
Real-Time Virtual Machines:

Theory and Practice

Luca Abeni

luca.abeni@santannapisa.it

Real-Time Applications

La ricerca negli Istituti di Ingegneria Luca Abeni — Real-Time Virtual Machines – 2 / 50

• Real-Time Application: The time when a result
is produced matters

• A correct result produced too late is equivalent to
a wrong result (or to no result)

• What does “too late” mean, here?

• Applications characterised by temporal
constraints that have to be respected!

• Examples:

• Control applications, autonomous driving, ...
• But also infotainment, gaming,

telecommunications, ...!!!

Temporal Constraints

La ricerca negli Istituti di Ingegneria Luca Abeni — Real-Time Virtual Machines – 3 / 50

• Temporal constraints are modelled through
deadlines

• Finish some activity before a time (deadline)
• Generate some data before a deadline
• Terminate some process/thread before a

deadline
• ...

• What happens if a constraint is not respected?

• Simple: the application fails!

Real-Time Task

La ricerca negli Istituti di Ingegneria Luca Abeni — Real-Time Virtual Machines – 4 / 50

Task (process or thread): sequence of actions
characterized by deadlines and maximum execution
time. Example: periodic task with period 8 and
maximum execution time 3.

0 2 4 6 8 10 12 14 16 18 20 22 24

τ1

Note: while the first and the third activations execute for
3 time units the second one executes for only 2 time
units.

RT Scheduling: Why?

La ricerca negli Istituti di Ingegneria Luca Abeni — Real-Time Virtual Machines – 5 / 50

• Taskset T = {(1, 3), (4, 8)}: not schedulable by FCFS

0 2 4 6 8 10 12 14 16 18 20 22 24

τ1

τ2

• T is schedulable with other algorithms

0 2 4 6 8 10 12 14 16 18 20 22 24

τ1

τ2

The Scheduling Problem

La ricerca negli Istituti di Ingegneria Luca Abeni — Real-Time Virtual Machines – 6 / 50

• A real-time task τi is properly served if all jobs
respect their deadline...

• ...Appropriate scheduling is important!

• The CPU scheduler must somehow know the
temporal constaints of the tasks...

• ...To schedule them so that such temporal
constraints are respected

• How to schedule real-time tasks? (scheduling
algorithm)

• Is it possible to respect all the deadlines?
• Do commonly used OSs provide appropriate

scheduling algorithms?

Fixed Priorities

La ricerca negli Istituti di Ingegneria Luca Abeni — Real-Time Virtual Machines – 7 / 50

• Fixed-priority schedulers are often used for real-time
tasks...

• ...Is this ok in general, or only in some cases?

• Given a set of real-time tasks Γ = {τi}, can a
fixed priority scheduler allow to respect all the
deadlines?

• Is it possible to know in advance if some deadline
will be missed?

• How to assign the priorities?

• Example: if fixed priorities are enough, the
SCHED FIFO and SCHED RR policies can be used!

Schedulability Analysis

La ricerca negli Istituti di Ingegneria Luca Abeni — Real-Time Virtual Machines – 8 / 50

• Given a set of tasks, is it possible to know in
advance if deadlines will be missed?

• A task is schedulable if it will not miss any
deadline

• Depends on the task, on the scheduler, on the
other tasks, ...

• Schedulability test: mathematical test to check if τ
will miss any deadline

• Possible idea: compute the amount of time
needed by all the tasks to respect all their
deadlines in an interval (t0, t1) and compare with
t1 − t0

What About Multiple Cores?

La ricerca negli Istituti di Ingegneria Luca Abeni — Real-Time Virtual Machines – 9 / 50

• How to schedule tasks on multiple CPUs / cores?

• First idea: partitioned scheduling

• Statically assign tasks to CPU coress
• Reduce the problem of scheduling on M cores to M

instances of uniprocessor scheduling

CPU CPU CPU CPU

M

Or...

