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Real-Time Applications
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• Real-Time Application: The time when a result
is produced matters

• A correct result produced too late is equivalent to
a wrong result (or to no result)

• What does “too late” mean, here?

• Applications characterised by temporal
constraints that have to be respected!

• Examples:

• Control applications, autonomous driving, ...
• But also infotainment, gaming,

telecommunications, ...!!!



Temporal Constraints
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• Temporal constraints are modelled through
deadlines

• Finish some activity before a time (deadline)
• Generate some data before a deadline
• Terminate some process/thread before a

deadline
• ...

• What happens if a constraint is not respected?

• Simple: the application fails!



Real-Time Task
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Task (process or thread): sequence of actions
characterized by deadlines and maximum execution
time. Example: periodic task with period 8 and
maximum execution time 3.

0 2 4 6 8 10 12 14 16 18 20 22 24

τ1

Note: while the first and the third activations execute for
3 time units the second one executes for only 2 time
units.



RT Scheduling: Why?
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• Taskset T = {(1, 3), (4, 8)}: not schedulable by FCFS

0 2 4 6 8 10 12 14 16 18 20 22 24

τ1

τ2

• T is schedulable with other algorithms

0 2 4 6 8 10 12 14 16 18 20 22 24

τ1

τ2



The Scheduling Problem
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• A real-time task τi is properly served if all jobs
respect their deadline...

• ...Appropriate scheduling is important!

• The CPU scheduler must somehow know the
temporal constaints of the tasks...

• ...To schedule them so that such temporal
constraints are respected

• How to schedule real-time tasks? (scheduling
algorithm)

• Is it possible to respect all the deadlines?
• Do commonly used OSs provide appropriate

scheduling algorithms?



Fixed Priorities
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• Fixed-priority schedulers are often used for real-time
tasks...

• ...Is this ok in general, or only in some cases?

• Given a set of real-time tasks Γ = {τi}, can a
fixed priority scheduler allow to respect all the
deadlines?

• Is it possible to know in advance if some deadline
will be missed?

• How to assign the priorities?

• Example: if fixed priorities are enough, the
SCHED FIFO and SCHED RR policies can be used!



Schedulability Analysis

La ricerca negli Istituti di Ingegneria Luca Abeni — Real-Time Virtual Machines – 8 / 50

• Given a set of tasks, is it possible to know in
advance if deadlines will be missed?

• A task is schedulable if it will not miss any
deadline

• Depends on the task, on the scheduler, on the
other tasks, ...

• Schedulability test: mathematical test to check if τ
will miss any deadline

• Possible idea: compute the amount of time
needed by all the tasks to respect all their
deadlines in an interval (t0, t1) and compare with
t1 − t0



What About Multiple Cores?

La ricerca negli Istituti di Ingegneria Luca Abeni — Real-Time Virtual Machines – 9 / 50

• How to schedule tasks on multiple CPUs / cores?

• First idea: partitioned scheduling

• Statically assign tasks to CPU coress
• Reduce the problem of scheduling on M cores to M

instances of uniprocessor scheduling

CPU CPU CPU CPU

M



Or...
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• One single task queue, shared by M CPU coress

• The first M ready tasks are selected
• What happens using fixed priorities?
• Tasks are not bound to specific CPUs
• Tasks can often migrate between different CPUs

• Problem: UP schedulers do not work well!
M

CPU CPU CPU CPU

{M



Example: Fixed Priorities in Linux
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• SCHED FIFO and SCHED RR use fixed priorities

• They can be used for real-time tasks, to
implement priority assignments from literature

• Real-time tasks have priority over non real-time
(SCHED OTHER) tasks

• Difference between the two policies: visible when
more tasks have the same priority

• The administrator can use
sched setscheduler() (or similar) to schedule
real-time tasks

• Might be a little bit impractical, but can be used

• However...



Periodic Task Example
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• Consider a periodic task

/ * . . . * /
while ( 1 ) {

/ * Job body * /
c lock nanosleep (CLOCK REALTIME,

TIMER ABSTIME , &r , NULL ) ;
t imespec add us (& r , per iod ) ;

}

• The task expects to be executed at time
r = r0 + jP ...

• ...But is sometimes delayed to r0 + jP + δ

• Why? Because it executes on a real system, not
in a simulator!!!



Theoretical Schedule
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Actual Schedule
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0 2 4 6 8 10 12 14 16 18 20 22

τ1

τ2

• What happens if the 2nd activation of τ1 arrives a little
bit later???

• The 2nd activation of τ2 misses a deadline!!!



