidth results to be equal to the reserved bandwidth,

they will be both referen
ed as B

s

i

in the future.

The requested bandwidth 
an be de�ned based on the tasks' soft dead-

lines, in order to des
ribe the amount of the CPU bandwidth that the task

should be reserved to ful�l its time 
onstraints.

De�nition 18 Given a task �

i

, its requested bandwidth B

R

i

is de�ned as

max

t

1

;t

2

D

i

(t

1

; t

2

)

t

2

� t

1

Where D

i

(t

1

; t

2

) is the time demanded by the tasks' soft deadlines, as previ-

ously de�ned in Chapter 2.

Now, let's remember that a task served by a CBS S

i


annot demand

more than the reserved bandwidth B

s

i

: if the task requested bandwidth B

i

is greater than B

s

i

, the task will slow down in order not to a�e
t the others.

This 
an be better understood in the following way:

B

req

i

= lim

t!1

D

i

(0; t)

t

= lim

t!1

P

d

i;j

�t




i;j

t

= lim

k!1

P

k

j=0




i;j

t

=
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= lim

k!1

P

k

j=0




i;j

r

i;k

+ a

= lim

k!1

P

k

j=0




i;j

k

k

r

i;k

+ a

= lim

k!1

P

k

j=0




i;j

k

lim

k!1

k

r

i;k

+ a

)

B

req

i

= E[U(
)℄

1

E[V (t)℄

=

E[U(t)℄

E[V (t)℄

As shown in Se
tion 3.5, if

E[U(t)

E[V (t)℄

< B

s

i

, the task QoS 
an be 
ontrolled,

otherwise the s
heduling deadline will be postponed in an unpredi
table way.

Sin
e

E[U(t)

E[V (t)℄

< B

req

i

, the previous 
ondition 
an be rewritten as B

req

i

< B

s

i

.

Hen
e, if a task \requests too mu
h bandwidth" (i.e., if the requested

bandwidth is greater than the reserved bandwidth: B

req

i

> B

s

i

) its s
hedule

is no more predi
table, and its QoS 
annot be 
ontrolled. In this dissertation,

a task requiring too mu
h bandwidth is referred as an overloaded task.

De�nition 19 Task �

i

is said to be overloaded if

B

req

i

� B

s

i

: (4.10)

The \task overload" situation 
an be removed in two ways (that may also

be 
ombined together):

1. By in
reasing the reserved bandwidth B

s

i

2. By de
reasing the task requested bandwidth B

req

i

The �rst strategy is used by adaptive reservations, where the s
heduler or a

QoS manager adapts the reserved bandwidths in order to resolve all the task

overload situations (if possible). In the se
ond strategy, ea
h appli
ation

expli
itly s
ales down its QoS (and 
onsequently its resour
e requests), in

order to make B

req

i

< B

s

i

, thus removing the overload 
ondition. This is

referred as appli
ation level adaptation, sin
e in this 
ase ea
h appli
ation

has the responsibility to 
ope with its own overloads (ea
h appli
ation 
an

s
ale down its QoS in di�erent ways, and it is the only entity to know how

to perform su
h a QoS adaptation). Numerous solutions for performing su
h

an appli
ation level adaptation have been proposed in the literature and are

well known in the multimedia 
ommunity, ranging from enlarging the task's

period to skipping some tasks' instan
es.

Note that if the sum of all the requested bandwidths

P

i

B

req

i

is less than

the maximum available CPU bandwidth B

max

, then the adaptive reservation

me
hanism will be able to use the �rst strategy (global adaptation) to �nd

a feasible bandwidth assignment

^

B = (B

s

1

; : : :B

s

n

) su
h that 8i; B

s

i

� B

req

i

.

If, on the other hand,

P

i

B

req

i

� B

max

, then the less important tasks 
an

su�er from lo
al overloads. Indeed, the goal of the global adaptive reser-

vation me
hanism is to isolate task overloads in the less important tasks,
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independently from their requirements and periods. In this aspe
t, adaptive

reservations di�er from 
lassi
al real-time te
hniques, in whi
h task impor-

tan
e is inversely proportional to its period.

In this 
ase, an overloaded task 
an use appli
ation level adaptation to try

to s
ale down its requirements (by de
reasing its QoS). If su
h an adaptation

is performed, the task may exit the overload 
ondition, rea
hing a lower

QoS level in a 
ontrolled fashion, otherwise the QoS degradation 
an be

unpredi
table.

If a task �

i

does not implement the appli
ation level adaptation, the less

important tasks (the tasks �

j

with w

j

� w

i

) will be more penalised in terms

of reserved bandwidth, sin
e the global adaptive reservation me
hanism per-

forms the 
ompression based on task importan
es w

i

. Hen
e, the bandwidth

of the less important tasks will be used to satisfy the QoS requirements of

the most important tasks. Su
h a system behaviour is 
onsistent with the

proposed QoS model (avoiding overloads in the most important tasks). A

possible 
on
ern 
an be that a misbehaved task having a high importan
e


an 
ompromise the QoS experien
ed by all the appli
ations in the system.

However, the importan
e w

i

is assigned by the user, and 
an be used as a

me
hanism to penalise misbehaved tasks or appli
ations that do not adapt

their QoS properly.

Sin
e the amount of resour
es requested by a task to provide a spe
i�ed

level of QoS is not always known (and only a feedba
k me
hanism 
an be

used to 
ontrol the QoS) the global adaptive reservation me
hanism alone

may not be able to guarantee a minimum QoS to ea
h task.

If appli
ation level QoS adaptation is implemented, the task 
an s
ale

down its resour
e requirements in order to provide a minimumQoS, if the task

is guaranteed to re
eive a minimum amount of resour
es. For this reason, the

original adaptive reservations s
heme 
an be enhan
ed in order to guarantee

a minimum fra
tion of the CPU bandwidth to ea
h task. Note that this

modi�
ation only a�e
ts the 
ompression equation, and does not 
hange

anything in the original feedba
k s
heme.

4.4.1 Hierar
hi
al QoS feedba
k 
ontrol

As shown, when appli
ation level adaptation is used together with the adap-

tive reservation approa
h, there are two orthogonal forms of adaptation:

� the reserved bandwidth adaptation realized by an a
tive entity having

a global system visibility, su
h as a QoS manager or the s
heduler itself;

� the appli
ation level QoS adaptation, as presented in the previous se
-

tion.
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Figure 4.16: Two-Level Feedba
k.

This integrated approa
h, referred in this dissertation as hierar
hi
al

adaptation, presents the advantages of both methods, allowing the appli-


ations to s
ale their QoS when the bandwidth adaptation is not able to

serve them properly. In fa
t, it 
an be shown that adaptive reservations


an su�er when all the tasks require too mu
h resour
es (basi
ally, when

P

i

B

req

i

> B

max

), and the QoS adaptation me
hanism 
an solve this prob-

lem. On the other hand, the bandwidth adaptation me
hanism allows appli-


ations to obtain the desired QoS without requiring any a-priori knowledge

on their resour
e requirements.

To use the hierar
hi
al QoS management approa
h, a new level of feed-

ba
k has to be added to the feedba
k s
heme of Figure 4.1, as shown in Figure

4.16. The inner loop 
ontrols the bandwidth B

s

i

reserved by the global adap-

tive reservation, while the outer loop 
ontrols the bandwidth B

req

i

requested

by the appli
ation, using the lo
al method. As explained above, the goal of

the 
ontrol loops is to obtain B

s

i

> B

req

i

. One of the major problems with

this kind of hierar
hy is that it 
an easily rea
h unstable 
onditions. For

example, let's 
onsider two tasks �

1

and �

2

: by rea
ting to a transient over-

load, the global adaptive reservation me
hanism 
an de
rease B

s

1

; if �

1

rea
ts

immediately by de
reasing its QoS, when the transient overload �nishes the

bandwidth adaptation me
hanism 
an in
rease B

s

2

. In this way, �

2

in
reases

its QoS level, stealing bandwidth from �

1

, preventing it to re
over its initial

QoS level.

To solve this problem, the appli
ation level QoS adaptation a
tion has

been made slower than the bandwidth adaptation one, so that QoS is 
hanged

only when the overload 
ondition is long (in most 
ases, the QoS is not s
aled

in response to transient overloads).

More information about hierar
hi
al QoS adaptation 
an be found in

[AB01℄.
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Chapter 5

OS

5 years from now everyone will be running free GNU on their 200

MIPS, 64M SPARCstation-5

Andrew S. Tanenbaum, 30 Jan 1992

I

n the �rst part of this dissertation, s
heduling and resour
e allo
ation

te
hniques suitable for serving time sensitive appli
ations have been

presented. However, those issues have been addressed from a \purely

mathemati
al" point of view, without 
onsidering real implementations. In

this 
hapter, the implementation of the previously des
ribed te
hniques will

be analysed, showing the most important problems and some possible solu-

tions.

5.1 Kernel Stru
tures

Sin
e the stru
ture of the kernel 
an heavily in
uen
e the a

ura
y of the

s
heduler, imposing or removing 
onstraints and assumption on the resour
e

allo
ation strategies, in this se
tion the most di�use kernel stru
tures will be

presented and evaluated from the real-time perspe
tive.

5.1.1 Exe
utives

The simplest way to organise system and user 
ode is the one used by ex-

e
utives. An exe
utive is a bun
h of library 
ode that 
an be linked to an

appli
ation, providing some \kernel fun
tionalities", su
h as multithreading,

interrupt management, and so on. As for traditional kernels, the role of an

exe
utive is to abstra
t the hardware ma
hine, implementing a higher level

programming interfa
e.
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The main di�eren
e with a kernel-based OS is that exe
utives do not


reate a real distin
tion between appli
ation 
ode and system 
ode, and ev-

erything is mixed together. For this reason, someone tends to see an exe
utive

as a LibOS (library Operating System).