La ricerca negli Istituti di Ingegneria Luca Abeni — Real-Time Virtual Machines – 10 / 50

• One single task queue, shared by M CPU coress

• The first M ready tasks are selected
• What happens using fixed priorities?
• Tasks are not bound to specific CPUs
• Tasks can often migrate between different CPUs

• Problem: UP schedulers do not work well!
M

CPU CPU CPU CPU

{M

Example: Fixed Priorities in Linux

La ricerca negli Istituti di Ingegneria Luca Abeni — Real-Time Virtual Machines – 11 / 50

• SCHED FIFO and SCHED RR use fixed priorities

• They can be used for real-time tasks, to
implement priority assignments from literature

• Real-time tasks have priority over non real-time
(SCHED OTHER) tasks

• Difference between the two policies: visible when
more tasks have the same priority

• The administrator can use
sched setscheduler() (or similar) to schedule
real-time tasks

• Might be a little bit impractical, but can be used

• However...

Periodic Task Example

La ricerca negli Istituti di Ingegneria Luca Abeni — Real-Time Virtual Machines – 12 / 50

• Consider a periodic task

/ * . . . * /
while (1) {

/ * Job body * /
c lock nanosleep (CLOCK REALTIME,

TIMER ABSTIME , &r , NULL) ;
t imespec add us (& r , per iod) ;

}

• The task expects to be executed at time
r = r0 + jP ...

• ...But is sometimes delayed to r0 + jP + δ

• Why? Because it executes on a real system, not
in a simulator!!!

Theoretical Schedule

La ricerca negli Istituti di Ingegneria Luca Abeni — Real-Time Virtual Machines – 13 / 50

0 2 4 6 8 10 12 14 16 18 20 22

τ1

τ2

Actual Schedule

La ricerca negli Istituti di Ingegneria Luca Abeni — Real-Time Virtual Machines – 14 / 50

0 2 4 6 8 10 12 14 16 18 20 22

τ1

τ2

• What happens if the 2nd activation of τ1 arrives a little
bit later???

• The 2nd activation of τ2 misses a deadline!!!

Theory vs Real Schedule

La ricerca negli Istituti di Ingegneria Luca Abeni — Real-Time Virtual Machines – 15 / 50

• The delay δ in scheduling a task is due to kernel
latency

• Kernel latency can be modelled as a blocking time
• In real world, high priority tasks often suffer from

blocking times coming from the OS (more precisely,
from the kernel)

• Why?
• How?
• What can we do?

• To answer the previous questions, we need to at the
OS internals...

The OS Kernel

La ricerca negli Istituti di Ingegneria Luca Abeni — Real-Time Virtual Machines – 16 / 50

• Kernel: “core” of the OS, managing the hardware→
can be non-preemptable

• System executing kernel code for a long time (long
syscalls or heavy interrupt load)→ long latencies!!!

• Possible Solutions:

1. Insert explicit rescheduling points into the kernel
2. Make the kernel preemptable (spinlocks protect

critical sections)→ sections holding a spinlock
for too much time still create problems

3. 1 + 2→ preemptable kernel + lock breaking

• Or, rewrite the kernel from scratch...

Latency

La ricerca negli Istituti di Ingegneria Luca Abeni — Real-Time Virtual Machines – 17 / 50

• Latency: measure of the difference between the
theoretical and actual schedule

• Task τ expects to be scheduled at time t . . .

• . . . but is actually scheduled at time t′

• ⇒ Latency L = t′ − t

• The latency L can be modelled as a so-called
“blocking time”⇒ real-time theory knows how to
handle it!

• Analysis already developed for shared resources
• Can be easily adapted to account for kernel

latency

Effects of the Latency

La ricerca negli Istituti di Ingegneria Luca Abeni — Real-Time Virtual Machines – 18 / 50

• Upper bound for L? If not known, no schedulability
tests!!!

• The latency must be bounded: ∃Lmax : L < Lmax

• If Lmax is too high, only few task sets result to be
schedulable

• Large blocking time experienced by all tasks!
• The worst-case latency Lmax cannot be too high

• Real-Time OS (RTOS): OS provinding a low upper
bound for the kernel latency!

Latency in Linux

La ricerca negli Istituti di Ingegneria Luca Abeni — Real-Time Virtual Machines – 19 / 50

• Tool (cyclictest) to measure the latency
• Vanilla kernel: depends on the configuration

• Can be tens of milliseconds

• Preempt-RT patchset
(https://wiki.linuxfoundation.org/realtime): reduce
latency to less than 100 microseconds

• Tens of microseconds on well-tuned systems!

