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Requirements Analysis

Purpose of this Lesson

– Establishing role of requirements and requirements vs
testing

– Some methods for collecting Requirements in a structured 
way

• Avoiding inconsistencies, redundancy, omissions

• Go towards a formal model

– Assumptions/Assertions

– Preconditions/Postconditions/Invariants

– FSM models

– Other diagrams (MSCs, Context)

– Link one or more test cases to requirements

• Requirements coverage 

– Tracking requirements to implementation



The V-shape development cycle (V-model)
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Requirements analysis

• (User) Requirements should be the description of what the 
system is supposed to do (what is its behavior), as opposed 
on how it will perform its tasks.

• In a cascade model (the V-model is no exception) 
requirements are the starting point. You don’t design until you 
know what you are supposed to produce. 

• They should be obtained after discussion with marketing 
people, product specialists and other analysts.

• As such, they are better communicated in (informal) natural 
language (plain english).

• Unfortunately natural language is subject to misinterpretation 
due to ambiguity, inconsistencies, omissions and 
redundancy.

• Requirements analysis is quite often the result of an empirical 
process, subject to arbitriariety, imprecision, subjectivity.

• This is why formal requirements have been proposed
– FSM, Z language …



Requirements analysis

• Conflicting needs:
– Communicate with non-technical (non computer 

scientists) people using non-technical languages
– Describe the specification of the system in a formal way 

to avoid ambiguities/inconsistencies …
• In addition, requirements are often incompletely defined at 

the beginning of a project and completed iteratively while the 
system is developed (and the needs become clearer)

– Or often, never completed at all!
• Requirements are alive, they evolve and are (iteratively) 

refined, redefined or reorganized.



Requirements analysis

In reality, in most cases, requirements documents are 
produced after the system is developed and most often, 
they are written by the developers themselves, 
documenting what the system does …



Requirements analysis: A proposed approach

Several techniques can be used to drive the requirements capture and 
analysis stage and to organize the requirements.
The objectives are:

– Clarity
– Completeness
– Avoiding abiguities and inconsistencies
– Avoiding redundancy

Different techniques may be used depending on the type of system that 
must be developed (database vs embedded) and according to the 
methodology and development process (object oriented vs functional)
For example, techniques may be classified according to the starting 
points for the analysis

– Working modes or states of the system
– The model of the data or information that the system must handle
– The Use cases of the system and the actors interacting with the system
– The activities of the system (or its reactions), typically associated with
– Le attivita’ che il sistema si suppone debba realizzare, o la reazione del 

• The entities or actors interacting with the system
• The events to which the system must react

– The objectives that the system must ultimately satisfy



Requirements analysis: A proposed approach

The concept:

– Write requirements in “structured” natural language

– Enforce writing style that tends towards a FSM 
description

– Enforce use of data dictionary

– Simple rules that try to avoid redundancy/inconsistency

– Complement/refine text with formal diagrams 
(semiformal approach)

– Ease definition of requirements-driven test cases



Requirements analysis: A proposed approach

• Requirements can be organized in chapters for subsystems and 
sections referring the system-level working modes.

• Inside each section, we place the requirements that apply to 
each working mode (system-level “states”) 

– This drives the definition of a finite state machine model

• Generally, at least a subset of the system reactions does not 
happen in isolation, but there is a protocol or sequence of 
events and reactions that are organized in a scenario.

• The scenarios defining the working or the use of the system can 
be organized in Sequence diagrams according to the UML 
standard or in Message Sequence Charts (in SDL).

– Typical examples, error management and diagnostics

• Typically, the requirements express the large scale partitioning
of the system in its main subsystems (functionally, not 
physically)

• Such a partitioning should highlight the definition of the inputs 
and outputs at the system/subsystem level



Requirements analysis: The data dictionary

• In the definition of the activities and states of the system and, especially 
of inputs, outputs, events and system parameters it is necessary to refer 
to names without ambiguity. This structure can be obtained in a very 
simple way, with the management of a data dictionary.