Using an exe
utive, the \system servi
es" 
an be invoked through simple

near or far 
alls: no interrupt, trap, or gate me
hanism is needed. As a

result, an exe
utive is generally more eÆ
ient and introdu
es less overhead,

providing good real-time performan
e and introdu
ing less unpredi
tabilities

in the s
heduling. For this reason, exe
utives are often 
hosen to implement

simple real time systems, su
h as RTEM [rte℄, HARTIK/SHARK [AB00,

But93, LLB

+

97, GAGB01℄, and similar. On the other hand, the in
reased

eÆ
ien
y a
hieved by eliminating the barrier between system 
ode and user


ode results in a de
reased 
exibility and in the total absen
e of any kind of

prote
tion.

5.1.2 DOS-like Systems

Respe
t to exe
utives, in this kind of systems (sometime 
alled \systems

without kernel"), there is a better distin
tion between appli
ation 
ode and

system 
ode. However, the appli
ation still has 
omplete a

ess to the hard-

ware (and this fa
t permits to in
rease the eÆ
ien
y and predi
tability of

devi
e drivers). In this way, system servi
es are only \fa
ilities" that appli-


ations may or may not use. Prote
tion is not enfor
ed, and ea
h appli
ation

is free to do everything (even 
rash the system): someone sees this fa
t as a

drawba
k (la
k of prote
tion), someone else loves this kind of freedom (better

predi
tability).

Sin
e system 
ode and appli
ation 
ode are separated, appli
ations 
an

require system servi
es through system 
alls, that are implemented using an

INT/TRAP me
hanism (as in MSDOS) or some system entry table (as in

Amiga OS). However, due to the la
k of some 
on
epts like prote
tion, and

similar, it is not appropriate to talk about a \real kernel".

Examples of this kind of systems are MSDOS and its 
lones (su
h as

FreeDOS [fre℄), AmigaDOS, and similar. Note that, thanks to their simpli
-

ity and predi
tability, these OSs are often used in embedded and real-time

systems.

5.1.3 Monolitihi
 Kernels

This is the most 
ommon OS stru
ture: a single program, the kernel, running

in privileged mode (system mode), abstra
ts the hardware providing a high

level Appli
ation Binary Interfa
e (ABI). Sin
e prote
tion is enfor
ed by the
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kernel (using appropriate hardware fa
ilities su
h as the MMU), appli
ations


annot dire
tly a

ess hardware resour
es, but must require su
h an a

ess

to the kernel.

The kernel is implemented as a single-threaded program, hen
e only one

single exe
ution 
ow 
an run in system mode at ea
h time. The kernel

responds to two di�erent kinds of requests, 
oming from up (appli
ation

requests) or down (hardware requests); appli
ation requests are the system


alls, 
onforming to the kernel exported ABI.

Appli
ation requests are often 
alled top halves in Unix terminology, while

bottom requests are 
alled bottom halves (in Linux), soft interrupts (in the

*BSD world), or Deferred Pro
edure Calls - DPCs - (in Windows & similia).

As said above, it is avoided to exe
ute more than one top half simultaneously;

this requirement is often enfor
ed using non-preemptable system 
alls.

Sin
e a task 
annot be preempted during the exe
ution of a system 
all,

only one top half per time is a
tive. Moreover, top halves also need to syn-


hronise with bottom halves: bottom halves are exe
uted atomi
ally, a

ord-

ing to kernel-de�ned priorities, immediately before returning from system

mode to user mode. When a hardware interrupt �res, the system exe
utes

an Interrupt Servi
e Routine (ISR) that a
knowledges the hardware and

queues a request for a bottom half exe
ution. Sin
e the bottom half will be

exe
uted immediately before returning to user mode, if the interrupt inter-

rupted a user mode program the bottom half will exe
ute immediately before

the ISR, whereas if the interrupt interrupted a top half the bottom half will

exe
ute after the top half. In this way the atomi
ity between top halves and

bottom halves is guaranteed; to syn
hronise with ISRs, a top half needs to

expli
itly disable and reenable interrupts. For this reason, monolithi
 kernels

are often referen
ed as non-preemptive and single-threaded kernels.

To 
orre
tly manage multiple pro
essors (I.E., SMP ma
hines), a mono-

lithi
 kernel requires strong modi�
ations. This is due to the fa
t that in

a multipro
essor environment the simple top half/bottom half syn
hronisa-

tion s
heme does not work (for example, nothing in the s
heme presented

above prevents two top halves from exe
uting simultaneously on two di�er-

ent CPUs), and more 
omplex me
hanisms (su
h as spinlo
ks) must be used.

Note that the modi�
ations needed to use a monolithi
 kernel on an SMP

ma
hine make it more similar to a multithreaded kernel.

Finally, note that nonpreemptable system 
alls and bottom halves 
an


reate s
heduling anomalies by removing the \full preemptability" hypothe-

sis used in real-time theory, and by introdu
ing priority inversions. Hen
e,

although the monolithi
 stru
ture permits to enfor
e prote
tion between user

appli
ations and to a
hieve high throughput, it is not suitable for real-time

systems.
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5.1.4 Multithread Kernels

This kind of kernels remove the limitation of having one single exe
ution 
ow

inside the kernel. In this way, the kernel 
an also be preemptable.

In a multithreaded kernel, di�erent exe
ution 
ows 
an be used for pro-


essing interrupt requests (without the need for making them atomi
 like the

bottom halves). Syn
hronisation between the various exe
ution 
ows must

be expli
itly enfor
ed using a 
ombination of interrupt disabling and busy

waiting named spinlo
k. For this reason, the extension to SMP ma
hines is

mu
h simpler.

A spinlo
k provides two operations, lo
k and unlo
k, and a
ts as a mu-

tex, ensuring the atomi
ity of se
tions 
ontained between lo
k and unlo
k.

The di�eren
e respe
t to mutexes is that a spinlo
k will not use the pro
ess

blo
k/unblo
k me
hanism. On a single pro
essor ma
hine, a lo
k operation

is equivalent to disabling interrupts (an x86 
li instru
tion), whi
h will be

reenabled by the unlo
k operation. On a SMP ma
hine, a lo
k will disable

interrupts and, if the spinlo
k is lo
ked, will perform a busy wait (with a

polling 
y
le) until the spinlo
k is unlo
ked.

Examples of multithreaded kernels are Solaris or AtheOS. Note that, due

to their internal stru
ture and to the possibility of running interrupt handlers

in dedi
ated thread, multithreaded kernels 
reates less s
heduling anomalies

than monolithi
 kernels in real-time systems.

5.1.5 �kernel systems

The mukernel idea is not new, being born in '70s. The basi
 
on
ept is to

redu
e the number of abstra
tions exported by the kernel to a minimum, im-

plementing in user spa
e the higher level abstra
tions provided by traditional

monolithi
 kernels. The minimum abstra
tions that the ukernel must provide

are address spa
es, threads, and some IPC me
hanism (
hannels or ports).

All the rest of the OS 
an be implemented through user level programs.

Using su
h a �kernel based design, an operating system kernel 
an be

implemented in two possible ways: as a single user pro
ess (server), or as a

set of 
ooperating servers. An example of the �rst approa
h is the Lite server

[Hel94℄, implementing a BSD style kernel on top of Ma
h, or the mklinux

server [dPSR96℄, implementing Linux on top of OFS/Ma
h. An example of

the se
ond approa
h is the GNU Hurd [TB℄.

In a multi server implementation, kernel fun
tionalities are split in groups

implemented by di�erent servers (for example, a EXT2 �le system server,

a pro
ess server, an authenti
ation serve, and so on). This approa
h 
an

result to be more 
exible, and has been re
ently dis
overed as more eÆ
ient
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[GJP

+

00℄.

Sin
e a �kernel only implements very simple fun
tionalities, its exe
ution

paths will be very short, hen
e it will not 
reate big anomalies in real-time

s
heduling. Moreover, devi
e drivers 
an be implemented externally to the

kernel (in dedi
ated server), so that they do not in
uen
e the real-time per-

forman
e of the system. For this reason there are a lot of real-time systems

implemented over �kernels [TNR90, Hil92, HBB

+

98, Meh99℄.

Fat �kernels

First generation �kernels, su
h as Ma
h and Chorus, were developed using

the \traditional kernel" design, with the result of obtaining big kernels (in

fa
t, the \�" does not mean \small"), often in
orporating devi
e drivers (and

thus also loosing some real-time properties).

These \fat" �kernels resulted in a less eÆ
ient (although more 
exible)

implementation of the OS fun
tionalities due to various problems like IPC

overhead and 
a
he e�e
ts.

As a result, a single server implementation of a monolithi
 kernel running

on Ma
h 
an in
ur in a 30% performan
e penalty. A possible solution are


o-lo
ated servers that, running in the same �kernel address spa
e, do not

in
ur in the IPC overhead. In this way, one of the biggest advantages of

�kernel systems (prote
tion between servers) is lost. Windows NT uses a

similar design (NT drivers are in fa
t 
o-lo
ated servers).

Small �kernels (Se
ond Generation)

To solve the problems en
ountered in fat �kernels, a se
ond generation of

�kernels has been designed. These new �kernels, su
h as L4 and QNX, only

implements the basi
 needed fun
tionalities, that have been identi�ed in:

1. Threads

2. Address Spa
es

3. an IPC me
hanism

4. an Interrupt Handling me
hanism.

By exporting a minimal interfa
e, that only provides few fundamental ser-

vi
es, the kernel size 
an be minimised so that the whole kernel �ts in 
a
he.

Moreover, the most 
riti
al IPC paths 
an be optimized by using the CPU

registers to pass message data.
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The performan
e improvement obtained by the se
ond generation �kernels

is remarkable, and these OSs result to be parti
ularly suited for real-time and

embedded systems.

5.1.6 RTLinux-like systems

As seen, the predi
tability requirements of a real-time system often 
ontrasts

with the throughput and 
exibility requirements of a general-purpose sys-

tem. Sometimes, a general-purpose system 
an be useful for development,

and being able to run real-time programs on if 
an greatly speed-up the de-

velopment pro
ess. However, general-purpose systems are generally based on

a monolithi
 stru
ture.

If real-time performan
e are not important for the appli
ations running

on the monolithi
 kernel, but are only important for tasks that do not use the

general-purpose kernel features, then it 
ould be possible to run the general-

purpose kernel over a real-time exe
utive that dire
tly a

esses the hardware.