• So, scheduling real-time tasks in Linux is not an
issue anymore...

https://wiki.linuxfoundation.org/realtime

Virtualization

La ricerca negli Istituti di Ingegneria Luca Abeni — Real-Time Virtual Machines – 20 / 50

• Virtualization: creation of a virtual instance of a
computing system

• Computer (PC, server, embedded board, ...)
• Operating System
• Storage device / other

• Separate / independent from the physical system(s)
hosting it

• This mainly requires two activities:

1. Pooling: consolidating possibly distributed
resources into a single logical entity

2. Isolation: giving the virtualized application a
“virtual” private copy of the resources

Resource Pooling

La ricerca negli Istituti di Ingegneria Luca Abeni — Real-Time Virtual Machines – 21 / 50

• Set of multiple, possibly distributed, resources
• Single “virtual resource”, that can be used to

transparently access them

• Pool of physical servers hosting VMs in a cloud;
accessed by starting a VM⇐ load balancing

• Pool of storage devices (disks, databases, ...)
accessed as a single virtual storage device← I
do not know where data are really stored...

• ...

• Used for automatically distributing the load, for
building powerful machines based on less powerful
ones, for making computation independent on data
placement, ...

Resource Isolation

La ricerca negli Istituti di Ingegneria Luca Abeni — Real-Time Virtual Machines – 22 / 50

• The usage of virtual resources must be controlled by
the virtualization software

• Example: applications running in a VM should not
be able to access resources outside of the VM...

• ...Nor to directly access physical resources!
• ...

• Virtual resources should not even be distinguishible
from physical ones

• Example: applications running in a VM should
have the impression to run on a physical
machine...

Different Kinds of Isolation...

La ricerca negli Istituti di Ingegneria Luca Abeni — Real-Time Virtual Machines – 23 / 50

• Resource isolation can be used for different reasons

• Security← reduce the impact of compromised
subsystems

• Application sandboxing← execute non-trusted
software

• Performance guarantees← isolate the
performance of a component from interference of
other components

• ...

• Different kinds of requirements

Virtualized Resources

La ricerca negli Istituti di Ingegneria Luca Abeni — Real-Time Virtual Machines – 24 / 50

• Virtual Machine: efficient, isolated duplicate of a
physical machine

• Why focusing on physical machines?
• What about abstract machines?

• Software stack: hierarchy of abstract machines

• ...
• Abstract machine: language runtime
• Abstract machine: OS (hardware + system library

calls)
• Abstract machine: OS kernel (hardware +

syscalls)
• Physical machine (hardware)

Hardware Virtualization

La ricerca negli Istituti di Ingegneria Luca Abeni — Real-Time Virtual Machines – 25 / 50

• Can be full hardware virtualization or
paravirtualization

• Paravirtualization requires modifications to guest
OS (kernel)

• Can be based on trap and emulate
• Can use special CPU features (hardware assisted

virtualization)
• In any case, the hardware (whole machine) is

virtualized!

• Guests can provide their own OS kernel
• Guests can execute at various privilege levels

OS-Level Virtualization

La ricerca negli Istituti di Ingegneria Luca Abeni — Real-Time Virtual Machines – 26 / 50

• The OS kernel (or the whole OS) is virtualized

• Guests can provide the user-space part of the
OS (system libraries + binaries, boot scripts, ...)
or just an application...

• ...But continue to use the host OS kernel!

• One single OS kernel (the host kernel) in the system

• The kernel virtualizes all (or part) of its services

• OS kernel virtualization: container-based
virtualization

• Example of OS virtualization: wine

Virtualization Levels and

Technologies

La ricerca negli Istituti di Ingegneria Luca Abeni — Real-Time Virtual Machines – 27 / 50

• Virtualization level: hw, kernel, OS, language, ...

• Defines the abstractions provided through
virtualization

• Virtualization technology: how is the VM
implemented?

• “Full VM” for hw virtualization

• Hypervisor→ software component used to
virtualize the CPU

• Kernel mechanisms for implementing application
or OS containers (OS-level virtualization)

• But... Hypervisors can do OS-level virtualization too!

Real-Time and Virtualization???

La ricerca negli Istituti di Ingegneria Luca Abeni — Real-Time Virtual Machines – 28 / 50

• Serving real-time applications in (for example)
Linux-based systems is not a problem today...

• ...Can real-time applications run in Virtual Machines?