• Names in the dictionary do not refer program variables, but functional 
entities. We do not refer concrete types (float, double, int16), but abstract 
types (reale, intero ...)

• An example of data dictionary for input/output data and events is

Id Signal Name Text description Is Trigger Direction Width (bits) Dest/Src Period (ms) Data Type Units Min Max Resolution Offset Notes

I1 B_ECO tasto ECO TRUE Input 1 User Boolean 0 1 1 0

I2 B_OFF tasto ON/OFF TRUE Input 1 User Boolean 0 1 1 0

I3 B_MODE tasto MODE TRUE Input 1 User Boolean 0 1 1 0

I10 T_NTC1 Misura della temperatura alla quale si trova la sonda NTC1 FALSE Input 16 Plant 1000 Real DegC -30 128 0,00390625 0

I11 T_NTC2 Misura della temperatura alla quale si trova la sonda NTC2 FALSE Input 16 Plant 1000 Real DegC -30 128 0,00390625 0

O1 L_ECO led ECO Output User Boolean 0 1 1 0

• For parameters the schema is slightly different. There is no need to 
represent the direction (input/output)  and there are no events.

Id Parameter Name Text description Width (bits)Data Type Units Default Min Max Resolution Offset Notes

alpha t_step_eco 1 Boolean DegC 3 0 0 1 0

beta t_confort 1 Boolean DegC 53 0 0 1 0

gamma t_sv_ottimo temperatura di svuotamento ottimo 1 Boolean DegC 21 0 0 1 0

delta t_isteresi isteresi di funzionamento 0 Real DegC 8 0 0 1 0



Redundant definitions

• If unlocking is performed 5 times in less than 15 minutes, it is

impossible to unlock the boiler for the next 5 minutes. Any 
further attempt to unlock it after the fifth increases the waiting 

time before the boiler can be unlocked again by 5 minutes. 

After the waiting time, it is possible to unlock again, on 

condition that less than 5 unlocks happened in the last 15 

minutes. Otherwise, it is necessary to wait 15 minutes from 
the latest unlock. 



Unnecessary descriptions

• what the system doesn’t do

– Of course it doesn’t do a lot of things ….

• If the interface is off all leds are off and button 

presses do not have effect

• In setup mode, pressing the Economy button 

has no effect. Pressure of the ON button in 
setup mode causes the selection of the last 
temporary setpoint and turns the device off.



Multiple names (states)

• After the acknowledgement of a non volatile 
error, the error signal persists even after cutting 
off and restoring power, whether the cause of 
the error persists or not.

• After the acknowledgement of a non volatile 
error, the error signal persists even if the cause 
of the error is no more present or (?) there is a 
power failure, until unlocking. 

• When the cause of the error is no more present, 
the error signal will be removed only after a 
reset, that is a shutdown, followed by a startup.



Multiple names (I/O)

Device names

NTCs are called

– NTC1 and NTC2

– NTC_H and NTC_L

Device identification

“The highest LED”

(?)



Multiple names (I/O)

How many temperatures are there?

Desired temperature 

Working temperature

Setpoint temperature

“Thermostating” temperature

Boiler temperature

Boiler internal temperature

NTC temperature

Current temperature

Measured temperature 

… (more)



Requirements Analysis

User Requirements

Functional specs

Functional design

Architecture selection

Module design

Coding

Integration testing

System verification

System validation

System-levelSystem-level

Module testing

Market leader: Telelogic DOORS

Other options: structured natural language (*)

Other option: UML Use Cases

All may be complemented by Statechart or 

sequence chart specifications

Market leader: Telelogic DOORS

Other options: structured natural language (*)

Other option: UML Use Cases

All may be complemented by Statechart or 

sequence chart specifications



Requirements written in structured natural language

• User Requirements
– a set of high level requirements as perceived by the final user of 

the system used to drive the feature design.
• Interactions with the end user

• Functional requirements
– a more detailed set of requirements for the mechanisms and 

procedures needed to achieve the user requirements. 
• Typically a technical description possibly including a description of 

the evolution of the states of the system as well as scenarios of 
interactions with the system, including sequences of activities

• Consist of:
– Document templates (General structure and formatting rules)

– Rules for writing and constraining the natural language

– Tracking, management and versioning



Requirements in natural language:  Templates
User Requirements – high level requirements used to drive the feature design.