This requires some kind of interrupt virtualization me
hanism: interrupt are

dire
tly managed by the real-time exe
utive, and are forwarded to the non

real-time kernel running over it when appropriate. Instead of disabling in-

terrupts, the non real-time kernel 
an ask the real-time exe
utive to stop for-

warding interrupts, so that hardware interrupts are disabled/reenabled (and

managed) only by the real-time exe
utive. In this way, real-time appli
ations

get very good real-time performan
e, and predi
table delays and laten
ies,

as proved by RTLinux [BY96℄, RTAI [MBDP00℄, and similar systems.

Using this kind of solutions, two di�erent subsystems (an exe
utive or

a DOS-like system used by real-time appli
ations, and a monolithi
 kernel

running in ba
kground over it) 
oexist in the same ma
hine, trying to a
hieve

the best of the two worlds. Of 
ourse, things 
an also be seen in the other

way around: appli
ations running on the monolithi
 kernel will get very bad

real-time performan
e and a bad throughput (the non real-time monolithi


kernel is s
heduled in ba
kground), and real-time appli
ations will not be

able to a

ess the servi
es provided by the monolithi
 kernel and will be able

to 
rash or starve the whole system (the real-time exe
utive does not provide

any kind of prote
tion).

The se
ond problem (la
k of prote
tion in the real-time exe
utive) 
an

be solved by adopting a �kernel stru
ture, and using a high-priority real-

time server instead of a real-time exe
utive. In this way, interrupts are not

virtualized, but forwarded by the �kernel, and the non real-time server is

s
heduled in ba
kground be
ause of its low priority. This solution has been

implemented in L4-RTL [Meh99℄, a
hieving real-time performan
e 
ompa-

rable with the one of RTLinux/RTAI while enfor
ing prote
tion between
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real-time appli
ations [MHSH01℄.

5.2 S
heduling Laten
y

As explained, real kernels often generate a s
hedule that is di�erent from

the expe
ted one, due to the strategies used to enfor
e mutual ex
lusion

or the guarantee the 
onsisten
y of internal data. The di�eren
e between

the a
tual s
hedule produ
ed by the kernel and the ideal s
hedule 
an be

quanti�ed using a metri
 
alled kernel laten
y.

De�nition 20 Let � be a task belonging to a time-sensitive appli
ation that

should be ideally s
heduled at time t, and let t

0

be the time at whi
h � is

a
tually s
heduled; the kernel laten
y experien
ed by � is de�ned as L = t

0

�t.

A

ording to the previous des
ription, several sour
es of kernel laten
y


an be identi�ed; the two most important sour
es being timer resolution and

non-preemptive se
tions in the kernel. In this se
tion, the kernel laten
y of

a monolithi
 kernel will be analysed, and some te
hniques for redu
ing that

laten
y will be des
ribed.

Timer resolution laten
y o

urs be
ause kernel timers are generally im-

plemented using a periodi
 ti
k interrupt. For example, 
onsider a periodi


task � that needs to exe
ute every T�s. Typi
ally, the task will be woken

up by a kernel timer that is triggered by the periodi
 ti
k interrupt with say,

period T

ti
k

. Hen
e, a task that sleeps for an arbitrary amount of time T


an experien
e some timer resolution laten
y L

timer

if its expe
ted a
tivation

time is not on a ti
k boundary.

Another sour
e of laten
y, the non-preemptable se
tion laten
y is 
aused

by non-preemptable se
tions in the kernel or in the drivers. In a monolithi


kernel, this 
omponent of laten
y in
ludes the e�e
ts of ISRs and bottom

halves. Consider an example where interrupts are disabled at time t. Task

� 
an only enter the ready queue later when interrupts are re-enabled. In

addition, even if � enters the ready queue at the 
orre
t time t, it may still

not be s
heduled if preemption is disabled for some reason. In this 
ase, �

will be s
heduled when preemption is re-enabled at time t

0

, 
ontributing a

non-preemptable se
tion laten
y L

np

= t

0

� t.

5.2.1 Timer Resolution

As said, in a traditional kernel, timers are triggered by a periodi
 ti
k in-

terrupt, whi
h on x86 ma
hines is generated by the Programmable Interval

Timer (PIT) and has a period T

ti
k

= 10ms. As a result, the maximum

85



laten
y due to the timer resolution maxfL

timer

g is T

ti
k

= 10ms. Thus, this

value 
an be redu
ed by redu
ing T

ti
k

. However, de
reasing T

ti
k

in
reases

system overhead be
ause more ti
k interrupts are generated. In addition,

there is a lower bound on L

timer

whi
h is equal to the exe
ution time re-

quired for servi
ing the ti
k interrupt.

The fa
t that a periodi
 timer interrupt is not an appropriate solution

for a real-time kernel is well known in the literature, and thus most of the

existing real-time kernels provide high resolution timers based on an aperiodi


interrupt sour
e[ST93℄. In an x86 ar
hite
ture, the PIT or the CPU APIC

(Advan
ed Programmable Interrupt Controller present in many modern x86

CPUs) 
an be programmed to generate aperiodi
 interrupts for this purpose.

Thus, high resolution timers 
ould redu
e L

timer

to the interrupt servi
e time

without signi�
antly in
reasing the kernel overhead, be
ause these interrupts

are generated only when a timer expires.

5.2.2 Non-Preemptable Se
tions

The se
ond term 
ontributing to the maximum kernel laten
y is the non-

preemptable se
tion laten
y maxfL

np

g. A

ording to the previous des
rip-

tion of the various kernel stru
tures, in a monolithi
 kernel maxfL

np

g is

equal to the maximum length of a system 
all (whi
h, we re
all, is non-

preemptable) plus the pro
essing time of all the interrupts that �re before

returning to user mode. Unfortunately, in a standard monolithi
 kernel su
h

a Linux this value 
an be as large as 28ms as shown in Se
tion 5.2.3. In a

�kernel system, system 
alls are still non-preemptable, but they are shorter

(be
ause of the simpli
ity of the �kernel), and the interrupt pro
essing time

does not a�e
t L

np

. This is the reason why some real-time systems su
h

as RT-Ma
h [TNR90℄, QNX [Hil92℄, and DROPS [HBB

+

98℄ are based on

a �kernel. Multithreaded kernels 
an also be used to redu
e the e�e
t of

non-preemptable se
tions by removing the e�e
t of ISR and bottom halves,

but this solution also a�e
ts the throughput of the system.

An alternative solution to de
rease L

np

is to modify the monolithi
 ap-

proa
h by de
reasing the size of the kernel non-preemptable se
tions or by

introdu
ing full kernel preemptability. Hen
e, three new kernel stru
tures

have to be 
onsidered:

Low-Laten
y kernel: This approa
h \
orre
ts" the monolithi
 stru
ture

by inserting expli
it preemption points (also 
alled res
heduling points)

inside the kernel. In this approa
h, when a task is exe
uting inside the

kernel it 
an expli
itly de
ide to yield the CPU to some other task.

In this way, the size of non-preemptable se
tions is redu
ed, thus de-
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reasing L

np

. In a low-laten
y kernel, the 
onsisten
y of kernel data

is enfor
ed by using 
ooperative s
heduling (instead of non-preemptive

s
heduling) when the exe
ution 
ow enters the kernel. This approa
h is

used by some real-time versions of Linux, su
h as RED Linux [YCL98℄,

and by Andrew Morton's low-laten
y pat
h [Mor℄. In a low-laten
y ker-

nel, maxfL

np

g de
reases to the maximum time between two res
hedul-

ing points.

Preemptable kernel: The preemptable approa
h, used in most real-time

systems, removes the 
onstraint of a single exe
ution 
ow inside the

kernel. Thus it is not ne
essary to disable preemption when an exe
u-

tion 
ow enters the kernel. To support full kernel preemptability, ker-

nel data must be expli
itly prote
ted using mutexes or spinlo
ks. The

Linux preemptable kernel pat
h [Lov℄ uses this approa
h and makes

the kernel fully preemptable. Kernel preemption is disabled only when

a spinlo
k is held.

1

In a preemptable kernel, maxfL

np

g is determined

by the maximum amount of time for whi
h a spinlo
k is held inside the

kernel (maximum size of a kernel non-preemptable se
tion), plus the

maximum time taken by ISRs and bottom halves.

Preemptable Lo
k-Breaking kernel: The kernel laten
y 
an be high in

Preemptable Linux when some spinlo
k is held for a long time. Lo
k

breaking addresses this problem by \breaking" long spinlo
ks, i.e.,

by releasing spinlo
ks at strategi
 points. Breaking spinlo
ks into

smaller non-preemptable se
tions is similar to the approa
h used by

Low-Laten
y Linux. This approa
h redu
es the size of kernel non-

preemptable se
tions, but, of 
ourse, does not de
rease the amount of

time \stolen" by ISRs and bottom halves. Looking at the 
ode, we

veri�ed that most of the Andrew Morton's preemption points are in

this pat
h in the form of \lo
k breaking points".

As a �nal note, we would like to point out that the preemption pat
h has

been re
ently a

epted in the development (unstable) bran
h of the Linux

kernel, and is now present in version 2.5.4 of the kernel.

5.2.3 Experimental Evaluation

To show the e�e
ts of the kernel stru
ture on the real-time performan
e,

the laten
y of a standard monolithi
 kernel, Linux 2.4.18 in parti
ular, have

1

There is also a di�erent pat
h, from Timesys [In
℄, based on mutexes and priority

inheritan
e instead of on spinlo
ks.
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been evaluated and 
ompared with a low-laten
y, a preemptable, and a lo
k-

breaking preemptable version of the same kernel. One method for experi-

mentally measuring the laten
y is to use a task that invokesusleep to sleep

for a spe
i�ed amount of time and then measures the time that it a
tually

slept. The laten
y L, as previously de�ned, is then the di�eren
e between

these two times. Unfortunately, this approa
h measures the sum of all the

laten
y 
omponents and thus does not give us an insight into the 
auses of

laten
y.