• Real-Time in Virtual Machines??? But... Why?

• Component-Based Development
• Security

• Isolate real-time applications in a VM

• Easy deployment
• Real-Time Cloud Computing
• ...

Combining Real-Time VMs

La ricerca negli Istituti di Ingegneria Luca Abeni — Real-Time Virtual Machines – 29 / 50

?
• Real-time analysis for each application / in each

VM...
• What about the resulting system?

Modelling RT VMs

La ricerca negli Istituti di Ingegneria Luca Abeni — Real-Time Virtual Machines – 30 / 50

• Example: VM Ci containing ni real-time tasks
• How to model/analyze it?

• Real-time theory only shows how to schedule
single tasks...

• Here, we schedule VMs!

• We need to somehow “summarise” the
requirements of a VM containing multiple tasks!

• So, 2 main issues:

1. Describe the temporal requirements of a VM in a
simple way

2. Schedule the VMs, and somehow “combine”
their temporal guarantees

Schedulers Hierarchy

La ricerca negli Istituti di Ingegneria Luca Abeni — Real-Time Virtual Machines – 31 / 50

• Scheduling hierarchy

• Root/Host scheduler (schedules VMss)
• Local/Guest scheduler inside each VM

• Compositional Scheduling Framework (CSF): allows
to compose real-time guarantees

1τ
1τ

1ττn

τn

2

τn

τ

Root
Scheduler

Local Scheduler Local Scheduler Local Scheduler

Implementable through
Virtual Machines!

• Hardware virtualization
• Containers

Root Scheduler Requirements

La ricerca negli Istituti di Ingegneria Luca Abeni — Real-Time Virtual Machines – 32 / 50

• First requirement: analyse the schedulability of a VM
independently from other VMs

• The root scheduler must provide some kind of
temporal protection between VMs

• Various possibilities

• Resource Reservations / server-based approach
• Static time partitioning
• ...

The root scheduler must guarantee that
each VM receives a minimum amount

of resources in a time interval

Schedulability Analysis

La ricerca negli Istituti di Ingegneria Luca Abeni — Real-Time Virtual Machines – 33 / 50

• (Over?)Simplifying things a little bit...
• ...Suppose to know the amount of time needed by a

VM to respect its temporal constraints and the
amount of time provided by the global scheduler

• A VM is “schedulable” if

demanded time ≤ supplied time

• “demanded time”: amount of time (in a time
interval) needed by a VM

• “supplied time”: amount of time (in a time
interval) given by the global scheduler to a VM

• Of course the devil is in the details

Supplied Time

La ricerca negli Istituti di Ingegneria Luca Abeni — Real-Time Virtual Machines – 34 / 50

• Description of the root scheduler temporal behaviour
• More formally:

• Depends on the time interval t we are
considering

• Depends on the root scheduler S

• Minimum amount of time given by S to a VM in a
time interval of size s

• Problem: fixed-priority scheduling does not
guarantee a minimum time to the VM!!!

• It can be shown that reservation-based
scheduling of VMs can work

• Reserve a runtime Q every period P for a VM

Summing Up...

La ricerca negli Istituti di Ingegneria Luca Abeni — Real-Time Virtual Machines – 35 / 50

• Real-Time applications running in a VM?

• As for OSs, two different aspects

Summing Up...

La ricerca negli Istituti di Ingegneria Luca Abeni — Real-Time Virtual Machines – 35 / 50

• Real-Time applications running in a VM?

• As for OSs, two different aspects

• Resource allocation/management
(scheduling)

• CPU allocation/scheduling: lot of work in
literature

Summing Up...

La ricerca negli Istituti di Ingegneria Luca Abeni — Real-Time Virtual Machines – 35 / 50

• Real-Time applications running in a VM?

• As for OSs, two different aspects

• Latency (host and guest)

• Latencies not investigated too much (yet!)

Summing Up...

La ricerca negli Istituti di Ingegneria Luca Abeni — Real-Time Virtual Machines – 35 / 50

• Real-Time applications running in a VM?

• As for OSs, two different aspects

• Resource allocation/management
(scheduling)

• Latency (host and guest)

• CPU allocation/scheduling: lot of work in
literature

• Latencies not investigated too much (yet!)

