Embedded Systems Design

Course Plan

Intro to ES, V-model and Model-based Design

Project intro

Requirements and Functional Testing

Project step1 — Requirements and test plan

Models and systems

FSMs part1

Communication buses — event driven - Controller Area Network
Project step2 — Intro to Flex, programming IDE, Erika, Device drivers
FSMs part2

Communication buses — time driven — FlexRay

FSMs part3

Extensions to FSMs — Statecharts

Project step3 — Models

Timed automata

An Introduction to Uppaal and verification

Project step4 — Verification

Translating an FSM into code: Part 1

Statecharts in practice — Mathworks Stateflow

Translating an FSM into code: Part 2

Automatic code generation with Mathworks tools

Project step5 — Production of Code

Conformance testing

Structural testing — coverage

Project step6 — Testing

Advanced topic: semantics preservation in multiprogramming implementations
Advanced topic: component-based design and AUTOSAR

Course organization and evaluation

« Evaluation is based on
— Project: development of simple application on Flex board
using model-based derivation techniques. Teams of 4.
Each member of the team must be capable of discussing
the project steps. 40%
— Discussion of a research paper. Individual, randomly
selected paper 20%
— Final test. 40%
« Available Projects
— Elevator controller mockup (all)
— Elevator subsystem (pick one)
— Interface prototyping (Linux with Qt or Microchip)

Embedded systems

From Wikipedia

 An embedded system is a special-purpose computer
system designed to perform one or a few dedicated
functions, sometimes with real-time computing
constraints. It is usually embedded as part of a complete
device including hardware and mechanical parts. In
contrast, a general-purpose computer, such as a
personal computer, can do many different tasks
depending on programming.

« Since the embedded system is dedicated to specific
tasks, design engineers can optimize it, reducing the
size and cost of the product, or increasing the reliability
and performance.

Embedded systems

« Embedded = Dedicated

* Interaction with physical processes Timing constraints
— sensors, actuators, processes (latency, jitter)

 Critical properties are not all functional
— real-time, fault recovery, power, security, robustness

* Heterogenelity

— hardware/software tradeoffs, mixeg Heterogeneous models,
. Concurrency methods, tools

— Interaction with multiple processes Resource sharing,
o Reactivity scheduling

— operating at the speed of the environment

« Resource constrained
— Because of cost, energy, space

(source Edward Lee — UC Berkeley)

The V-shape development cycle (V-model)

User I __
Reduirements # Validation '
Functional System
Specifications ﬁ verification
Functional
modeling é Integration
Architecture L_ﬂ_'testm
Exploration
Component Module
modeling é testin '
Behavior
modeling
Coding '

A development cycle

HaRe)

(0 AS, SQ
System Pl System
Function T ;
Matlab P = | System Validation ADI Simulator
Saber sign Helios
Logicall Phisycal
Saber Operation Design p | Logic Component [oy 4o simulator

Statemate (SFO. SRO)

dSPACE

| !-ﬂf‘lgWParﬁﬁonfnq

C conpiler| SW Design '
Continuus
Sniffer
ICEmulators

Simulink, Target Link (autocode)

Validation Helios
/ Dspace
o Debugger, CAN an., DTS,...
SW Test and Validation Static Simulator
l Real time simulator
Logiscope

What's special in the V-model?

User Requirements A_cas_cad_e model
A N highlighting
Functional specs correspondence between
A development and test

Functional design

Architecture selection L

A\

Component/Module design
A\

Coding

A\

Module testing
A\

Integration testing
.

System verification
.
System validation

ol

Model-based design

On August 19, 1418, a competition was announced in Florence, where the city’s
maghnificent new cathedral, Santa Maria del Fiore, had been under construction
for more than a century

Whoever desires to make any model ov design for the vaulling of the main
Dome of the Cathedral under consteuction by the Opera el Duoma-for
conotuction and pedection of 0aid cupola oz vaull shall do oo before the end of
the month of Oeplember. I the model be wsed he ohall be entithed to a

payment of 200 gold SHlozino.

Competition between architects was an old and honored custom.
Patrons had been making architects compete against one another
for their commissions since at least 448 B.C., when the Council of

Athens held a public competition for the war memornial it planned to
build on the Acropolis. Under these circumstances, it was normal

practice for architects to produce models as a means of convincing
patrons or panels of judges of the virtues of their particular designs.

From Brunelleschi's Dome:
How a Renaissance Genius
Reinvented Architecture

by Ross King

Model-based design

Engineering has made use
| of models since its very
=== early days

Filippo Brunelleschi's design for the dome of the cathedral
of Santa Maria del Fiore in Florence remains one of the
most towering achievements of Renaissance architecture.
Completed in 1436, the dome remains a remarkable feat of
design and engineering. Its span of more than 140 feet
exceeds St Paul's in London and St Peter's in Rome, and
even outdoes the Capitol in Washington, D.C., making it the
largest dome ever constructed using bricks and moriar.
When work on the dome began in 1420 Brunelleschi was
virtually unknown. Sixteen years later the dome was built,
and its architect was a superstar.