The individual laten
y 
omponents 
an be measured in isolation, by mea-

suring ea
h sour
e of laten
y while eliminating the others. To measure L

timer

,

L

np

is eliminated by running the experiment on an idle system. After that,

L

np

is measured by eliminating L

timer

through the use of high resolution

timers. The following se
tions des
ribe this approa
h in more detail.

Measuring Timer Resolution Laten
y

The OS non-preemptable se
tion laten
y L

np


an be redu
ed signi�
antly by

running experiments on a lightly-loaded system. In this 
ase, few system


alls will be invoked and a limited number of interrupts will �re and thus

long non-preemptable exe
ution paths or drivers' a
tivations are not likely

to be triggered.

The laten
y L

timer


an be measured by using a typi
al periodi
 time-

sensitive appli
ation, for example a pro
ess that sets up a periodi
 signal

(using the itimer() system 
all) with a period T ranging from 100�s to

100ms. The pro
ess measures the time when it is woken up by the signal

and then immediately returns to sleep after 
omputing the di�eren
e between

two su

essive pro
ess a
tivations, 
alled inter-a
tivation time. Note that in

theory the inter-a
tivation times should be equal to the period T . Hen
e,

the deviation of the inter-a
tivation n times from T is a measure of L

timer

.

Sin
e Linux ensures that a timer will never �re before the 
orre
t time, this

value 
an be expe
ted to be 10ms on standard Linux kernel, and to be 
lose

to the interrupt pro
essing time while using high resolution timers.

Measuring OS Non-Preemptable Se
tion Laten
y

On
e the timer resolution laten
y is eliminated with high resolution timers,

L

np


an be measured in isolation. Unfortunately, a periodi
 pro
ess is not

suitable for measuring this laten
y. For example, to measure the e�e
ts

of disabling preemption for a time S, the laten
y must be sampled with a

period T � S or else the non-preemptive 
ode 
ould exe
ute between two


onse
utive measurements. More pre
isely, if L is the measured laten
y, then
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L � L

np

� L+T: Hen
e, to reliably measure L

np

, the test task should have a

period T su
h that T << L

np

. In pra
ti
e, this requirement is hard to a
hieve

and thus we use an aperiodi
 test appli
ation that uses the usleep() 
all.

The test task is based on a loop that:

1. reads the 
urrent time t

1

2. sleeps for a time T

3. reads the time t

2

, and 
omputes L

np

= t

2

� (t

1

+ T )

Times t

1

and t

2

are read using the Pentium Time Stamp Counter (TSC), a

CPU register that is in
reased at every CPU 
lo
k 
y
le and 
an be a

essed

in a few 
y
les. Hen
e, the measurements introdu
e very low overhead and

are very a

urate.

To investigate how various system a
tivities 
ontribute to L

np

various

load-generating tasks are were run in ba
kground. The following tasks are

known to invoke long system 
alls or 
ause frequent interrupts and thus were

sele
ted as ba
kground load to trigger long non-preemptable se
tions:

Memory Stress: One potential way to in
rease L

np

involves a

essing large

amounts of memory so that several page faults are generated in su
-


ession. The kernel invokes the page fault handler repeatedly and 
an

thus exe
ute long non-preemptable 
ode se
tions.

Caps-Lo
k Stress: A qui
k inspe
tion of the kernel 
ode reveals that when

the num-lo
k or 
aps-lo
k LED is swit
hed, the keyboard driver sends

a 
ommand to the keyboard 
ontroller and then spins while waiting for

an a
knowledgement interrupt. This pro
ess 
an potentially disable

preemption for a long time.

Console-Swit
h Stress: The 
onsole driver 
ode also seems to 
ontain long

non-preemptable paths that are triggered when swit
hing virtual 
on-

soles.

I/O Stress: When the kernel or the drivers have to transfer 
hunks of data,

they generally move this data inside non-preemptable se
tions. Hen
e,

system 
alls that move large amounts of data from user spa
e to kernel

spa
e (and vi
e-versa) and from kernel memory to a hardware periph-

eral, su
h as the disk, 
an 
ause large laten
ies.

Pro
fs Stress: Other potential laten
y problems in Linux are 
aused by the

/pro
 �le system. The /pro
 �le system is a pseudo �le system used by

Linux to share data between the kernel and user programs. Con
urrent
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T (�s) 100 200 300 400 500 600 700 800 900

L(�s) 47 51 43 44 49 53 50 52 50

T (�s) 1000 2000 3000 4000 5000 6000 7000 8000 9000

L(�s) 46 47 52 48 51 49 55 50 57

T (�s) 10000 20000 30000 40000 50000 60000 70000 80000 90000

L(�s) 52 46 51 49 54 50 43 47 51

Table 5.1: The table shows L, the maximum di�eren
e between the inter-

a
tivation times and the task period, for di�erent values of the task period

T on a high resolution timer Linux.

a

esses to the shared data stru
tures in the pro
 �le system must be

prote
ted by non-preemptable se
tions. Hen
e, we expe
t that reading

large amounts of data from the /pro
 �le system 
an in
rease the

laten
y.

Fork Stress: The fork() system 
all 
an generate high laten
ies for two

reasons. First, the new pro
ess is 
reated inside a non-preemptable

se
tion and involves 
opying large amounts of data in
luding page ta-

bles. Se
ond, the overhead of the s
heduler in
reases with in
reasing

number of a
tive pro
esses in the system.

Experien
e and 
areful 
ode analysis by various members of the Linux


ommunity (for example, see Senoner [Sen℄) 
on�rms that the above list of

laten
y sour
es is 
omprehensive, i.e., it triggers a representative subset of

long non-preemptable se
tions in the kernel and in the drivers.

Results

The �rst set of experiments measures L

timer

and shows that it 
an be eas-

ily eliminated from the OS non-preemptable se
tion laten
y by using high

resolution timers. The high-resolution timers me
hanism was evaluated and


ompared with the timer me
hanism of a standard kernel. Figure 5.1 shows

the inter-a
tivation times on a standard Linux kernel when T = 11ms. Sin
e

the task period is not a multiple of T

ti
k

, the di�eren
e between the inter-

a
tivation times and T is not 0: the timer will �re at the next multiple of

the system ti
k and thus an inter-a
tivation time is 20ms. In fa
t, the inter-

a
tivation times in Figure 5.1 is 
lose to this value, and the di�eren
e between

the inter-a
tivation times and the period is 
lose to 20 � 11 = 9ms. As ex-

plained, this problem is solved by the high-resolution timer kernel, whi
h we

demonstrate through experiments des
ribed below.
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Figure 5.1: Inter-A
tivation times for a task that is woken up by a periodi


signal with period 11ms on a standard Linux kernel. Note that the task

period is greater than T

ti
k

= 10ms.

Figure 5.2 shows the inter-a
tivation times measured with period T =

100�s on the high-resolution timer kernel. Note that after 1000 a
tivations

the maximum di�eren
e between the period and the a
tual inter-a
tivation

time is less that 25�s. Hen
e, it 
an be 
onje
tured that the 9ms laten
y

shown in Figure 5.1 is almost 
ompletely due to the timer resolution.

Table 5.1 shows the maximum absolute value of the di�eren
e between

the period and the inter-a
tivation times for various values of T on a high

resolution timer kernel. Ea
h of these maximum values has been measured

over 1; 000; 000 a
tivations. The table shows that the maximum di�eren
e

does not signi�
antly depend on the period T and its maximum value is

about 57�s. We hypothesise that this value is due to the OS laten
y L

np

.

However, we do not know the pre
ise 
ause of this laten
y sin
e we did not

spe
i�
ally 
ontrol the ba
kground task set.

This experiment has been repeated with di�erent periods where ea
h ex-

periment was run for 10; 000; 000 a
tivations, showing that the di�eren
e

between the period and the inter-a
tivation time does not signi�
antly de-

pend on the period T . Figure 5.3 plots the Probability Distribution Fun
tion

(PDF) of the inter-a
tivation times when T = 1000�s. The maximum mea-

sured inter-a
tivation time is about 1300�s, whereas the minimum is about
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Figure 5.2: Inter-A
tivation times for a task that is woken up by a periodi


signal with period 100�s on a high resolution timer Linux.

630�s, and this distribution does not signi�
antly vary with in
reasing num-

ber of a
tivations.

The maximum deviation between inter-a
tivation times (about 370�s) is

due to the OS non-preemptable se
tion laten
y L

np

. However, the pre
ise


ause of this laten
y is not pre
isely known, sin
e in the previous experiments

there was not any spe
i�
 
ontrol on the ba
kground task set.

5.2.4 Non-Preemptable Se
tion Laten
y

Hen
e, a new set of experiments was performed to measure laten
ies due to

the various a
tivities that 
an trigger long non-preemptable paths. In this set

of experiments, the usleep() test program des
ribed in Se
tion 5.2.3 was run

with T = 100�s to measure and identify the 
auses of the non-preemptable

se
tion laten
y.

The usleep() test program started on an unloaded ma
hine. Then the

load-generating tasks des
ribed in Se
tion 5.2.3 were run in the ba
kground to

trigger long non-preemptable paths. To easily represent the laten
y results in

a single plot per Linux variant, we used a ba
kground load that was generated

as follows:

1. The memory stress test allo
ates a large integer array with a total size
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Figure 5.3: PDF of the di�eren
e between inter-a
tivation times and period,

when T = 1000�s.

of 128 MB and a

esses it sequentially. This test starts at 1000ms, and

�nishes around 2000ms.

2. The 
aps-lo
k stress test runs a program that swit
hes the 
aps-lo
k

LED twi
e. This test turns on the LED at 7000ms and then turns it

o� at 8000ms.

3. The 
onsole-swit
h stress test runs a program that swit
hes virtual


onsoles on Linux twi
e, �rst at 9000ms and then at 10000ms.

4. The I/O stress test uses the read() and write() system 
alls and

a

esses 2 MB of data. This test starts at 11000ms and �nishes around

13000ms.

5. The pro
fs stress test reads a 512 MB �le in the /pro
 �le system. It

runs from 17000ms to around 18000ms.