– Validation cases: a validation test should be defined for each user requirement

Functional Requirements – detailed set of requirements for the mechanisms and 
procedures needed to achieve the user requirements.

– Verification case: a verification test must be written for each requirement
Safety Requirements – a set of requirements that address the possible failure 

conditions and hazards. This can only be achieved by making assumptions 
about the environment.

Diagnostic Requirements – a set of requirements that address the on-board and 
off-board diagnostics required for this feature.

Para-Functional Requirements – a set of requirements that address feature 
characteristics that can be measured like timing, usability. scalability, speed, 

State Chart Diagram – depicts the required behavior of the feature with the states, 
triggers, conditions and transitions (base per la definizione del comportamento 
del sistema per raffinamento)

Functional Context Diagram – listing all of the external I/O signals in & out of this 
feature. The input signals on the left side of the drawing and the output signals 
on the right side of the drawing. La descrizione deve essere puramente 
funzionale!. (base per la definizione dell’architettura di sistema e la 
scomposizione in sottosistemi)

Sequence diagrams, scenarios – list the sequence of actions/events identified for 
several typical working cases of the system (base per la definizione dei casi di 
test)



Requirements in natural language:  Writing rules

1. Requirements shall be unique and identifiable
• Itemized and identified by a label

2. Requirements shall be testable or verifiable.
• A test case for each requirement

3. Requirement shall be brief and clear and use one of these verbs:
• shall A mandatory requirement for the application, subsystem, process or 

organization being described. 

• must A requirement for some other application, subsystem, process or 

organization, which is treated as an assumption for our application, 

subsystem, process or organization.

• will Behavior which is guaranteed to happen based on the immutable laws 

of physics.

• should A desired, but not required, characteristic of our application, 

subsystem, process or organization.

4. Negative requirements shall not be written.
• They are difficult to understand (sometimes double negations!), difficult to 

test, negative forms are typical of safety requirements

5. Requirements shall only stated for outbound state transitions. 
• Risk of writing them down twice, with redundancy and inconsistency upon 

change



Natural Language Requirements: Key Concepts

Contract-based definitions

System functioning may be considered as a contract between 
the system (subsystem) and the environment (other 
subsystems)

Assumptions/Assertions

• The contract consists of a set of “assumptions” on the 
environment or the other subsystems (what the “users” of the 
subsystem promise to be or to behave)

• If the environment and/or the subsystems satisfy the 
assumptions, the system (subsystem) under specification will 
have the duty to keep its side of the contract, that is, a set of 
assertions (what it promises to provide/how it promises to 
behave)

• Assumptions and assertions can be specified formally or 
informally using several languages.



Natural Language Requirements: Key Concepts

Preconditions/Postconditions/Invariants

• The preconditions are the set of conditions that must be verified 
in advance for the reaction(s) described in the requirement to 
take place

• The postconditions are the set of conditions that are guaranteed 
to be true after the reaction(s) described in the requirement take 
place

• The set of invariants are the conditions that are guaranteed to 
be always true before or after the reaction (not necessarily 
during each atomic reaction)



Telelogic DOORS
• Organizes hierarchies

• Manages  requirements 

database



Telelogic DOORS
• Organizes hierarchies

• Manages requirements 

database



Telelogic DOORS
• Organizes hierarchies

• Manages database

• Allows additional 

attributes (for example, 

cost and priority)



Telelogic DOORS
• Organizes hierarchies

• Manages database

• Additional attributes (for 

example, cost and 

priority)

• Requirements 

traceability (user 

requirements to 

functional/system 
requirements to 

architecture design)

• Change management 
and tracking changes



Requirements analysis: A proposed approach

• As a result of the analysis, user requirements are identified, 
first informally (as a structured text document) then, more 
formally, using diagrams.