• Virtualization: full hw or OS-level

• Open-source hypervisors: KVM and Xen
• Real-Time containers

Hardware Virtualization and

Latencies

La ricerca negli Istituti di Ingegneria Luca Abeni — Real-Time Virtual Machines – 36 / 50

• Hypervisor: software component responsible for
executing multiple OSs on the same physical node

• Can introduce latencies too!

• Different kinds of hypervisors:

• Xen: bare-metal hypervisor (below the Linux
kernel)

• Common idea: the hypervisor is small/simple,
so it causes small latencies

• KVM: hosted hypervisor (Linux kernel module)

• Latencies reduced by using Preempt-RT
• Linux developers already did lot of work!!!

Hypervisor Latency

La ricerca negli Istituti di Ingegneria Luca Abeni — Real-Time Virtual Machines – 37 / 50

• Same strategy/tools used for measuring kernel
latency

• Idea: run cyclictest in a VM

• cyclictest process ran in the guest OS...
• ...instead of host OS

• cyclictest period: 50µs
• “Kernel stress” to trigger high latencies

• Non-real-time processes performing lot of
syscalls or triggering lots of interrupts

• Executed in the host OS (for KVM) or in Dom0
(for Xen)

• Experiments on multiple x86-based systems

Hypervisor Latencies

La ricerca negli Istituti di Ingegneria Luca Abeni — Real-Time Virtual Machines – 38 / 50

Intel Core Duo

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 200 400 600 800 1000

kvm, RT host, RT guest
kvm, RT host, NRT guest
kvm, NRT host, RT guest

kvm, NRT host, NRT guest
Xen, RT Dom0, RT DomU

Xen, RT Dom0, NRT DomU
Xen, NRT Dom0, RT DomU

Xen, NRT Dom0, NRT DomU

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 100 200 300 400 500

kvm, RT host, RT guest
kvm, RT host, NRT guest
kvm, NRT host, RT guest

kvm, NRT host, NRT guest
Xen, RT Dom0, RT DomU

Xen, RT Dom0, NRT DomU
Xen, NRT Dom0, RT DomU

Xen, NRT Dom0, NRT DomU

Intel Core i7

Worst Cases

La ricerca negli Istituti di Ingegneria Luca Abeni — Real-Time Virtual Machines – 39 / 50

Kernels Core Duo Core i7
Xen KVM Xen KVM

NRT/NRT 3216µs 851µs 785µs 275µs
NRT/RT 4152µs 463µs 1589µs 243µs
RT/NRT 3232µs 233µs 791µs 99µs
RT/RT 3956µs 71µs 1541µs 72µs

• Preempt-RT helps a lot with KVM

• Good worst-case values (less than 100µs)

• Preempt-RT in the guest is dangerous for Xen

• Worst-case values stay high

Hypervisor vs Kernel

La ricerca negli Istituti di Ingegneria Luca Abeni — Real-Time Virtual Machines – 40 / 50

KVM

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 10 20 30 40 50 60 70 80

Host kernel latency
kvm latency

Xen

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 100 200 300 400 500

Dom0 latency (RT)
Dom0 latency (NRT)

Xen latency

• Worst Cases:

• Host: 29µs
• Dom0: 201µs with Preempt-RT, 630µs with NRT

Investigating Xen Latencies

La ricerca negli Istituti di Ingegneria Luca Abeni — Real-Time Virtual Machines – 41 / 50

• KVM: usable for real-time workloads
• Xen: strange results

• Larger latencies in general
• Using Preempt-RT in the guest increases the

latencies?

• Xen latencies are not due to the hypervisor’s
scheduler

• Repeating the experiments with the null
scheduler did not decrease the experienced
latencies

Virtualization Mechanisms

La ricerca negli Istituti di Ingegneria Luca Abeni — Real-Time Virtual Machines – 42 / 50

• Xen virtualization: PV, HVM, PVH, ...

• PV: everything is para-virtualized
• HVM: full hardware emulation (through qemu) for

devices (some para-virtualized devices, too); use
CPU virtualization extensions (Intel VT-x, etc...)