6. The fork test forks 512 pro
esses. This test starts at 20000ms.

Figure 5.4 shows the laten
y measured on a standard (monolithi
) Linux

kernel (version 2.4.16). Due to the implementation of the usleep() 
all

on Linux, L

timer

is around 19:9ms instead of 9:9ms. The memory a

ess
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Figure 5.4: Laten
y measured on a standard Linux kernel. This test is

performed with ba
kground load. Note that the L

timer


omponent dominates

the laten
y most of the time.

test, starting at t = 1000ms does not seem to 
reate any additional laten
y.

However, it is possible to noti
e a small spike at the end of the test around

t = 5000ms (explained in the next experiment). In this experiment, no

variation in the laten
y during the 
aps-lo
k stress test or the 
onsole-swit
h

test 
an be noti
ed. On the other hand, there are some large spikes (up to

100ms) from t = 11000ms to t = 13000ms during the the I/O stress test.

Note that the Y axis is shown on a logarithmi
 s
ale. None of the other

tests present any signi�
ant 
ontribution to kernel laten
y. Hen
e, it 
an be

argued that in a standard Linux kernel the timer resolution laten
y L

timer

is

generally larger than L

np

and hides the e�e
ts of non-preemptable se
tions.

This is probably one reason why laten
y problems have not been previously

addressed by the Linux 
ommunity. These results show that high resolution

timers me
hanism is needed to investigate L

np

.

Figure 5.5 reports the results obtained when high resolution timers are

used in the usleep() implementation. It shows that in this 
ase L

timer

is almost 
ompletely removed. Hen
e, the e�e
ts of long non-preemptable

se
tions are more visible. For instan
e, when the system is unloaded (t <

1000ms) the laten
y lies between 4�s and 6�s. This laten
y is due to the

resolution of the timing me
hanism and it mat
hes the expe
ted value of the
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Figure 5.5: Laten
y measured on a Linux kernel with high resolution timers.

This test is performed with ba
kground load. Now, L

np

is visible.

interrupt servi
e time. It in
reases to 20�s during the memory stress test.

This result is surprising be
ause 
ontrary to 
ommon belief it shows that

page faults of other pro
esses in Linux are not a serious problem for real-

time performan
e. However, the end of the memory stress test generates a

spike of about 20ms in kernel laten
y. A deeper investigation permits to

dis
over that the sour
e of this laten
y is the munmap() system 
all when

large memory bu�ers are unmapped.

The 
aps-lo
k shift signi�
antly in
reases kernel laten
y. During the 
aps-

lo
k stress test (t = 7000ms and t = 8000ms) the laten
y rises to 7ms. On

the other hand, the 
onsole swit
h test (t = 9000ms and t = 10000ms) only

in
reases the laten
y to 900�s. Again, the longest 
riti
al paths seem to be

triggered by the I/O stress test between t = 11000ms and t = 13000ms when

the laten
y in
reases to 100ms, similar to the previous experiment. Finally,

the pro
fs stress test 
an 
ontribute about 4ms to laten
y, whereas the fork

test 
ontributes up to about 300�s. Again, note that in a standard Linux

kernel, the 10ms resolution of the timers hides most of these values ex
ept

the laten
y 
aused by �le a

esses.

From Figure 5.5, a expe
t redu
tion in the laten
y is expe
ted if the

length or granularity of the kernel non-preemptable se
tions is redu
ed. As

explained in Se
tion 5.2.2, there are several ways in whi
h non-preemptable
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Figure 5.6: Laten
y measured on a Low-Laten
y Linux kernel with high

resolution timers. The munmap() and I/O laten
ies are redu
ed.

kernel se
tions 
an be shortened. First, preemption points 
an be manually

pla
ed to break long non-preemptable paths, su
h as in the low-laten
y ker-

nel. Se
ond, the kernel 
an be made fully preemptable, where preemption

is disabled only when spinlo
ks are held. Finally, the �rst te
hnique 
an

be used to redu
e the length of spinlo
ks in a preemptable kernel. These

te
hniques are explored in the next se
tions.

Figure 5.6 shows the laten
y measured on a high resolution timers kernel

with the Andrew Morton low-laten
y pat
h.

First, note that the laten
y experien
ed during the memory stress test

does not 
hange signi�
antly, but the 20ms spike 
aused by unmapping the

large memory bu�er has been removed. Now the munmap() laten
y is about

200�s. However, the laten
y 
aused by the 
aps-lo
k and 
onsole stress

tests is not 
hanged, and in this experiment the worst laten
y is 
aused by

toggling the 
aps-lo
k key! The laten
y spikes between t = 11000ms and

t = 13000ms have disappeared and thus the I/O stress test does not 
ause

serious problems for real-time performan
e anymore. However, the laten
y


aused by the pro
fs stress test and by the fork stress test is un
hanged as


ompared to the monolithi
 kernel.

In summary, the laten
y 
aused by all the a
tivities ex
ept the pro
fs

stress test and the 
aps-lo
k stress test is under 1ms.
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Figure 5.7: Laten
y measured on a Preemptable-Linux kernel with high res-

olution timers. The pro
fs laten
y is redu
ed, but the munmap() laten
y

be
omes high again.

Figure 5.7 shows the results obtained using a Preemptable-Linux kernel.

The big di�eren
e that 
an be noti
ed as 
ompared to the Low-Laten
y kernel

is that the munmap() system 
all 
auses high laten
y on
e again (about 20ms

around time t = 5000ms). The laten
y 
aused by the I/O stress test is also

in
reased with spikes up to 1ms. On the other hand, the pro
fs stress test

does not 
ause signi�
ant laten
y. In parti
ular, the big spike in laten
y at

time t = 17000ms has been removed. In this experiment, the worst laten
y

is 
aused by the munmap() system 
all and is due to the kernel holding a

spinlo
k for a long time.

Figure 5.8 shows the results obtained when the lo
k-breaking preempt-

able kernel is used. Note that breaking long spinlo
ks solves the munmap()

problem. The kernel behaviour during the memory stress (and during the

�nal unmap()) is similar to the behaviour of the low-laten
y kernel. More-

over, this kernel also has the bene�ts of the preemptive kernel. For instan
e,


ompared to the low-laten
y kernel, there are improvements in the laten
y


aused by the 
onsole swit
h stress test and by the pro
fs stress test.

In summary, the largest laten
y is 
aused by the 
aps-lo
k stress test

and all other laten
ies are within 1ms. File a

esses are still not as low

as in Figure 5.6. This laten
y is 
aused by heavy interrupt loads and long
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Figure 5.8: Laten
y measured on a Lo
k-Breaking Preemptable-Linux kernel

with high resolution timers. Note that most of the laten
ies are under 1ms.

non-preemptable interrupt pro
essing times inside BHs. In fa
t, BHs are

serialised using a spinlo
k, that 
an disable preemption for a long time.

5.3 Interrupt Pro
essing Time

Until this point, the CPU as been 
onsidered as the only hardware resour
e in

the system (hen
e, as the only resour
e that has to be s
heduled). However,

a modern PC is 
onne
ted to a lot of peripherals, that 
an be 
onsidered as

hardware resour
es that the OS kernel has to manage. In most 
ase, these

resour
es 
an produ
e events (in the form of hardware interrupts), and the

kernel properly manages them, or forwards them to an appropriate handler

task. In a �kernel based system, an hardware interrupt 
an be 
onverted

in an IPC to a server task, that will properly handle the hardware devi
e;

in a multithreaded kernel, a kernel thread 
an be used to properly serve

the interrupt, whereas in a monolithi
 kernel a bottom half (or a DPC) is

generally used to this task.
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5.3.1 The Problem

Independently from the kernel stru
ture, a hardware interrupt will be gener-

ally served in two phases:

� a short Interrupt Servi
e Routine (ISR) generally exe
utes with

interrupts disabled, and is responsible for a
knowledging the hardware

interrupt me
hanism and a
tivating a proper DPC, bottom half, kernel

thread, or server task.

� a longer routine (running in a kernel thread, server task, bottom half,

or DPC) is responsible for 
orre
tly manage the devi
e. Note that

kernel threads and server tasks are generally s
heduled, whereas DPCs

and bottom halves are not.

As noted above, if a �kernel or a multithreaded kernel is used, the 
ode

handling the devi
e 
an be s
heduled like all the other tasks in the system.

This solution 
an present a slightly higher overhead, and requires a more


areful syn
hronisation, but permits to 
orre
tly a

ount the handler 
ode

in a time sensitive system. In fa
ts, the handler 
ode requires some CPU

time to exe
ute, and it must be 
orre
tly a

ounted in order not to break the

system's guarantees.

To better understand this fa
t, let's 
onsider a monolithi
 kernel: as

explained before, the handler 
ode runs in a bottom half, that is invoked

by the CPU s
heduler before sele
ting the next appli
ation task and is not

preemptable with respe
t to the appli
ation tasks. This fa
t 
an introdu
e

two sour
es of unpredi
tability:

� the handler 
ode is exe
ute at apparently random times (depending

on the interrupts' arrival pattern) and is not s
heduled, introdu
ing

anomalies in the CPU s
heduling that 
an be seen as stolen time

� bottom halves are not preemptable, violating one of the assumptions

of a priority based s
heduler (at ea
h time, the task having the higher

priority is s
heduled).

As a result of these s
heduling anomalies, the real-time guarantees pro-

vided by the system may be broken. From a pra
ti
al point of view, the

system behaves like if some exe
ution time has been stolen to appli
ation

tasks, hen
e this problem will be referred as the stolen time problem.

Some solutions to the stolen time problem have been proposed, ranging

from a

ounting the interrupt and bottom half time in the s
hedulability

guarantee [JS93℄ to s
heduling the bottom half 
ode [JSMA98, DB96℄ or
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temporally disabling the hardware interrupts [MR97, IMS97℄. However, none

of those solution 
an be easily and pra
ti
ally implemented in an usable OS

kernel.