• Requirements are then expressed as items

• Any requirement referring a reaction of the system may be 
further refined highlighting (possibly explicitly) the 
assumptions for the requirement or the preconditions that 
apply and the postconditions that are guaranteed after thje 
reaction described by the requirement.

• For each reaction, the definition of the preconditions helps 
defining the initial state of the system to which the requirement 
applies and the condiotions on events on input data.



Requirements analysis: A proposed approach

• In the definition of each requirement, it is always useful to ask 
questions related to:

– Possible error conditions 

– Special cases/exceptions that apply to the requirement

– What happens when one or more of the conditions for the 
requirement (or their combination) are not verified.

• To ensure that the corresponding cases are covered by other 
requirements (if of interest) and avoid omissions and 
incomplete requirements.



Requirements analysis: An example

Temperature setup
• When the boiler is in thermostat mode, it is possible to setup the 

operating temperature around which it must be maintained and it is 
possible to show the temperature actually measured by the sensors 
within the boiler. To set the temperature you need to activate the 
setting mode. We enter the setting mode by pressing the + or –
buttons (C and D). All LED indicators of temperature (1, 2, 3, 4, 5) 
go out, except for one that is on, indicating the current set point. The 
pressure of the + and - buttons allows to temporarily change the set 
point. If no key is pressed for 5 seconds, the last set point becomes 
the temporary set point and the device returns in thermostat mode. 
In setup mode, the button Eco (B) is ignored. Instead, the ON button 
(A) pressed in setup mode leads to the selection of the latest 
temporary set point and to the shutdown of the boiler. If in setup 
mode the highest LED is on, associated with the highest set point, 
and the + key is pressed, the lowest LED is lit. Conversely, from the 
lowest position, pressing the button - leads to the highest position. 
The temperature setpoint can be selected from the interface only
when the boiler is in thermostat mode and cannot be set if the eco 
mode is active.



Requirements refinement and testing

User requirementsUser requirements

Functional reqmtsFunctional reqmts

DesignDesign

codecode

StructureStructure BehaviorBehavior

Validation testValidation test

System-level verificationSystem-level verification

Functional test Functional test 

Test harnessTest harness

Defines: user-level I/O, use casesDefines: user-level I/O, use cases

Defines: I/O signals/events, system 
levels, system levels MSCs, SDs

Defines: I/O signals/events, system 
levels, system levels MSCs, SDs

Structural testStructural test

ModelsModels
ModelsModels



Requirements tracking

User requirementsUser requirements

Functional requirementsFunctional requirements

DesignDesign

CodeCode

StructureStructure BehaviorBehavior

ModelsModels
ModelsModels

We need to know what part of the 
design/code has been produced in 
response to what requirement

Requirement → design element → code section

Code section → design element → requirement

And what requirement required the 
design element or the code section



Requirements tracking

Launched
3 Jan 1999
Mission
Land near South Pole
Dig for water ice with a 
robotic arm
Fate
Arrived 3 Dec 1999
No signal received after 
initial phase of descent
Cause
Several candidate causes
Most likely is premature 
engine shutdown due to 
noise on leg sensors

Adapted from the “Report of the Loss of the Mars Polar Lander and 
Deep Space 2 Missions -- JPL Special Review Board (Casani Report) 
- March 2000”.
See http://www.nasa.gov/newsinfo/marsreports.html



The Polar Lander Case: what happened?

We don’t know for sure: spacecraft not 

designed to send telemetry during 

descent (decision severely criticized by 
review boards)

Possible causes:

Lander failed to separate from cruise 
stage (plausible but unlikely)

Landing site too steep (plausible)

Heatshield failed (plausible)

Loss of control due to dynamic effects 

(plausible)

Loss of control due to center-of-mass 
shift (plausible)

Premature Shutdown of Descent 

Engines (most likely!)