Theory vs Real Schedule
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• The delay δ in scheduling a task is due to kernel
latency

• Kernel latency can be modelled as a blocking time
• In real world, high priority tasks often suffer from

blocking times coming from the OS (more precisely,
from the kernel)

• Why?
• How?
• What can we do?

• To answer the previous questions, we need to at the
OS internals...



The OS Kernel
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• Kernel: “core” of the OS, managing the hardware→
can be non-preemptable

• System executing kernel code for a long time (long
syscalls or heavy interrupt load)→ long latencies!!!

• Possible Solutions:

1. Insert explicit rescheduling points into the kernel
2. Make the kernel preemptable (spinlocks protect

critical sections)→ sections holding a spinlock
for too much time still create problems

3. 1 + 2→ preemptable kernel + lock breaking

• Or, rewrite the kernel from scratch...



Latency
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• Latency: measure of the difference between the
theoretical and actual schedule

• Task τ expects to be scheduled at time t . . .

• . . . but is actually scheduled at time t′

• ⇒ Latency L = t′ − t

• The latency L can be modelled as a so-called
“blocking time”⇒ real-time theory knows how to
handle it!

• Analysis already developed for shared resources
• Can be easily adapted to account for kernel

latency



Effects of the Latency
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• Upper bound for L? If not known, no schedulability
tests!!!

• The latency must be bounded: ∃Lmax : L < Lmax

• If Lmax is too high, only few task sets result to be
schedulable

• Large blocking time experienced by all tasks!
• The worst-case latency Lmax cannot be too high

• Real-Time OS (RTOS): OS provinding a low upper
bound for the kernel latency!



Latency in Linux
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• Tool (cyclictest) to measure the latency
• Vanilla kernel: depends on the configuration

• Can be tens of milliseconds

• Preempt-RT patchset
(https://wiki.linuxfoundation.org/realtime): reduce
latency to less than 100 microseconds

• Tens of microseconds on well-tuned systems!

• So, scheduling real-time tasks in Linux is not an
issue anymore...

https://wiki.linuxfoundation.org/realtime


Virtualization
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• Virtualization: creation of a virtual instance of a
computing system

• Computer (PC, server, embedded board, ...)
• Operating System
• Storage device / other

• Separate / independent from the physical system(s)
hosting it

• This mainly requires two activities:

1. Pooling: consolidating possibly distributed
resources into a single logical entity

2. Isolation: giving the virtualized application a
“virtual” private copy of the resources



Resource Pooling

La ricerca negli Istituti di Ingegneria Luca Abeni — Real-Time Virtual Machines – 21 / 50

• Set of multiple, possibly distributed, resources
• Single “virtual resource”, that can be used to

transparently access them

• Pool of physical servers hosting VMs in a cloud;
accessed by starting a VM⇐ load balancing

• Pool of storage devices (disks, databases, ...)
accessed as a single virtual storage device← I
do not know where data are really stored...

• ...

• Used for automatically distributing the load, for
building powerful machines based on less powerful
ones, for making computation independent on data
placement, ...



Resource Isolation
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• The usage of virtual resources must be controlled by
the virtualization software

• Example: applications running in a VM should not
be able to access resources outside of the VM...

• ...Nor to directly access physical resources!
• ...

• Virtual resources should not even be distinguishible
from physical ones

• Example: applications running in a VM should
have the impression to run on a physical
machine...



Different Kinds of Isolation...
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• Resource isolation can be used for different reasons

• Security← reduce the impact of compromised
subsystems

• Application sandboxing← execute non-trusted
software

• Performance guarantees← isolate the
performance of a component from interference of
other components

• ...

• Different kinds of requirements



Virtualized Resources
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• Virtual Machine: efficient, isolated duplicate of a
physical machine

• Why focusing on physical machines?
• What about abstract machines?

• Software stack: hierarchy of abstract machines

• ...
• Abstract machine: language runtime
• Abstract machine: OS (hardware + system library

calls)
• Abstract machine: OS kernel (hardware +

syscalls)
• Physical machine (hardware)



Hardware Virtualization
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• Can be full hardware virtualization or
paravirtualization

• Paravirtualization requires modifications to guest
OS (kernel)

• Can be based on trap and emulate
• Can use special CPU features (hardware assisted

virtualization)
• In any case, the hardware (whole machine) is

virtualized!

• Guests can provide their own OS kernel
• Guests can execute at various privilege levels



OS-Level Virtualization
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• The OS kernel (or the whole OS) is virtualized

• Guests can provide the user-space part of the
OS (system libraries + binaries, boot scripts, ...)
or just an application...