In order to show the impa
t of this problem, some experiments have

been performed using Linux/RK. The version of Linux/RK used for these

experiments provides predi
table guarantees for CPU reservations, outgoing

network reservations, and disk reservations, but does not a

ount properly

the time stolen by network bottom halves.

5.3.2 A Possible Way Out

If a reservation based s
heduler is used, another possible solution to the stolen

time problem 
ould be to use the augmented reservation abstra
tion [RS01℄,

that permits to resize the system reservations in order to 
ompensate the

e�e
ts of the stolen time.

The augmented reservations approa
h results to be very e�e
tive and easy

to implement, but it requires to monitor the time stolen by DPCs or bottom

halves (hen
e, it requires additional modi�
ations to the OS kernel), in order

to sum it to the reserved time. This requirement is due to the fa
t that

augmented reservations have been designed to support a generi
 task model;

if, on the other hand, the real-time task model is used, then the requirement

of instrumenting the kernel 
an be relaxed. In fa
t, using the real-time task

model ea
h task is divided in jobs, and ea
h job is 
hara
terised by an abso-

lute deadline that 
an be used to monitor appli
ation performan
e. In this

way, an impli
it monitoring of the e�e
ts of the interrupt handlers exe
ution


an performed by simply measuring the number of missed deadlines, and the

DPC or bottom half time does not have to be expli
itly monitored.

This idea is used by Adaptive Reservations, presented in Se
tion 4.1: the

adaptive reservation abstra
tion was originally developed in order to 
ope

with tasks 
hara
terised by unknown or highly variable exe
ution times, but

it 
an be su

essfully used to mitigate the e�e
ts of stolen time. In fa
t,

the time stolen by ISRs and bottom halves 
an be modelled as a varian
e in

tasks' exe
ution times, and adaptive reservations will properly 
ope with it.

This is a simple explanation of how adaptive reservations 
ompensate

the e�e
t of the time stolen by interrupt pro
essing: when the network load

in
reases, the bottom halves begin to 
onsume a signi�
ant amount of CPU

time, stealing it to reserved pro
esses. Hen
e, a reserved pro
ess will miss

some deadline, and if the pro
ess is atta
hed to an adaptive reservation its

reserved time will be in
reased. In this way, the amount of time reserved

to a pro
ess in
reases when the network traÆ
 in
reases, 
ompensating the

e�e
ts of the bottom halves exe
ution.
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init = rdts
();

for (i = 0; i < MAX; i++) f

for (j = 0; j < COUNT; j++) f

for (k = 0; k < 100; k++) f

/* Just to spend some time... */

time = rdts
();

g

g

timeve
t[i℄ = CLOCK2USEC(time - init);

task end
y
le(); /* Blo
ks until the next period */

g

Figure 5.9: The test pro
ess

Note that, in 
ontrast with augmented CPU reservations, adaptive reser-

vations 
an be implemented in user spa
e, without requiring modi�
ations to

the kernel. The only requirement is that the kernel provides temporal prote
-

tion in the CPU s
heduler; as a proof of 
on
ept, adaptive reservations have

been implemented through a portable QoS Manager, that has been ported on

the HARTIK kernel [AB00℄ and Linux/RK [RAdN

+

00℄ (as already explained

in Se
tion 4.3); in this work, the RK version has been used.

In order to prove the e�e
tiveness of Adaptive Reservations in 
ompen-

sating the e�e
ts of the stolen time, some experiments have been run in

Linux/RK, a Resour
e Kernel based on Linux. A Resour
e Kernel in general

permits to reserve an hardware resour
e to a pro
ess: based on some reserve

abstra
tions, a pro
ess 
an be guaranteed to re
eive the resour
e for a time Q

ea
h period T . The version of Linux/RK used for these experiments provides

predi
table guarantees for CPU reservations, outgoing network reservations,

and disk reservations, but does not properly a

ount the time stolen by the

bottom halves.

The in
uen
e of the bottom halves on the CPU s
heduling 
an be easily

seen by simply 
ausing a lot of bottom halves exe
ution and measuring the

impa
t on the exe
ution of a reserved pro
ess, as shown by the following

experiments. First of all, the periodi
 pro
ess shown in Figure 5.9 has been

run with period T = 20ms on an AMD-K6 at 333 MHz, atta
hed to a proper

CPU reservation. Sin
e the COUNT 
onstant is tuned so that the j loop takes

about 4ms, when atta
hed to a (4ms; 20ms) reservation this pro
ess does

not miss any deadline. In fa
t, the di�eren
e between two 
onse
utive values
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Figure 5.10: Reserved pro
ess running in regular network load 
onditions:

job inter �nishing times.

of timeve
t (referred as job inter �nishing time in this dissertation) is about


onstant, and equal to 20ms (the pro
ess & reserve period), as shown in

Figure 5.10. Hen
e, as fore
asted, all the jobs �nishes within their deadlines

(in fa
ts, Linux/RK is able to provide a reliable real-time or reservation

guarantee if bottom halves do not steal too mu
h time). After that, a heavy

network traÆ
 has been sent to the test ma
hine, in order to in
rease the

CPU time 
onsumed by bottom halves. When the network load is in
reased,

the bottom halves steal exe
ution time to the reserved pro
ess, hen
e the

di�eren
e between two 
onse
utive values of the timeve
t array in
reases,

and the pro
ess starts to miss deadlines, as shown in Figure 5.11.

Adaptive reservations 
an ni
ely solve this problem: in order to prove the

e�e
tiveness of su
h a solution, the previous experiment has been repeated

atta
hing an adaptive reservation with period 20ms to the user pro
ess. As

a result, the pro
ess parameters were adapted so that the number of missed

deadlines resulted to be 
ontrolled to 0 after a short transient. In fa
t,

the di�eren
e between two 
onse
utive values of timeve
t resulted to be


ontrolled below 40ms, as shown in Figure 5.12.
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Figure 5.11: Reserved pro
ess running in high network load 
onditions: job

inter �nishing times | the pro
ess misses deadlines.
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Chapter 6

Con
lusions

I've seen things you people wouldn't believe.

Atta
k ships on �re o� the shoulder of Orion.

I wat
hed C-beams glitter in the dark near the Tannhauser gate.

All those moments will be lost in time, like tears in rain.

Time to die.

Blade Runner

T

his dissertation showed how to support time sensitive a
tivities in a

general purpose operating system. In parti
ular, it was argued that

the use of appropriate kernel te
hniques enables advan
ed s
heduling

and resour
e allo
ation to better exploit system resour
es and to provide

more predi
table QoS for time sensitive appli
ations.

The thesis supported in this dissertation is that three di�erent require-

ments 
an be identi�ed:

1. low kernel laten
ies and high-resolution timers are needed to implement

a 
orre
t and a

urate s
heduler;

2. temporal prote
tion must be provided by the s
heduler so that a pre
ise

and e�e
tive resour
e allo
ation 
an be implemented;

3. dynami
 adaptation of the amount of reserved resour
es is needed to


ope with varying and unpredi
table workloads.

6.1 OS Support

An evaluation of the laten
ies of a general-purpose kernel su
h as Linux

showed that the traditional monolithi
 design on whi
h traditional OSs are

based 
an introdu
e big errors in resour
e allo
ation. This is due to various

fa
tors, su
h as:
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� the non-preemptive se
tions used by the kernel to ensure the 
onsis-

ten
y of internal stru
tures;

� the low temporal resolution provided by traditional kernel timers, based

on a periodi
 interrupt sour
e;

� the ina

urate resour
e a

ounting provided by traditional OSs;

� the anomalies produ
ed by interrupt servi
e.

The kernel laten
y 
an be redu
ed by using preemptable kernels, by intro-

du
ing preemption points in the kernel, and by using high-resolution timers,

based on an aperiodi
 interrupt sour
e. When these solutions are used to

redu
e the laten
y, the s
heduler 
an be pre
ise enough to properly allo
ate

system resour
es so that ea
h appli
ation 
an a
hieve the desired QoS.

To prove that a

urate s
heduling is possible on Linux, the in
uen
e of

the kernel laten
y on the s
heduler a

ura
y has been measured through an

extensive set of experiments. Then, the kernel laten
y has been a

urately

analysed and evaluated, showing the e�e
tiveness of kernel preemption in

redu
ing it.

6.2 S
heduling

On
e the kernel provide low laten
ies, the s
heduling algorithm be
omes im-

portant. However, the �xed priority algorithm implemented in the standard

Linux s
heduler is not suitable for s
heduling generi
 time-sensitive a
tivi-

ties, be
ause it does not provide Temporal Isolation: temporal isolation (also

known as temporal prote
tion) is important for ensuring that the temporal

behaviour of a task does not a�e
t the s
hedulability of the other tasks in

the system.

In other words, the isolation property is ne
essary to prote
t appli
ations

from the misbehaviours of the other appli
ations: the net e�e
t is that ea
h

appli
ation exe
utes as it were on a slower dedi
ated pro
essor. The s
hedul-

ing te
hnique 
hosen in this paper to provide temporal isolation is based on

resour
e reservation te
hniques, hen
e an eÆ
ient and e�e
tive s
heduling al-

gorithm implementing resour
e reservations has been proposed. The servi
e

me
hanism proposed in this dissertation is the Constant Bandwidth Server

(CBS), a work 
onserving server (implementing soft reservations) that has

been inspired by the Total Bandwidth Server and by the Dynami
 Sporadi


Server.

Together with temporal isolation, the CBS provides some other inter-

esting properties, su
h as re
laiming of unused time, some kind of fairness,
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hard s
hedulability for tasks with known parameters, and the possibility to

perform a probabilisti
 guarantee for soft real-time tasks.

6.3 Adaptive Resour
e Allo
ation

Resour
e reservations 
an be used to implement an adaptive me
hanism

whi
h reserves the 
orre
t amount of resour
es to ea
h task. This feed-

ba
k me
hanism, whi
h 
an dynami
ally adapt the reservation parameters,

is parti
ularly useful to a
hieve the desired QoS when some tasks parameters

(su
h as the WCET) are not known in advan
e.

The adaptive reservation abstra
tion, obtained 
ombining the reserva-

tion and the feedba
k me
hanisms, uses a 
ontrol fun
tion f() to 
ompute

the amount of CPU time reserved to a task based on its s
heduling error.