• PVH: hardware virtualization for the CPU +
para-virtualized devices (trade-off between the
two)

Guest Kernel PV PVH HVM

NRT 661µs 1276µs 1187µs
RT 178µs 216µs 4470µs

Reducing the Xen Latencies

La ricerca negli Istituti di Ingegneria Luca Abeni — Real-Time Virtual Machines – 43 / 50

• Xen latencies seem to be mainly due to timer
resolution latency

• Turned out to be an issue in the Linux code
handling Xen’s para-virtualized timers

• Linux jargon: “clockevent device”

• Does not activate a timer at less than 100µs from
current time (TIMER SLOP)

• After reducing this “timer slop”, average latency
smaller than 50µs even for cyclictest with period 50µs

• Still larger than KVM latencies (probably due to
non-preemptable sections?)

Scheduling the VMs

La ricerca negli Istituti di Ingegneria Luca Abeni — Real-Time Virtual Machines – 44 / 50

• Issue: how to guarantee a minimum amount of CPU
time to each VM?

• As said, SCHED FIFO / SCHED RR are not ok...

• SCHED DEADLINE policy: schedule a thread /
process for an amount of time Q every period P

• Q: runtime
• P : reservation period

• This is what we need!!! Allows to compute a supply
function!

• Xen provides a similar scheduler (RTDS)

In Practice...

La ricerca negli Istituti di Ingegneria Luca Abeni — Real-Time Virtual Machines – 45 / 50

• Full hardware virtualization

• KVM: use SCHED DEADLINE to schedule the
vCPU threads

• Xen: use the RTDS scheduler

• OS-level virtualisation: containers (lxc, Docker, ...)

• Extend SCHED DEADLINE to schedule containers

• More precisely, to schedule control groups

• Implement the scheduling hierarchy in the kernel

• Container-based real-time scheduling

• CPU allocation: interesting issues with multiple
vCPUs

Example: KVM-Based VMs

La ricerca negli Istituti di Ingegneria Luca Abeni — Real-Time Virtual Machines – 46 / 50

• KVM: Linux driver for CPU virtualisation

• User-space VMM (qemu, Firecracker, ...)
• A thread per virtual CPU (vCPU thread)

• Use Preempt-RT for host and guest kernels
• Use SCHED DEADLINE for the vCPU threads

• CFS→ (boring) algorithms to dimension Q and P

• Global guest scheduler← para-virtualised
scheduling!!!

• To always schedule on physical CPUs the
highest priority guest tasks

• Use partitioned fixed priority scheduling in the guest

Example: Container-Based VMs

La ricerca negli Istituti di Ingegneria Luca Abeni — Real-Time Virtual Machines – 47 / 50

• Use Linux control groups and namespaces

• One single scheduler for all the tasks
• Can “see” the tasks inside containers

• Use Preempt-RT for the host kernel (there is no
guest kernel)

• Patch SCHED DEADLINE to schedule real-time
control groups

• Again, CSF allows to dimension Q and P

• No issues using a global guest scheduler!

Conclusions

La ricerca negli Istituti di Ingegneria Luca Abeni — Real-Time Virtual Machines – 48 / 50

• Deterministic scheduling of RT tasks in VMs is
possible

• But can be tricky; you need to know what to do

• RT support from Linux community→ Preempt-RT
• Theory from RT research→ SCHED DEADLINE

• Lots of interesting problems, both theoretical and
practical, being investigated at ReTiS Lab

• Multi-core scheduling
• Latencies in VMs
• Scheduling VMs and scheduling in VMs
• ...

• Results contributed to the open-source community

References from Literature

La ricerca negli Istituti di Ingegneria Luca Abeni — Real-Time Virtual Machines – 49 / 50

• Arvind Easwaran, Insik Shin, and Insup Lee. Optimal virtual cluster-based multiprocessor
scheduling. Real-Time Systems, 43(1):25–59, September 2009. ISSN 1573-1383

• Linh T. X. Phan, Jaewoo Lee, Arvind Easwaran, Vinay Ramaswamy, Sanjian Chen, Insup Lee,
and Oleg Sokolsky. CARTS: A tool for compositional analysis of real-time systems. SIGBED
Review, 8(1):62–63, Mar 2011. ISSN 1551-3688

• Enrico Bini, Marko Bertogna, and Sanjoy Baruah. Virtual multiprocessor platforms: Specification
and use. In Proc. of 30th IEEE Real-Time Systems Symposium, pages 437–446, 2009b