• ...But continue to use the host OS kernel!

• One single OS kernel (the host kernel) in the system

• The kernel virtualizes all (or part) of its services

• OS kernel virtualization: container-based
virtualization

• Example of OS virtualization: wine



Virtualization Levels and

Technologies
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• Virtualization level: hw, kernel, OS, language, ...

• Defines the abstractions provided through
virtualization

• Virtualization technology: how is the VM
implemented?

• “Full VM” for hw virtualization

• Hypervisor→ software component used to
virtualize the CPU

• Kernel mechanisms for implementing application
or OS containers (OS-level virtualization)

• But... Hypervisors can do OS-level virtualization too!



Real-Time and Virtualization???
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• Serving real-time applications in (for example)
Linux-based systems is not a problem today...

• ...Can real-time applications run in Virtual Machines?

• Real-Time in Virtual Machines??? But... Why?

• Component-Based Development
• Security

• Isolate real-time applications in a VM

• Easy deployment
• Real-Time Cloud Computing
• ...



Combining Real-Time VMs
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?
• Real-time analysis for each application / in each

VM...
• What about the resulting system?



Modelling RT VMs
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• Example: VM Ci containing ni real-time tasks
• How to model/analyze it?

• Real-time theory only shows how to schedule
single tasks...

• Here, we schedule VMs!

• We need to somehow “summarise” the
requirements of a VM containing multiple tasks!

• So, 2 main issues:

1. Describe the temporal requirements of a VM in a
simple way

2. Schedule the VMs, and somehow “combine”
their temporal guarantees



Schedulers Hierarchy
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• Scheduling hierarchy

• Root/Host scheduler (schedules VMss)
• Local/Guest scheduler inside each VM

• Compositional Scheduling Framework (CSF): allows
to compose real-time guarantees

1τ
1τ

1ττn

τn

2

τn

τ

Root
Scheduler

Local Scheduler Local Scheduler Local Scheduler

Implementable through
Virtual Machines!

• Hardware virtualization
• Containers



Root Scheduler Requirements
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• First requirement: analyse the schedulability of a VM
independently from other VMs

• The root scheduler must provide some kind of
temporal protection between VMs

• Various possibilities

• Resource Reservations / server-based approach
• Static time partitioning
• ...

The root scheduler must guarantee that
each VM receives a minimum amount

of resources in a time interval



Schedulability Analysis

La ricerca negli Istituti di Ingegneria Luca Abeni — Real-Time Virtual Machines – 33 / 50

• (Over?)Simplifying things a little bit...
• ...Suppose to know the amount of time needed by a

VM to respect its temporal constraints and the
amount of time provided by the global scheduler

• A VM is “schedulable” if

demanded time ≤ supplied time

• “demanded time”: amount of time (in a time
interval) needed by a VM

• “supplied time”: amount of time (in a time
interval) given by the global scheduler to a VM

• Of course the devil is in the details



Supplied Time
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• Description of the root scheduler temporal behaviour
• More formally:

• Depends on the time interval t we are
considering

• Depends on the root scheduler S

• Minimum amount of time given by S to a VM in a
time interval of size s

• Problem: fixed-priority scheduling does not
guarantee a minimum time to the VM!!!

• It can be shown that reservation-based
scheduling of VMs can work

• Reserve a runtime Q every period P for a VM



Summing Up...
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• Real-Time applications running in a VM?

• As for OSs, two different aspects
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• Resource allocation/management
(scheduling)

• CPU allocation/scheduling: lot of work in
literature
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Summing Up...

La ricerca negli Istituti di Ingegneria Luca Abeni — Real-Time Virtual Machines – 35 / 50

• Real-Time applications running in a VM?

• As for OSs, two different aspects

• Resource allocation/management
(scheduling)

• Latency (host and guest)

• CPU allocation/scheduling: lot of work in
literature

• Latencies not investigated too much (yet!)

• Virtualization: full hw or OS-level

• Open-source hypervisors: KVM and Xen
• Real-Time containers



Hardware Virtualization and

Latencies
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• Hypervisor: software component responsible for
executing multiple OSs on the same physical node

• Can introduce latencies too!

• Different kinds of hypervisors:

• Xen: bare-metal hypervisor (below the Linux
kernel)

• Common idea: the hypervisor is small/simple,
so it causes small latencies

• KVM: hosted hypervisor (Linux kernel module)

• Latencies reduced by using Preempt-RT
• Linux developers already did lot of work!!!