Control theory 
an be used to design the feedba
k fun
tion, and to prove

that the 
losed loop s
heduler is stable (meaning that it is able to 
ontrol

the s
heduling error to a desired value), and 
an provide the desired QoS.

After introdu
ing a formal de�nition of the adaptive reservations me
ha-

nism, an a

urate formal model of a reservation-based s
heduler was devel-

oped and presented. Based on this model, 
ontrol theory has been used to

develop a feedba
k fun
tion and the performan
e of the 
losed-loop system

has been evaluated. A

ording to our model and to the 
ontrol theoreti
al

analysis that we performed, a simple PI 
ontroller resulted to be the 
orre
t


hoi
e for 
ontrolling the amount of time reserved to a task.

The proposed feedba
k s
heme has been initially implemented by using

a simulator and a syntheti
 workload, then by using a realisti
 workload

obtained by pro�ling an MPEG player. After that, adaptive reservations have

been implemented on a real system (using Linux/RK), and the e�e
tiveness

of the proposed s
heme has been validated by performing experiments on a

real system.

6.4 Final Remarks

Well, this is the end of the dissertation. I hope you all enjoyed reading it.

I also hope that the 
ontents of this dissertation will be useful for someone,

and 
ould help the development of future resear
h.

If you have 
omments, ideas, or questions about this dissertation and the

algorithms presented in it, feel free to write me at lu
abe72�gmail.
om

Lu
a
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Appendix A

GNU Free Do
umentation

Li
ense

Version 1.1, Mar
h 2000

Copyright





 2000 Free Software Foundation, In
.

59 Temple Pla
e, Suite 330, Boston, MA 02111-1307 USA

Everyone is permitted to 
opy and distribute verbatim 
opies of this li
ense

do
ument, but 
hanging it is not allowed.

Preamble

The purpose of this Li
ense is to make a manual, textbook, or other written

do
ument \free" in the sense of freedom: to assure everyone the e�e
tive

freedom to 
opy and redistribute it, with or without modifying it, either


ommer
ially or non
ommer
ially. Se
ondarily, this Li
ense preserves for the

author and publisher a way to get 
redit for their work, while not being


onsidered responsible for modi�
ations made by others.

This Li
ense is a kind of \
opyleft", whi
h means that derivative works

of the do
ument must themselves be free in the same sense. It 
omplements

the GNU General Publi
 Li
ense, whi
h is a 
opyleft li
ense designed for free

software.

We have designed this Li
ense in order to use it for manuals for free

software, be
ause free software needs free do
umentation: a free program

should 
ome with manuals providing the same freedoms that the software

does. But this Li
ense is not limited to software manuals; it 
an be used

for any textual work, regardless of subje
t matter or whether it is published

as a printed book. We re
ommend this Li
ense prin
ipally for works whose
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purpose is instru
tion or referen
e.

A.1 Appli
ability and De�nitions

This Li
ense applies to any manual or other work that 
ontains a noti
e

pla
ed by the 
opyright holder saying it 
an be distributed under the terms

of this Li
ense. The \Do
ument", below, refers to any su
h manual or work.

Any member of the publi
 is a li
ensee, and is addressed as \you".

A \Modi�ed Version" of the Do
ument means any work 
ontaining the

Do
ument or a portion of it, either 
opied verbatim, or with modi�
ations

and/or translated into another language.

A \Se
ondary Se
tion" is a named appendix or a front-matter se
tion of

the Do
ument that deals ex
lusively with the relationship of the publishers

or authors of the Do
ument to the Do
ument's overall subje
t (or to related

matters) and 
ontains nothing that 
ould fall dire
tly within that overall

subje
t. (For example, if the Do
ument is in part a textbook of mathemati
s,

a Se
ondary Se
tion may not explain any mathemati
s.) The relationship


ould be a matter of histori
al 
onne
tion with the subje
t or with related

matters, or of legal, 
ommer
ial, philosophi
al, ethi
al or politi
al position

regarding them.

The \Invariant Se
tions" are 
ertain Se
ondary Se
tions whose titles are

designated, as being those of Invariant Se
tions, in the noti
e that says that

the Do
ument is released under this Li
ense.

The \Cover Texts" are 
ertain short passages of text that are listed, as

Front-Cover Texts or Ba
k-Cover Texts, in the noti
e that says that the

Do
ument is released under this Li
ense.

A \Transparent" 
opy of the Do
ument means a ma
hine-readable 
opy,

represented in a format whose spe
i�
ation is available to the general pub-

li
, whose 
ontents 
an be viewed and edited dire
tly and straightforwardly

with generi
 text editors or (for images 
omposed of pixels) generi
 paint

programs or (for drawings) some widely available drawing editor, and that is

suitable for input to text formatters or for automati
 translation to a variety

of formats suitable for input to text formatters. A 
opy made in an other-

wise Transparent �le format whose markup has been designed to thwart or

dis
ourage subsequent modi�
ation by readers is not Transparent. A 
opy

that is not \Transparent" is 
alled \Opaque".

Examples of suitable formats for Transparent 
opies in
lude plain ASCII

without markup, Texinfo input format, L

A

T

E

X input format, SGML or XML

using a publi
ly available DTD, and standard-
onforming simple HTML de-

signed for human modi�
ation. Opaque formats in
lude PostS
ript, PDF,
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proprietary formats that 
an be read and edited only by proprietary word

pro
essors, SGML or XML for whi
h the DTD and/or pro
essing tools are

not generally available, and the ma
hine-generated HTML produ
ed by some

word pro
essors for output purposes only.

The \Title Page" means, for a printed book, the title page itself, plus

su
h following pages as are needed to hold, legibly, the material this Li
ense

requires to appear in the title page. For works in formats whi
h do not have

any title page as su
h, \Title Page" means the text near the most prominent

appearan
e of the work's title, pre
eding the beginning of the body of the

text.

A.2 Verbatim Copying

You may 
opy and distribute the Do
ument in any medium, either 
ommer-


ially or non
ommer
ially, provided that this Li
ense, the 
opyright noti
es,

and the li
ense noti
e saying this Li
ense applies to the Do
ument are re-

produ
ed in all 
opies, and that you add no other 
onditions whatsoever to

those of this Li
ense. You may not use te
hni
al measures to obstru
t or


ontrol the reading or further 
opying of the 
opies you make or distribute.

However, you may a

ept 
ompensation in ex
hange for 
opies. If you dis-

tribute a large enough number of 
opies you must also follow the 
onditions

in se
tion 3.

You may also lend 
opies, under the same 
onditions stated above, and

you may publi
ly display 
opies.

A.3 Copying in Quantity

If you publish printed 
opies of the Do
ument numbering more than 100,

and the Do
ument's li
ense noti
e requires Cover Texts, you must en
lose

the 
opies in 
overs that 
arry, 
learly and legibly, all these Cover Texts:

Front-Cover Texts on the front 
over, and Ba
k-Cover Texts on the ba
k


over. Both 
overs must also 
learly and legibly identify you as the publisher

of these 
opies. The front 
over must present the full title with all words of

the title equally prominent and visible. You may add other material on the


overs in addition. Copying with 
hanges limited to the 
overs, as long as

they preserve the title of the Do
ument and satisfy these 
onditions, 
an be

treated as verbatim 
opying in other respe
ts.

If the required texts for either 
over are too voluminous to �t legibly,

you should put the �rst ones listed (as many as �t reasonably) on the a
tual
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over, and 
ontinue the rest onto adja
ent pages.

If you publish or distribute Opaque 
opies of the Do
ument number-

ing more than 100, you must either in
lude a ma
hine-readable Transparent


opy along with ea
h Opaque 
opy, or state in or with ea
h Opaque 
opy a

publi
ly-a

essible 
omputer-network lo
ation 
ontaining a 
omplete Trans-

parent 
opy of the Do
ument, free of added material, whi
h the general

network-using publi
 has a

ess to download anonymously at no 
harge us-

ing publi
-standard network proto
ols. If you use the latter option, you must

take reasonably prudent steps, when you begin distribution of Opaque 
opies

in quantity, to ensure that this Transparent 
opy will remain thus a

essible

at the stated lo
ation until at least one year after the last time you distribute

an Opaque 
opy (dire
tly or through your agents or retailers) of that edition

to the publi
.

It is requested, but not required, that you 
onta
t the authors of the

Do
ument well before redistributing any large number of 
opies, to give them

a 
han
e to provide you with an updated version of the Do
ument.

A.4 Modi�
ations

You may 
opy and distribute a Modi�ed Version of the Do
ument under the


onditions of se
tions 2 and 3 above, provided that you release the Modi�ed

Version under pre
isely this Li
ense, with the Modi�ed Version �lling the

role of the Do
ument, thus li
ensing distribution and modi�
ation of the

Modi�ed Version to whoever possesses a 
opy of it. In addition, you must

do these things in the Modi�ed Version:

� Use in the Title Page (and on the 
overs, if any) a title distin
t from that

of the Do
ument, and from those of previous versions (whi
h should, if

there were any, be listed in the History se
tion of the Do
ument). You

may use the same title as a previous version if the original publisher of

that version gives permission.

� List on the Title Page, as authors, one or more persons or entities

responsible for authorship of the modi�
ations in the Modi�ed Version,

together with at least �ve of the prin
ipal authors of the Do
ument (all

of its prin
ipal authors, if it has less than �ve).

� State on the Title page the name of the publisher of the Modi�ed

Version, as the publisher.

� Preserve all the 
opyright noti
es of the Do
ument.
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� Add an appropriate 
opyright noti
e for your modi�
ations adja
ent to

the other 
opyright noti
es.

� In
lude, immediately after the 
opyright noti
es, a li
ense noti
e giving

the publi
 permission to use the Modi�ed Version under the terms of

this Li
ense, in the form shown in the Addendum below.

� Preserve in that li
ense noti
e the full lists of Invariant Se
tions and

required Cover Texts given in the Do
ument's li
ense noti
e.

� In
lude an unaltered 
opy of this Li
ense.