Model-based design

The four tenets on /\
the right are - Executable

fundamental to ~ S&eciﬁcuﬁons
model-based design / Tom Models

Key is: test,

verification, : P
simulation, C%';‘ ';“:dus Models i-‘:;ﬁ”
validation Verification Simulation
Why automatic code

generation? /

Of course, you must " Implementation

select a modeling with Automatic

language that allows Code Generation o
to do everything in DSP Magazine
the most natural and Bt Blirerisilcdelbicedidisio

easy way ...

RTS and Platform-Based Design

« Design (continued): matching the logical design into
the SW architecture desian

waveform Yosk
heartrate |lalarm alarm
controller [p——— = ~noies
argmeter ||manager | |displal = Faol
physician sets up i ieMenege rice por ire
for patient 152 4 waveforms| Rate=50 yace
. s monitaring setsweep 1
speed(25) Rate=47

<tbradycardia

I

|

I EL

* % T UM alamn

I

|

I

I

I

I

|

I

set tachycardia

I

]

darm 1
I

\ n iming constraints (from

count_out

Rate

I
I e
]

Y e functional model

RESET intervention

I
i
\ | bradycardia algfn
' clear alarm
I
\ ‘ I
| bondary- | J
\1 ! Holster Swich [st
| ET
[:
\ i e L i ——
A ! frosco iy T
7. (I 1 oo iy iowk ispay
\) |
J T This Class Diaggram is an early, pre-task lationshi Jsplay dispenser idie
s Yoo = | —
ey senice reauest e
\ \ 7 o 5
fuel price

-

I
I
I
I
v !

Task and

[7
pSOUTCES Threads (tasks),! ,’ Threads (tasks resource
/

<P-r177]

.
.
.

.
-

RTOS API

Timing attributes (from
platform deployment

End of introduction

e Questions/Issues?

Models and implementation: Simulink

Where are the tasks?

MATLAB ‘ .]
Pilat Shck Inpud SIMULINK® _bF'ﬂ": i foroe ()
q
Piot G faron
Mz pilat Some
N E (= [wl] .1 Tu g
SHck Input (in)
1
— P alpha rad) Ekvator Command (degl P = 1 — I Elcvatr Deflection d (deg) Nz Pilct (g)
a5+
B o racisec | vertical Velodby w (lsec o
c Actuzar
an frcaller Model
| T Vertcal Gust wGLst (fiser | ’
Ange af
n gtk
Pitch Rae o {rad'sed |
Wig wos P Rotary Gust gGust (radsec) »——b@
G st apha (rad)
Qg
Amrak
Df‘]'dm'l Wind El"ﬂﬂ-mg
Gust Models — Mg Made|

Models and implementation: UML

Dispenser

1.16

Kiosk

— notifies

1| theManager

3 updated by

theObserver ~=fgets price from
1
fuel type available at v
1
3 1
myEHUnits myDispenser

the "active’ EH Unit is one of the
aggregate EH Units of the Dispenser

0..1 ~ active 1 1.16

updated by v

controlled by B 1

theDispenser nser

activeEH

1,,dDisplay

This Class Diagram is an early, pre-task design view of class relationships, based on the Object design interaction models.

This diagram would be considerably enhanced as further implementation detail was added.

Where are the tasks?

theKiosk

myController

1

theDispla
1 f sends trans. details to

1, theEPOS

Models and implementation: UML

physician

waveform

controller

for patient
monitaring

asystole event

physician's
intervention

physician sets up

e 4 waveforms

setsweep
spead(25)

™

set bradycardia
alarm

patient

set tachycardia
alarm

heart rate alarm alarm
parameter ||manager display
P Rate=50
Rate=47
-
L
-
F‘!ct -:[:]
< ate
raise
bradycardia alarfn
M alarm text
» Fate=45
lower
bradycardia alafm
H'l clear alarm

i

Models and implementation: FSM

Stutter

{(absent, ring, absent)}
{(absent, ring, absent)}

stutter

stutter

{(*.offhook.*)}

record
message

elsel(absent, recorded, absent)

&end message, absent} i {ring, offhook, absent} &end greeting, absent}

play greeting

{(absent, ring, absent)}/
(answer, absent, absent)

Stutter

{(end greeting,absent,absent)}/
(absent, absent, record)

¢ {answer, absent}

{recorded,
absent}

:

¢{record, absent}

NOTE.: stutter = {(absent, absent, absent)}

L » "l.h

Some things are there ... maybe not in plain sight
"l-.
I\

=

“ I
¢ i~k IO

: i’l*"

TN

l-l

N