Parachute drapes over lander (plausible)

Backshell hits lander (plausible but 
unlikely)



The Polar Lander Case: Premature shutdown

Cause of error

– Magnetic sensor on each leg senses touchdown

– Legs unfold at 1500m above surface

– software accepts transient signals on touchdown sensors during 
unfolding

Factors

– System requirement to ignore the transient signals

– the software requirements did not describe the effect

– Engineers present at code inspection didn’t understand the effect

– Not caught in testing because:

– Unit testing didn’t include the transients

– Sensors improperly wired during integration tests (no touchdown 
detected!)

Result of error

– Engines shut down before spacecraft has landed

– estimated at 40m above surface, travelling at 13 m/s

– estimated impact velocity 22m/s (spacecraft would not survive this)

– nominal touchdown velocity 2.4m/s



Requirements Analysis

Lack of tracking / No testing



Requirements tracking: Change management

User requirementsUser requirements

Functional reqmtsFunctional reqmts

DesignDesign

CodeCode

StructureStructure BehaviorBehavior
ModelsModels

ModelsModels

User requirementsUser requirements

Functional reqmtsFunctional reqmts

DesignDesign

CodeCode

StructureStructure BehaviorBehavior
ModelsModels

ModelsModels

V1.0

V2.0

V2.0

V2.0

V2.0

V1.0

V1.0

V1.0



Requirements tracking: Change management

User requirementsUser requirements

Functional reqmtsFunctional reqmts

DesignDesign

CodeCode

StructureStructure
BehaviorBehavior

ModelsModels
ModelsModels

DesignDesign

CodeCode

StructureStructure
BehaviorBehavior

ModelsModels
ModelsModels

V1.1

V1.1

V1.0

V1.0

V1.0



An example (tracking requirements to design)
• Working mode

– Entering mode

– While in mode
• if the active mode is not diagnostic and an error signal is 

input from the controller with the signal of volatile error 
VolatileError being not zero or with the signal of non 
volatile error NonVolatileError being not zero, then the 
interface should enter the Error mode.

– Exiting mode
• If the active mode is not diagnostic, the pressure of the 

button B_OFFON should bring the system in mode 
Standby. The operation should be confirmed to the 
controller by setting the signal modeOffOn to 0.



Requirements tracking

Requirements change



Wrong reuse of specifications

• Ariane 5 is a European expendable launch system 
designed to deliver payloads into geostationary 
transfer orbit or low Earth orbit. It succeeded Ariane
4, but does not derive from it directly. Its 
development took 10 years and cost $7 billion.

• Ariane 5's first test flight (Ariane 5 Flight 501) on 4 
June 1996 failed, with the rocket self-destructing 37 
seconds after launch because of a malfunction in 
the control software, which was arguably one of the 
most expensive computer bugs in history. A data 
conversion from 64-bit floating point to 16-bit signed 
integer value had caused a processor trap (operand 
error). The floating point number had a value too 
large to be represented by a 16-bit signed integer.

• The Ariane 5 software reused the specifications 
from the Ariane 4, but the Ariane 5's flight path 
was considerably different and beyond the 
range for which the reused code had been 
designed. Specifically, the Ariane 5's greater 
acceleration caused the back-up and primary 
inertial guidance computers to crash, after which 
the launcher's nozzles were directed by spurious 
data. Pre-flight tests had never been performed on 
the re-alignment code under simulated Ariane 5 
flight conditions, so the error was not discovered 
before launch. 



Itemized requirements

6. Temperature setup mode
6.1 Entering mode

6.1.1 The temporary setpoint temperature tTemporarySetpoint must be set to 
the current value of the temperature setpoint tUserSetpoint.