� Preserve the se
tion entitled \History", and its title, and add to it an

item stating at least the title, year, new authors, and publisher of the

Modi�ed Version as given on the Title Page. If there is no se
tion

entitled \History" in the Do
ument, 
reate one stating the title, year,

authors, and publisher of the Do
ument as given on its Title Page, then

add an item des
ribing the Modi�ed Version as stated in the previous

senten
e.

� Preserve the network lo
ation, if any, given in the Do
ument for publi


a

ess to a Transparent 
opy of the Do
ument, and likewise the network

lo
ations given in the Do
ument for previous versions it was based on.

These may be pla
ed in the \History" se
tion. You may omit a network

lo
ation for a work that was published at least four years before the

Do
ument itself, or if the original publisher of the version it refers to

gives permission.

� In any se
tion entitled \A
knowledgements" or \Dedi
ations", preserve

the se
tion's title, and preserve in the se
tion all the substan
e and tone

of ea
h of the 
ontributor a
knowledgements and/or dedi
ations given

therein.

� Preserve all the Invariant Se
tions of the Do
ument, unaltered in their

text and in their titles. Se
tion numbers or the equivalent are not


onsidered part of the se
tion titles.

� Delete any se
tion entitled \Endorsements". Su
h a se
tion may not

be in
luded in the Modi�ed Version.

� Do not retitle any existing se
tion as \Endorsements" or to 
on
i
t in

title with any Invariant Se
tion.
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If the Modi�ed Version in
ludes new front-matter se
tions or appendi
es

that qualify as Se
ondary Se
tions and 
ontain no material 
opied from the

Do
ument, you may at your option designate some or all of these se
tions

as invariant. To do this, add their titles to the list of Invariant Se
tions in

the Modi�ed Version's li
ense noti
e. These titles must be distin
t from any

other se
tion titles.

You may add a se
tion entitled \Endorsements", provided it 
ontains

nothing but endorsements of your Modi�ed Version by various parties { for

example, statements of peer review or that the text has been approved by

an organization as the authoritative de�nition of a standard.

You may add a passage of up to �ve words as a Front-Cover Text, and a

passage of up to 25 words as a Ba
k-Cover Text, to the end of the list of Cover

Texts in the Modi�ed Version. Only one passage of Front-Cover Text and

one of Ba
k-Cover Text may be added by (or through arrangements made

by) any one entity. If the Do
ument already in
ludes a 
over text for the

same 
over, previously added by you or by arrangement made by the same

entity you are a
ting on behalf of, you may not add another; but you may

repla
e the old one, on expli
it permission from the previous publisher that

added the old one.

The author(s) and publisher(s) of the Do
ument do not by this Li
ense

give permission to use their names for publi
ity for or to assert or imply

endorsement of any Modi�ed Version.

A.5 Combining Do
uments

You may 
ombine the Do
ument with other do
uments released under this

Li
ense, under the terms de�ned in se
tion 4 above for modi�ed versions,

provided that you in
lude in the 
ombination all of the Invariant Se
tions

of all of the original do
uments, unmodi�ed, and list them all as Invariant

Se
tions of your 
ombined work in its li
ense noti
e.

The 
ombined work need only 
ontain one 
opy of this Li
ense, and mul-

tiple identi
al Invariant Se
tions may be repla
ed with a single 
opy. If there

are multiple Invariant Se
tions with the same name but di�erent 
ontents,

make the title of ea
h su
h se
tion unique by adding at the end of it, in

parentheses, the name of the original author or publisher of that se
tion if

known, or else a unique number. Make the same adjustment to the se
tion

titles in the list of Invariant Se
tions in the li
ense noti
e of the 
ombined

work.

In the 
ombination, you must 
ombine any se
tions entitled \History"

in the various original do
uments, forming one se
tion entitled \History";

112



likewise 
ombine any se
tions entitled \A
knowledgements", and any se
-

tions entitled \Dedi
ations". You must delete all se
tions entitled \Endorse-

ments."

A.6 Colle
tions of Do
uments

You may make a 
olle
tion 
onsisting of the Do
ument and other do
uments

released under this Li
ense, and repla
e the individual 
opies of this Li
ense

in the various do
uments with a single 
opy that is in
luded in the 
olle
tion,

provided that you follow the rules of this Li
ense for verbatim 
opying of ea
h

of the do
uments in all other respe
ts.

You may extra
t a single do
ument from su
h a 
olle
tion, and distribute

it individually under this Li
ense, provided you insert a 
opy of this Li
ense

into the extra
ted do
ument, and follow this Li
ense in all other respe
ts

regarding verbatim 
opying of that do
ument.

A.7 Aggregation With Independent Works

A 
ompilation of the Do
ument or its derivatives with other separate and in-

dependent do
uments or works, in or on a volume of a storage or distribution

medium, does not as a whole 
ount as a Modi�ed Version of the Do
ument,

provided no 
ompilation 
opyright is 
laimed for the 
ompilation. Su
h a


ompilation is 
alled an \aggregate", and this Li
ense does not apply to the

other self-
ontained works thus 
ompiled with the Do
ument, on a

ount of

their being thus 
ompiled, if they are not themselves derivative works of the

Do
ument.

If the Cover Text requirement of se
tion 3 is appli
able to these 
opies of

the Do
ument, then if the Do
ument is less than one quarter of the entire

aggregate, the Do
ument's Cover Texts may be pla
ed on 
overs that sur-

round only the Do
ument within the aggregate. Otherwise they must appear

on 
overs around the whole aggregate.

A.8 Translation

Translation is 
onsidered a kind of modi�
ation, so you may distribute trans-

lations of the Do
ument under the terms of se
tion 4. Repla
ing Invariant

Se
tions with translations requires spe
ial permission from their 
opyright

holders, but you may in
lude translations of some or all Invariant Se
tions
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in addition to the original versions of these Invariant Se
tions. You may in-


lude a translation of this Li
ense provided that you also in
lude the original

English version of this Li
ense. In 
ase of a disagreement between the trans-

lation and the original English version of this Li
ense, the original English

version will prevail.

A.9 Termination

You may not 
opy, modify, subli
ense, or distribute the Do
ument ex
ept

as expressly provided for under this Li
ense. Any other attempt to 
opy,

modify, subli
ense or distribute the Do
ument is void, and will automati
ally

terminate your rights under this Li
ense. However, parties who have re
eived


opies, or rights, from you under this Li
ense will not have their li
enses

terminated so long as su
h parties remain in full 
omplian
e.

A.10 Future Revisions of This Li
ense

The Free Software Foundation may publish new, revised versions of the GNU

Free Do
umentation Li
ense from time to time. Su
h new versions will be

similar in spirit to the present version, but may di�er in detail to address

new problems or 
on
erns. See http://www.gnu.org/
opyleft/.

Ea
h version of the Li
ense is given a distinguishing version number. If

the Do
ument spe
i�es that a parti
ular numbered version of this Li
ense "or

any later version" applies to it, you have the option of following the terms

and 
onditions either of that spe
i�ed version or of any later version that

has been published (not as a draft) by the Free Software Foundation. If the

Do
ument does not spe
ify a version number of this Li
ense, you may 
hoose

any version ever published (not as a draft) by the Free Software Foundation.

ADDENDUM: How to use this Li
ense for your

do
uments

To use this Li
ense in a do
ument you have written, in
lude a 
opy of the

Li
ense in the do
ument and put the following 
opyright and li
ense noti
es

just after the title page:

Copyright





 YEAR YOUR NAME. Permission is granted to


opy, distribute and/or modify this do
ument under the terms of

the GNU Free Do
umentation Li
ense, Version 1.1 or any later
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version published by the Free Software Foundation; with the In-

variant Se
tions being LIST THEIR TITLES, with the Front-

Cover Texts being LIST, and with the Ba
k-Cover Texts being

LIST. A 
opy of the li
ense is in
luded in the se
tion entitled

\GNU Free Do
umentation Li
ense".

If you have no Invariant Se
tions, write \with no Invariant Se
tions"

instead of saying whi
h ones are invariant. If you have no Front-Cover Texts,

write \no Front-Cover Texts" instead of \Front-Cover Texts being LIST";

likewise for Ba
k-Cover Texts.

If your do
ument 
ontains nontrivial examples of program 
ode, we re
-

ommend releasing these examples in parallel under your 
hoi
e of free soft-

ware li
ense, su
h as the GNU General Publi
 Li
ense, to permit their use

in free software.
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Appendix B

Mis
ellaneous

Ok, sin
e Appendix titles go into the index, I 
ould not put the 
orre
t title

here, but this is the re
ipe that I promised to a lot of people: \Spaghetti al

Pomodoro".

To prepare good spaghetti al pomodoro, you will need:

� about 1/2 Kg of spaghetti (translation to lb is left as a simple exer
ise

for the reader). Pasta by \Barilla" 
an be easily found even in the US,

and is fairly good, hen
e I suggest it.

� 1 
an of di
ed tomatoes

� a small onion

� oil

� salt, pepper, oregano, and similar stu�

First of all, put about 3 litres of water in a pot, and put it on the stove.

When the water boils, add some salt and the spaghetti. At the same time,

put some oil in a pan, together with the onion 
ut in small pie
es. Cook it for

four/�ve minutes, and then add the tomatoes. Add salt, pepper, oregano,

red pepper, and whatever else you like, a

ording to your preferen
e.

After about 8 minutes that spaghetti are 
ooking in the boiling water,

remove them from the pot, and put them in the pan 
ontaining the tomatoes.

Also add 3 or 4 table spoons of the 
ooking water. Finish to 
ook the pasta

for about 4 minutes, and serve. Enjoy!!!

Remember, if you miss this deadline and you 
ook the spaghetti too

mu
h, they will result to be over
ooked, and will not be good. However,

the 
riti
ality of this deadline depends on the Quality of the Pasta (QoP?).

If you use good-quality spaghetti (su
h as Barilla) you 
an have a 1 or 2
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minutes toleran
e on the deadline, otherwise the deadline is hard!!! (ok, this

is just to maintain the appendix on-topi
).
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