Hypervisor Latency
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• Same strategy/tools used for measuring kernel
latency

• Idea: run cyclictest in a VM

• cyclictest process ran in the guest OS...
• ...instead of host OS

• cyclictest period: 50µs
• “Kernel stress” to trigger high latencies

• Non-real-time processes performing lot of
syscalls or triggering lots of interrupts

• Executed in the host OS (for KVM) or in Dom0
(for Xen)

• Experiments on multiple x86-based systems



Hypervisor Latencies
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Worst Cases
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Kernels Core Duo Core i7
Xen KVM Xen KVM

NRT/NRT 3216µs 851µs 785µs 275µs
NRT/RT 4152µs 463µs 1589µs 243µs
RT/NRT 3232µs 233µs 791µs 99µs
RT/RT 3956µs 71µs 1541µs 72µs

• Preempt-RT helps a lot with KVM

• Good worst-case values (less than 100µs)

• Preempt-RT in the guest is dangerous for Xen

• Worst-case values stay high



Hypervisor vs Kernel
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Investigating Xen Latencies
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• KVM: usable for real-time workloads
• Xen: strange results

• Larger latencies in general
• Using Preempt-RT in the guest increases the

latencies?

• Xen latencies are not due to the hypervisor’s
scheduler

• Repeating the experiments with the null
scheduler did not decrease the experienced
latencies



Virtualization Mechanisms
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• Xen virtualization: PV, HVM, PVH, ...

• PV: everything is para-virtualized
• HVM: full hardware emulation (through qemu) for

devices (some para-virtualized devices, too); use
CPU virtualization extensions (Intel VT-x, etc...)

• PVH: hardware virtualization for the CPU +
para-virtualized devices (trade-off between the
two)

Guest Kernel PV PVH HVM

NRT 661µs 1276µs 1187µs
RT 178µs 216µs 4470µs



Reducing the Xen Latencies
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• Xen latencies seem to be mainly due to timer
resolution latency

• Turned out to be an issue in the Linux code
handling Xen’s para-virtualized timers

• Linux jargon: “clockevent device”

• Does not activate a timer at less than 100µs from
current time (TIMER SLOP)

• After reducing this “timer slop”, average latency
smaller than 50µs even for cyclictest with period 50µs

• Still larger than KVM latencies (probably due to
non-preemptable sections?)



Scheduling the VMs
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• Issue: how to guarantee a minimum amount of CPU
time to each VM?

• As said, SCHED FIFO / SCHED RR are not ok...

• SCHED DEADLINE policy: schedule a thread /
process for an amount of time Q every period P

• Q: runtime
• P : reservation period

• This is what we need!!! Allows to compute a supply
function!

• Xen provides a similar scheduler (RTDS)



In Practice...
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• Full hardware virtualization

• KVM: use SCHED DEADLINE to schedule the
vCPU threads

• Xen: use the RTDS scheduler

• OS-level virtualisation: containers (lxc, Docker, ...)

• Extend SCHED DEADLINE to schedule containers

• More precisely, to schedule control groups

• Implement the scheduling hierarchy in the kernel

• Container-based real-time scheduling

• CPU allocation: interesting issues with multiple
vCPUs



Example: KVM-Based VMs
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• KVM: Linux driver for CPU virtualisation

• User-space VMM (qemu, Firecracker, ...)
• A thread per virtual CPU (vCPU thread)

• Use Preempt-RT for host and guest kernels
• Use SCHED DEADLINE for the vCPU threads

• CFS→ (boring) algorithms to dimension Q and P

• Global guest scheduler← para-virtualised
scheduling!!!

• To always schedule on physical CPUs the
highest priority guest tasks

• Use partitioned fixed priority scheduling in the guest



Example: Container-Based VMs
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• Use Linux control groups and namespaces

• One single scheduler for all the tasks
• Can “see” the tasks inside containers

• Use Preempt-RT for the host kernel (there is no
guest kernel)

• Patch SCHED DEADLINE to schedule real-time
control groups

• Again, CSF allows to dimension Q and P

• No issues using a global guest scheduler!



Conclusions
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• Deterministic scheduling of RT tasks in VMs is
possible

• But can be tricky; you need to know what to do

• RT support from Linux community→ Preempt-RT
• Theory from RT research→ SCHED DEADLINE

• Lots of interesting problems, both theoretical and
practical, being investigated at ReTiS Lab

• Multi-core scheduling
• Latencies in VMs
• Scheduling VMs and scheduling in VMs
• ...

• Results contributed to the open-source community
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