6.2 While in mode
6.2.1 All LEDs must be off except one corresponding to the value of 

tTemporarySetpoint
6.2.2 When pressing the button B_UP the value of tTemporarySetpoint must 

be set to the value immediately higher, when pressing B_DOWN to the 
level immediately lower. If the temperature is at the maximum level, 
pressing the button B_UP will move tTemporarySetpoint to the minimum 
value. From the lowest position, pressing the button B_DOWN brings the 
temperature tTemporarySetpoint to the maximum value. 

6.3 Exit from mode
6.3.1 If no key is pressed for 5 seconds, tUserSetpoint assumes the current 

value of tTemporarySetpoint, the interface must exit from setup mode 
and go back to thermostat mode.

6.3.2 after pressing the button B_OFFON the interface exits from temperature 
Setup mode, the value of tUserSetpoint is set to the value of 
tTemporarySetpoint and the interface goes in Shutdown mode.

6.3.3 In seguito ad un distacco di alimentazione e successivo ripristino il 
valore di tUserSetpoint rimane quello precedente al distacco.



Itemized requirements

6. Temperature setup mode
6.1Entering mode

…

6.2While in mode

…

6.3 Exit from mode

…

enter: …

exit: …

while: …

Temperature 

setup



Going formal

Regular Requirements
R.3.2.1 if the active mode is not diagnostic and an error signal is input 

from the controller with the signal of volatile error VolatileError
being set or with the signal of non volatile error NonVolatileError
being set, then the interface should enter the Error mode.

R.3.2.1 For all modes not Diagnostic, if VolatileError=true or
NonVolatileError=true, then mode=Error

R.3.2.1 ¬(mode(n)=‘Diagnostic’) ∧ VolatileError(n) ∧ NonVolatileError(n) 
→ mode(n+1) = ‘Error’

R.3.2.1 A((¬(mode=‘Diagnostic’) ∧ VolatileError ∧ NonVolatileError) →
X(mode = ‘Error’))

Predicate logic

CTL

English



Going formal

Safety Requirements
S.1 if an error signal is input from the controller with the signal of volatile 

error VolatileError being set or with the signal of non volatile error 
NonVolatileError being set, then the resistor must be off.

S.1 For all modes if VolatileError=true or NonVolatileError=true, then
ResistorOnOff=false

S.1 (VolatileError(n) ∨ NonVolatileError(n)) → ¬ResistorOnOff(n)

S.1 A((VolatileError ∨ NonVolatileError) → ¬ResistorOnOff)

S.1 ¬(VolatileError ∨ NonVolatileError) ∨ ¬ResistorOnOff

S.1 (¬VolatileError ∧ ¬NonVolatileError) ∨ ¬ResistorOnOff DNF



Going formal

S.1 (¬VolatileError ∧ ¬NonVolatileError) ∨ ¬ResistorOnOff DNF



System-level testing

6. Temperature setup mode
6.1 Entering mode

• Pre-condition: The system is in thermostat mode.
• Input sequence: press the button B_UP.
• Expected outputs: ---
• Post-condition: verify that the system enters in setup mode and tTemporarySetpoint 

= tUserSetpoint.

• Pre-condition: The system is in thermostat mode.
• Input sequence : press the button B_DOWN.
• Expected outputs: ---
• Post-condition: verify that the system enters in setup mode and tTemporarySetpoint 

= tUserSetpoint.

6.2 While in mode
• Pre-condition: the system is in Temperature Setup mode
• Input sequence : ---
• Expected output: ---
• Post-condition: All LEDs are off except the one encoding tTemporarySetpoint.

• Pre-condizione: the system is in Temperature Setup mode, tTemporarySetPoint = 
L_T_MIN, LED_T_MIN is on.

• Input sequence: press button B_UP
• Expected outputs: LED_T_MIN is off, LED_T_LOW is on, tTemporarySetPoint = 

L_T_LOW.
• Post-condition: tTemporarySetpoint = L_T_LOW, LED_T_LOW is on.