• Giuseppe Lipari and Enrico Bini. A framework for hierarchical scheduling on multiprocessors:
from application requirements to run-time allocation. In Proc. of 31st IEEE Real-Time Systems
Symposium, pages 249–258, December 2010

• E. Bini, G. Buttazzo, and M. Bertogna. The multi supply function abstraction for multiprocessors.
In 2009 15th IEEE International Conference on Embedded and Real-Time Computing Systems
and Applications, pages 294–302, Aug 2009a. doi: 10.1109/RTCSA.2009.39

• I. Shin and I. Lee. Compositional real-time scheduling framework with periodic model. ACM
Trans. Embed. Comput. Syst., 7(3):30:1–30:39, May 2008. ISSN 1539-9087

References from SSSA

La ricerca negli Istituti di Ingegneria Luca Abeni — Real-Time Virtual Machines – 50 / 50

• Luca Abeni, Alessio Balsini, and Tommaso Cucinotta. Container-based real-time scheduling in
the linux kernel. SIGBED Rev., 16(3):33–38, November 2019a. doi: 10.1145/3373400.3373405.
URL https://doi.org/10.1145/3373400.3373405

• Luca Abeni, Alessandro Biondi, and Enrico Bini. Hierarchical scheduling of real-time tasks over
linux-based virtual machines. Journal of Systems and Software, 149:234 – 249, 2019b. ISSN
0164-1212. doi: https://doi.org/10.1016/j.jss.2018.12.008

• L. Abeni and D. Faggioli. An experimental analysis of the xen and kvm latencies. In 2019 IEEE
22nd International Symposium on Real-Time Distributed Computing (ISORC), pages 18–26,
2019. doi: 10.1109/ISORC.2019.00014

• Luca Abeni and Tommaso Cucinotta. Adaptive partitioning of real-time tasks on multiple
processors. In Proceedings of the 35th Annual ACM Symposium on Applied Computing, SAC ’20,
page 572–579, New York, NY, USA, 2020a. Association for Computing Machinery. ISBN
9781450368667. doi: 10.1145/3341105.3373937. URL
https://doi.org/10.1145/3341105.3373937

• Luca Abeni and Tommaso Cucinotta. EDF scheduling of real-time tasks on multiple cores:
Adaptive partitioning vs. global scheduling. SIGAPP Appl. Comput. Rev., 20(2):5–18, July 2020b.
ISSN 1559-6915. doi: 10.1145/3412816.3412817. URL
https://doi.org/10.1145/3412816.3412817

• Luca Abeni and Dario Faggioli. Using xen and kvm as real-time hypervisors. Journal of Systems
Architecture, 106:101709, 2020. ISSN 1383-7621. doi: https://doi.org/10.1016/j.sysarc.2020.101709.
URL https://www.sciencedirect.com/science/article/pii/S1383762120300035

https://doi.org/10.1145/3373400.3373405
https://doi.org/10.1145/3341105.3373937
https://doi.org/10.1145/3412816.3412817
https://www.sciencedirect.com/science/article/pii/S1383762120300035

	Real-Time Applications
	Temporal Constraints
	Real-Time Task
	RT Scheduling: Why?
	The Scheduling Problem
	Fixed Priorities
	Schedulability Analysis
	What About Multiple Cores?
	Or...
	Example: Fixed Priorities in Linux
	Periodic Task Example
	Theoretical Schedule
	Actual Schedule
	Theory vs Real Schedule
	The OS Kernel
	Latency
	Effects of the Latency
	Latency in Linux
	Virtualization
	Resource Pooling
	Resource Isolation
	Different Kinds of Isolation...
	Virtualized Resources
	Hardware Virtualization
	OS-Level Virtualization
	Virtualization Levels and Technologies
	Real-Time and Virtualization???
	Combining Real-Time VMs
	Modelling RT VMs
	Schedulers Hierarchy
	Root Scheduler Requirements
	Schedulability Analysis
	Supplied Time
	Summing Up...
	Hardware Virtualization and Latencies
	Hypervisor Latency
	Hypervisor Latencies
	Worst Cases
	Hypervisor vs Kernel
	Investigating Xen Latencies
	Virtualization Mechanisms
	Reducing the Xen Latencies
	Scheduling the VMs
	In Practice...
	Example: KVM-Based VMs
	Example: Container-Based VMs
	Conclusions
	References from Literature
	References from SSSA

